天线第一章

合集下载

ISM频带及短距离无线通信设备天线基础(第一章)

ISM频带及短距离无线通信设备天线基础(第一章)

ISM频带及小范围设备天线基础:第一章在此将介绍RF和天线的基础知识以及实际的天线设计原理。

Matthew Loy,Iboun Sylla,德州仪器天线基础天线是电子电路中RF射频信号之间的联接链路,例如PCB板与电磁波之间的信号,可通过无线链路的发射机及接收机之间的传输媒质进行传播。

在发射机内,天线通过激励其紧邻空间或近区场的电场或磁场将电子信号转化成为电磁波。

激励电场的天线被称为电子天线,激励磁场的天线被称为磁天线。

电场或磁场的振荡将产生一定的电磁波,并以光速c进行传播。

真空空间内的光速c0为300000 km/s。

当电磁波在电介质(dielectric medium)中传播且相应介电常数为εr 之时,其光速将降低至:我们可以通过以下公式,根据信号频率f以及光速c计算出波长:在使用常见单位时,真空空间内的波长可通过如下公式计算:如果电磁波在电介质中传播,例如PCB材料,波长εr需要除以介电常数的平方根。

我们可依照电磁波的传播过程划分出三个场区域:反应近区场(reactive near field)、辐射近区场(radiating near field)以及远区场(far field)。

• 在反应近区场内,反应场分量主宰了整个辐射场。

这就意味着任意电子特性(对应于电子天线)或磁特性(对应于磁化天线)的变化都将强烈的影响天线馈端(feed point)的天线阻抗。

天线至近区场边界的范围通常假定为:• 在辐射近区场内,辐射场成为主宰,该区域范围内的介质仅对天线阻抗有轻微的影响。

但如果考虑到与天线的距离,则天线的尺寸是不能被忽略的。

这就意味着辐射方向图(radiation pattern)的角度分布将取决于距离。

为了测定辐射方向图,所测量的与天线之间的距离应大于辐射近区场的边界范围,否则,所测量的方向图将有别于真实状况。

辐射近区场的半径如下计算:式中的D表示天线的最大尺寸。

• 对于距离大于R2的区域,其辐射方向图则取决于距离——即处于远区场。

天线原理与设计—第一章天线参数

天线原理与设计—第一章天线参数

1.2 天线主要的特性参数
圆极化和椭圆极化
对于两个相互垂直的线极化波,当他们幅度相同 相位相差 90°是形成圆极化波,当他们幅度不同 的时候,则形成椭圆极化波。他们根据旋转方向 不同,又分为左旋和右旋。
1.2 天线主要的特性参数
天线的极化
• 当来波的极化方向与接收天线的极化方向不一致 时,接收到的信号都会变小,也就是说,发生极 化损失。 • 当接收天线的极化方向与来波的极化方向完全正 交时,例如用水平极化的接收天线接收垂直极化 的来波,或用右旋圆极化的接收天线接收左旋圆 极化的来波时,天线就完全接收不到来波的能量, 这种情况下极化损失为最大,称极化完全隔离。
辐射近场区的场以辐射场为主,但场随空间角度的分 布会随 R 的变化而变化,场的径向分量也有可能较大。 这一区域的范围一般定义为 (D > )。 当天线的尺寸与波长相比很小时,这一区域可能不存 在。对于聚焦于无穷处的天线,这一区域也称为菲涅 耳(Fresnel)区。 远场区则是我们最关心的区域,我们的测量几乎都必 须在这个区域内进行。
1.1 空间源产生的场
L=lambda/2
L=3*lambda/2
1.1 空间源产生的场
一般根据R的变化可以将空间分为感应近场区、辐射近 场 区 ( 菲 涅 耳 区 Fresnel ) 和 远 场 区 ( 夫 琅 和 费 Fraunhofer)三个区,如图所示。
1.1 空间源产生的场
感应近场区的场主要是感应场,其外边界一般定义 为 ,其中,D为天线的最大尺寸,为 工作波长。如果天线是非常短的偶极天线,其外边界 定义为 。。
1.2 天线主要的特性参数
主瓣宽度
场强从主瓣最大值下降到最大值的0.707倍或功率从 主瓣的功率最大值下降到主瓣功率最大值一半时两 点之间的角度 主瓣宽度通常指方向 图某个截面内的主瓣 宽度。如果天线方向 图不是旋转对称的 , 则各个截面内的主瓣 宽度不等。一般情况 下主要考虑 E 面和 H 面 内的主瓣宽度。

第一章天线基础知识

第一章天线基础知识


1 2 Pr I Rr 2 30 2 2 则 Rr f ( , ) sin d d


0
0

则方向系数与 辐射电阻之间 的联系为
120 f D Rr
2 max

若要提高天线效率,必须尽可能的减小损耗 电阻和提高辐射电阻。通常,超短波和微波 天线的效率很高,能够接近于1。

半功率点波瓣宽度 (HWFN) ,指主瓣最大 值两边场强等于最大值0.707倍的两辐射方向之 间的夹角,又叫3分贝波束宽度。

副瓣电平,指副瓣最大值与主瓣最大值之比,
一般以分贝表示,

前后比,指主瓣最大值与后瓣最大值之比。
30
(4)方向系数
方向图参数能从一定程度上描述天线方向图的 状态,仅能反映方向图中特定方向的辐射强弱程 度,未能反映全空间的分布状态。
理想点源归一化方向函数:
26



(2)方向图
方向图:将方向函数用曲线描绘出来,称为 方向图,就是与天线等距离处,天线辐射场大 小在空间中的相对分布随方向变化的图形。

工程上常采用两个正交平面方向图,自由空 间中两个最重要的平面方向图是E面和H面。E 面即电场强度矢量所在并包含最大辐射方向的 平面,H面即磁场强度矢量所在并包含最大辐 射方向的平面。
z 电流元
H E H E

r
x

y
方向图立体模型
13
E面方向图
H面方向图
E面直角坐标方向图
H面直角坐标方向图 14
(4)中间区

(1)近区与远区之间,感应场与辐射场 相差不大; (2)电场 Er 和 E 不同相,相差接近90 度且振幅不等,一般在平行于传播方向的 平面内形成一旋转矢量,矢量端点的轨迹 为一椭圆; (3)辐射功率占主导地位。

微波技术与天线课程总结

微波技术与天线课程总结

1
《天线技术基础》要点
第二章 对称阵子 理解对称振子的概念、辐射场计算方法(叠加原理); 电流分布公式与各种不同长度对称振子的电流分布图象; 方向性函数表达通式与各种不同长度对称振子的方向图、方向性系数和有效 长度; 随振子长度的逐渐增大,其方向性系数、旁瓣电平和半功率宽度如何变化; 熟悉天线的辐射场幅度与辐射功率、方向性系数及距离的关系; 输入阻抗的计算思路和随振子长度的变化曲线。
2
《天线技术基础》要点
第三章 阵列天线的方向性 二元阵的方向性函数与方向图(会描点绘图); 方向图相乘定理与应用; 均匀直线阵的方向性函数,会画阵因子的方向图,明确阵因子参数(半功率 宽度、零点位置,旁瓣电平等)的计算思路; 侧射阵、端射阵和斜射阵的实现条件、特性差异与原因; 可见区的概念、栅瓣抑制条件; 掌握地面影响的处理方法(镜像原理处理各种方向放置的单个与多个天线) 。
4 8
并联混和支节)。
6
《微波技术基础》要点
第三章 规则波导理论
TE10 模的场结构、管壁电流分布;
波导的单模传输条件、传输特性参数、等效阻抗; 波导中填充介质与否,波导的传输特性参数的计算。
7
《微波技术基础》要点
第四章 其它形式的微波传输线 同轴线、带状线、微带的特性阻抗随结构参数的变化规律; 同轴线、带状线:主模(高次模)、横截面场结构; 微带:主模(高次模)、横截面场结构,等效介电常数; 耦合线:等效电路、奇偶模方法、特性阻抗。
8
《微波技术基础》要点
第五章 微波谐振腔 为什么微波中不能用 LC 回路作为谐振器? 微波谐振器与 LC 回路的异同点有哪些? 品质因数的概念及公式; 传输线型谐振器,谐振波长的概念与计算。
9
《微波技术基础》要点

北大天线理论课件第一章基本振子天线

北大天线理论课件第一章基本振子天线

第一章 基本振子的辐射基本振子是最基本的辐射源,是研究和分析各类线天线的基础,它包括基本电振子和基本磁振子。

而研究面天线的基本辐射源是惠更斯源。

§ 1 基本电振子(Electric Short Dipole )1. 定义一段理想的高频电流直导线,长度λ<<l ,半径l a <<,沿线电流均匀分布(等幅同相)。

又称电流源。

2.空间场分布假设电流源位于坐标原点,沿着z 轴放置,长度为l ,其上电流等幅同相分布,即z a I I ρρ0=,这里0I 是常数。

基本电振子示意图为求其空间的场分布,首先求出其矢量磁位A ρ,再由Aρ求出电场E ρ和磁场H ρ。

根据电磁场理论,电流分布()z a I z y x I ˆ,,0'''=ρ的电流源,其矢量磁位A ρ可以表示为:()()'''',,,4,,dl re z y x I z y x A jkr e l-⎰=ρρπμ(2-1)()z y x ,,--观察点坐标()''',,z y x --源点坐标r --源点到观察点的距离由于基本电振子的长度l 远小于波长λ和距离r ,因此式(2-1)可以表示成:()jkrz l l jkr z e rl I a dz e r I a z y x A ---==⎰πμπμ4ˆ4ˆ,,0'2/2/0ρ (2-2)引用直角坐标与球坐标的变换关系,将(2-2)式改写为: θπμθcos 4cos 0r le I A A jkrz r -==θπμθθsin 4sin 0r le I A A jkrz --=-=0=ϕA依据()⎥⎦⎤⎢⎣⎡∂∂-∂∂=⨯∇=θμμθϕr A rA r r a A H 1ˆ10ρρ,得到磁场表达式:jkr e r r k j l I H -⎥⎦⎤⎢⎣⎡+=2014sin πθϕ (2-3)0=r H0=θH由H j E ρρ⨯∇=ωε1可得电场表达式为: jkr r e jr rk l I E -⎥⎦⎤⎢⎣⎡+=320012cos πωεθ (2-4) jkr e r j rr k j l I E -⎥⎦⎤⎢⎣⎡-+=3220114sin πωεθθ (2-5)0=ϕE由此可见,基本电振子的场强矢量由三个分量ϕH 、r E 、θE 组成。

天线基础知识(馈电原理)

天线基础知识(馈电原理)

天线输入阻抗与特性阻抗不一致时,产生 的反射波和入射波在馈线上叠加形 成驻波,其相邻电压最大值和最小值之比就是电压驻波比。电压驻波比过 大,将 缩短通信距离,而且反射功率将返回发射机功放部分,容易烧坏功放 管,影响通信系统正常工作。
2. 前后比(F/B)
天线的后向180°±30°以内的副瓣电平与最大波束之差,用正值表示。一 般天线的前后比在18~45dB之间。对于密集市区要积极采用前后比大的天 线,如40dB。
天线知识
目录
目录
天线知识 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1 天线基础知识 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1 天线增益 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 方向图 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 极化 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4 天线其它技术指标 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.5 天线的种类 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2 天线技术 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.1 天线分集技术 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2 赋形波束技术 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3 智能天线 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3 天线选型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.1 各种天线的应用原则 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.2 各种无线环境下的天线选择原则 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4 天线倾角规划 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.1 天线倾角设计 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.2 实际运用 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5 天线的安装 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 5.1 天线支架安装 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 5.2 天线安装 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

研究生《天线理论与技术》教学大纲

研究生《天线理论与技术》教学大纲

《天线理论与技术》教学大纲Antenna Theory and Technology第一部分大纲说明1. 课程代码:2. 课程性质:专业学位课3. 学时/学分:40/34. 课程目标:通过这门课的学习,使学生掌握天线的基础知识、常用天线的结构及分析方法。

配合相关软件的学习,最终使学生达到能够独立完成常用及新型天线的设计及改进方法。

5. 教学方式:课堂讲授、分组实验、分组专题报告与课堂讨论相结合6. 考核方式:考试7. 先修课程:电磁场与波、高频电子电路8. 本课程的学时分配表9. 教材及教学参考资料:(一)教材:宋铮,天线与电波传播,西安:西安电子科技大学出版社,2003年版(二)教学参考资料:1、John D. Kraus,天线(第三版),北京:电子工业出版社,2008年版2、Law & Kelton,Electromagnetics with Application ,北京:清华大学出版社,2001年版3、Warren L. Stutaman,天线理论与设计,北京:人民邮电出版社,2006年版4、卢万铮,天线理论与技术,西安:西安电子科技大学出版社,2004年版5、李莉,天线与电波传播,北京:科学出版社,2009年版第二部分教学内容和教学要求本课程讲授天线的基本理论和设计方法,主要内容有:天线的基本知识、常用天线的结构和分析方法、天线仿真与设计的常用软件、常用天线及新型天线的设计和改进方法。

第一章时变电磁场教学内容:1.1 麦克斯韦方程1.2 时变电磁场的边界条件1.3 波动方程与位函数1.4 位函数求解1.5 时变电磁场的唯一性定理1.6 时变电磁场的能量及功率1.7 正弦时变电磁场1.8 正弦时变电磁场中的平均能量与功率教学要求:本章是本课程的基础内容,讲授过程中注意和后续章节具体天线的分析和设计的结合。

教学建议:1.重点是麦克斯韦方程和时变电磁场的边界条件的分析方法。

2.讲授过程中注重讲授和后续章节内容的联系。

第一章 天线增益测量

第一章 天线增益测量

天线与电波教学实验指导书实验三 天线增益测量3.1实验内容和目的:用绝对测量法(即测传播损耗的方法)和相对测量法(即比较法)测量喇叭天线的增益,掌握天线增益的一般测量方法。

3.2测量原理1.天线增益的绝对测量根据福里斯公式,当发射功率为P t ,发射天线增益为G t ,接收天线增益为G r ,收发天线相距 R ,则位于远场区的接收天线的最大接收功率为2244⎪⎪⎭⎫ ⎝⎛=⋅=R G G P A RG P P r t t r er tt r πληπ当收发天线完全相同即G t =G r =G 时,接收功率为2244⎪⎪⎭⎫ ⎝⎛=⋅=R G P A R G P P t r er tt r πληπ由此可求出每个天线的增益为G P P R r t =⋅4πλ如用dB 表示,则为⎪⎪⎭⎫ ⎝⎛⨯+⎪⎭⎫ ⎝⎛=t r P P R dB G lg 10214lg 10)(λπ因此,如果测出收发电平差、工作频率和收发距离,即可通过上式求出被测天线的增益。

2.天线增益的相对测量被测天线增益G 和参考天线增益G 0间存在简单的关系:G=gG 0式中,g 是被测天线相对于参考天线的增益。

因此如果参考天线的增益已知,只要测出g ,即可按上式求出被测天线的增益。

用比较法测天线增益,常用半波对称振子(或折合振子)作线天线的标准增益天线(其增益约为1.64或2.15dB );常用按最佳方向性系数设计的标准增益喇叭作面天线的增益标准天线,其增益理论设计值和实际值相当吻合,可按下式估算:)(4lg 102dB Ak D G λπ≈≈式中,A 是喇叭口面面积,k 是口面利用率。

对角锥喇叭天线k 取0.51。

3. 天线增益的综合测量设三个不同天线的增益分别为G G G 010203、、,先用比较法测得1和2对3的相对增益0302203011G G G G G G ==,当G 03已知时,则0320203101G G G G G G ==,,用dB 表示,即)()()()()()(0320203101dB G dB G dB G dB G dB G dB G +=+=, 当G dB 03()未知时,可用上述1项(天线增益的绝对测量)的方法测出G dB G dB 0102()()+,与上两式联立求出G dB 03()。

天线PPT课件(完整版)

天线PPT课件(完整版)
近区场的性质:由于电场和磁场相差90度,故坡印 廷矢量的平均值等于零,这说明无电磁场能量辐射, 称为感应场。
远区场:当 kr 1 时称为远场区,电磁场主要由 kr 的低次幂项决定,故可略去 kr 的高次幂项,得

Er E

E
j
H
k I0l
4
r H e jkr
s r
0



E jA

2 A k 2 A

J

A
j


J

A
j
洛伦兹条件:

A j


1
A
j

2 A k 2 A J



E jA jA j
in



H

j
k I0l
4
e jkr r
s in

kr 1
波阻抗:
Zw

E H

固有阻抗:
120 377
§1.2 电基本振子
远区场的性质:
(1)电场与磁场在空间相互垂直,它们均与r 成反 比。因等相位面为球面,故为球面电磁波。
(2)因在传播方向上电磁场的分量为零,故为横电 磁波,记为TEM波。
天线发展简史
二、1901, 马可尼(Guglielmo Marconi, 1874-1937,1909 年 诺贝尔物理学奖)
1901年马可尼成功实现横穿大西洋(英国—加拿大) 的无线电通信。位于英国(Poldhu, England)的发射天线 由50根斜拉导线组成,用悬于60米高的木塔间的钢索支撑。 位于加拿大(Newfoundland, Canada)的接收天线是200米 长的导线,由风筝牵引。

第一章 天线的方向图(上)

第一章 天线的方向图(上)

王建
式中,R 为天线上某点( x′, y′, z′ )与观察点( x, y, z )之间的距离,在如图 3-3(a)坐标 系下, x′ = y′ = 0 ,则 R 的表示为
R = ( x − x′)2 + ( y − y′)2 + (z − z′)2 = x2 + y2 + (z − z′)2
(1.19)
∫ D =
2 π F 2(θ )sinθ dθ
= 1.5
0
由式(0.73a)可得基本振子的有效面积为
Se
=
λ2 ( 4π
)D
=
3λ 2 8π
(1.15) (1.16) (1.17)
1.2 有限尺寸天线的场区划分
前面对无穷小的基本振子(元天线)讨论了其场区划分,主要目的是分析基本 振子在各区中的电磁场分布,从而了解其辐射机理。即
(2) 电场和磁场分量都有因子 e− jβr / r ,实际上所有天线远区辐射场均有此因子。 (3) 空间任意点处的电场和磁场相位相同,等相位面是一个球心在基本振子中心
点的球面,即相位方向图是一个球面。
(4) 电场 Eθ 分量与磁场 Hϕ 分量的比值等于媒质中的波阻抗。
Eθ Hϕ
= η0
(1.11)
sinθ e− jβr
(1.7a) (1.7b)
Er
η0
Idz 2π r2
ห้องสมุดไป่ตู้
cosθ
e− jβ r
(1.7c)
Eϕ = Hr = Hθ = 0
(1.7d)
对于中等的 β r 值,电场的两个分量 Eθ 和 Er 在时间上不再同相,而相位相差 接近 90o ,它们的大小一般不等,其合成场为一个随时间变化的旋转矢量,矢量

天线与电波传播第1章习题详解

天线与电波传播第1章习题详解

eA le E s i n
4

10 0
1 2 7V .39
(2)当接收天线与负载匹配时,传给负载的功率最大为:
Pmax
2 eA (127.39 106 ) 2 2.779 1011W 。 8Rin 8 73
1.15 某线极化天线接收远方传来的圆极化波,且天线的最大接收方向对准来波方向。天线 的增益系数为 30dBi,效率为 A 1 ,接收点的功率密度为 1mW / m2 。试求 (1)该天线的接收功率; (2)如果失配因子 0.8 ,则求出进入负载的功率。 解: (1)线极化天线接收圆极化波,极化失配因子为 天线的增益
4
1.11 有两副天线的方向函数分别为 f1 ( ) sin 这两副天线的半功率波瓣宽度。 解:对于 f1 ( ) sin 令 f1
2
0.4 和 f 2 ( ) cos2 0.4 ,分别计算
0.4 ,在 90 时取最大值 f1max 1.4

将 F 代入得: D
4
2
F ( , )
0 0

2.56 sin d
2
F ( , )
0
2
天线增益: G D 2.43 1.8 甲、乙两天线的方向系数相同,甲的增益系数是乙的四倍,它们都以最大辐射方向对准 远区的 M 点 (1)当两天线辐射功率相同时,求其在 M 点产生的场强比(分贝表示) ; (2)当两天线输入功率相同时,求其在 M 点产生的场强比(分贝表示) 。 解: 设甲天线的方向性系数和增益系数分别为 D1 , G1 , 乙天线的方向性系数和增益系数分别 为: D2 , G2 , Pr1 、 Pr2 和 Pr0 分别为甲天线、乙天线和作为标准的无方向性点源天线的辐射 功率。 Pin1 Pin2 和 Pin0 分别为甲天线、乙天线和作为标准的无方向性点源天线的输入功率。 根据题意可知, D1 D2 , G1 4G2 (1) 当天线辐射功率相同时, P r1 P r2 P r0

天线基本原理

天线基本原理
对称振子上的场分布
第二章 天线辐射电磁波的基本原理
2.2 天线的输入阻抗
天线和馈线的连接端,即馈电点两端感应的信号电压与
信号电流之比,称为天线的输入阻抗。输入阻抗有电阻分量 和电抗分量。输入阻抗的电抗分量会减少从天线进入馈线的 有效信号功率。因此,必须使电抗分量尽可能为零,使天线 的输入阻抗为纯电阻。
第二章 天线辐射电磁波的基本原理
2.7 前后比
方向图中,前后瓣最大电平之比称为前后比。
后向功率
前向功率
以dB表示的前后比 = 10 log
(前向功率) (反向功率)
典型值为 25dB 左右
目的是有一个尽可能小的反向功率
第二章 天线辐射电磁波的基本原理
对称振子组阵能够控制辐射能构成“扁平的面包圈”
一个对称台振子
假设在接收机中有1mW功率
在阵中有4个对称振子
在接收机中就有4 mW功率
在这儿增益= 10log(4mW/1mW) = 6dBd
更加集中的信号
第二章 天线辐射电磁波的基本原理
利用反射板可把辐射能控制聚焦到一个方向
关的知识,无论是对产品的安装和维护、网络规划
工作的顺利开展,都有着十分重要的意义。
学习目标
学习完本课程,您应该能够对以下知识有基本的了解:
1、无线电波和超短波的基本知识
2、天线辐射电磁波的基本原理介绍
3、关于天线传输线的概念介绍 4、基站天馈系统
课程内容
第一章 无线电波和超短波的基本知识 第二章 天线辐射电磁波的基本原理 第三章 天线传输线的概念介绍 第四章 基站天馈系统
右旋圆极化波要用具有右旋圆极化特性的天线来接收; 而左旋圆极化波要用具有左旋圆极化特性的天线来接收。当 来波的极化方向与接收天线的极化方向不一致时,在接收过 程中通常都要产生极化损失。

《天线与电波传播(第二版)》学习指导-第1章

《天线与电波传播(第二版)》学习指导-第1章

m
H
E 120π
1.6
10 105 π
6.29
106
A
m
第1章 习题与解答
1-1-3 一基本振子密封在塑料盒中作为发射天线, 用另 一电基本振子接收, 按天线极化匹配的要求, 它仅在与之极 化匹配时感应产生的电动势为最大, 你怎样鉴别密封盒内装的 是电基本振子还是磁基本振子?
解 根据极化匹配的原理及电基本振子与磁基本振子的方 向性和极化特点来确定。
Em
j Imlm
2r
sin
e jkr
e
同样, 由题设条件可得
60πIele Imlm
r 2r
第1章 习题与解答
所以, 远区场点P的合成场为
EH
j 60πIele
r
(1 sin ) e jkr
e
由此可以求得E面和H面的归一化方向函数均为
FE
(
)
FH (
)=1 2
1
sin
组合天线E面和H面的归一化方向图见题1-1-4解图(三)所示。
第1章 习题与解答
题1-1-4解图(三)
H
j Il
2r
sin
e jkr
E
j 60πIl
r
sin e jkr
Hr H Er E 0
可见, Eθ、 Hj与电流I、 空间距离r、 电长度l/λ以及子午角 θ有关。
第1章 习题与解答
(6) 从电基本振子辐射场的表达式可知, 当θ=0°或 180°时, 电场有最小值0; θ=90°时, 电场有最大值。 因 此, 电基本振子在θ=0°或180°方向的辐射最小, 为0, 在 θ=90°方向的辐射最大。
(2) 电基本振子辐射的是线极化波。 (3) 由于过M点的等相位面是一个球面, 所以电基本振子 的远区辐射场是球面波; 又因为Eθ, Hj与sinθ成正比, 所 以该球面波又是非均匀的。 (4) M点的电场与磁场之间有如下关系:

天线01_天线的基础知识

天线01_天线的基础知识
電流分佈
z=h
z=-h
I ( z )=I 0 sin k ( h z )
第一章 天線的基礎知識
36
§ 1-4-2 線型天線上的電流分佈
<2>半波天線的電流分佈
z= 4
i(t)
電流分佈
= =
2
z=-
I(z)=I 0 cos kz
i(t)
4
I ( z )=I 0 sin(

2
kz) I ( z )=I 0 cos( kz)
31
§ 1-3-3 天線參數(Antenna Parameters)
<5>增益(Gain)
G D
第一章 天線的基礎知識
32
§ 1-4 半波偶極天線
(Half-Wave Dipole Antenna) § 1-4-1 § 1-4-2 § 1-4-3 § 1-4-4 簡介 線型天線上的電流分佈 半波天線之求解 半波天線之重要參數
第一章 天線的基礎知識
33
§ 1-4-1 簡介
<1>短天線之三大問題 <2>線型天線之解題概念
LA
LA= HD
HD
第一章 天線的基礎知識
34
§ 1-4-1 簡介
<3>線型天線的三種表達方式
i(t)
(a)
(b)
(c)
第一章 天線的基礎知識
35
§ 1-4-2 線型天線上的電流分佈
<1>任意長度線型天線的電流分佈
CH1 天線的基礎知識
2
大綱
§ 1-1. 前言 § 1-2. HFSS11.0概述 § 1-3. 短偶極天線 § 1-4. 半波偶極天線 § 1-5. 線性天線的微型化技術 § 1-6. 參考文獻
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


I0l
e jkr
4 r l 2
4 r
Ar sin cos
A
cos
cos
A sin
sin sin cos sin
cos
cos Ax
sin
Ay
0 Az
2020/4/11
9
§1.2 电基本振子
Ar
Az
c os
I0l 4
e jkr r
c os
A
Az sin
I0l 4
e jkr r
2020/电4/11基本振子天线结构
电场方向
8
§1.2 电基本振子
Ie
z
zˆI 0
I0 -常数
磁矢位:
A
4
c
Ie x,
y,
z
e jkR R
dl
其中: R x x2 y y2 z z2 x2 y2 z2 r dl dz
Ax, y, z zˆ I0 e jkr
l
2
dz
Er E Hr H 0
E
j kI0l 4
e jkr r
sin
j
I0l
2
e jkr r
sin
H
j kI0l
4
e jkr r
sin
j I0l
2
e jkr r
sin
2020/4/11
波阻抗:
kr 1
Zw
E H
固有阻抗:
120 377
13
§1.2 电基本振子
远区场的性质: (1)电场与磁场在空间相互垂直,它们均与r 成反比。因等 相位面为球面,故为球面电磁波。 (2)因在传播方向上电磁场的分量为零,故为横电磁波,记 为TEM波。
1
A
A
-磁矢量位函数
2020/4/11
3
§1.1 辅助函数法
E
B
t
H
1
A
E jA
E jH j A
E jA 0
0
E jA
H
A
A
2
A
H
J
D
t
2020/4/11
J j E A 2 A
4
§1.1 辅助函数法
J jE A 2 A
sin
A 0
对于磁场:
H
ˆ
1
1 r
r
rA
Ar
Hr H 0
磁场:
H
j kI0l sin 4
1 r
1
1 jk
re
jkr
j
I0l sin 2
1 r
1
1 jk
r
e
jkr
2020/4/11
10
§1.2 电基本振子
对于电场:
E jA j
1
A
1
H
j
Er
I0l cos 2
1 r2
1
所以,在电磁理论中我们不能引入磁荷密度和磁流密度 等概念。
2020/4/11
15
§1.3 磁基本振子
这种电和磁的不对称性明显地体现在麦克斯韦方程组之 中。自然界中为什么只有自由电荷而没有自由磁荷?迄今实 验中没有观察到自由磁荷,这究竟是自然界中根本不存在这 种磁荷,还是因为没有具备观察磁荷的条件?
(3)电场与磁场的比值等于 120 () ,称为波阻抗;
(4)由于电场和磁场相位相同,且均与 sin 成正比,故电
基本振子在远区为辐射场,且具有方向性。
2020/4/11
14
§1.3 磁基本振子
麦克斯韦电磁理论获得了巨大的成功。电和磁的对称性
问题,就是一个近七十余年来始终令物理学家困惑的问题,
且这个问题至今尚未解决。
E jA
2
A
k
2
A
J
A
j
J
A
j
洛伦兹条件:
A j
1
A
j
2 A k 2 A J
E jA jA j
1
A
因此,知道
A
2020/4/11
H
1
A
A
E jA jA j
1
A
5
§1.1 辅助函数法
2 A k 2 A J
天线与电波传播
第一章 天线基本理论
2020/4/11
1
主要内容
电磁场方程的解 理想偶极子辐射 天线辐射特性参数
2020/4/11
2
§1.1 辅助函数法
Maxwell方程
E
B 法拉第定律
H
t J
D 安培定律
D
t
电高斯定律
B
0磁高斯定律
Maxwell方程
A 0
B H A
H
1 r2
2020/4/11
6
§1.1 辅助函数法
在远场区
Er E
0
jA
E
jA
E
jA
H
1
rˆ2020/4/11
7
§1.2 电基本振子
什么是电基本振子? 一段通有高频电流的直导线,当导线长度远远小于
波长时,该导线被称为电基本振子。 当: l / 1 , 可近似地认为导线上每一点的电 流都是等幅同相的。
k
I0l 2
8 2
s
in
cos
r5
0
2020/4/11
12
§1.2 电基本振子
近区场的性质:由于电场和磁场相差90度,故坡印
廷矢量的平均值等于零,这说明无电磁场能量辐射,
称为感应场。
近区场没有辐射,那么远区场从哪里来?
远区场:当 kkrr11时称为远场区,电磁场主要由 kr 的低次幂项决定,故可略去 kr 的高次幂项,得
c os
2 jI0l
4
e jkr r3
c
os
E
j
I0l
4k
e jkr r3
sin
jI0l
4
e jkr r3
sin
H
I0l
4
e jkr r2
sin
近区场辐射功率密度:
kr 1
Wrad
1
Re
E
H
2
1 2
Re
rˆE
H
ˆEr
H
Wrad
1
Re
rˆj
2 k
I0l
4
sin2
r5
ˆj
A
4
v
Jx, y, z e jkR
R
dv
-体电流
A
4
s
Js x,
y,
z
e jkR R
ds
-面电流
A
4
c
Ie x,
y
,
z
e jkR R
dl
-线电流
远场辐射,忽略高阶项 1 n 2,3,4,
rn
A
rˆAr , ˆA , ˆA ,
e jkr r
,
r
E
1
r
je jkr ˆA , ˆA ,
1931年,英国的著名物理学家狄拉克(1933年诺贝尔物 理学奖获得者)首先从理论上讨论了磁单极子存在的问题。
1 jk
r
e
jkr
电场:
E
j
I0l sin 2
1 r
1
1 jkr
1
kr2
e
jkr
E 0
注意:书上有误
0 120 0
近区场:当 kr 1 时称为近区,电磁场主要由 kr 的 高次幂项决定,故可略去 kr 的低次幂项,得
2020/4/11
11
§1.2 电基本振子
Er
j
I0l
2k
e jkr r3
电偶极矩:从
义为电偶极矩
P
qlq。指电向的基q 本的单矢元径是l电和荷电。量正q负的电乘荷积可定以
分开,自由电荷能单独存在,因而我们可以引进电荷密度和
电流密度的概念。
磁偶极矩:历史上,人们最早认为磁体(天然或人造)
是由无数小的磁偶极子组成,每一个小的磁偶极子由相距很 近磁的性等是量分正子Pm、电负流I磁定S荷向构排成列。而实成际。上用,闭磁合荷元并电不 流存I 在重,新磁定铁义的磁 偶极矩,
相关文档
最新文档