大学物理习题册-陈晓-浙江大学出版社第七.八章答案
大学物理第章习题分析与解答.doc
第八章恒定磁场8-1均匀磁场的磁感强度B垂直于半径为"KJ圆面.今以该圆周为边线,作一半球面S,则通过S面的磁通量的大小为[]。
(B) nr2 B(C) 0 (D)无法确定分析与解根据高斯定理,磁感线是闭合曲线,穿过圆平面的磁通量与穿过半球面的磁通量相等。
正确答案为(B)。
8-2下列说法正确的是[]。
(A)闭合回路上各点磁感强度都为零时,I口I路内一定没有电流穿过(B)闭合回路上各点磁感强度都为零时,回路内穿过电流的代数和必定为零(C)磁感强度沿闭合回路的积分为零时,回路上作点的磁感强度必定为零(D)磁感强度沿闭合回路的积分不为零时,回路上任意点的磁感强度必定为零分析与解由磁场中的安培环路定理,磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度不一定为零;闭合回路上各点磁感强度为零时,穿过1口1路的电流代数和一定为零。
正确答案为(B)。
8-3磁场中的安培环路定理J B= 口。
£七说明稳恒电流的磁场是[]。
i = 1(A)无源场(B)有旋场(C)无旋场(D)有源场分析与解磁场的高斯定理与安培环路定理是磁场性质的重要表述,在恒定磁场中B的环流一般不为零,所以磁场是涡旋场;而在恒定磁场中,通过任意闭合曲面的磁通量必为零, 所以磁场是无源场;静电场中E的环流等于零,故静电场为保守场;而静电场中,通过任意闭合面的电通量可以不为零,故静电场为有源场。
正确答案为(B)。
8-4 一半圆形闭合平面线圈,半径为R,通有电流/,放在磁感强度为8的均匀磁场中,磁场方向与线圈平面平行,则线圈所受磁力矩大小为[]。
(A) I TI R2B(B) (C) ^I H R2B(D) 0分析与解对一匝通电平面线圈,在磁场中所受的磁力矩可表示为M = ISe n xB,而且对任意形状的平面线圈都是适用的。
正确答案为(B)o8-5 —长直螺线管是由直径d=0.2mm的漆包线密绕而成。
当它通以/=0. 5A的电流时,其内部的磁感强度B=。
大学物理下册课后习题答案word精品文档43页
大学物理下册课后习题答案习题八8-1 电量都是q 的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解: 如题8-1图示(1) 以A 处点电荷为研究对象,由力平衡知:q '为负电荷 解得 q q 33-=' (2)与三角形边长无关.题8-1图 题8-2图8-2 两小球的质量都是m ,都用长为l 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2θ ,如题8-2图所示.设小球的半径和线的质量都可以忽略不计,求每个小球所带的解: 如题8-2图示解得 θπεθtan 4sin 20mg l q = 8-3 根据点电荷场强公式204r q E πε=,当被考察的场点距源点电荷很近(r →0)时,则场强→∞,这是没有物理意义的,对此应如何理解?解: 020π4r r q Eε=仅对点电荷成立,当0→r 时,带电体不能再视为点电荷,再用上式求场强是错误的,实际带电体有一定形状大小,考虑电荷在带电体上的分布求出的场强不会是无限大.8-4 在真空中有A ,B 两平行板,相对距离为d ,板面积为S ,其带电量分别为+q 和-q .则这两板之间有相互作用力f ,有人说f =2024d q πε,又有人说,因为f =qE ,SqE 0ε=,所以f =Sq 02ε.试问这两种说法对吗?为什么? f 到底应等于多少?解: 题中的两种说法均不对.第一种说法中把两带电板视为点电荷是不对的,第二种说法把合场强SqE 0ε=看成是一个带电板在另一带电板处的场强也是不对的.正确解答应为一个板的电场为S qE 02ε=,另一板受它的作用力Sq S qq f 02022εε==,这是两板间相互作用的电场力.8-5 一电偶极子的电矩为l q p =,场点到偶极子中心O 点的距离为r ,矢量r 与l的夹角为θ,(见题8-5图),且l r >>.试证P 点的场强E 在r 方向上的分量r E 和垂直于r 的分量θE 分别为证: 如题8-5所示,将p 分解为与r 平行的分量θsin p 和垂直于r的分量θsin p . ∴ 场点P 在r 方向场强分量垂直于r 方向,即θ方向场强分量题8-5图 题8-6图8-6 长l =15.0cm AB 上均匀地分布着线密度λ=5.0x10-9C ·m-1(1)在导线的延长线上与导线B 端相距1a =5.0cm 处P 点的场强;(2)在导线的垂直平分线上与导线中点相距2d =5.0cm 处Q 解: 如题8-6图所示(1)在带电直线上取线元x d ,其上电量q d 在P 点产生场强为用15=l cm ,9100.5-⨯=λ1m C -⋅, 5.12=a cm 代入得21074.6⨯=P E 1C N -⋅ 方向水平向右(2) 2220d d π41d +=x xE Q λε 方向如题8-6图所示由于对称性⎰=lQx E 0d ,即Q E只有y 分量,以9100.5-⨯=λ1cm C -⋅, 15=l cm ,5d 2=cm 代入得21096.14⨯==Qy Q E E 1C N -⋅,方向沿y 轴正向8-7 一个半径为R 的均匀带电半圆环,电荷线密度为λ,求环心处O 点的场强. 解: 如8-7图在圆上取ϕRd dl =题8-7图ϕλλd d d R l q ==,它在O 点产生场强大小为20π4d d R R E εϕλ=方向沿半径向外则 ϕϕελϕd sin π4sin d d 0RE E x ==积分RR E x 000π2d sin π4ελϕϕελπ==⎰∴ RE E x 0π2ελ==,方向沿x 轴正向.8-8 均匀带电的细线弯成正方形,边长为l ,总电量为q .(1)求这正方形轴线上离中心为r 处的场强E ;(2)证明:在l r >>处,它相当于点电荷q 产生的场强E解: 如8-8图示,正方形一条边上电荷4q在P 点产生物强P E d 方向如图,大小为P Ed 在垂直于平面上的分量βcos d d P E E =⊥题8-8图由于对称性,P 点场强沿OP 方向,大小为 ∴ 2)4(π422220l r l r qrE P ++=ε 方向沿OP8-9 (1)点电荷q 位于一边长为a 的立方体中心,试求在该点电荷电场中穿过立方体的一个面的电通量;(2)如果该场源点电荷移动到该立方体的一个顶点上,这时穿过立方体各面的电通量是多少?*(3)如题8-9(3)图所示,在点电荷q 的电场中取半径为R 的圆平面.q 在该平面轴线上的A 点处,求:通过圆平面的电通量.(xRarctan=α) 解: (1)由高斯定理0d εqS E s⎰=⋅立方体六个面,当q 在立方体中心时,每个面上电通量相等∴ 各面电通量06εqe =Φ. (2)电荷在顶点时,将立方体延伸为边长a 2的立方体,使q 处于边长a 2的立方体中心,则边长a 2的正方形上电通量06εq e =Φ 对于边长a 的正方形,如果它不包含q 所在的顶点,则024εqe =Φ, 如果它包含q 所在顶点则0=Φe .如题8-9(a)图所示.题8-9(3)图题8-9(a)图 题8-9(b)图 题8-9(c)图(3)∵通过半径为R 的圆平面的电通量等于通过半径为22x R +的球冠面的电通量,球冠面积**关于球冠面积的计算:见题8-9(c)图8-10 均匀带电球壳内半径6cm ,外半径10cm ,电荷体密度为2×510-C ·m -3求距球心5cm ,8cm ,12cm 各点的场强.解: 高斯定理0d ε∑⎰=⋅q S E s,02π4ε∑=q rE当5=r cm 时,0=∑q ,0=E8=r cm 时,∑q 3π4p=3(r )3内r - ∴ ()2023π43π4rr r E ερ内-=41048.3⨯≈1C N -⋅, 方向沿半径向外. 12=r cm 时,3π4∑=ρq -3(外r )内3r ∴ ()420331010.4π43π4⨯≈-=rr r E ερ内外 1C N -⋅ 沿半径向外. 8-11 半径为1R 和2R (2R >1R )的两无限长同轴圆柱面,单位长度上分别带有电量λ和-λ,试求:(1)r <1R ;(2) 1R <r <2R ;(3) r >2R 处各点的场强.解: 高斯定理0d ε∑⎰=⋅qS E s取同轴圆柱形高斯面,侧面积rl S π2=则 rl E S E Sπ2d =⋅⎰对(1) 1R r < 0,0==∑E q(2) 21R r R <<λl q =∑∴ rE 0π2ελ=沿径向向外(3) 2R r >=∑q题8-12图8-12 两个无限大的平行平面都均匀带电,电荷的面密度分别为1σ和2σ,试求空间各处场解: 如题8-12图示,两带电平面均匀带电,电荷面密度分别为1σ与2σ,两面间, n E)(21210σσε-= 1σ面外, n E)(21210σσε+-= 2σ面外, n E)(21210σσε+= n:垂直于两平面由1σ面指为2σ面.8-13 半径为R 的均匀带电球体内的电荷体密度为ρ,若在球内挖去一块半径为r <R 的小球体,如题8-13图所示.试求:两球心O 与O '点的场强,并证明小球空腔内的电场是均匀的.解: 将此带电体看作带正电ρ的均匀球与带电ρ-的均匀小球的组合,见题8-13图(a). (1) ρ+球在O 点产生电场010=E,ρ- 球在O 点产生电场'dπ4π3430320OO r E ερ=∴ O 点电场'd33030OO r E ερ= ; (2) ρ+在O '产生电场'd π4d 3430301OO E ερπ=' ρ-球在O '产生电场002='E∴ O ' 点电场 003ερ='E 'OO 题8-13图(a) 题8-13图(b)(3)设空腔任一点P 相对O '的位矢为r',相对O 点位矢为r (如题8-13(b)图)则 03ερrE PO =,∴腔内场强是均匀的.8-14 一电偶极子由q =1.0×10-6Cd=0.2cm ,把这电偶极子放在1.0×105N ·C-1解: ∵ 电偶极子p在外场E中受力矩 ∴ qlE pE M ==max 代入数字8-15 两点电荷1q =1.5×10-8C ,2q =3.0×10-8C ,相距1r =42cm ,要把它们之间的距离变为2r =25cm ,需作多少功?解: ⎰⎰==⋅=22210212021π4π4d d r r r r q q r r q q r F A εε )11(21r r -外力需作的功 61055.6-⨯-=-='A A J题8-16图8-16 如题8-16图所示,在A ,B 两点处放有电量分别为+q ,-q 的点电荷,AB 间距离为2R ,现将另一正试验点电荷0q 从O 点经过半圆弧移到C 点,求移动过程中电场力作的解: 如题8-16图示8-17 如题8-17图所示的绝缘细线上均匀分布着线密度为λ的正电荷,两直导线的长度和半圆环的半径都等于R .试求环中心O解: (1)由于电荷均匀分布与对称性,AB 和CD 段电荷在O 点产生的场强互相抵消,取θd d R l =则θλd d R q =产生O 点Ed 如图,由于对称性,O 点场强沿y 轴负方向题8-17图(2) AB 电荷在O 点产生电势,以0=∞U同理CD 产生 2ln π402ελ=U 半圆环产生 0034π4πελελ==R R U8-18 一电子绕一带均匀电荷的长直导线以2×104m ·s -1的匀速率作圆周运动.求带电直线上的线电荷密度.(电子质量0m =9.1×10-31kg ,电子电量e =1.60×10-19C) 解: 设均匀带电直线电荷密度为λ,在电子轨道处场强 电子受力大小 re eE F e 0π2ελ== 得 1320105.12π2-⨯==emv ελ1m C -⋅ 8-19 空气可以承受的场强的最大值为E =30kV ·cm -1,超过这个数值时空气要发生火花放电.今有一高压平行板电容器,极板间距离为d =0.5cm解: 平行板电容器内部近似为均匀电场8-20 根据场强E与电势U 的关系U E -∇= ,求下列电场的场强:(1)点电荷q 的电场;(2)总电量为q ,半径为R 的均匀带电圆环轴上一点;*(3)偶极子ql p =的l r >>处(见题8-20图)解: (1)点电荷 rqU 0π4ε=题 8-20 图 ∴ 0200π4r rq r r U E ε=∂∂-= 0r 为r 方向单位矢量. (2)总电量q ,半径为R 的均匀带电圆环轴上一点电势(3)偶极子l q p=在l r >>处的一点电势8-21 证明:对于两个无限大的平行平面带电导体板(题8-21图)来说,(1)相向的两面上,电荷的面密度总是大小相等而符号相反;(2)相背的两面上,电荷的面密度总是大小相等而符证: 如题8-21图所示,设两导体A 、B 的四个平面均匀带电的电荷面密度依次为1σ,2σ,3σ,4σ题8-21图(1)则取与平面垂直且底面分别在A 、B 内部的闭合柱面为高斯面时,有 说明相向两面上电荷面密度大小相等、符号相反;(2)在A 内部任取一点P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即又∵ +2σ03=σ说明相背两面上电荷面密度总是大小相等,符号相同.8-22 三个平行金属板A ,B 和C 的面积都是200cm 2,A 和B 相距4.0mm ,A 与C 相距2.0mm .B ,C 都接地,如题8-22图所示.如果使A 板带正电3.0×10-7C ,略去边缘效应,问B 板和C 板上的感应电荷各是多少?以地的电势为零,则A 板的电势是多少? 解: 如题8-22图示,令A 板左侧面电荷面密度为1σ,右侧面电荷面密度为2σ题8-22图(1)∵ AB AC U U =,即且 1σ+2σSq A= 得 ,32S q A =σ Sq A321=σ而 7110232-⨯-=-=-=A C q S q σCC10172-⨯-=-=S q B σ(2) 301103.2d d ⨯===AC AC AC A E U εσV 8-23 两个半径分别为1R 和2R (1R <2R )的同心薄金属球壳,现给内球壳带电+q ,试计(1) (2) *(3) 解: (1)内球带电q +;球壳内表面带电则为q -,外表面带电为q +,且均匀分布,其电势题8-23图(2)外壳接地时,外表面电荷q +入地,外表面不带电,内表面电荷仍为q -.所以球壳电势由内球q +与内表面q -产生:(3)设此时内球壳带电量为q ';则外壳内表面带电量为q '-,外壳外表面带电量为+-q q ' (电荷守恒),此时内球壳电势为零,且 得 q R R q 21=' 外球壳上电势8-24 半径为R 的金属球离地面很远,并用导线与地相联,在与球心相距为R d 3=处有一点电荷+q ,试求:金属球上的感应电荷的电量.解: 如题8-24图所示,设金属球感应电荷为q ',则球接地时电势0=O U8-24图由电势叠加原理有:得 -='q 3q 8-25 有三个大小相同的金属小球,小球1,2带有等量同号电荷,相距甚远,其间的库仑力为0F .试求:(1)用带绝缘柄的不带电小球3先后分别接触1,2后移去,小球1,2之间的库仑力; (2)小球3依次交替接触小球1,2很多次后移去,小球1,2解: 由题意知 2020π4r q F ε=(1)小球3接触小球1后,小球3和小球1均带电 小球3再与小球2接触后,小球2与小球3均带电 ∴ 此时小球1与小球2间相互作用力(2)小球3依次交替接触小球1、2很多次后,每个小球带电量均为32q . ∴ 小球1、2间的作用力00294π432322F r q q F ==ε *8-26 如题8-26图所示,一平行板电容器两极板面积都是S ,相距为d ,分别维持电势A U =U ,B U =0不变.现把一块带有电量q 的导体薄片平行地放在两极板正中间,片的面积也是S ,片的厚度略去不计.求导体薄片的电势.解: 依次设A ,C ,B 从上到下的6个表面的面电荷密度分别为1σ,2σ,3σ,4σ,5σ,6σ如图所示.由静电平衡条件,电荷守恒定律及维持U U AB =可得以下6个方程题8-26图 解得 Sq 261==σσ 所以CB 间电场 Sqd U E 00422εεσ+==注意:因为C 片带电,所以2U U C ≠,若C 片不带电,显然2U U C = 8-27 在半径为1R 的金属球之外包有一层外半径为2R 的均匀电介质球壳,介质相对介电常数为r ε,金属球带电Q .试求:(1)电介质内、外的场强; (2)电介质层内、外的电势; (3)金属球的电势.解: 利用有介质时的高斯定理∑⎰=⋅q S D Sd(1)介质内)(21R r R <<场强 介质外)(2R r <场强 (2)介质外)(2R r >电势介质内)(21R r R <<电势 (3)金属球的电势8-28 如题8-28图所示,在平行板电容器的一半容积内充入相对介电常数为r ε的电介质.试求:在有电介质部分和无电介质部分极板上自由电荷面密度的比值.解: 如题8-28图所示,充满电介质部分场强为2E ,真空部分场强为1E,自由电荷面密度分别为2σ与1σ 由∑⎰=⋅0d q S D得而 101E D ε=,202E D r εε=题8-28图 题8-29图8-29 两个同轴的圆柱面,长度均为l ,半径分别为1R 和2R (2R >1R ),且l >>2R -1R ,两柱面之间充有介电常数ε的均匀电介质.当两圆柱面分别带等量异号电荷Q 和-Q 时,求: (1)在半径r 处(1R <r <2R =,厚度为dr ,长为l 的圆柱薄壳中任一点的电场能量密度和整个薄壳中的电场能量; (2)电介质中的总电场能量; (3)圆柱形电容器的电容.解: 取半径为r 的同轴圆柱面)(S则 rlD S D S π2d )(=⋅⎰当)(21R r R <<时,Q q =∑(1)电场能量密度 22222π82l r Q D w εε== 薄壳中 rlrQ rl r l r Q w W εευπ4d d π2π8d d 22222=== (2)电介质中总电场能量(3)电容:∵ CQ W 22=*8-30 金属球壳A 和B 的中心相距为r ,A 和B 原来都不带电.现在A 的中心放一点电荷1q ,在B 的中心放一点电荷2q ,如题8-30图所示.试求: (1) 1q 对2q 作用的库仑力,2q 有无加速度;(2)去掉金属壳B ,求1q 作用在2q 上的库仑力,此时2q 有无加速度. 解: (1)1q 作用在2q 的库仑力仍满足库仑定律,即 但2q 处于金属球壳中心,它受合力..为零,没有加速度. (2)去掉金属壳B ,1q 作用在2q 上的库仑力仍是2210π41r q q F ε=,但此时2q 受合力不为零,有加速度.题8-30图 题8-31图8-31 如题8-31图所示,1C =0.25μF ,2C =0.15μF ,3C =0.20μF .1C 上电压为50V .求:AB U .解: 电容1C 上电量电容2C 与3C 并联3223C C C += 其上电荷123Q Q =8-32 1C 和2C 两电容器分别标明“200 pF 、500 V ”和“300 pF 、900 V ”,把它们串联起来后等值电容是多少?如果两端加上1000 V ? 解: (1) 1C 与2C 串联后电容 (2)串联后电压比231221==C C U U ,而100021=+U U 即电容1C 电压超过耐压值会击穿,然后2C 也击穿.8-33 将两个电容器1C 和2C 充电到相等的电压U 以后切断电源,再将每一电容器的正极板与另一电容器的负极板相联.试求: (1)每个电容器的最终电荷; (2)电场能量的损失.解: 如题8-33图所示,设联接后两电容器带电分别为1q ,2q题8-33图则⎪⎪⎩⎪⎪⎨⎧==-=-=+2122112*********U U U C U C q qU C U C q q q q 解得 (1) =1q U C C C C C q U C C C C C 21212221211)(,)(+-=+- (2)电场能量损失8-34 半径为1R =2.0cm 的导体球,外套有一同心的导体球壳,壳的内、外半径分别为2R =4.0cm 和3R =5.0cm ,当内球带电荷Q =3.0×10-8C(1)整个电场储存的能量;(2)如果将导体壳接地,计算储存的能量; (3)此电容器的电容值.解: 如图,内球带电Q ,外球壳内表面带电Q -,外表面带电Q题8-34图(1)在1R r <和32R r R <<区域在21R r R <<时 301π4r rQ E ε=3R r >时 302π4rrQ E ε = ∴在21R r R <<区域 在3R r >区域∴ 总能量 )111(π83210221R R R Q W W W +-=+=ε(2)导体壳接地时,只有21R r R <<时30π4r rQ E ε =,02=W(3)电容器电容 )11/(π422102R R QW C -==ε 习题九9-1 在同一磁感应线上,各点B的数值是否都相等?为何不把作用于运动电荷的磁力方向定义为磁感应强度B的方向?解: 在同一磁感应线上,各点B的数值一般不相等.因为磁场作用于运动电荷的磁力方向不仅与磁感应强度B的方向有关,而且与电荷速度方向有关,即磁力方向并不是唯一由磁场决定的,所以不把磁力方向定义为B的方向.题9-2图9-2 (1)在没有电流的空间区域里,如果磁感应线是平行直线,磁感应强度B的大小在沿磁感应线和垂直它的方向上是否可能变化(即磁场是否一定是均匀的)? (2)若存在电流,上述结论是否还对?解: (1)不可能变化,即磁场一定是均匀的.如图作闭合回路abcd 可证明21B B=(2)若存在电流,上述结论不对.如无限大均匀带电平面两侧之磁力线是平行直线,但B方向相反,即21B B≠.9-3 用安培环路定理能否求有限长一段载流直导线周围的磁场?答: 不能,因为有限长载流直导线周围磁场虽然有轴对称性,但不是稳恒电流,安培环路定理并不适用.9-4 在载流长螺线管的情况下,我们导出其内部nI B 0μ=,外面B =0,所以在载流螺线管 外面环绕一周(见题9-4图)的环路积分⎰外B L·d l =0 但从安培环路定理来看,环路L 中有电流I 穿过,环路积分应为⎰外B L·d l =I 0μ这是为什么?解: 我们导出nl B 0μ=内,0=外B 有一个假设的前提,即每匝电流均垂直于螺线管轴线.这时图中环路L 上就一定没有电流通过,即也是⎰∑==⋅LI l B 0d 0μ外,与⎰⎰=⋅=⋅Ll l B 0d 0d外是不矛盾的.但这是导线横截面积为零,螺距为零的理想模型.实际上以上假设并不真实存在,所以使得穿过L 的电流为I ,因此实际螺线管若是无限长时,只是外B 的轴向分量为零,而垂直于轴的圆周方向分量rIB πμ20=⊥,r 为管外一点到螺线管轴的距离.题 9 - 4 图9-5 如果一个电子在通过空间某一区域时不偏转,能否肯定这个区域中没有磁场?如果它发 生偏转能否肯定那个区域中存在着磁场?解:如果一个电子在通过空间某一区域时不偏转,不能肯定这个区域中没有磁场,也可能存在互相垂直的电场和磁场,电子受的电场力与磁场力抵消所致.如果它发生偏转也不能肯定那个区域存在着磁场,因为仅有电场也可以使电子偏转.9-6 已知磁感应强度0.2=B Wb ·m-2x 轴正方向,如题9-6图所示.试求:(1)通过图中abcd 面的磁通量;(2)通过图中befc 面的磁通量;(3)通过图中aefd 面的磁通量.解: 如题9-6图所示题9-6图(1)通过abcd 面积1S 的磁通是 (2)通过befc 面积2S 的磁通量(3)通过aefd 面积3S 的磁通量24.0545.03.02cos 5.03.0233=⨯⨯⨯=θ⨯⨯⨯=⋅=S BΦWb (或曰24.0-Wb )题9-7图9-7 如题9-7图所示,AB 、CD 为长直导线,C B为圆心在O 点的一段圆弧形导线,其半径为R .若通以电流I ,求O 点的磁感应强度.解:如题9-7图所示,O 点磁场由AB 、C B、CD 三部分电流产生.其中AB 产生 01=BCD 产生RIB 1202μ=,方向垂直向里CD 段产生 )231(2)60sin 90(sin 24003-πμ=-πμ=︒︒R I R I B ,方向⊥向里 ∴)6231(203210ππμ+-=++=R I B B B B ,方向⊥向里. 9-8 在真空中,有两根互相平行的无限长直导线1L 和2L ,相距0.1m ,通有方向相反的电流,1I =20A,2I =10A ,如题9-8图所示.A ,B 两点与导线在同一平面内.这两点与导线2L 的距离均为5.0cm .试求A ,B题9-8图解:如题9-8图所示,A B方向垂直纸面向里(2)设0=B在2L 外侧距离2L 为r 处则02)1.0(220=-+rIr I πμπμ 解得 1.0=r m题9-9图9-9 如题9-9图所示,两根导线沿半径方向引向铁环上的A ,B 两点,并在很远处与电源相连.已知圆环的粗细均匀,求环中心O 的磁感应强度. 解: 如题9-9图所示,圆心O 点磁场由直电流∞A 和∞B 及两段圆弧上电流1I 与2I 所产生,但∞A 和∞B 在O 点产生的磁场为零。
大学物理学练习册参考答案全
大学物理学练习册参考答案单元一 质点运动学四、学生练习 (一)选择题1.B2.C3.B4.B5.B (二)填空题1. 0 02.2192x y -=, j i ρρ114+, j i ρρ82-3.16vi j =-+v v v ;14a i j =-+v vv;4. 020211V kt V -;5、16Rt 2 4 6 112M h h h =-v v(三)计算题1 解答(1)质点在第1s 末的位置为:x (1) = 6×12 - 2×13 = 4(m).在第2s 末的位置为:x (2) = 6×22 - 2×23 = 8(m). 在第2s 内的位移大小为:Δx = x (2) – x (1) = 4(m),经过的时间为Δt = 1s ,所以平均速度大小为:v =Δx /Δt = 4(m·s -1).(2)质点的瞬时速度大小为:v (t ) = d x /d t = 12t - 6t 2,因此v (1) = 12×1 - 6×12 = 6(m·s -1),v (2) = 12×2 - 6×22 = 0质点在第2s 内的路程等于其位移的大小,即Δs = Δx = 4m .(3)质点的瞬时加速度大小为:a (t ) = d v /d t = 12 - 12t ,因此1s 末的瞬时加速度为:a (1) = 12 - 12×1 = 0,第2s 内的平均加速度为:a = [v (2) - v (1)]/Δt = [0 – 6]/1 = -6(m·s -2).2.解答 1)由t y t x ππ6sin 86cos 5==消去t 得轨迹方程:1642522=+y x 2)tdt dy v t dtdx v y x ππππ6cos 486sin 30==-==当t=5得;πππππ4830cos 48030sin 30===-=y x v vt dt dv a t dtdv a y y xx ππππ6sin 2886cos 18022-==-==当t=5 030sin 28818030cos 180222=-==-=-=πππππdt dv a a yy x 3.解答:1)()t t dt t dt d t tvv 204240+=+==⎰⎰⎰则:t t )2(42++=2)()t t t dt t t dt d ttr )312(2)2(4322++=++==⎰⎰⎰t t t )312()22(32+++=4. [证明](1)分离变量得2d d vk t v=-, 故020d d v tv vk t v =-⎰⎰, 可得:011kt v v =+. (2)公式可化为001v v v kt=+,由于v = d x/d t ,所以:00001d d d(1)1(1)v x t v kt v kt k v kt ==+++ 积分00001d d(1)(1)x tx v kt k v kt =++⎰⎰.因此 01ln(1)x v kt k=+. 证毕.5.解答(1)角速度为ω = d θ/d t = 12t 2 = 48(rad·s -1),法向加速度为 a n = rω2 = 230.4(m·s -2); 角加速度为 β = d ω/d t = 24t = 48(rad·s -2), 切向加速度为 a t = rβ = 4.8(m·s -2). (2)总加速度为a = (a t 2 + a n 2)1/2,当a t = a /2时,有4a t 2 = a t 2 + a n 2,即n a a =由此得2r r ω=22(12)24t =解得36t =.所以3242(13)t θ=+=+=3.154(rad).(3)当a t = a n 时,可得rβ = rω2, 即: 24t = (12t 2)2,解得 : t = (1/6)1/3 = 0.55(s).6.解答:当s 2=t 时,4.022.0=⨯==t βω 1s rad -⋅ 则16.04.04.0=⨯==ωR v 1s m -⋅064.0)4.0(4.022=⨯==ωR a n 2s m -⋅08.02.04.0=⨯==βτR a 2s m -⋅22222s m 102.0)08.0()064.0(-⋅=+=+=τa a a n单元二 牛顿运动定律(一)选择题 1.A 2.C 3.C 4.C 5 A 6.C (二)填空题 1. 022x F t COS F X ++-=ωωω2.略3. )13(35-4. 50N 1m/s5.21m m t f +∆ )()(212122221m m m t m t m t m f +∆+∆+∆6. 0 18J 17J 7J7. mr k rk (三)计算题1.解答:θμθcos )sin (f f mg =- ; θμθμsin cos +=mgf0cos sin =+=θμθθd df; 0tan =θ ; 037=θ θsin hl ==037sin 5.12. 解答;dtdvmkv F mg =--分离变量积分得 0ln(1)v tktm mdvmg F kvktmg F dt v e mg F kv mg F m k-----=??----蝌 3解答:烧断前 2221211();a L L a L w w =+=烧断后,弹簧瞬间的力不变,所以2a 不变。
大学物理_第五版答案(7-8)
第七章 恒定磁场7 -1 两根长度相同的细导线分别多层密绕在半径为R 和r 的两个长直圆筒上形成两个螺线管,两个螺线管的长度相同,R =2r ,螺线管通过的电流相同为I ,螺线管中的磁感强度大小B R 、B r 满足( )(A ) r R B B 2= (B ) r R B B = (C ) r R B B =2 (D )r R B B 4= 分析与解 在两根通过电流相同的螺线管中,磁感强度大小与螺线管线圈单位长度的匝数成正比.根据题意,用两根长度相同的细导线绕成的线圈单位长度的匝数之比21==R r n n r R 因而正确答案为(C )。
7 -2 一个半径为r 的半球面如图放在均匀磁场中,通过半球面的磁通量 为( )(A )B r 2π2 (B ) B r 2π(C )αB r cos π22 (D ) αB r cos π2分析与解 作半径为r 的圆S ′与半球面构成一闭合曲面,根据磁场的高斯定理,磁感线是闭合曲线,闭合曲面的磁通量为零,即穿进半球面S 的磁通量等于穿出圆面S ′的磁通量;S B ⋅=m Φ.因而正确答案为(D ). 7 -3 下列说法正确的是( )(A ) 闭合回路上各点磁感强度都为零时,回路内一定没有电流穿过(B ) 闭合回路上各点磁感强度都为零时,回路内穿过电流的代数和必定为零(C ) 磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度必定为零(D ) 磁感强度沿闭合回路的积分不为零时,回路上任意一点的磁感强度都不可能为零分析与解 由磁场中的安培环路定律,磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度不一定为零;闭合回路上各点磁感强度为零时,穿过回路的电流代数和必定为零。
因而正确答案为(B ).7 -4 在图(a)和(b)中各有一半径相同的圆形回路L1 、L2 ,圆周内有电流I1 、I2 ,其分布相同,且均在真空中,但在(b)图中L2 回路外有电流I3 ,P 1 、P 2 为两圆形回路上的对应点,则( )(A ) ⎰⎰⋅=⋅21L L d d l B l B ,21P P B B = (B ) ⎰⎰⋅≠⋅21L L d d l B l B ,21P P B B = (C ) ⎰⎰⋅=⋅21L L d d l B l B ,21P P B B ≠ (D ) ⎰⎰⋅≠⋅21L L d d l B l B ,21P P B B ≠分析与解 由磁场中的安培环路定律,积分回路外的电流不会影响磁感强度沿回路的积分;但同样会改变回路上各点的磁场分布.因而正确答案为(C ). *7 -5 半径为R 的圆柱形无限长载流直导体置于均匀无限大磁介质之中,若导体中流过的恒定电流为I ,磁介质的相对磁导率为μr (μr<1),则磁介质内的磁化强度为( )(A )()r I μr π2/1-- (B ) ()r I μr π2/1-(C ) r I μr π2/- (D ) r μI r π2/分析与解 利用安培环路定理可先求出磁介质中的磁场强度,再由M =(μr-1)H 求得磁介质内的磁化强度,因而正确答案为(B ). 7 -6 北京正负电子对撞机的储存环是周长为240 m 的近似圆形轨道,当环中电子流强度为8 mA 时,在整个环中有多少电子在运行? 已知电子的速率接近光速。
大学物理习题集
大学物理习题集目录部分物理常量┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄3 练习一质点力学中的基本概念和基本定律┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄1 练习二流体静力学与流体的流动┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄1 练习三液体的表面性质┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄2 练习四伯努力方程及应用┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄3 练习五黏滞流体的流动┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄4 练习六流体力学习题课┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄5 练习七简谐振动的特征及描述┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄6 练习八简谐振动的合成┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄7练习九平面简谐波┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄8 练习十波的干涉┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄9 练习十一振动和波动习题┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄10 练习十二几何光学基本定律球面反射和折射┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄12 练习十三薄透镜显微镜望远镜┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄13 练习十四光的干涉┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄15 练习十五光的衍射┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄16 练习十六光的偏振┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄17 练习十七光学习题课┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄18 练习十八理想气体动理论的基本公式┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄19 练习十九能量均分定理气体分子按速率分布律和按能量分布律┄┄┄┄┄┄┄20 练习二十热力学第一定律对理想气体的应用┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄21 练习二十一循环过程┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄22 练习二十二热力学第二定律熵及熵增加原理┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄23 练习二十三热学习题课┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄24 练习二十四电场强度┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄25 练习二十五高斯定理┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄26 练习二十六电势┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄27 练习二十七电场中的导体和电介质┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄28 练习二十八电场习题课┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄29 练习二十九电流及运动电荷的磁场┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄31 练习三十磁场中的高斯定理和安培环路定理┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄32 练习三十一电流与磁场的相互作用┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄331练习三十二磁场习题课┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄34 练习三十三光的二象性粒子的波动性┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄36 练习三十四量子力学┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄37部分物理常量引力常量G=6.67×10-11N2·m2·kg-2重力加速度g=9.8m/s-2阿伏伽德罗常量N A=6.02×1023mol-1摩尔气体常量R=8.31J·mol-1·K-1标准大气压1atm=1.013×105Pa玻耳兹曼常量k=1.38×10-23J·K-1真空中光速c=3.00×108m/s电子质量m e=9.11×10-31kg 中子质量m n=1.67×10-27kg质子质量m n=1.67×10-27kg元电荷e=1.60×10-19C真空中电容率ε0= 8.85×10-12 C2⋅N-1m-2真空中磁导率μ0=4π×10-7H/m=1.26×10-6H/m 普朗克常量h = 6.63×10-34 J ⋅s维恩常量b=2.897×10-3mK斯特藩-玻尔兹常量σ = 5.67×10-8 W/m2⋅K4说明:字母为黑体者表示矢量2练习一质点力学的基本概念和基本定律一.选择题1. 以下四种运动,加速度保持不变的运动是(A) 单摆的运动;(B)圆周运动;(C)抛体运动;(D)匀速率曲线运动.2. 质点在y轴上运动,运动方程为y=4t2-2t3,则质点返回原点时的速度和加速度分别为:(A) 8m/s, 16m/s2.(B)-8m/s, -16m/s2.(C)-8m/s, 16m/s2.(D)8m/s, -16m/s2.3. 物体通过两个连续相等位移的平均速度分别为v1=10m/s,v2=15m/s,若物体作直线运动,则在整个过程中物体的平均速度为(A) 12 m/s.(B)11.75 m/s.(C) 12.5 m/s.(D) 13.75 m/s.二.填空题1. 一小球沿斜面向上运动,其运动方程为s=5+4t-t2 (SI),则小球运动到最高点的时刻为t=秒.2. 一质点沿X轴运动, v=1+3t2 (SI), 若t=0时,质点位于原点.则质点的加速度a= (SI);质点的运动方程为x= (SI).三、计算题1. 湖中有一条小船,岸边有人用绳子通过岸上高于水面h的滑轮拉船,设人收绳的速率为v0,求船的速度u和加速度a.2. 一人站在山脚下向山坡上扔石子,石子初速为v0,与水平夹角为θ(斜向上),山坡与水平面成α角.(1) 如不计空气阻力,求石子在山坡上的落地点对山脚的距离s;(2) 如果α值与v0值一定,θ取何值时s最大,并求出最大值s max.练习二流体静力学与流体的流动一.选择题1.比重计分别浸在油、水、水银中,露在液体外的长度分别为l1,l2,l3,则三者关系是()。
大学物理习题选编(主编:陈晓)(下)
振动习题一、选择题1、 已知一质点沿y轴作简谐振动.其振动方程为)4/3cos(π+=t A y ω.则与之对应的振动曲线是 [ B ]2、 一质点作简谐振动,周期为T .当它由平衡位置向x 轴正方向运动时,从二分之一最大位移处到最大位移处这段路程所需要的时间为A 、T /12B 、T /8.C 、T /6.D 、T /4 [ C ] 3、 将两个振动方向,振幅,周期都相同的简谐振动合成后,若合振幅和分振动的振幅相同,则这两个分振动的位相差是: A 、6π; B 、3π; C 、2π; D 、23π [ D ]二、填空题4、 一简谐振动曲线如图所示,则由图可确定在t = 2s 时刻质点的位移为 0 ,速度为 3π cm/s .5、 一简谐振动的旋转矢量如图所示,振幅矢量长2cm ,则该简谐振动的初相为 π/4 .振动方程为x=2cos(πt+π/4) cm .6、 一简谐振子的振动曲线如图所示,则以余弦函数表示的振动方程为x=0.04cos(πt+π/2) m 。
三、计算题7、 质量为2 kg 的质点,按方程)]6/(5sin[2.0π-=t x 沿着x 轴振动.求: (1) t = 0时,作用于质点的力的大小;(2) 作用于质点的力的最大值和此时质点的位置.t-解:(1))65cos(π-==t dt dx v )65sin(5π--==t dt dv aN t ma F 5)65sin(520=-⨯==∴π(2)N F10max=m x 2.0±=∴8、 一质点在x 轴上作简谐振动,选取该质点向右运动通过A 点时作为计时起点( t = 0 ),经过2秒后质点第一次经过B 点,再经过2秒后质点第二次经过B 点,若已知该质点在A 、B 两点具有相同的速率,且AB = 10 cm 求:(1) 质点的振动方程;(2) 质点在A 点处的速率.解:(1) T=8s )/(42s rad T ππω==∴ 设振动方程为)4cos(ψπ+=A xt=0时,5cos 0-==ψA x①t=2时,5)2cos(0=+=πψA x ② 由①②得,1=ψtg ,考虑到00>vπψ43-=∴ 代入①得,cm A 25=)434cos(25ππ-=∴t x (cm)(2))434sin(245πππ--==t dt dx vππ45222450=⨯=v (cm/s)波动习题1一、选择题1、 一平面简谐波沿Ox 正方向传播,波动表达式为]2)42(2cos[10.0π+-π=x t y ,则该波在t = 0.5 s 时刻的波形图是 [ B ]m )-m )2、 已知一平面简谐波的表达式为 )cos(bx at A y -=(a 、b 为正值常量),则A 、波的频率为a .B 、波的传播速度为 b/a .C 、波长为 π / b .D 、波的周期为2π / a . [ D ] 3、 如图所示,有一平面简谐波沿x 轴负方向传播,坐标原点O 的振动规律为)cos(0φω+=t A y ),则B 点的振动方程为A 、])/(cos[0φω+-=u x t Ay . B 、)]/([cos u x t A y +=ω. C 、})]/([cos{0φω+-=u x t A y . D 、})]/([cos{0φω++=u x t A y . [ D ] 二、填空题4、 A ,B 是简谐波波线上距离小于波长的两点.已知,B 点振动的相位比A 点落后π31,波长为λ = 3 m ,则A ,B 两点相距L = ____1/2____________m .5、 已知波源的振动周期为4.00×10-2 s ,波的传播速度为300 m/s ,波沿x 轴正方向传播,则位于x 1 = 10.0 m 和x 2 = 16.0 m 的两质点振动相位差为 π.6、 请按频率递增的顺序,写出比可见光频率高的电磁波谱的名称___紫外线_______ ;_______X 射线___; ___γ射线______ . 三、计算题7、 图为t = T / 4 时一平面简谐波的波形曲线,求其波的表达式。
大学物理习题集加答案解析
大学物理习题集(一)大学物理教研室2010年3月目录部分物理常量┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄2练习一库伦定律电场强度┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄3练习二电场强度(续)电通量┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄4练习三高斯定理┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄5练习四静电场的环路定理电势┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄6练习五场强与电势的关系静电场中的导体┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄8练习六静电场中的导体(续)静电场中的电介质┄┄┄┄┄┄┄┄┄┄┄┄9练习七静电场中的电介质(续)电容静电场的能量┄┄┄┄┄┄┄┄┄┄10练习八恒定电流┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄11练习九磁感应强度洛伦兹力┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄13练习十霍尔效应安培力┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄14练习十一毕奥—萨伐尔定律┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄16练习十二毕奥—萨伐尔定律(续)安培环路定律┄┄┄┄┄┄┄┄┄┄┄┄17练习十三安培环路定律(续)变化电场激发的磁场┄┄┄┄┄┄┄┄┄┄┄18练习十四静磁场中的磁介质┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄20练习十五电磁感应定律动生电动势┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄21练习十六感生电动势互感┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄23练习十七互感(续)自感磁场的能量┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄24练习十八麦克斯韦方程组┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄26练习十九狭义相对论的基本原理及其时空观┄┄┄┄┄┄┄┄┄┄┄┄┄27练习二十相对论力学基础┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄28练习二十一热辐射┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄29练习二十二光电效应康普顿效应热辐射┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄30练习二十三德布罗意波不确定关系┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄32练习二十四薛定格方程氢原子┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄33部分物理常量万有引力常量G=×1011N·m2·kg2重力加速度g=s2阿伏伽德罗常量N A=×1023mol1摩尔气体常量R=·mol1·K1玻耳兹曼常量k=×1023J·K1斯特藩玻尔兹曼常量= ×10-8 W·m2·K4标准大气压1atm=×105Pa真空中光速c=×108m/s基本电荷e=×1019C电子静质量m e=×1031kg质子静质量m n=×1027kg中子静质量m p=×1027kg真空介电常量0= ×1012 F/m真空磁导率0=4×107H/m=×106H/m普朗克常量h = ×1034 J·s维恩常量b=×103m·K说明:字母为黑体者表示矢量练习一库伦定律电场强度一.选择题1.关于试验电荷以下说法正确的是(A) 试验电荷是电量极小的正电荷;(B) 试验电荷是体积极小的正电荷;(C) 试验电荷是体积和电量都极小的正电荷;(D) 试验电荷是电量足够小,以至于它不影响产生原电场的电荷分布,从而不影响原电场;同时是体积足够小,以至于它所在的位置真正代表一点的正电荷(这里的足够小都是相对问题而言的).2.关于点电荷电场强度的计算公式E = q r / (4 0 r3),以下说法正确的是(A) r→0时, E→∞;(B) r→0时,q不能作为点电荷,公式不适用;(C) r→0时,q仍是点电荷,但公式无意义;(D) r→0时,q已成为球形电荷,应用球对称电荷分布来计算电场.3.关于电偶极子的概念,其说法正确的是(A) 其电荷之间的距离远小于问题所涉及的距离的两个等量异号的点电荷系统;(B) 一个正点电荷和一个负点电荷组成的系统;(C) 两个等量异号电荷组成的系统;(D) 一个正电荷和一个负电荷组成的系统.(E) 两个等量异号的点电荷组成的系统4.试验电荷q0在电场中受力为f , 其电场强度的大小为f / q0 , 以下说法正确的是(A) E正比于f;(B) E反比于q0;(C) E正比于f 且反比于q0;(D) 电场强度E是由产生电场的电荷所决定的,不以试验电荷q0及其受力的大小决定.5.在没有其它电荷存在的情况下,一个点电荷q1受另一点电荷q2的作用力为f12,当放入第三个电荷Q后,以下说法正确的是(A) f12的大小不变,但方向改变, q1所受的总电场力不变;(B) f12的大小改变了,但方向没变, q1受的总电场力不变;(C) f12的大小和方向都不会改变, 但q1受的总电场力发生了变化;(D) f12的大小、方向均发生改变, q1受的总电场力也发生了变化.二.填空题1.如图所示,一电荷线密度为的无限长带电直线垂直通过图面上的A点,一电荷为Q的均匀球体,其球心为O点,ΔAOP是边长为a的等边三角形,为了使P点处场强方向垂直于OP, 则和Q的数量关系式为,且与Q为号电荷(填同号或异号) .2.在一个正电荷激发的电场中的某点A,放入一个正的点电荷q ,测得它所受力的大小为f1;将其撤走,改放一个等量的点电荷q,测得电场力的大小为f2 ,则A点电场强度E的大小满足的关系式为.3.一半径为R的带有一缺口的细圆环, 缺口宽度为d (d<<R)环上均匀带正电, 总电量为q ,如图所示, 则圆心O处的场强大小E = ,场强方向为.三.计算题1.一“无限长”均匀带电的半圆柱面,半径为R, 设半圆柱面沿轴线单位长度上的电量为,如图所示.试求轴线上一点的电场强度.2.一带电细线弯成半径为R的半圆形, 电荷线密度为= 0 sin, 式中0为一常数, 为半径R与X 轴所成的夹角, 如图所示,试求环心O处的电场强度.练习二电场强度(续)电通量一.选择题1. 以下说法错误的是(A) 电荷电量大,受的电场力可能小;(B)电荷电量小,受的电场力可能大;(C)电场为零的点,任何点电荷在此受的电场力为零;(D)电荷在某点受的电场力与该点电场方向一致.2.在点电荷激发的电场中,如以点电荷为心作一个球面,关于球面上的电场,以下说法正确的是(A) 球面上的电场强度矢量E处处不等;(B) 球面上的电场强度矢量E处处相等,故球面上的电场是匀强电场;(C) 球面上的电场强度矢量E的方向一定指向球心;(D) 球面上的电场强度矢量E的方向一定沿半径垂直球面向外.3.关于电场线,以下说法正确的是(A) 电场线上各点的电场强度大小相等;(B) 电场线是一条曲线,曲线上的每一点的切线方向都与该点的电场强度方向平行;(A) 开始时处于静止的电荷在电场力的作用下运动的轨迹必与一条电场线重合;(D) 在无电荷的电场空间,电场线可以相交.4.如图,一半球面的底面园所在的平面与均强电场E的夹角为30°,球面的半径为R,球面的法线向外,则通过此半球面的电通量为(A)R2E/2 .(B) R2E/2.(C) R2E.(D) R2E.5.真空中有AB两板,相距为d ,板面积为S(S>>d2),分别带+q和q,在忽略边缘效应的情况下,两板间的相互作用力的大小为(A)q2/(40d2 ) .(B) q2/(0 S) .(C) 2q2/(0 S).(D) q2/(20 S) .二.填空题1.真空中两条平行的无限长的均匀带电直线,电荷线密度分别为+ 和,点P1和P2与两带电线共面,其位置如图所示,取向右为坐标X正向,则= ,= .2.为求半径为R带电量为Q的均匀带电园盘中心轴线上P点的电场强度, 可将园盘分成无数个同心的细园环, 园环宽度为d r,半径为r,此面元的面积d S= ,带电量为d q = ,此细园环在中心轴线上距圆心x的一点产生的电场强度E = .3.如图所示,均匀电场E中有一袋形曲面,袋口边缘线在一平面S内,边缘线所围面积为S0,袋形曲面的面积为S ,法线向外,电场与S面的夹角为,则通过袋形曲面的电通量为.三.计算题1.一带电细棒弯曲线半径为R的半圆形,带电均匀,总电量为Q,求圆心处的电场强度E.2.真空中有一半径为R的圆平面,在通过圆心O与平面垂直的轴线上一点P处,有一电量为q 的点电荷,O、P间距离为h ,试求通过该圆平面的电通量.练习三高斯定理一.选择题1.如果对某一闭合曲面的电通量为=0,以下说法正确的是(A) S面上的E必定为零;(B) S面内的电荷必定为零;(C) 空间电荷的代数和为零;(D) S面内电荷的代数和为零.2.如果对某一闭合曲面的电通量0,以下说法正确的是(A) S面上所有点的E必定不为零;(B) S面上有些点的E可能为零;(C) 空间电荷的代数和一定不为零;(D) 空间所有地方的电场强度一定不为零.3.关于高斯定理的理解有下面几种说法,其中正确的是(A) 如高斯面上E处处为零,则该面内必无电荷;(B) 如高斯面内无电荷,则高斯面上E处处为零;(C) 如高斯面上E处处不为零,则高斯面内必有电荷;(D) 如高斯面内有净电荷,则通过高斯面的电通量必不为零;(E) 高斯定理仅适用于具有高度对称的电场.4.图示为一轴对称性静电场的E~r关系曲线,请指出该电场是由哪种带电体产生的(E表示电场强度的大小, r表示离对称轴的距离)(A) “无限长”均匀带电直线;(B) 半径为R的“无限长”均匀带电圆柱体;(C) 半径为R的“无限长”均匀带电圆柱面;(D) 半径为R的有限长均匀带电圆柱面.5.如图所示,一个带电量为q 的点电荷位于立方体的A角上,则通过侧面a b c d 的电场强度通量等于:(A) q / 240.(B) q / 120.(C) q / 6 0 .(D) q / 480.二.填空题1.两块“无限大”的均匀带电平行平板,其电荷面密度分别为( 0)及2 ,如图所示,试写出各区域的电场强度EⅠ区E的大小,方向;Ⅱ区E的大小,方向;Ⅲ区E的大小,方向.2.如图所示,真空中两个正点电荷,带电量都为Q,相距2R,若以其中一点电荷所在处O点为中心,以R为半径作高斯球面S,则通过该球面的电场强度通量= ;若以r0表示高斯面外法线方向的单位矢量,则高斯面上a、b 两点的电场强度的矢量式分别为,.3.点电荷q1、q2、q3和q4在真空中的分布如图所示,图中S为闭合曲面,则通过该闭合曲面的电通量= ,式中的E是哪些点电荷在闭合曲面上任一点产生的场强的矢量和答:是.三.计算题1.厚度为d的无限大均匀带电平板,带电体密度为,试用高斯定理求带电平板内外的电场强度.2.半径为R的一球体内均匀分布着电荷体密度为的正电荷,若保持电荷分布不变,在该球体内挖去半径r的一个小球体,球心为O′ , 两球心间距离= d, 如图所示, 求:(1) 在球形空腔内,球心O处的电场强度E0;(2) 在球体内P点处的电场强度E.设O、O、P三点在同一直径上,且= d .练习四静电场的环路定理电势一.选择题1.真空中某静电场区域的电力线是疏密均匀方向相同的平行直线,则在该区域内电场强度E和电位U是(A) 都是常量.(B) 都不是常量.(C) E是常量, U不是常量.(D) U是常量, E不是常量.2.电量Q均匀分布在半径为R的球面上,坐标原点位于球心处,现从球面与X轴交点处挖去面元S, 并把它移至无穷远处(如图,若选无穷远为零电势参考点,且将S移走后球面上的电荷分布不变,则此球心O点的场强E0与电位U0分别为(注:i为单位矢量)(A)-i QS/[(4 R2 )20 ];[Q/(40R)][1-S/(4R2)].(B) i QS/[(4 R2 )20 ];[Q/(40R)][1-S/(4R2)].(C) i QS/[(4 R2 )20 ];[Q/(40R)][1-S/(4R2)].(D) -i QS/[(4 R2 )20 ];[Q/(40R)][1-S/(4R2)].3.以下说法中正确的是(A) 沿着电力线移动负电荷,负电荷的电势能是增加的;(B) 场强弱的地方电位一定低,电位高的地方场强一定强;(C) 等势面上各点的场强大小一定相等;(D) 初速度为零的点电荷, 仅在电场力作用下,总是从高电位处向低电位运动;(E) 场强处处相同的电场中,各点的电位也处处相同.4.如图,在点电荷+q的电场中,若取图中P点处为电势零点,则M点的电势为(A) .(B) .(C) .(D) .5.一电量为q的点电荷位于圆心O处,A、B、C、D为同一圆周上的四点,如图所示,现将一试验电荷从A点分别移动到B、C、D各点,则(A) 从A到B,电场力作功最大.(B) 从A到各点,电场力作功相等.(C) 从A到D,电场力作功最大.(D) 从A到C,电场力作功最大.二.填空题1.电量分别为q1 , q2 , q3的三个点电荷分别位于同一圆周的三个点上,如图所示,设无穷远处为电势零点,圆半径为R, 则b点处的电势U = .2.如图,在场强为E的均匀电场中,A、B两点距离为d, AB连线方向与E方向一致, 从A点经任意路径到B点的场强线积分= .3.如图所示,BCD是以O点为圆心, 以R为半径的半圆弧, 在A点有一电量为+q的点电荷, O点有一电量为–q的点电荷, 线段= R, 现将一单位正电荷从B点沿半圆弧轨道BCD移到D点,则电场力所作的功为.三.计算题1.电量q均匀分布在长为2 l的细杆上, 求在杆外延长线上与杆端距离为a的P点的电势(设无穷远处为电势零点) .2.一均匀带电的球层, 其电荷体密度为, 球层内表面半径为R1 , 外表面半径为R2 ,设无穷远处为电势零点, 求空腔内任一点的电势.练习五场强与电势的关系静电场中的导体一.选择题1.以下说法中正确的是(A) 电场强度相等的地方电势一定相等;(B) 电势梯度绝对值大的地方场强的绝对值也一定大;(C) 带正电的导体上电势一定为正;(D) 电势为零的导体一定不带电2.以下说法中正确的是(A) 场强大的地方电位一定高;(B) 带负电的物体电位一定为负;(C) 场强相等处电势梯度不一定相等;(D) 场强为零处电位不一定为零.3. 如图,真空中有一点电荷Q及空心金属球壳A, A处于静电平衡, 球内有一点M, 球壳中有一点N, 以下说法正确的是(A) E M≠0, E N=0 ,Q在M处产生电场,而在N处不产生电场;(B) E M =0, E N≠0 ,Q在M处不产生电场,而在N处产生电场;(C) E M =E N =0 ,Q在M、N处都不产生电场;(D) E M≠0,E N≠0,Q在M、N处都产生电场;(E) E M =E N =0 ,Q在M、N处都产生电场.4.如图,原先不带电的金属球壳的球心处放一点电荷q1, 球外放一点电荷q2,设q2、金属内表面的电荷、外表面的电荷对q1的作用力分别为F1、F2、F3 , q1受的总电场力为F, 则(A) F1=F2=F3=F=0.(B) F1= q1 q2 / ( 4 0d2 ) ,F2 = 0 , F3 = 0, F=F1 .(C) F1= q1 q2 / ( 4 0d2 ) , F2 = 0,F3 = q1 q2 / ( 4 0d2 ) (即与F1反向), F=0 .(D) F1= q1 q2 / ( 4 0d2 ) ,F2 与F3的合力与F1等值反向,F=0 .(E) F1= q1 q2 / ( 4 0d2 ) , F2= q1 q2 / ( 4 0d2 ) (即与F1反向), F3 = 0, F=0 .5.如图,一导体球壳A,同心地罩在一接地导体B上,今给A球带负电Q, 则B球(A)带正电.(B) 带负电.(C) 不带电.(D) 上面带正电,下面带负电.二.填空题1.一偶极矩为P的电偶极子放在电场强度为E的均匀外电场中, P与E的夹角为角,在此电偶极子绕过其中心且垂直于P与E组成平面的轴沿角增加的方向转过180°的过程中,电场力作功为A = .2.若静电场的某个立体区域电势等于恒量, 则该区域的电场强度分布是;若电势随空间坐标作线性变化, 则该区域的场强分布是.3.一“无限长”均匀带电直线,电荷线密度为,在它的电场作用下,一质量为m,带电量为q 的质点以直线为轴线作匀速圆周运动,该质点的速率v = .三.计算题1.如图所示,三个“无限长”的同轴导体圆柱面A、B和C,半径分别为R A、R B、R C,圆柱面B上带电荷,A和C 都接地,求B的内表面上电荷线密度1,和外表面上电荷线密度之比值1/2.22.已知某静电场的电势函数U=-+ ln x(SI) ,求点(4,3,0)处的电场强度各分量值.练习六静电场中的导体(续)静电场中的电介质一.选择题1.一孤立的带正电的导体球壳有一小孔,一直导线AB穿过小孔与球壳内壁的B点接触,且与外壁绝缘,如图、D分别在导体球壳的内外表面上,A、C、D三点处的面电荷密度分别为A、C、D , 电势分别为U A、U C、U D ,其附近的电场强度分别为E A、E C、E D , 则:(A) A>D ,C = 0 , E A> E D , E C = 0 , U A = U C = U D .(B) A>D ,C = 0 , E A> E D , E C = 0 , U A > U C = U D .(C) A=C ,D≠0 , E A= E C=0, E D ≠0 , U A = U C =0 , U D≠0.(D) D>0 ,C <0 ,A<0 , E D沿法线向外, E C沿法线指向C ,E A平行AB指向外,U B >U C > U A .2.如图,一接地导体球外有一点电荷Q,Q距球心为2R,则导体球上的感应电荷为(A)0.(B) Q.(C) +Q/2.(D) –Q/2.3.导体A接地方式如图,导体B带电为+Q,则导体A(A) 带正电.(B) 带负电.(C) 不带电.(D) 左边带正电,右边带负电.4.半径不等的两金属球A、B ,R A = 2R B ,A球带正电Q ,B球带负电2Q,今用导线将两球联接起来,则(A) 两球各自带电量不变.(B) 两球的带电量相等.(C) 两球的电位相等.(D) A球电位比B球高.5. 如图,真空中有一点电荷q , 旁边有一半径为R的球形带电导体,q距球心为d ( d > R ) 球体旁附近有一点P ,P在q与球心的连线上,P点附近导体的面电荷密度为.以下关于P点电场强度大小的答案中,正确的是(A) / (20 ) + q /[40 ( d-R )2 ];(B) / (20 )-q /[40 ( d-R )2 ];(C) / 0 + q /[40 ( d-R )2 ];(D)/ 0-q /[40 ( d-R )2 ];(E)/ 0;(F) 以上答案全不对.二.填空题1.如图,一平行板电容器, 极板面积为S,,相距为d,若B板接地,,且保持A板的电势U A=U0不变,,如图, 把一块面积相同的带电量为Q的导体薄板C平行地插入两板中间, 则导体薄板C的电势U C = .2.地球表面附近的电场强度约为100N/C ,方向垂直地面向下,假设地球上的电荷都均匀分布在地表面上,则地面的电荷面密度= , 地面电荷是电荷(填正或负).3.如图所示,两块很大的导体平板平行放置,面积都是S,有一定厚度,带电量分别为Q1和Q2,如不计边缘效应,则A、B、C、D四个表面上的电荷面密度分别为、、、.三.计算题1.半径分别为r1 = cm 和r2 = cm 的两个球形导体, 各带电量q = ×108C, 两球心相距很远, 若用细导线将两球连接起来, 并设无限远处为电势零点,求: (1)两球分别带有的电量;(2)各球的电势.2.如图,长为2l的均匀带电直线,电荷线密度为,在其下方有一导体球,球心在直线的中垂线上,距直线为d,d大于导体球的半径R,(1)用电势叠加原理求导体球的电势;(2)把导体球接地后再断开,求导体球上的感应电量.练习七静电场中的电介质(续)电容静电场的能量一.选择题1.极化强度P是量度介质极化程度的物理量, 有一关系式为P = 0(r1)E , 电位移矢量公式为D = 0E + P ,则(A) 二公式适用于任何介质.(B) 二公式只适用于各向同性电介质.(C) 二公式只适用于各向同性且均匀的电介质.(D) 前者适用于各向同性电介质, 后者适用于任何电介质.2.电极化强度P(A) 只与外电场有关.(B) 只与极化电荷产生的电场有关.(C) 与外场和极化电荷产生的电场都有关.(D) 只与介质本身的性质有关系,与电场无关.3.真空中有一半径为R, 带电量为Q的导体球, 测得距中心O为r 处的A点场强为E A =Q r /(40r3) ,现以A为中心,再放上一个半径为,相对电容率为r的介质球,如图所示,此时下列各公式中正确的是(A) A点的电场强度E A=E A / r;(B) ;(C) =Q/0;(D) 导体球面上的电荷面密度= Q /( 4R2 ).4.平行板电容器充电后与电源断开,然后在两极板间插入一导体平板,则电容C, 极板间电压V,极板空间(不含插入的导体板)电场强度E以及电场的能量W将(↑表示增大,↓表示减小)(A) C↓,U↑,W↑,E↑.(B) C↑,U↓,W↓,E不变.(C) C↑,U↑,W↑,E↑.(D) C↓,U↓,W↓,E↓.5.如果某带电体电荷分布的体电荷密度增大为原来的2倍,则电场的能量变为原来的(A) 2倍.(B) 1/2倍.(C) 1/4倍.(D) 4倍.二.填空题1.一平行板电容器,充电后断开电源, 然后使两极板间充满相对介电常数为r的各向同性均匀电介质, 此时两极板间的电场强度为原来的倍, 电场能量是原来的倍.2.在相对介电常数r= 4 的各向同性均匀电介质中,与电能密度w e=2×106J/cm3相应的电场强度大小E = .3.一平行板电容器两极板间电压为U,其间充满相对介电常数为r的各向同性均匀电介质,电介质厚度为d , 则电介质中的电场能量密度w = .三.计算题1.一电容器由两个很长的同轴薄圆筒组成,内外圆筒半径分别为R 1=2cm ,R2= 5cm,其间充满相对介电常数为r的各向同性、均匀电介质、电容器接在电压U=32V的电源上(如图所示为其横截面),试求距离轴线R=处的A点的电场强度和A点与外筒间的电势差.2.假想从无限远处陆续移来微电荷使一半径为R的导体球带电.(1) 球上已带电荷q时,再将一个电荷元dq从无限远处移到球上的过程中,外力作多少功(2) 使球上电荷从零开始加到Q的过程中,外力共作多少功练习八恒定电流一.选择题1.两个截面不同、长度相同的用同种材料制成的电阻棒,串联时如图(1)所示,并联时如图(2)所示,该导线的电阻忽略,则其电流密度J与电流I应满足:(A) I1 =I2 J1 = J2 I1 = I2 J1 = J2.(B) I1 =I2 J1 >J2 I1<I2 J1 = J2.(C) I1<I2 J1 = J2 I1 = I2 J1>J2.(D) I1<I2 J1 >J2 I1<I2 J1>J2.2.两个截面相同、长度相同,电阻率不同的电阻棒R1 、R2(1>2)分别串联(如上图)和并联(如下图)在电路中,导线电阻忽略,则(A) I1<I2 J1<J2 I1= I2 J1 = J2.(B)I1 =I2 J1 =J2 I1= I2 J1 = J2.(C)I1=I2 J1 = J2 I1<I2 J1<J2.(D)I1<I2 J1<J2 I1<I2 J1<J2.3.室温下,铜导线内自由电子数密度为n= × 1028个/米3,电流密度的大小J= 2×106安/米2,则电子定向漂移速率为:(A)×10-4米/秒.(B) ×10-2米/秒.(C) ×102米/秒.(D) ×105米/秒.4.在一个长直圆柱形导体外面套一个与它共轴的导体长圆筒,两导体的电导率可以认为是无限大,在圆柱与圆筒之间充满电导率为的均匀导电物质,当在圆柱与圆筒上加上一定电压时,在长度为l的一段导体上总的径向电流为I,如图所示,则在柱与筒之间与轴线的距离为r 的点的电场强度为:(A) 2rI/ (l2).(B) I/(2rl).(C) Il/(2r2).(D) I/(2rl).5.在如图所示的电路中,两电源的电动势分别为1、2、,内阻分别为r1、r2,三个负载电阻阻值分别为R1、R2、R,电流分别为I1、I2、I3 ,方向如图,则由A到B的电势增量U B-U A为:(A) 2-1-I1 R1+I2 R2-I3 R .(B) 2+1-I1(R1 + r1)+I2(R2 + r2)-I3 R.(C) 2-1-I1(R1-r1)+I2(R2-r2) .(D) 2-1-I1(R1 + r1)+I2(R2 + r2) .二.填空题1.用一根铝线代替一根铜线接在电路中,若铝线和铜线的长度、电阻都相等,那么当电路与电源接通时铜线和铝线中电流密度之比J1:J2 = .(铜电阻率×106·cm , 铝电阻率×106 · cm , )2.金属中传导电流是由于自由电子沿着与电场E相反方向的定向漂移而形成, 设电子的电量为e , 其平均漂移率为v , 导体中单位体积内的自由电子数为n , 则电流密度的大小J = , J的方向与电场E的方向.3.有一根电阻率为、截面直径为d、长度为L的导线,若将电压U加在该导线的两端,则单位时间内流过导线横截面的自由电子数为;若导线中自由电子数密度为n,则电子平均漂移速率为.(导体中单位体积内的自由电子数为n)三.计算题1.两同心导体球壳,内球、外球半径分别为r a , r b,其间充满电阻率为的绝缘材料,求两球壳之间的电阻.2.在如图所示的电路中,两电源的电动势分别为1=9V和2 =7V,内阻分别为r1 = 3和r2= 1,电阻R=8,求电阻R两端的电位差.练习九磁感应强度洛伦兹力一.选择题1.一个动量为p电子,沿图所示的方向入射并能穿过一个宽度为D、磁感应强度为B(方向垂直纸面向外)的均匀磁场区域,则该电子出射方向和入射方向间的夹角为(A) =arccos(eBD/p).(B) =arcsin(eBD/p).(C) =arcsin[BD /(ep)].(D) =arccos[BD/(e p)].2.一均匀磁场,其磁感应强度方向垂直于纸面,两带电粒子在该磁场中的运动轨迹如图所示,则(A)两粒子的电荷必然同号.(B) 粒子的电荷可以同号也可以异号.(C) 两粒子的动量大小必然不同.(D) 两粒子的运动周期必然不同.3.一运动电荷q,质量为m,以初速v0进入均匀磁场,若v0与磁场方向的夹角为,则(A)其动能改变,动量不变.(B) 其动能和动量都改变.(C) 其动能不变,动量改变.(D) 其动能、动量都不变.4.两个电子a和b同时由电子枪射出,垂直进入均匀磁场,速率分别为v和2v,经磁场偏转后,它们是(A)a、b同时回到出发点.(B) a、b都不会回到出发点.(C) a先回到出发点.(D) b先回到出发点.5. 如图所示两个比荷(q/m)相同的带导号电荷的粒子,以不同的初速度v1和v2(v1v2)射入匀强磁场B中,设T1、T2分别为两粒子作圆周运动的周期,则以下结论正确的是:(A) T1 = T2,q1和q2都向顺时针方向旋转;(B) T1 = T 2,q1和q2都向逆时针方向旋转(C) T1T2,q1向顺时针方向旋转,q2向逆时针方向旋转;(D) T1 = T2,q1向顺时针方向旋转,q2向逆时针方向旋转;二.填空题1. 一电子在B=2×10-3T的磁场中沿半径为R=2×10-2m、螺距为h=×10-2m的螺旋运动,如图所示,则磁场的方向, 电子速度大小为.2. 磁场中某点处的磁感应强度B=-(T), 一电子以速度v=×106i+×106j (m/s)通过该点,则作用于该电子上的磁场力F= .3.在匀强磁场中,电子以速率v=×105m/s作半径R=的圆周运动.则磁场的磁感应强度的大小B= .三.计算题1.如图所示,一平面塑料圆盘,半径为R ,表面均匀带电,电荷面密度为,假定盘绕其轴线OO以角速度转动,磁场B垂直于轴线OO,求圆盘所受磁力矩的大小。
大学物理课后答案详解第七章的静电场中地导体和电介质
习题77-2 三个平行金属板A ,B 和C 的面积都是200cm 2,A 和B 相距4.0mm ,A 与C 相距2.0 mm .B ,C 都接地,如题7-2图所示.如果使A 板带正电3.0×10-7C ,略去边缘效应,问B 板和C 板上的感应电荷各是多少?以地的电势为零,则A 板的电势是多少?解: 如题7-2图示,令A 板左侧面电荷面密度为1σ,右侧面电荷面密度为2σ题7-2图(1)∵ AB AC U U =,即 ∴ AB AB AC AC E E d d = ∴2d d 21===ACABAB AC E E σσ 且 1σ+2σSq A=得 ,32S q A =σ Sq A 321=σ 而 7110232-⨯-=-=-=A C q S q σC C10172-⨯-=-=S q B σ(2) 301103.2d d ⨯===AC AC AC A E U εσV 7-3 两个半径分别为1R 和2R (1R <2R )的同心薄金属球壳,现给内球壳带电+q(1)(2)先把外球壳接地,然后断开接地线重新绝缘,此时外球壳的电荷分布及*(3)再使内球壳接地,此时内球壳上的电荷以及外球壳上的电势的改变解: (1)内球带电q +;球壳内表面带电则为q -,外表面带电为q +,且均匀分布,其电势题7-3图⎰⎰∞∞==⋅=22020π4π4d d R R R qr r q r E U εε (2)外壳接地时,外表面电荷q +入地,外表面不带电,内表面电荷仍为q -.所以球壳电势由内球q +与内表面q -产生:0π4π42020=-=R q R q U εε(3)设此时内球壳带电量为q ';则外壳内表面带电量为q '-,外壳外表面带电量为+-q q ' (电荷守恒),此时内球壳电势为零,且0π4'π4'π4'202010=+-+-=R q q R q R q U A εεε得 q R R q 21=' 外球壳上电势()22021202020π4π4'π4'π4'R qR R R q q R q R q U B εεεε-=+-+-=7-4 半径为R 的金属球离地面很远,并用导线与地相联,在与球心相距为R d 3=处有一点电荷+q ,试求:金属球上的感应电荷的电量.解: 如题8-24图所示,设金属球感应电荷为q ',则球接地时电势0=O U7-4图由电势叠加原理有:=O U 03π4π4'00=+RqR q εε得 -='q 3q 7-5有三个大小相同的金属小球,小球1,2带有等量同号电荷,相距甚远,其间的库仑力为0F .试求:(1)用带绝缘柄的不带电小球3先后分别接触1,2后移去,小球1,2之间的库仑力;(2)小球3依次交替接触小球1,2很多次后移去,小球1,2解: 由题意知 2020π4rq F ε=(1)小球3接触小球1后,小球3和小球1均带电2q q =', 小球3再与小球2接触后,小球2与小球3均带电q q 43=''∴ 此时小球1与小球2间相互作用力00220183π483π4"'2F rqr q q F =-=εε (2)小球3依次交替接触小球1、2很多次后,每个小球带电量均为32q.∴ 小球1、2间的作用力00294π432322F r qq F ==ε7-6如题7-6图所示,一平行板电容器两极板面积都是S ,相距为d ,分别维持电势A U =U ,B U =0不变.现把一块带有电量q 的导体薄片平行地放在两极板正中间,片的面积也是S ,片的厚度略去不计.求导体薄片的电势. 解: 依次设A ,C ,B 从上到下的6个表面的面电荷密度分别为1σ,2σ,3σ,4σ,5σ,6σ如图所示.由静电平衡条件,电荷守恒定律及维持U U AB =可得以下6个方程题7-6图⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧++++==+=+-==+=+===+6543215432065430021001σσσσσσσσσσεσσσσεσσd US q S qdU U C S S q B A 解得 Sq261==σσS q d U2032-=-=εσσ Sq dU2054+=-=εσσ所以CB 间电场 Sqd U E 00422εεσ+==)2d (212d 02Sq U E U U CB C ε+=== 注意:因为C 片带电,所以2U U C ≠,若C 片不带电,显然2U U C = 7-7 在半径为1R 的金属球之外包有一层外半径为2R 的均匀电介质球壳,介质相对介电常数为r ε,金属球带电Q .试求: (1)电介质内、外的场强;(2)电介质层内、外的电势; (3)金属球的电势.解: 利用有介质时的高斯定理∑⎰=⋅q S D Sd(1)介质内)(21R r R <<场强303π4,π4rrQ E r r Q D r εε ==内; 介质外)(2R r <场强303π4,π4rrQ E r Qr D ε ==外 (2)介质外)(2R r >电势rQE U 0rπ4r d ε=⋅=⎰∞外介质内)(21R r R <<电势rd r d ⋅+⋅=⎰⎰∞∞rrE E U 外内2020π4)11(π4R QR r qr εεε+-=)11(π420R r Q r r -+=εεε(3)金属球的电势r d r d 221 ⋅+⋅=⎰⎰∞R R R E E U 外内⎰⎰∞+=22220π44πdr R R Rr r Qdrr Q εεε)11(π4210R R Q r r -+=εεε7-8如题7-8图所示,在平行板电容器的一半容积内充入相对介电常数为r ε的电介质.试求:在有电介质部分和无电介质部分极板上自由电荷面密度的比值.解: 如题7-8图所示,充满电介质部分场强为2E ,真空部分场强为1E,自由电荷面密度分别为2σ与1σ由∑⎰=⋅0d q S D得11σ=D ,22σ=D而 101E D ε=,202E D r εε=d21U E E == ∴r D D εσσ==1212题7-8图7-9 金属球壳A 和B 的中心相距为r ,A 和B 原来都不带电.现在A 的中心放一点电荷1q ,在B 的中心放一点电荷2q ,如题8-30图所示.试求: (1) 1q 对2q 作用的库仑力,2q 有无加速度;(2)去掉金属壳B ,求1q 作用在2q 上的库仑力,此时2q 有无加速度. 解: (1)1q 作用在2q 的库仑力仍满足库仑定律,即2210π41r q q F ε=但2q 处于金属球壳中心,它受合力..为零,没有加速度. (2)去掉金属壳B ,1q 作用在2q 上的库仑力仍是2210π41rq q F ε=,但此时2q 受合力不为零,有加速度.题7-9图7-10 半径为1R =2.0cm 的导体球,外套有一同心的导体球壳,壳的内、外半径分别为2R =4.0cm 和3R =5.0cm ,当内球带电荷Q =3.0×10-8C(1)整个电场储存的能量;(2)此电容器的电容值.解: 如图,内球带电Q ,外球壳内表面带电Q -,外表面带电Q题7-10图(1)在1R r <和32R r R <<区域0=E在21R r R <<时 301π4r rQ E ε= 3R r >时 302π4r rQ E ε=∴在21R r R <<区域⎰=21d π4)π4(21222001R R r r rQ W εε ⎰-==21)11(π8π8d 2102202R R R R Q r r Q εε 在3R r >区域⎰∞==32302220021π8d π4)π4(21R R Q r r rQ W εεε ∴ 总能量 )111(π83210221R R R Q W W W +-=+=ε41082.1-⨯=J(2)电容器电容 )11/(π422102R R QW C -==ε 121049.4-⨯=F。
大学物理 恒定电流 电磁感应 电磁场答案
第七章 恒定电流§7.1恒定电流一.选择题和填空题1、(7003) 1.59:1 3分参考解:59.167.166.2122121====ρργγE E J J 2、(7005) vne E方向§7.2电源 电动势 §7.3磁场 磁感强度§7.4 毕奥-萨伐尔定律一.选择题和填空题DCD4、(2026) 6.67×10-7 T 7.20×10-7 A ·m 25、(2027))4/(90a I πμ6、(2555)20d 4alI πμ 平行z 轴负向7、 (5123) )11(40ba I +μ 垂直纸面向里.8、(2394) )2/(2e m Be π)2/(22e m R Be 2分 二.计算题1、(2232)解:①电子绕原子核运动的向心力是库仑力提供的.即∶ 02202041a m a e v =πε,由此得 002a m e επ=v 2分 ②电子单位时间绕原子核的周数即频率000142a m a e a ενππ=π=v 2分由于电子的运动所形成的圆电流00214a m a e e i ενππ==因为电子带负电,电流i 的流向与 v方向相反 2分 ③i 在圆心处产生的磁感强度:002a iB μ=0202018a m ae εμππ=其方向垂直纸面向外2、解:由毕奥-萨伐尔定律可得,设半径为R 1的载流半圆弧在O 点产生的磁感强度为B 1,则 1014R IB μ=1分同理, 2024R IB μ=1分∵ 21R R > ∴ 21B B <故磁感强度 12B B B -= 1分204R Iμ=104R Iμ-206R Iμ=∴ 213R R = 2分3、(2267)解:利用无限长载流直导线的公式求解. (1) 取离P 点为x 宽度为d x 的无限长载流细条,它的电流x i d d δ=(2) 这载流长条在P 点产生的磁感应强度 x i B π=2d d 0μxx π=2d 0δμ方向垂直纸面向里. 3分 (3) 所有载流长条在P 点产生的磁感强度的方向都相同,所以载流平板在P 点产生的磁感强度 ==⎰B B d ⎰+πba bxdx 20δμb b a +π=ln 20δμ 2分 方向垂直纸面向里.4、(2568)解:选坐标如图.无限长半圆筒形载流金属薄片可看作许多平行的无限长载流直导线组成.宽为d l 的无限长窄条直导线中的电流为l R I I d d π=θd R R I π=θd π=I 2分 它在O 点产生的磁感强度RIB π=2d d 0μθμd 20π⋅π=IR 2分 θsin d d B B x -=θθμd sin 22Rπ-= 1分θcos d d B B y =θθμd cos 22Rπ=1分对所有窄条电流取积分得⎰ππ-=020d sin 2θθμRIB x ππ=20cos 2θμRIRI20π-=μ 2分⎰ππ=020d cos 2θθμR I B y ππ=020sin 2θμR = 0 2分O 点的磁感强度 i i RI j B i B B y x5201037.6-⨯-=π-=+=μ T 2分 三.理论推导与证明题 1、(2446)答:公式)2/(0R I B π=μ只对忽略导线粗细的理想线电流适用,当a →0, 导线的尺寸不能忽略. 此电流就不能称为线电流,此公式不适用. 5分 2、(2560)答:(1) 电流流向相反. 2分(2) 2121//R R I I = 3分§7.5 磁通量 磁场的高斯定理一.选择题和填空题D2、(2255) 221R B π-3分 3、(2549) 1.26×10-5 Wb 3分二.计算题解:匀强磁场B对平面S 的磁通量为:θΦcos BS S B ==⋅设各面向外的法线方向为正 (1) 24.0cos -=π=abO c abO c BS Φ Wb 2分 (2) 0)2/cos(=π=bedO bedO BS Φ 1分 (3) 24.0cos ==θΦacde acde BS Wb 2分三.理论推导与证明题、改错题1、(2012) 答∶这个推理不正确. 1分因为推理中写⎰⎰=⋅==⋅SSS B dS B S d B 0 不正确,得不出必有B =0的结论.2分正确的应该写 ⎰⎰=⋅==⋅SSS B dS B S d B 0cos θ上式当封闭面上各点2π=θ 或 0cos =⎰SdS θ时就可成立. ∴B 不一定要等于零. 2分§7.6 安培环路定理一.选择题和填空题DBBBCD7、(2570) π×10-3 T 3分 8、(2710)Rihπ20μ 3分二.计算题1、(2106)解:圆电流产生的磁场 )2/(201R I B μ= ⊙ 2分长直导线电流的磁场)2/(202R I B π=μ ⊙ 2分导体管电流产生的磁场 )](2/[103R d I B +π=μ⊗ 2分圆心O点处的磁感强度 321B B B B -+=)()1)((2120d R R RI d R I +-π++⋅π=μ 2分2、(2006)解:在圆柱体内部与导体中心轴线相距为r 处的磁感强度的大小,由安培环路定1、(2551) x zO d cθ θ 40 cm 30 cmBn律可得: )(220R r r RIB ≤π=μ 3分因而,穿过导体内画斜线部分平面的磁通Φ1为⎰⎰⋅==S B S B d d 1 Φr r RI Rd 2020⎰π=μπ=40Iμ 3分在圆形导体外,与导体中心轴线相距r 处的磁感强度大小为)(20R r rIB >π=μ 2分因而,穿过导体外画斜线部分平面的磁通Φ2为⎰⋅=S B d 2Φr r I R Rd 220⎰π=μ2ln 20π=Iμ 3分穿过整个矩形平面的磁通量 21ΦΦΦ+=π=40I μ2ln 20π+Iμ 1分三.理论推导与证明题1、(2450)答:第一说法对,第二说法不对. 2分∵围绕导线的积分路径只要是闭合的,不管在不在同一平面内,也不管是否是圆,安培环路定理都成立. 3分§7.7 带电粒子在电场和磁场中的运动一.选择题和填空题ABBAD6、 1∶2 2分1∶2 2分二.计算题1、(2073)解:洛伦兹力的大小 B q f v = 1分对质子: 1211/R m B q v v = 1分 对电子: 2222/R m B q v v = 1分 ∵ 21q q = 1分∴ 2121//m m R R = 1分2、(2719)解:(1) 运动导体中的自由电子要受到洛伦兹力的作用沿-y 方向运动,从而在垂直于y 轴的一对表面上分别积累上正负电荷,该电荷分布建立的电场方向沿-y轴. 1分当自由电子受到的电场力与洛伦兹力作用而达到平衡时,电场强度为:E = v B 2分写成矢量形式为B E⨯-=v .(2) 面电荷只出现在垂直y 轴的一对平面上,y 坐标大的面上出现的是正电荷,y 坐标小的面上出现的是负电荷,二者面电荷密度的大小相等,设为σ,则由高斯定理可以求得B E v 00εεσ== 2分三.理论推导与证明题1、(2087)答:两个电子将同时回到出发点. 2分 电子的轨迹是圆,其半径R 可由R m R e /2v v =求出, )/(eB m R v =电子回到出发点,即绕一圆周的时间为 )/(2/2eB m R T π=π=v它与v 无关. 3分§7.8 载流导线在磁场中所受的力一.选择题和填空题ACB4、(2086) B I R 2 2分沿y 轴正向 1分 5、(2586)aIB 2 3分 6、(2383))/(lB mg 3分二.计算题1、(2471)解:载流导线MN 上任一点处的磁感强度大小为:)(210x r I B +π=μ)2(220x r I -π-μ 3分MN 上电流元I 3d x 所受磁力: x B I F d d 3=)(2[103x r I I +π=μx x r I d ])2(210-π-μ 2分⎰-π-+π=rx x r I x r I I F 020103d ])2(2)(2[μμ-+π=⎰rx xr II 0130d [2μ]d 202⎰-rx x r I ]2ln 2ln[22130rrI r r I I +π=μ ]2ln 2ln [22130I I I-π=μ2ln )(22130I I I-π=μ 3分若 12I I >,则F 的方向向下,12I I <,则F的方向向上 2分2、(2294)解:长直导线AC 和BD 受力大小相等,方向相反且在同一直线上,故合力为零.现计算半圆部分受力,取电流元l I d ,B l I F⨯=d d 即 θd d IRB F = 2分 由于对称性 0d =∑x F ∴ RIB IRB F F F y y 2d sin d 0====⎰⎰πθθ 3分方向沿y 轴正向§7.9 磁场中的磁介质一.选择题和填空题CD3、(2109) 0.226 T 3分1F300 A/m 2分二.计算题1、解:由安培环路定理:∑⎰⋅=iI l Hd 0< r <R 1区域: 212/2R Ir rH =π212R Ir H π=, 2102R Ir B π=μ 3分 R 1< r <R 2区域: I rH =π2r I H π=2, rIB π=2μ 3分R 2< r <R 3区域: )()(22223222R R R r I I rH ---=π )1(22223222R R R r r IH ---π= )1(2222322200R R R r r IH B ---π==μμ 3分 r >R 3区域: H = 0,B = 0 3分2、(5910) 解: ===l NI nI H /200 A/m3分===H H B r μμμ0 1.06 T 2分3、(2274)解:(1) 在环内作半径为r 的圆形回路, 由安培环路定理得NI r B μ=π⋅2, )2/(r NI B π=μ 3分在r 处取微小截面d S = b d r , 通过此小截面的磁通量r b rNIS B d 2d d π==μΦ穿过截面的磁通量⎰=SS B d Φr b rNId 2π=μ12ln2R R NIbπ=μ 5分 (2) 同样在环外( r < R 1 和r > R 2 )作圆形回路, 由于0=∑iI02=π⋅r B∴ B = 0 2分三.理论推导与证明题1、(2674) 答:不能.因为它并不是真正在磁介质表面流动的传导电流, 2分 而是由分子电流叠加而成,只是在产生磁场这一点上与传导电流相似. 3分第八章 电磁感应 电磁场§8.1 电磁感应定律一.选择题和填空题DCBBD 6、(2615)t a nI m ωωμcos 20π- 3分7、(2616) 3.14×10-6 C 3分 1、(2150)解:两个载同向电流的长直导线在如图坐标x 处所产生的磁场为)11(2210r r x x B +-+π=μ 2分 选顺时针方向为线框回路正方向,则)d d (21111210⎰⎰⎰+++-+π==br r br r r r x xxx IaBdS μΦ 3分)ln(222110r b r r b r Ia+⋅+π=μ 2分 ∴ tIr r b r b r a t d d ]))((ln[2d d 21210++π-=-=μΦt r r b r b r a I ωωμcos ]))((ln[2212100++π-= 3分2、(2408)解: t t S B t BS ωωωΦcos sin cos 0== 2分ωωωΦ)cos sin (/d d 220t t S B t +-=)2cos(0t S B ωω=)2cos(0t S B i ωω-= 3分3、(2519)解:建立坐标如图所示,则直角三角形线框斜边方程为 y =-2x + 0.2 (SI ) 2分在直角三角形线框所围平面上的磁通量为x x x Ix x Iy bbd ]05.02.02[2)05.0(2d 0000⎰⎰++-π=+π=μμΦ 05.005.0ln 15.000+π+π-=b I Ib μμ=2.59×10-8I (SI ) 4分三角形线框中的感应电动势大小为=-d Φ /d t =-2.59×10-8 (d I /d t )=–5.18×10-8 V 3分 其方向为逆时针绕行方向. 1分三.理论推导与证明题1、(2530)答:铜管可以看成是由无数平行的铜圈叠合构成,当磁铁下落而穿过它时,产生感应电流.该电流产生的磁场对磁铁产生向上的阻力,阻碍磁铁下落.当磁铁速度增加时,阻力也增大,使磁铁的加速度越来越小,最后当磁铁下落速度足够大,使磁力与重力相平衡时,磁铁匀速下降. 5分§8.2 动生电动势和感生电动势一.选择题和填空题ADB4、(2130) 8/32l B ω 2分 -8/32l B ω 2分0 1分5、(2134) 1.11×10-5 V 3分A 端 2分I6、(2702) 8/2B l ω 3分0 2分二.计算题1、(2507)解:(1) ⎰⎰⋅π==Sr l r I S B t d 2d )(0μ Φ⎰++π=tb t a r r l I v v d 20μt a t b l I v v ++π=ln 20μ3分 (2) aba b lI tt π-=-==2)(d d 00v μΦ☜ 2分2、(2137)解:建立坐标(如图)21B B B+=x I B π=201μ, )(202ax I B -π=μ 2分 x Ia x I B π--π=2)(200μμ, B 方向⊙ 1分 d x xa x I x B d )11(2d 0--π==vv μ 2分 ⎰⎰--π==+x x a x I ba d )11(2d 202av μ☜b a b a I ++π=2)(2ln20v μ 2分 感应电动势方向为C →D ,D 端电势较高.1分3、(2138)解:在距O 点为l 处的d l 线元中的动生电动势为d l Bd )(⋅⨯=v 2分 θωsin l =v 2分∴ ⎰⎰⋅π=⨯=Ld cos )21sin(v d )v (l B l B L α⎰⎰==ΛθωθθωLl l B l lB 02d sin sin d sin θω22sin 21BL = 3分的方向沿着杆指向上端.1分4、(2509)解:Ob 间的动生电动势:⎰⎰=⋅⨯=5/405/401d d )L L l Bl l B ω v (☜225016)54(21BL L B ωω== 4分 b 点电势高于O 点. Oa 间的动生电动势:⎰⎰⋅=⨯=5/05/02d d )L L l Bl l B ωv (☜22501)51(21BL L B ωω== 4分 a 点电势高于O 点. ∴ 22125016501BL BL U U b a ωω-=-=-☜☜221035015BL BL ωω-=-= 2分 5、(2151)解:大小: =⎪d Φ /d t ⎪= S d B / d t1分 2a x +d x 2a +bI I C DvxOxOB⨯vc= S d B / d t =t B Oa R d /d )sin 2121(22θθ⋅- 1分=3.68 mV 1分方向:沿adcb 绕向. 2分§8.3 自感和互感一.选择题和填空题CC 3、(2525) 0.400 H 3分 4、(2620) 0.4 V 3分二.计算题1、(2161)解:设螺绕环中通电流I ,在环内取以环中心为圆心,半径为r 的圆形回路,由安培环路定理有⎰⋅=NI l B 0d μ NI rB 02μ=π则 )2/(0r NI B π=μ3分通过螺线管矩形截面的磁通链数ψ为:21200ln 2d 2d 12R R hI N r h r NI V S B N R R π=π==⎰⎰⋅μμψ 3分 ∴ 2120ln2/R R hN I L π==μψ 2分 2、(2162)解:设半径为a 的长螺线管中通入电流I ,则管内的均匀磁场L I N I n B a a a a /100μμ== 1分 通过半径为b 的线圈横截面积的磁通量为: L b I N S B a b a b /210π=⋅=μΦ 通过半径为b 的长螺线管的磁链为:L b I N N N a b b /22102π==μΦψ 2分 根据定义: L b N N I M a b //2210π==μψ 2分 3、解: )2/(0r I B r π=μμ R 1 ≤r ≤R 2 3分 长为 l 的一段,R 1、R 2之间矩形面积上的磁通为:1200ln2d 221R R l I r l rIrR R r π=π=⎰μμμμΦ 3分 单位长度自感为: 1200ln π2R Rl I L rμμΦ==2分4、(2176)解:(1) r Bl S B d d d ==⋅Φ 1分)2/(0r I B π=μ 1分∴ ablI r l rIbaln2d 200π=π=⎰μμΦ 2分 tI a b l t i d d )(ln 2d d 0π-=Φ-=μta b lI 300e ln 23-π=μ 2分 感应电流方向为顺时针方向. 2分 (2) ab l I M ln 20π=Φ=μ 2分 §8.5 磁场的能量 磁场能量密度一.选择题和填空题DCC4、(2338) 1∶16 3分 参考解:02/21μB w=nI B 0μ=)4(222102220021d l I n V B W π==μμμ)4/(21222202d l I n W π=μ16:1::222121==d d W W二.计算题1、(2531)解: μΦμμ22222BllS B V B W === 2分式中l 为环长.但μ)/(l NI B =,即NI Bl μ=.代入上式得125.021==NI W Φ J 3分 2、(2486)解: ⎰∑⋅=i I l Hd , I rH =π2 (R 1< r < R 2)r I H π=2, r IH B π==2μμ 2分 2222)2(22r I B w m π==μμμ 2分 l r r w V w W m m m ⋅π==d 2d d r rl r I d 2)2(222ππ=μ 2分∴ ⎰⎰π==2121d 4d 2R R R R m m rrl I W W μ122ln4R R lI π=μ 2分 3(2532)2020)(2121nI H w μμ==3分∴ 26.1/)/2(0==n w I μ A 2分§8.6 位移电流 电磁场基本方程的积分形式一.选择题和填空题CA 3、(2180) ⎰⎰⋅=VS V S D d d ρ 1分⎰⎰⋅⋅∂∂-=S L S t B l E d d 1分 0d =⎰⋅S S B 1分⎰⋅⎰⋅∂∂+=SL S t D J l H d )(d 1分4、(2339) ② 1分③ 1分 ① 1分5、(2342)3 A 3分 二.理论推导与证明题1、(2341)答:此式说明,磁场强度H 沿闭合环路L 的环流,由回路L 所包围的传导电流、运流电流和位移电流的代数和决定.这是全电流定律的数学表示, 3分 它的物理意义是:不仅传导电流、运流电流可激发磁场,位移电流(即变化的电场)也同样可在其周围空间激发磁场. 2分。
大学物理-课后作业标准答案
大学物理-课后作业答案————————————————————————————————作者:————————————————————————————————日期:第八章8-7 一个半径为的均匀带电半圆环,电荷线密度为,求环心处点的场强. 解: 如8-7图在圆上取题8-7图,它在点产生场强大小为方向沿半径向外则积分∴ ,方向沿轴正向. 8-8 均匀带电的细线弯成正方形,边长为,总电量为.(1)求这正方形轴线上离中心为处的场强;(2)证明:在处,它相当于点电荷产生的场强.解: 如8-8图示,正方形一条边上电荷在点产生物强方向如图,大小为∵∴R λO ϕRd dl =ϕλλd d d R l q ==O 20π4d d R R E εϕλ=ϕϕελϕd sin π4sin d d 0RE E x ==ϕϕελϕπd cos π4)cos(d d 0RE E y -=-=R R E x 000π2d sin π4ελϕϕελπ==⎰0d cos π400=-=⎰ϕϕελπR E y RE E x 0π2ελ==x l q r E l r >>q E 4q P P E ϖd ()4π4cos cos d 22021l r E P +-=εθθλ22cos 221l r l +=θ12cos cos θθ-=24π4d 2222l r l l r E P ++=ελ在垂直于平面上的分量∴题8-8图由于对称性,点场强沿方向,大小为∵∴方向沿8-10 均匀带电球壳内半径6cm ,外半径10cm ,电荷体密度为2×C ·m -3求距球心5cm ,8cm ,12cm 各点的场强.解: 高斯定理,当时,,时, ∴, 方向沿半径向外. cm 时,∴ 沿半径向外.8-11 半径为和(>)的两无限长同轴圆柱面,单位长度上分别带有电量和-,试求:(1)<;(2) <<;(3) >处各点的场强.解: 高斯定理P E ϖd βcos d d P E E =⊥424π4d 222222l r r l r l r lE +++=⊥ελP OP 2)4(π44d 422220l r l r lrE E P ++=⨯=⊥ελl q 4=λ2)4(π422220l r l r qrE P ++=εOP 510-02π4ε∑=q r E 5=r cm 0=∑q 0=E ϖ8=r cm ∑q 3π4p =3(r )3内r -()2023π43π4r r r E ερ内-=41048.3⨯≈1C N -⋅12=r 3π4∑=ρq -3(外r )内3r ()420331010.4π43π4⨯≈-=r r r E ερ内外1C N -⋅1R 2R 2R 1R λλr 1R 1R r 2R r 2R 0d ε∑⎰=⋅qS E sϖϖ0d ε ∑ ⎰ = ⋅ q SE s取同轴圆柱形高斯面,侧面积 则对(1)(2)∴ 沿径向向外(3) ∴题8-12图8-12 两个无限大的平行平面都均匀带电,电荷的面密度分别为和,试求空间各处场强.解: 如题8-12图示,两带电平面均匀带电,电荷面密度分别为与, 两面间,面外,面外,:垂直于两平面由面指为面.8-13 半径为的均匀带电球体内的电荷体密度为,若在球内挖去一块半径为<的小球体,如题8-13图所示.试求:两球心与点的场强,并证明小球空腔内的电场是均匀的.解: 将此带电体看作带正电的均匀球与带电的均匀小球的组合,见题8-13图(a). (1) 球在点产生电场,球在点产生电场∴ 点电场;(2) 在产生电场 球在产生电场rl S π2=rlE S E Sπ2d =⋅⎰ϖϖ1R r <0,0==∑E q 21R r R <<λl q =∑rE 0π2ελ=2R r >0=∑q 0=E 1σ2σ1σ2σnE ϖϖ)(21210σσε-=1σnE ϖϖ)(21210σσε+-=2σnE ϖϖ)(21210σσε+=n ϖ1σ2σR ρr R O O 'ρρ-ρ+O 010=E ϖρ-O 'd π4π3430320OO r E ερ=ϖO 'd 33030OO r E ερ=ϖρ+O ''d π4d 3430301OO E ερπ='ϖρ-O '002='E ϖ∴ 点电场题8-13图(a) 题8-13图(b)(3)设空腔任一点相对的位矢为,相对点位矢为(如题8-13(b)图)则,,∴∴腔内场强是均匀的.题8-16图8-16 如题8-16图所示,在,两点处放有电量分别为+,-的点电荷,间距离为2,现将另一正试验点电荷从点经过半圆弧移到点,求移动过程中电场力作的功.解: 如题8-16图示∴8-17 如题8-17图所示的绝缘细线上均匀分布着线密度为的正电荷,两直导线的长度和半圆环的半径都等于.试求环中心点处的场强和电势.解: (1)由于电荷均匀分布与对称性,和段电荷在点产生的场强互相抵消,取则产生点如图,由于对称性,点场强沿轴负方向O '003ερ='E ϖ'OO P O 'r ϖ'O r ϖ03ερrE PO ϖϖ=3ερr E O P '-='ϖϖ0003'3)(3ερερερd OO r r E E E O P PO P ϖϖϖϖϖϖ=='-=+='A B q q AB R 0q O C 0π41ε=O U 0)(=-R qR q 0π41ε=OU )3(R q R q -R q 0π6ε-=Rqq U U q A oC O 00π6)(ε=-=λR O AB CD O θd d R l =θλd d R q =OE ϖd O y题8-17图[](2) 电荷在点产生电势,以同理产生半圆环产生∴8-22 三个平行金属板,和的面积都是200cm 2,和相距4.0mm ,与相距2.0 mm .,都接地,如题8-22图所示.如果使板带正电3.0×10-7C ,略去边缘效应,问板和板上的感应电荷各是多少?以地的电势为零,则板的电势是多少?解: 如题8-22图示,令板左侧面电荷面密度为,右侧面电荷面密度为题8-22图(1)∵ ,即∴∴且 + 得而(2)θεθλππcos π4d d 2220⎰⎰-==R R E E y R 0π4ελ=)2sin(π-2sin π-R 0π2ελ-=AB O 0=∞U ⎰⎰===A B200012ln π4π4d π4d R R x x x x U ελελελCD 2ln π402ελ=U 0034π4πελελ==R R U 0032142ln π2ελελ+=++=U U U U O A B C A B A C B C A B C A A 1σ2σABAC U U =ABAB AC AC E E d d =2d d 21===AC ABAB AC E E σσ1σ2σS q A=,32S q A =σS q A321=σ7110232-⨯-=-=-=A C q S q σC C10172-⨯-=-=S q B σ301103.2d d ⨯===AC AC AC A E U εσV8-23 两个半径分别为和(<)的同心薄金属球壳,现给内球壳带电+,试计算:(1)外球壳上的电荷分布及电势大小;(2)先把外球壳接地,然后断开接地线重新绝缘,此时外球壳的电荷分布及电势; 解: (1)内球带电;球壳内表面带电则为,外表面带电为,且均匀分布,其电势题8-23图(2)外壳接地时,外表面电荷入地,外表面不带电,内表面电荷仍为.所以球壳电势由内球与内表面产生:8-27 在半径为的金属球之外包有一层外半径为的均匀电介质球壳,介质相对介电常数为,金属球带电.试求: (1)电介质内、外的场强; (2)电介质层内、外的电势; (3)金属球的电势. 解: 利用有介质时的高斯定理(1)介质内场强; 介质外场强(2)介质外电势介质内电势1R 2R 1R 2R q q +q -q +⎰⎰∞∞==⋅=22020π4π4d d R R R qr r q r E U εεϖϖq +q -q +q -0π4π42020=-=R q R q U εε1R 2R r εQ ∑⎰=⋅qS D Sϖϖd )(21R r R <<303π4,π4r rQ E r r Q D r εεϖϖϖϖ==内)(2R r <303π4,π4r r Q E r Qr D εϖϖϖ==外)(2R r >rQ E U 0rπ4r d ε=⋅=⎰∞ϖϖ外)(21R r R <<2020π4)11(π4R Q R r qr εεε+-=)11(π420R r Qr r -+=εεεrd r d ϖϖϖϖ⋅+⋅=⎰⎰∞∞rrE E U 外内(3)金属球的电势8-28 如题8-28图所示,在平行板电容器的一半容积内充入相对介电常数为的电介质.试求:在有电介质部分和无电介质部分极板上自由电荷面密度的比值.解: 如题8-28图所示,充满电介质部分场强为,真空部分场强为,自由电荷面密度分别为与由得,而,∴题8-28图 题8-29图8-29 两个同轴的圆柱面,长度均为,半径分别为和(>),且>>-,两柱面之间充有介电常数的均匀电介质.当两圆柱面分别带等量异号电荷和-时,求:(1)在半径处(<<=,厚度为dr ,长为的圆柱薄壳中任一点的电场能量密度和整个薄壳中的电场能量; (2)电介质中的总电场能量; (3)圆柱形电容器的电容. 解: 取半径为的同轴圆柱面 则当时,∴(1)电场能量密度rd r d 221ϖϖϖϖ⋅+⋅=⎰⎰∞R R R E E U 外内⎰⎰∞+=222020π44πdrR R R r r Qdrr Q εεε)11(π4210R R Q r r -+=εεεr ε2E ϖ1E ϖ2σ1σ∑⎰=⋅0d q S D ϖϖ11σ=D 22σ=D 101E D ε=202E D r εε=d 21UE E ==r D D εσσ==1212l 1R 2R 2R 1R l 2R 1R εQ Q r 1R r 2R l r )(S rlDS D S π2d )(=⋅⎰ϖϖ)(21R r R <<Q q =∑rl QD π2=22222π82l r Q D w εε==薄壳中(2)电介质中总电场能量(3)电容:∵∴8-34 半径为=2.0cm 的导体球,外套有一同心的导体球壳,壳的内、外半径分别为=4.0cm 和=5.0cm ,当内球带电荷=3.0×10-8C时,求:(1)整个电场储存的能量;(2)如果将导体壳接地,计算储存的能量; (3)此电容器的电容值.解: 如图,内球带电,外球壳内表面带电,外表面带电题8-34图(1)在和区域在时时 ∴在区域在区域∴ 总能量rl rQ rl r l r Q w W εευπ4d d π2π8d d 22222===⎰⎰===211222ln π4π4d d R R VR R l Q rl r Q W W εεC Q W 22=)/ln(π22122R R l W Q C ε==1R 2R 3R Q Q Q -Q 1R r <32R r R <<0=E ϖ21R r R <<301π4r rQ E εϖϖ=3R r >302π4r rQ E εϖϖ=21R r R <<⎰=21d π4)π4(21222001R R r r r Q W εε⎰-==21)11(π8π8d 2102202R R R R Q rr Q εε3R r >⎰∞==32302220021π8d π4)π4(21R R Q r r r Q W εεε)111(π83210221R R R Q W W W +-=+=ε41082.1-⨯=J(2)导体壳接地时,只有时,∴(3)电容器电容习题九9-6 已知磁感应强度Wb ·m -2的均匀磁场,方向沿轴正方向,如题9-6图所示.试求:(1)通过图中面的磁通量;(2)通过图中面的磁通量;(3)通过图中面的磁通量.解: 如题9-6图所示题9-6图(1)通过面积的磁通是(2)通过面积的磁通量(3)通过面积的磁通量(或曰)题9-7图9-7 如题9-7图所示,、为长直导线,为圆心在点的一段圆弧形导线,其半径为.若通以电流,求点的磁感应强度.解:如题9-7图所示,点磁场由、、三部分电流产生.其中产生 产生,方向垂直向里段产生 ,方向向里∴,方向向里. 21R r R <<30π4r rQ E εϖϖ=02=W 4210211001.1)11(π8-⨯=-==R R Q W W εJ )11/(π422102R R Q W C -==ε121049.4-⨯=F 0.2=B x abcd befc aefd abcd 1S 24.04.03.00.211=⨯⨯=⋅=S B ϖϖΦWb befc 2S 022=⋅=S B ϖϖΦaefd 3S 24.0545.03.02cos 5.03.0233=⨯⨯⨯=θ⨯⨯⨯=⋅=S B ϖϖΦWb 24.0-Wb AB CD C B )O R I O O AB C B )CD AB 01=B ϖCD RIB 1202μ=CD )231(2)60sin 90(sin 24003-πμ=-πμ=︒︒R I R I B ⊥)6231(203210ππμ+-=++=R I B B B B ⊥题9-9图9-9 如题9-9图所示,两根导线沿半径方向引向铁环上的,两点,并在很远处与电源相连.已知圆环的粗细均匀,求环中心的磁感应强度.解: 如题9-9图所示,圆心点磁场由直电流和及两段圆弧上电流与所产生,但和在点产生的磁场为零。
大学物理课后习题答案(全册)
《大学物理学》课后习题参考答案习 题11-1. 已知质点位矢随时间变化的函数形式为)ωt sin ωt (cos j i +=R r其中ω为常量.求:(1)质点的轨道;(2)速度和速率。
解:1) 由)ωt sin ωt (cos j i +=R r 知 t cos R x ω= t sin R y ω=消去t 可得轨道方程 222R y x =+2) j rv t Rcos sin ωωt ωR ωdtd +-==i R ωt ωR ωt ωR ωv =+-=2122])cos ()sin [(1-2. 已知质点位矢随时间变化的函数形式为j i r )t 23(t 42++=,式中r 的单位为m ,t 的单位为s .求:(1)质点的轨道;(2)从0=t 到1=t 秒的位移;(3)0=t 和1=t 秒两时刻的速度。
解:1)由j i r )t 23(t 42++=可知2t 4x =t 23y +=消去t 得轨道方程为:2)3y (x -= 2)j i rv 2t 8dtd +==j i j i v r 24)dt 2t 8(dt 11+=+==⎰⎰Δ3) j v 2(0)= j i v 28(1)+=1-3. 已知质点位矢随时间变化的函数形式为j i r t t 22+=,式中r 的单位为m ,t 的单位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。
解:1)j i rv 2t 2dt d +==i va 2dtd ==2)212212)1t (2]4)t 2[(v +=+= 1t t 2dtdv a 2t +==2221n t a a a t =-=+1-4. 一升降机以加速度a 上升,在上升过程中有一螺钉从天花板上松落,升降机的天花板与底板相距为d ,求螺钉从天花板落到底板上所需的时间。
解:以地面为参照系,坐标如图,升降机与螺丝的运动方程分别为20121at t v y += (1) 图 1-420221gt t v h y -+= (2)21y y = (3) 解之 2d t g a=+1-5. 一质量为m 的小球在高度h 处以初速度0v 水平抛出,求: (1)小球的运动方程;(2)小球在落地之前的轨迹方程;(3)落地前瞬时小球的t d d r ,t d d v ,t vd d .解:(1) t v x 0= 式(1)2gt 21h y -= 式(2)j i r )gt 21-h (t v (t)20+=(2)联立式(1)、式(2)得 202v 2gx h y -=(3)j i rgt -v td d 0= 而 落地所用时间 gh 2t =所以j i r 2gh -v t d d 0= j v g td d -= 2202y 2x )gt (v v v v -+=+= 21122222002[()](2)g gh g t dv dt v gt v gh ==++1-6. 路灯距地面的高度为1h ,一身高为2h 的人在路灯下以匀速1v 沿直线行走。
大学物理习题册 陈晓 浙江大学出版社第七八章答案
??0??dSB磁场的高斯定理1、说明了下面的哪些叙述是正确的?穿入闭合曲面的磁感应线条数必然等于穿出的磁感应线条数;a穿入闭合曲面的磁感应线条数不等于穿出的磁感应线条数;b一根磁感应线可以终止在闭合曲面内;c一根磁感应线可以完全处于闭合曲面内。
d[ ] 。
C、cd;D、ab A、ad;B、ac;1. A解释:磁感线闭合的特性。
洛仑兹力可以2、改变带电粒子的动量;BA、改变带电粒子的速率;] [ D、增加带电粒子的动能。
C、对带电粒子作功;B解释:洛仑兹力的特点,改变速度方向不改变速度大小。
I o IRI的圆线圈一个处于水平位置,一个处于竖直3如图所示,两个载有相等电流的半径为O? 位置,两个线圈的圆心重合,则在圆心处的磁感应强度大小为多少???R/IRI/2R22I/[ ] 、; C;、A0; B、、 D。
000C解释:两个圆电流中心磁感强度的合成,注意方向。
的长直圆筒上形成两个螺线管rR和I4一载有电流的细导线分别均匀密绕在半径为BB和(R=2r),两螺线管的匝数密度相等。
两螺线管中的磁感应强度大小应满足:rR B?4BBBB2B?B?2B?[ ]D 、、A;、;B;C 、。
rrRRRrRr B?nI?B,场强与半径无关。
解释:参考长直螺线管内部磁感强度公式05 B6 D7 B?B中,则粒子运动轨道所包围的粒子,以速度垂直射入均匀磁场一质量为m、电量为q B大小的关系曲线是[ 范围的磁通量与磁场磁感应强度]????mmmmBBBB OOOO)(D (C))(A)(B?m?R解释:由半径公式求出磁通量表达式,反比关系。
qB8在铜片上均匀分布,I厚度不计,电流如图所示,有一无限长通电流的扁平铜片,宽度为a, B 的大P点的磁感应强度在铜片外与铜片共面,离铜片右边缘为b处的小为:??II00;BA、、;??1?b?2a?)?b2(a2??IIb?ba?a00lnln [ ]、; D 。
、 C ??aba22b C?Idx0?dB点p积分求出解释:铜片上取线电流,由无限长线电流磁感强度公式?)x?b?a(a2.总磁感强度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、 磁场的高斯定理⎰⎰=⋅0S d B
说明了下面的哪些叙述是正确的?
a 穿入闭合曲面的磁感应线条数必然等于穿出的磁感应线条数;
b 穿入闭合曲面的磁感应线条数不等于穿出的磁感应线条数;
c 一根磁感应线可以终止在闭合曲面内;
d 一根磁感应线可以完全处于闭合曲面内。
A 、ad ;
B 、ac ;
C 、cd ;
D 、ab 。
[ ] 1. A
解释:磁感线闭合的特性。
2 洛仑兹力可以
A 、改变带电粒子的速率;
B 、改变带电粒子的动量;
C 、对带电粒子作功;
D 、增加带电粒子的动能。
[ ] B
解释:洛仑兹力的特点,改变速度方向不改变速度大小。
3 如图所示,两个载有相等电流I 的半径为R 的圆线圈一个处于水平位置,一个处于竖直
位置,两个线圈的圆心重合,则在圆心O 处的磁感应强度大小为多少?
A 、0;
B 、R I 2/0μ;
C 、R I 2/20μ;
D 、R I /0μ。
[ ] C
解释:两个圆电流中心磁感强度的合成,注意方向。
4 一载有电流I 的细导线分别均匀密绕在半径为R 和r 的长直圆筒上形成两个螺线管
(R=2r ),两螺线管的匝数密度相等。
两螺线管中的磁感应强度大小R B 和r B 应满足:
A 、r R
B B 2=; B 、r R B B =;
C 、r R B B =2;
D 、r R B B 4=。
[ ]
B
解释:参考长直螺线管内部磁感强度公式nI B 0μ=,场强与半径无关。
5 B
6 D
7 B
一质量为m 、电量为q 的粒子,以速度υ垂直射入均匀磁场B 中,则粒子运动轨道所包围范围的磁通量与磁场磁感应强度B 大小的关系曲线是 [ ] (A ) (B ) (C ) (D )
解释:由半径公式qB
m R υ
=
求出磁通量表达式,反比关系。
8
如图所示,有一无限长通电流的扁平铜片,宽度为a ,厚度不计,电流I 在铜片上均匀分布,
在铜片外与铜片共面,离铜片右边缘为b 处的P 点的磁感应强度B
的大
小为:
A 、
()
b a I
+πμ20 ; B 、;
)
2
1
(20b a I
+πμ
C 、b b a a I +ln 20πμ;
D 、a
b
a b I +ln 20πμ。
[ ] C
解释:铜片上取线电流,由无限长线电流磁感强度公式)
(20x b a a Idx
dB -+=
πμ积分求出p 点
总磁感强度。
9
若电子在垂直于磁场的平面内运动,均匀磁场作用于电子上的力为F,轨道的曲率半径为R,则磁感强度的大小应为
11
12
13
14
在同一平面上依次有a、b、c三根等距离平行放置的长直导线,通有同方向的电流依次为1A、2A、3A,它们所受力的大小依次为F a、F b、F c,则F b/F c为
A、4/9;
B、8/15;
C、8/9;
D、1 [ ]
B
解释:假定距离值,写出磁感强度表达式(注意方向),求出安培力之比。
15
16
如图所示,边长为2a 的等边三角形线圈,通有电流I ,则线圈中心处的磁感强度的大小为________________。
a
I
πμ490 解释:由有限长直载流导线磁感强度公式
)cos (cos 4210θθπμ-x
I
求出。
17
如图所示,导线通有电流I ,放在与磁场垂直的平面内,导线所受的磁场力F =__________。
)2(R l BI +
解释:见课堂例子,等效于ad 的直导线。
18
有一磁矩为m p 的载流线圈,置于磁感应强度为B 的均匀磁场中,m p
与B 的夹角为α,那
么:当线圈由α=0°转到α=180°时,外力矩作的功为__________。
B p m 2
解释:做功由力矩功表达式
sin 2W Md Pm B d Pm B π
ααα==⋅⋅⋅=⋅⎰⎰
19
⨯ ⨯
⨯ ⨯⨯⨯⨯
⨯
20
21。