面积等分线)练习
中考数学解题方法及提分突破训练:面积法专题(含解析)
,那么点B′的坐标是()A. (-2,3)B.(2,-3)C.(3,-2)或(-2,3)D.(-2,3)或(2,-3)3.(2012 呼和浩特)如图是某几何体的三视图及相关数据(单位:cm),则该几何体的侧面积为cm.Array4.(2012•潍坊)如图,三角形ABC的两个顶点B、C在圆上,顶点A在圆外,AB、AC分别交圆于E、D两点,连接EC、BD.(1)求证:△ABD∽△ACE;(2)若△BEC与△BDC的面积相等,试判定三角形ABC的形状二名词释义平面几何中讲的面积公式以及由面积公式推出的与面积计算有关的性质定理,不仅可用于计算面积,而且用它来证明平面几何题有时会收到事半功倍的效果。
运用面积关系来证明或计算平面几何题的方法,称为面积方法,它是几何中的一种常用方法。
用归纳法或分析法证明平面几何题,其困难在添置辅助线。
面积法的特点是把已知和未知各量用面积公式联系起来,通过运算达到求证的结果。
所以用面积法来解几何题,几何元素之间关系变成数量之间的关系,只需要计算,有时可以不添置补助线,即使需要添置辅助线,也很容易考虑到。
面积问题主要涉及以下两部分内容:(一)怎样证明面积相等。
以下是常用的理论依据1.三角形的中线把三角形分成两个面积相等的部分。
2.同底同高或等底等高的两个三角形面积相等。
3.平行四边形的对角线把其分成两个面积相等的部分。
4.同底(等底)的两个三角形面积的比等于高的比。
同高(或等高)的两个三角形面积的比等于底的比。
5.三角形的面积等于等底等高的平行四边形的面积的一半。
16.三角形的中位线截三角形所得的三角形的面积等于原三角形面积的417.三角形三边中点的连线所成的三角形的面积等于原三角形面积的48.有一个角相等或互补的两个三角形的面积的比等于夹角的两边的乘积的比。
(二)用面积法解几何问题(常用的解题思路)1.分解法:通常把一个复杂的图形,分解成几个三角形。
2.作平行线法:通过平行线找出同高(或等高)的三角形。
幼儿大班数学等分练习
等分在生活中的实际应用
食物分配
在生活中,等分概念常用 于食物分配,如将蛋糕分 成相等的部分给家人或朋 友。
物品分配
在分发物品时,等分可以 帮助确保每个部分都相等, 如平分礼物或分配任务。
测量和评估
在测量长度、面积、体积 等时,等分可以帮助我们 更准确地评估和比较不同 部分的大小和数量。
详细描述
教师可以准备一些数字卡片,如2、4、6、8等偶数,让幼儿将它们进行等分。通过数字的等分,幼儿可以进一步 理解等分的概念,并培养他们的数学思维能力。
04 幼儿大班数学等分练习的益处
CHAPTER
提高幼儿的逻辑思维
逻辑思维是数学学习的基础,通过等分练习,幼儿可以更好地理解分数的概念,从 而提升逻辑思维能力。
02 幼儿大班数学等分练习方法
CHAPTER
实物等分练习
实物等分练习是指利用实物进行等分练习,如将苹果、糖果等分成相等的部分。 这种方法可以帮助幼儿直观地理解等分的概念,提高他们的空间感知能力。
具体操作:准备一些实物,如苹果、糖果等,将它们分成相等的部分,让幼儿观 察并理解每部分是相等的。
图形等分练习
等分练习需要幼儿对整体和部分的关系进行思考,有助于培养他们的空间感和整体 思维。
在等分的过程中,幼儿需要按照一定的规则和顺序进行操作,这有助于培养他们的 规则意识和顺序思维。
增强幼儿的数学兴趣
等分练习通过有趣的游戏和活 动,让幼儿在玩中学,激发他 们对数学的兴趣和好奇心。
通过亲手操作和实践,幼儿可 以更好地理解数学的概念和原 理,从而增强他们的学习兴趣。
等分练习可以与其他数学活动 相结合,如拼图、折纸等,让 幼儿在多样化的学习方式中感 受数学的魅力。
小学数学几何 直线型面积的计算 完整版题型训练+详细答案
直线形面积的计算例题讲解:板块一:基础题型:1.如图,四边形ABCD是直角梯形,其中AD=12(厘米),AB=8(厘米),BC= 15(厘米),且三角形ADE、四边形DEBF、三角形CDF的面积相等,阴影三角形DEF的面积是多少平方厘米?解析:四边形ABCD的面积是(12+15)×8÷2=108(平方厘米),108÷3=36(平方厘米)。
CF=36×2÷8=9(厘米),FB=15-9=6(厘米),AE=36×2÷12=6(厘米),EB=8-6=2(厘米)。
阴影三角形DEF的面积是36-2×6÷2=30(平方厘米)2.一块长方形的土地被分割成4个小长方形,其中三块的面积如图所示(单位:平方米),剩下一块的面积应该是多少平方米?解析:40×15÷30=20(平方米)3.如图,在三角形ABC中,BC是DC的3倍,AC是EC的3倍,三角形DEC的面积是3平方厘米.请问:三角形ABC的面积是多少平方厘米?解析:三角形ADC的面积是3×3=9(平方厘米),三角形ABC的面积是3×9=27(平方厘米)4.如图,E是BC上靠近C的三等分点,且ED是AD的2倍,三角形ABC的面积为36平方厘水.三角形BDE的面积是多少平方厘米?解析:三角形BAE的面积是36÷3×2=24(平方厘米),三角形BDE的面积24÷3×2=16(平方厘米)5.如图所示,已知三角形BEC的面积等于20平方厘米,E是AB边上靠近日点的四等分点,三角形AED的面积是多少平方厘米?平行四边形DECF的面积是多少平方厘米?解析:(1)三角形AED的面积是20×3=60(平方厘米)(2)三角形DEC的面积是20+60=80(平方厘米),三角形DEC的面积是平行四边形DECF 的面积的一半,也是平行四边形ABCD的面积的一半,所以平行四边形DECF的面积是80×2=160(平方厘米)6.如图,已知平行四边形ABCD的面积为36,三角形AOD的面积为8.三角形BOC的面积为多少?解析:根据一半模型可知,三角形AOD的面积和三角形BOC的面积是平行四边形ABCD 的面积的一半,所以三角形BOC的面积是36÷2-8=107.如图,长方形ABCD的面积是96平方厘米,E是AD边上靠近D点的三等分点,F是CD上靠近C点的四等分点.阴影部分的面积是多少平方厘米?解析:链接BD ,可知三角形ABD 的面积和三角形BDC 都是96÷2=48(平方厘米),三角形ABE 的面积是48×32=32(平方厘米)。
五年级上册数学试题-6《多边形的面积》专项培优 人教新课标含答案
《多边形的面积》专项培优专项一运用等分法巧求面积例1如图是两个完全一样的等腰直角三角形,图①中正方形的面积是40平方分米,则图②中正方形的面积是多少平方分米?分析等分法,就是将整个图形平均分成若干份,再看所求图形的面积占多少份,从而求出所要求的图形面积。
本题中,根据图①中正方形的面积与大等腰直角三角形的面积关系,可求出大等腰直角三角形的面积;然后根据图②中正方形的面积与大等腰直角三角形的面积关系,求出图②中正方形的面积。
解答如图,运用等分法把图①平均分成9份,正方形的面积相当于这样的4份;把图②平均分成4份,正方形的面积相当于这样的2份。
等腰直角三角形的面积为40÷4×9=90(平方分米),图②中正方形的面积为90÷2=45(平方分米)。
反馈练习1.如图,七巧板拼成的正方形边长是20厘米,求图中阴影部分的面积2.如图,在一个面积是36平方分米的大正方形中,有两个带阴影的小正方形。
求阴影部分的面积和。
3.如图,将等腰直角三角形ABC与等腰直角三角形DEC重叠在一起,阴影部分是一个正方形。
已知三角形ABC的面积是72平方厘米,求三角形DEC的面积。
专项二运用等积变换巧求面积例2如图,已知长方形ABCD的面积是1200平方厘米,阴影部分的面积是750平方厘米,求四边形EFGO的面积。
分析根据图形特点,由面积与面积之间的相等关系,进行一些转化,从而使间题得到简便解决。
本题根据题目中图形之间面积相等的关系可以将上图中的阴影部分三角形ABE移至三角形DFE中,从而求出四边形EFGO的面积。
解答在长方形ABCD中,三角形ABF与三角形DBF同底(即BF的长)、等高(即长方形的宽),所以三角形ABF与三角形DBF的面积相等。
若从这两个三角形中同时减去三角形BEF则剩下的图形面积相等,即:三角形ABE与三角形DFE 的面积相等。
这样阴影部分的面积就等于四边形EFCO加上三角形ACD的面积,要求四边形EFGO的面积,只要用阴影部分的面积减去三角形ACD的面积,列式为750-1200÷2=150(平方厘米)。
三角形中线等分面积专题
AB 到点 F ,使
让学生灵活运用所 获得的结论, 解决问 题,考查学生对结论 的理解。 增强学生把新知识 转化旧知识的能力。 从不同角度识别图 形的能力。 加强交流学习其他 同学思维上的优势。
BF AB ,连接 FD , EF ,得到 DEF (如图
4).若阴影部分的面积为 S3 ,则 S3 =
,
教学 重点与难点
设计思路
教与学的方法
重点: 结论的推导和灵活运用
难点: 从复杂图形中找出含有中线的三角形这一基本图形
.
从学生学过的三角形面积入手,自己动手推导出三个结论,然后利用结论
推导三角形中重要的重心图的结论,最后联系中考
.对于四边形的面积问题
转化为三角形面积问题 .在课的结尾联系生活实际,让孩子打开思路 ,应用所
(用含 a 的代数式表示) .
学生画图,求面积。 五 拓展与应用
如图 5,已知四边形 ABCD 的面积是 a , E、 F、
G面积?
转化思想方法的应 用。 让学生灵活运用所 获得的结论, 解决问 题,考查学生对结论 的理解。 学生把新知识转化 旧知识的能力。 从不同角度识别图 形的能力。
E
A
A
B
C
D
结论:若底相等,则面积之比等于高之比
B
HFC
D
3.已知 S ABD 30, S ACD 12 ,问:线段 BD 与线
段 CD 的比值是多少?得出什么结论?
A
B
C D
学生动手画出
ABC , ECD 的高,
写出证明过程, 并能得 出结论,小组合作, 互 相检查书写规范与否。 学生到前面讲解
A
线等分三角形的面积 , 即如图 1 ,已知 AD 为 ABC 的 BC 边上的中线 ,则 S ABD S ADC
[说明]多边形面积二等分问题
多边形面积二等分问题在初中阶段平面几何中,图形的等分问题比较多,常见的有以下几种:等分线段,等分角,等分圆,多边形面积二等分等。
线段和角的二等分比较简单,任意等分就稍显复杂;特别是角的任意等分,著名的“尺规作图不能问题”中就有角的三等分问题。
现在据说有人发明了一种工具叫做弧金规,这种工具不但可以任意等分任意角(包括三等分任意角),还能作一个正方形与已知圆的面积相等,即化圆为方问题;这样一来“尺规作图不能问题”中的三个就被其解决掉了两个,只还剩一个“立方倍积”了。
非但如此,这种工具还能在圆弧上取黄金分割点及在任意曲线上任意取段;也就是说能任意等分圆周及任意曲线。
这项发明可以说是意义重大,但是,这种工具毕竟现在没有推广、普及,而且其操作也肯定不如传统中的直尺和圆规操作简单,再说了,使用这种工具作图是否属于尺规作图还有待于进一步论证;所以,本文还是想从传统的尺规作图的角度来论述一下初中数学中常见的有关几何图形特别是多边形的面积二等分问题。
无论是什么样的多边形,都可以用一条直线把它分成两部分;由于直线相对于多边形的方向与位置不同,被分出来的两部分面积可能相等,也可能不相等。
但无论直线开始时如何放置,只要放置好以后我们让它沿着与直线垂直的方向来回平移,在直线扫过整个多边形的过程中,总有一个位置是使被分出来的两部分面积相等,因此,对于任意多边形,都应该存在无数条直线能把它分成面积相等的两部分;或者换句话说,过多边形任意边上的任意一点也都应该存在一条直线能把多边形分成面积相等的两部分。
先说三角形的面积二等分问题。
对于三角形来说,由于等底等高的三角形面积相等,所以,三角形任意一边上的中线都可以把它分成面积相等的两部分,这个问题比较简单;下面说一下过任意边上的任意一点作直线平分三角形的问题。
如图,已知P 为△ABC 的边BC 上的任意一点,求作直线PQ,把△ABC 分成面积相等的两部分。
作法:1.连接AP ;2,取BC 的中点D ,作D Q ∥AP ,交AC 于点Q;3,作直线PQ ,如图0.则直线PQ 就是所求作的直线。
等分法巧求图形面积
例 5 如下图所示,正方形 ABCD 中套着一个长方形 EFGH, 长方形的面积是 48 平方厘米,长方形的四个顶点 E、F、 G、H 恰好分别把正方形四条边都分成两段,其中长的一 段是短的一段的 2 倍。求阴影部分的面积。
将正方形 ABCD 等分成 18 个小三角形,其中空白 部分(即长方形 EFGH)占8 份,阴影部分占 10 份(见图)。 因此,阴影部分的面积为 48÷8×10=60(平 方厘米)。 答:阴影部分的面积是 60 平方厘米。
例 3 一个长方形(见下图)被两条直线分成 4 个长方形, 其中 3 个长方形的面积分别是 20 平方厘米、25 平方厘米和 30 平方厘米。求另一个长方形(图中阴影部分)的面积。
将大长方形进行等分(见图)大长方形右边部 分上面是 20 平方厘米,下面是 30 平方厘米, 20﹕30=2﹕3,所以大长方形可按虚线等分成 5 份。同样,长方形的左边部分按虚线也被等分 成 5份。左边部分上面是 25 平方厘米,每份是 25÷2=12.5(平方厘米),因此,阴影部分的 面积为 12.5×3=37.5(平方厘米)。
1.如下图所示,一个正方形中套着一个长方形,已知正方形的边 长是 20 分米,长方形的四个角的顶点恰好把正方形四条边都分成 两段,其中长的一段是短的一段的 3 倍。这个长方形的面积是多少 平方分米? 2.将边长 3 厘米的正方形的四条边分别向两端各延长一倍,连接 8 个端点得到一个八边形(见下图),求阴影部分的面积。 3.将等腰 Rt△ABC 和等腰 Rt△DEC 按下图重叠在一起,阴影部分是 一个正方形。已知△ABC 的面积是 36 平方厘米,求△DEC 的面积。
例 4 如下图所示,长方形 ABCD 的长是 10 厘米,宽是 6 厘 米,E、F 分别是 AB 和 AD 的中点。求阴影部分的面积。
三角形中线等分面积的应用
第5讲例说三角形中线等分面积的应用如图1,线段AD 是△ABC 的中线,过点A 作AE ⊥BC ,垂足为E ,则S △ABD =12BD ·AE ,S △ADC =12DC ·AE ,因为BD =DC ,所以S △ABD =S △ADC 。
因此,三角形的中线把△ABC 分成两个面积相等的三角形.利用这一性质,可以解决许多有关面积的问题。
一、求图形的面积例1、如图2,长方形ABCD 的长为a ,宽为b ,E 、F 分别是BC 和CD 的中点,DE 、BF 交于点G ,求四边形ABGD 的面积.分析:因为E 、F 分别是BC 和CD 的中点,则连接CG 后,可知GF 、GE 分别是△DGC 、△BGC 的中线,而由S △BCF=S △DCE=4ab,可得S △BEG=S △DFG,所以△DGF 、△CFG 、△CEG 、△BEG 的面积相等,问题得解。
解:连接CG ,由E 、F 分别是BC 和CD 的中点,所以S △BCF=S △DCE=4ab,从而得S △BEG=S △DFG,可得△DGF 、△CFG 、△CEG 、△BEG 的面积相等且等于31×4ab =12ab ,因此S 四边形ABGD=ab -4×12ab =32ab。
例2、在如图3至图5中,△ABC 的面积为a .(1)如图2, 延长△ABC 的边BC 到点D ,使CD =BC ,连结DA .若△ACD 的面积为S 1,则S 1=________(用含a 的代数式表示);(2)如图3,延长△ABC 的边BC 到点D ,延长边CA 到点E ,使CD =BC ,AE =CA ,连结DE .若△DEC 的面积为S 2,则S 2=__________(用含a 的代数式表示),并写出理由;(3)在图4的基础上延长AB 到点F ,使BF =AB ,连结FD ,FE ,得到△DEF (如图6).若阴影部分的面积为S 3,则S 3=__________(用含a 的代数式表示).发现:像上面那样,将△ABC 各边均顺次延长一倍,连结所得端点,得到△DEF (如图6),此时,我们称△ABC 向外扩展了一次.可以发现,扩展一次后得到的△DEF 的面积是原来△ABC 面积的_______倍.图1图2图4F 图5图3应用:去年在面积为10m 2的△ABC 空地上栽种了某种花卉.今年准备扩大种植规模,把△ABC 向外进行两次扩展,第一次由△ABC 扩展成△DEF ,第二次由△DEF 扩展成△MGH (如图5).求这两次扩展的区域(即阴影部分)面积共为多少m 2?分析:从第1个图可以发现AC 就是△ABD 的中线,第2个图通过连接DA ,可得到△ECD 的中线DA ,后面扩展的部分都可以通过这样的方法得到三角形的中线,从而求出扩展部分的面积,发现规律。
初中数学专题---------直线等分 面积问题
初中数学专题讲座---------直线等分面积问题一、直线等分常见的一些特殊图形二、直线等分三角形(1)不受限制的等分(2)过一边上一点等分三、直线等分梯形(1)不受限制的等分(2)过一腰上一点等分四、等分基本图形练 习:1、作图题,请用学过的知识将下图所示的图形面积分成相等的两部分,请用一条直线把阴影部分的面积两等分.(保留作图痕迹)2、在一个矩形中,把此矩形面积二等分的直线最多有 条,这些直线都必须经过此矩形的 点(一个矩形只画一条直线,不写画法).3、轴对称图形的对称轴将图形面积二等分,中心对称图形过对称中心的直线将图形面积二等分.请用学过的知识将下图所示的图形面积分成相等的两部分.4、在一个矩形中,把此矩形面积两等分的直线最多有 条,这些直线都必须经过该矩形 .5、在复习“四边形”时,刘老师出了这样一道题:如图1,已知四边形ABCD、BEFG都是矩形,点G、H分别在AB、CD上,点B、C、E在同一条直线上.(1)当S矩形AGHD=S矩形CEFH时,试画一条直线将整个图形面积2等分.(不写画法)(2)①当S矩形AGHD<S矩形CEFH时,如图3;②当S矩形AGHD>S矩形CEFH时,如图4.画一条直线将整个图形面积2等分,在(1)的基础上,应该如何画图呢?(不写画法,保留作图痕迹或简要的文字说明)(3)小娟和小宇两位同学的画法是图5和图6:刘老师看过之后说这两个图形实质上体现的是一种画法,请你用简要的文字说明两个图形画法的共同点:(把原图形分割或构造成两个矩形,再过这两个矩形对角线的交点画一条直线).6、通过计算几何图形的面积可表示一些代数恒等式7、如图所示,▱ABCD内有一圆,请你画一条直线,同时将圆和平行四边形的周长二等分.(保留画图痕迹,并简要说出画图步骤)8、提出问题:如图,有一块分布均匀的等腰三角形蛋糕(AB=BC,且BC≠AC),在蛋糕的边缘均匀分布着巧克力,小明和小华决定只切一刀将这块蛋糕平分(要求分得的蛋糕和巧克力质量都一样).背景介绍:这条分割直线即平分了三角形的面积,又平分了三角形的周长,我们称这条线为三角形的“等分积周线”.尝试解决:(1)小明很快就想到了一条分割直线,而且用尺规作图作出.请你帮小明在图1中画出这条“等分积周线”,从而平分蛋糕.(2)小华觉得小明的方法很好,所以自己模仿着在图1中过点C画了一条直线CD交AB于点D.你觉得小华会成功吗如能成功,说出确定的方法;如不能成功,请说明理由.(3)通过上面的实践,你一定有了更深刻的认识.请你解决下面的问题:若AB=BC=5cm,AC=6cm,请你找出△ABC的所有“等分积周线”,并简要的说明确定的方法.9、提出问题:如图,在“儿童节”前夕,小明和小华分别获得一块分布均匀且形状为等腰梯形和直角梯形的蛋糕(AD∥BC),在蛋糕的边缘均匀分布着巧克力,小明和小华决定只切一刀将自己的这块蛋糕平分(要求分得的蛋糕和巧克力质量都一样).背景介绍:这条分割直线既平分了梯形的面积,又平分了梯形的周长,我们称这条线为梯形的“等分积周线”.尝试解决:(1)小明很快就想到了一条分割直线,而且用尺规作图作出.请你帮小明在图1中作出这条“等分积周线”,从而平分蛋糕.(2)小华觉得小明的方法很好,所以模仿着在自己的蛋糕(图2)中画了一条直线EF分别交AD、BC于点E、F.你觉得小华会成功吗?如能成功,说出确定的方法;如不能成功,请说明理由.(3)通过上面的实践,你一定有了更深刻的认识.若图2中AD∥BC,∠A=90°,AD<BC,AB=4cm,BC=6cm,CD=5cm.请你找出梯形ABCD的所有“等分积周线”,并简要的说明确定的方法.10、阅读下面问题的解决过程:问题:已知△ABC中,P为BC边上一定点,过点P作一直线,使其等分△ABC的面积.解决:情形1:如图①,若点P恰为BC的中点,作直线AP即可.情形2:如图②,若点P不是BC的中点,则取BC的中点D,连接AP,过点D作DE∥AP交AC于E,作直线PE,直线PE即为所求直线.问题解决:如图③,已知四边形ABCD,过点B作一直线(不必写作法),使其等分四边形ABCD的面积,并证明.11、如图,把一个等边三角形的顶点放置在正六边形的中心O点,请你借助这个等边三角形的角,以角为工具等分正六边形的面积,等分的情况分别为 等分.12、用一条直线把下图分成面积相等的两部分.13、用三种不同的方法把▱ABCD的面积四等分,并简要说明分法.12题图14、、如图,所示,张家兄弟要平分这块地,请你用一条直线把它分成面积相等的两部分.(至少有两种画法)15、抛物线y=x2, 和直线x=a(a>0)分别交于A、B两点,已知∠AOB=90°.(1)求过原点O,把△AOB面积两等分的直线解析式;(2)为使直线与线段AB相交,那么b值应是怎样的范围才适合.16、如图长为2的线段PQ在x的正半轴上,从P、Q作x轴的垂线与抛物线y=x2交于点、Q′.(1)已知P的坐标为(k,0),求直线OP′的函数解析式;(2)若直线OP′把梯形P′PQQ′的面积二等分,求k的值.17、一条直线过△ABC的内心,且平分三角形的周长,那么该直线分成的两个图形的面积比为( )A.2:1 B.1:1 C.2:3 D.3:118、某课题研究小组就图形面积问题进行专题研究,他们发现如下结论:(1)有一条边对应相等的两个三角形面积之比等于这条边上的对应高之比;(2)有一个角对应相等的两个三角形面积之比等于夹这个角的两边乘积之比;…现请你继续对下面问题进行探究,探究过程可直接应用上述结论.(S 表示面积)问题1:如图1,现有一块三角形纸板ABC,P1,P2三等分边AB,R1,R2三等分边AC.经探究知=S△ABC,请证明.问题2:若有另一块三角形纸板,可将其与问题1中的拼合成四边形ABCD,如图2,Q1,Q2三等分边DC.请探究与S四边形ABCD之间的数量关系.问题3:如图3,P1,P2,P3,P4五等分边AB,Q1,Q2,Q3,Q4五等分边DC.若S四边形ABCD=1,求.问题4:如图4,P1,P2,P3四等分边AB,Q1,Q2,Q3四等分边DC,P1Q1,P2Q2,P3Q3将四边形ABCD分成四个部分,面积分别为S1,S2,S3,S4.请直接写出含有S1,S2,S3,S4的一个等式.19、阅读下面材料,再回答问题:有一些几何图形可以被某条直线分成面积相等的两部分,我们将“把一个几何图形分成面积相等的两部分的直线叫做该图形的二分线”,如:圆的直径所在的直线是圆的“二分线”,正方形的对角线所在的直线是正方形的“二分线”.解决下列问题:(1)菱形的“二分线”可以是(2)三角形的“二分线”可以是(3)在下图中,试用两种不同的方法分别画出等腰梯形ABCD的“二分线”,并说明你的画法.20、用一条直线将一个直角梯形分成面积相等的两部分,请你在下面的图中分别画出两种不同的分割图形.21、下图所示是一块木板的示意图,能不能用一条直线把这块木板分成面积相等的两部分.(3种画法)22、如图所示的图案是一个轴对称图形,直线l是它的一条对称轴,如果最大圆的半径为2,那么阴影部分面积是( )A.π B.2π C.3π D.4π23、如图所示是由7个完全相同的正方形拼成的图形,请你用一条直线将它分成面积相等的两部分.(在原图上作出).24、九条直线中的每一条直线都把正方形分成面积比为2:3的两个四边形.证明:这九条直线中至少有三条经过同一点.抽屉原理.专题:证明题.分析:首先根据抽屉定理证明9条直线中的每一条直线都把正方形分成面积比为2:3的两个四边形中至少有5条直线穿过一对边,然后再根据抽屉原理证明至少必有三点经过同一点.解答:证明:按抽屉原理,9条直线中的每一条直线都把正方形分成面积比为2:3的两个四边形,则至少有5条直线穿过一对边.又2:3≠1:1,根据“梯形的面积等于中位线长乘以高”,可知这5条直线必过正方形的一条对边中点连线上的两定点.故若5个点不全经过一点,则必经过这条直线上的两点,再据抽屉原理,至少必有三点经过同一点.25、一条直线平行于直线y=2x-1,且与两坐标轴围成的三角形面积是4,则直线的解析式是A.y=2x+4 B.y=2x-4 C.y=2x±4 D.y=x+2 ( )26、把一个圆心为点O,半径为r的圆的面积四等分,请你尽可能多地设想各种分割方法.如图,如果圆心也是点O的三个圆把大圆O的面积四等分.求这三个圆的半径OB、OC、OD的长.27、已知直线AB与x,y轴分别交于A、B(如图),AB=5,OA=3,(1)求直线AB的函数表达式;(2)如果P是线段AB上的一个动点(不运动到A,B),过P作x轴的垂线,垂足是M,连接PO,设OM=x,图中哪些量可以表示成x的函数?试写出5个不同的量关于x的函数关系式.(这里的量是指图中某些线段的长度或某些几何图形的面积等)28、(1)如图1所示,已知△ABC中,D为BC的中点,请写出图1中,面积相等的三角形: ,理由是(2)如图2所示,已知:平行四边形A′ABC,D为BC中点,请你在图中过D作一条线段将平行四边形A′ABC的面积平分,平分平行四边形A′ABC的方法很多,一般地过画直线总能将平行四边形A′ABC的面积平分.(3)如图3所示,已知:梯形ABCA′中,AA′∥BC,D为BC中点,请你在图3中过D作一条线段将梯形的面积等分.(4)如图4所示,某承包人要在自己梯形ABCD(AD∥BC)区域内种两种等面积的作物,并在河岸AD与公路BC间挖一条水渠EF,EF左右两侧分别种植了玉米、小麦,为了提高效益,要求EF最短.①请你画出相应的图形.②说明方案设计的理由.19、如图,抛物线y=ax2-3ax+b经过A(-1,0),C(3,2)两点,与y 轴交于点D,与x轴交于另一点B.(1)求此抛物线的解析式;(2)若直线y=kx-1(k≠0)将四边形ABCD面积二等分,求k的值.。
【初中数学】人教版八年级下册思维特训(十一) 几何图形的面积等分(练习题)
人教版八年级下册思维特训(十一)几何图形的面积等分(356)1.解答下列各题:(1)如图①,已知直线m//n,点A,B在直线n上,点C,P在直线m上.①写出图①中面积相等的三角形;②当点P在直线m上移动到任一位置时,总有与△ABC的面积相等;(2)如图②,已知一个五边形ABCDE,你能否过点E作一条直线交BC(或其延长线)于点M,使四边形ABME的面积等于五边形ABCDE的面积?2.阅读下列材料:小明遇到一个问题:AD是△ABC的中线,M为BC边上任意一点(不与点D重合),过点M作一直线,使其等分△ABC的面积.他的作法是:如图①,连接AM,过点D作DN//AM交AC于点N,作直线MN,直线MN即为所求直线.请你参考小明的作法,解决下列问题:(1)如图②,在四边形ABCD中,AE平分四边形ABCD的面积,M为CD边上一点,过点M作一直线MN,使其等分四边形ABCD的面积(要求:在图②中画出直线MN,并保留作图痕迹);(2)如图③,求作过点A的直线AE,使其等分四边形ABCD的面积(要求:在图③中画出直线AE,并保留作图痕迹).3.有一些几何图形可以被某条直线分成面积相等的两部分,我们将“把一个几何图形分成面积相等的两部分的直线叫做该图形的二分线”,如三角形的中线所在的直线一定是三角形的“二分线”.解决下列问题:(1)在图①中,试用三种不同的方法分别画出平行四边形ABCD的“二分线”;(2)解决问题:有兄弟俩分家时,有原来共同承包的一块平行四边形田地ABCD,现要进行平均划分,由于在这块地里有一口井P,如图②所示,为了兄弟俩都能方便使用这口井,兄弟俩在划分时犯难了,聪明的你能帮他们解决这个问题吗?(画图,并说明结果)4.如果一条直线把一个平面图形的面积分成相等的两部分,我们把这条直线称为这个平面图形的一条面积等分线.(1)三角形有条面积等分线,平行四边形有条面积等分线;(2)如图①所示,在矩形中剪去一个小正方形,请画出这个图形的一条面积等分线;(3)如图②,四边形ABCD中,AB与CD不平行,AB≠CD,且S△ABC<S△ACD,过点A画出四边形ABCD的面积等分线,并写出理由.5.自定义:在一个图形上画一条直线,若这条直线既平分该图形的面积,又平分该图形的周长,我们称这条直线为这个图形的“等分积周线”.(1)如图①,已知△ABC,AC≠BC,过点C能否画出△ABC的一条“等分积周线”?若能,说出确定的方法,若不能,请说明理由.(2)如图②,在四边形ABCD中,∠B=∠C=90∘,EF垂直平分AD,垂足为F,交BC于点E,已知AB=3,BC=8,CD=5.求证:直线EF为四边形ABCD的“等分积周线”.(3)如图③,在△ABC中,AB=BC=6,AC=8,请你作出△ABC的一条“等分积周线”EF(要求:直线EF不过△ABC的顶点,交边AC于点F,交边BC于点E),并说明理由.参考答案1(1)【答案】△CAB与△PAB,△BCP与△APC,△ACO与△BPO.;△PAB【解析】:①图①中符合条件的三角形有:△CAB与△PAB,△BCP与△APC,△ACO与△BPO.②△PAB(2)【答案】如图,连接EC,过点D作直线DM//EC交BC的延长线于点M,作直线EM,直线EM即为所求的直线.2(1)【答案】如图①,连接AM,过点E作EN//AM,交AD于点N,再作直线MN即可.(2)【答案】如图②,取对角线BD的中点O,连接AO,CO,AC,过点O作OE//AC交CD于点E,直线AE就是所求直线.3(1)【答案】答案不唯一,示例如下:(2)【答案】能解决这个问题.连接AC,BD相交于点O,过点O,P作直线分别交DC,AB于点E,F,如图所示.则一人分四边形ADEF,一人分四边形CEFB.4(1)【答案】无数;无数(2)【答案】如图①所示,连接2个矩形的对角线的交点的直线即把这个图形分成面积相等的两部分.即直线OO′为这个图形的一条面积等分线.(3)【答案】如图②所示.过点B作BE//AC交DC的延长线于点E,连接AE.∵BE//AC,∴△ABC和△AEC的公共边AC上的高也相等,∴S△ABC=S△AEC,∴S=S△ACD+S△ABC四边形ABCD=S△ACD+S△AEC=S△AED.∵S△ACD>S△ABC,∴面积等分线必与CD相交,取DE的中点F,则直线AF即为要求作的四边形ABCD的面积等分线.5(1)【答案】不能.理由:如图①,取AB的中点D,连接CD,则S△ADC=S△DBC,且过点C只能画CD一条直线平分△ABC的面积.∵AC≠BC,∴AD+AC≠BD+BC,∴过点C不能画出△ABC的一条“等分积周线”.(2)【答案】证明:如图②,连接AE,DE,设BE=x,∵EF垂直平分AD,∴AE=DE,AF=DF,S△AEF=S△DEF.∵∠B=∠C=90∘,AB=3,BC=8,CD=5,∴在Rt△ABE和Rt△DCE中,根据勾股定理,得AB2+BE2=CE2+DC2,即32+x2=(8−x)2+52,解得x=5,∴BE=5,CE=3,∴AB+BE=CE+DC,S△ABE=S△DCE,∴S四边形ABEF =S△ABE+S△AEF,S四边形DCEF=S△DEF+S△DCE,∴S四边形ABEF =S四边形DCEF,AF+AB+BE=DF+EC+DC,∴直线EF为四边形ABCD的“等分积周线”.(3)【答案】如图③,在AC上取一点F,使得FC=AB=6,在BC上取一点E,使得BE=2,作直线EF,则直线EF是△ABC的“等分积周线”.理由:由作图可得:AF=AC−FC=8−6=2,在CB上取一点G,使得CG=AF=2,则有AB+AF=CF+CG.∵AB=BC,∴∠A=∠C.在△ABF和△CFG中,AF=CG,∠A=∠C,AB=CF,∴△ABF≌△CFG(SAS),∴S△ABF=S△CFG.又易得BE=EG=2,∴S△BFE=S△EFG,∴S△EFC=S四边形ABEF,AF+AB+BE=CE+CF=10,∴直线EF是△ABC的“等分积周线”.。
第20章 专题04 数形结合之一次函数与二元一次方程组(学生
编者小k 君小注:本专辑专为2022年初中沪教版数学第二学期研发,供中等及以上学生使用。
思路设计:重在培优训练,分选择、填空、解答三种类型题,知识难度层层递进,由中等到压轴,基础差的学生选做每种类型题的前4题;基础中等的学生必做前4题、选做5-8题;尖子生全部题型必做,冲刺压轴题。
专题04 数形结合之一次函数与二元一次方程组(学生版)错误率:___________易错题号:___________一、单选题1.如图所示,一次函数3y kx =-(k 是常数,0k ≠)与一次函数y x b =-+(b 是常数)的图象相交于点()2,1A ,下列判断错误的是( )A .关于x 的方程3kx x b -=-+的解是2x =B .关于x 的不等式3x b kx -+>-的解集是2x >C .当0x <时,函数3y kx =-的值比函数y x b =-+的值小D .关于x ,y 的方程组3kx y x y b -=⎧⎨+=⎩的解是21x y =⎧⎨=⎩2.对于实数a ,b ,我们定义符号max {a ,b }的意义为:当a ≥b 时,max {a ,b }=a ;当a <b 时,max {a ,b }=b ;如:max {4,﹣2}=4,max {3,3}=3,若关于x 的函数为y =max (2x ﹣1,﹣x +2},则该函数的最小值是( )A .2B .1C .0D .﹣13.如图,在平面直角坐标系中,点A ,B 分别在x 轴和y 轴上,2OB OA =,AOB ∠的角平分线与OA 的垂直平分线交于点C ,与AB 交于点D ,反比例函数k y x=的图象过点C ,当ACD △面积为1时,k 的值为( )A .1B .2C .3D .44.若直线y x m =-+与直线24y x =+的交点在第一象限,则m 的取值范围是( ).A .4m ≥B .1m ≥-C .4m >D .1m >-5.已知两直线()0y kx k k =+≠与36y x =-相交于第四象限,则k 的取值范围是( )A .60k -<<B .30k -<<C .3k <-D .6k <-6.如图,在平面直角坐标系中,点()()()()1,5,4,1,,,3,4A B C m m D m m ---+,当四边形 ABCD 的周长最小时,则 m 的值为( ).A B .32 C .2 D .37.如图,等腰Rt△ABC 中,BC =AC 为斜边向右做等腰Rt△ACD ,点E 是线段CD 的中点,连接 AE .作线段CE 关于直线AC 的对称线段CF ,连接BF ,并延长BF 交线段AE 于点G ,则线段BG 长为( )A .B .C .D .8.已知直线l 1:y =kx+b 与直线l 2:y =﹣12x+m 都经过C (﹣65,85),直线l 1交y 轴于点B (0,4),交x 轴于点A ,直线l 2交y 轴于点D ,P 为y 轴上任意一点,连接PA 、PC ,有以下说法:△方程组12y kx b y x m =+⎧⎪⎨=-+⎪⎩的解为6585x y ⎧=-⎪⎪⎨⎪=⎪⎩;△△BCD 为直角三角形;△S △ABD =6;△当PA+PC 的值最小时,点P 的坐标为(0,1).其中正确的说法是( )A .△△△B .△△△C .△△△D .△△△△9.在平面直角坐标系中,将函数3y x =的图象向上平移m 个单位长度,使其与36y x =-+的交点在位于第二象限,则m 的取值范围为( )A .6m <B .6m >C .2m <D .2m >10.已知函数222y kx k =++(k 为常数,0k >)的图象经过点(),a b ,且实数a ,b ,k 满足等式:()2224212a k b b bk +++=+,则一次函数()2220y kx k k =++>与y 轴的交点坐标为( )A .()0,2B.()1 C.(0,6- D .()0,4二、填空题 11.如图,根据函数图象回答问题:方程组3y kx y ax b=+⎧⎨=+⎩的解为_________.12.如图,点A 是一次函数21y x =+图象上的动点,作AC △x 轴与C ,交一次函数4y x =-+的图象于B .设点A的横坐标为m,当m=____________时,AB=1.13.在平面直角坐标系xOy中,直线y=﹣x+1与直线y=﹣2x交于点A,点B(m,0)是x轴上的一个动点,过点B作y轴的平行线分别交直线y=﹣x+1、直线y=﹣2x于C、D两点,若5ACDS=,则m的值为____________.14.若函数y=2x+b的图象与两坐标轴围成的三角形面积为4,那么b=_______.15.如图,已知一次函数y=-53x+6的图像与x轴,y轴分别相交于点A、B,与一次函数y=13x的图像相交于点C,若点Q在直线AB上,且△OCQ的面积等于12,则点Q的坐标为__________________.16.已知平面直角坐标系中,O为坐标原点,点A坐标为(0,8),点B坐标为(4,0),点E是直线y=x+4上的一个动点,若△EAB=△ABO,则点E的坐标为_____________.17.如图,在平面直角坐标系xOy 中,直线y =﹣x ﹣2与x 轴,y 轴分别交于点D ,C .点G ,H 是线段CD 上的两个动点,且△GOH =45°,过点G 作GA△x 轴于A ,过点H 作HB△y 轴于B ,延长AG ,BH 交于点E ,则过点E 的反比例函数y =k x的解析式为_____.18.已知直线11y k x b =+与直线22y k x b =+的交点坐标为()2,3-,则直线11y k x b =-与直线22y k x b =-的交点坐标为____________.19.对于实数a ,b ,我们定义符号max{a ,b}的意义为:当a≥b 时,max{a ,b}=a ;当a <b 时,max{a ,b]=b ;如:max{4,﹣2}=4,max{3,3}=3,若关于x 的函数为y =max{x+3,﹣x+1},则该函数的最小值是_____.20.若直线112y x =-与直线31y kx k =++交于点(,)P m n ,且函数31y kx k =++的值随x 值的增大而减小,则m 的取值范围是______.三、解答题21.如图1,直线AB 的解析式为6y kx =+,D 点坐标为()8,0,O 点关于直线AB 的对称点C 点在直线AD 上.(1)求直线AD 、AB 的解析式;(2)如图2,若OC 交AB 于点E ,在线段AD 上是否存在一点F ,使ABC ∆与AEF ∆的面积相等,若存在求出F 点坐标,若不存在,请说明理由;(3)如图3,过点D 的直线:l y mx b =+.当它与直线AB 夹角等于45︒时,求出相应m 的值.22.定义:图象与x 轴有两个交点的函数y =24(),24()x x m x x m -+≥⎧⎨+<⎩.叫做关于m 的对称函数,它与x 轴负半轴交点记为A ,与x 轴正半轴交点记为B ,(1)关于l 的对称函数y =24(1),24(1)x x x x -+≥⎧⎨+<⎩.与直线x =1交于点C ,如图. △直接写出点的坐标:A ( ,0);B ( ,0);C (1, );△P 为关于l 的对称函数图象上一点(点P 不与点C 重合),当=ABC ABP S S 时,求点P 的坐标; (2)当直线y =x 与关于m 的对称函数有两个交点时,求m 的取值范围.23.如图1,直线11:32l y x =-+与坐标轴分别交于点A 、B ,与直线2:l y x =交于点C .(1)求A 、C 两点的坐标;(2)如图2,若有一条垂直于x 轴的直线l 以每秒1个单位的速度从点A 出发沿射线AO 方向作匀速滑动,分别交直线1l 、2l 及x 轴于点M 、N 和Q .设运动时间为()s t ,连接CQ .△当2OA MN =时,求t 的值.△若四边形CMEN 为平行四边形,试求出E 点的坐标;(3)试探究在坐标平面内是否存在点P ,使得以O 、Q 、C 、P 为顶点的四边形构成菱形?若存在,请直.接写出...t 的值;若不存在,请说明理由.24.在平面直角坐标系中,点A 坐标为(0,)n , 点B 坐标为(,0)m -,点C 坐标为(,0)m ,且m 、n 满足方程组32120m n m n +=⎧⎨-=⎩. (1)如图1,直接写出点A 和点B 的坐标;(2)如图2,在线段AB 上有一点D (点D 不与A 、B 重合),过点D 作AB 的垂线,分别交y 轴和线段AC 于点E 和点F ,连接DO ,若2AFD AOD ∠=∠,求BDO ∠的度数;(3)如图3,在(2)的条件下,延长DF 交x 轴于点G ,若EO CG =,连接BF 交AO 于点K ,求点K 的坐标.25.如图,在平面直角坐标系中,点O 为坐标原点.△ABO 的顶点A 在y 轴的正半轴上,且OA =16,顶点B 在x 轴正半轴上,且B (12,0),BE 是△ABO 的角平分线,且AB =20.(1)直接写出E 点坐标;(2)点D 是射线BO 上的一个动点(点D 不与点B 、点O 重合),连接DE ,设D 点的横坐标为t ,△BDE 的面积为S ,求S 与t 的关系式,并直接写出t 的取值范围;(3)在(2)的条件下,如图3,当点D 在线段OB 上,连接AD ,AD 、BE 相交于点F ,过点F 作FM △AD 交AB 于点M ,FN △BE 交AB 于点N ,当S =20时,求线段MN 的长度.26.定义:如果一条直线把一个平面图形的面积分成相等的两部分,我们把这条直线称为平面图形的一条面积等分线.(1)如图1,已知ABC ,请用尺规作出ABC 的一条面积等分线.(2)已知:如图2,在平面直角坐标系xOy 中,矩形OABC 的边OA 在x 轴的正半轴上、OC 在y 轴的正半轴上,6,4OA OC ==.△请判断直线4833y x =-是否为矩形OABC 的面积等分线,并说明理由; △若矩形OABC 的面积等分线与坐标轴所围成的三角形面积为4,请直接写出此面积等分线的函数表达式. (3)如图3,在ABC 中,点A 的坐标为()2,0-,点B 的坐标为()4,3,点C 的坐标为()2,0,点D 的坐标()0,2-,求过点D 的一条ABC 的面积等分线的解析式.(4)在ABC 中点A 的坐标为()1,0-,点B 的坐标为()1,0,点C 的坐标为()0,1,直线()0y ax b a =+>是ABC 的一条面积等分线,请直接写出b 的取值范围.27.平面直角坐标系中,直线11:32l y x =-+与x 轴交于点A ,与y 轴交于点B ,直线2:2l y kx k =+与x 轴交于点C ,与直线1l 交于点P .(1)当1k =时,求点P 的坐标;(2)如图1,点D 为PA 的中点,过点D 作DE x ⊥轴于E ,交直线2l 于点F ,若2DF DE =,求k 的值; (3)如图2,点P 在第二象限内,PM x ⊥轴于M ,以PM 为边向左作正方形PMNQ ,NQ 的延长线交直线1l 于点R ,若PR PC =,求点P 的坐标.28.已知:在平面直角坐标系中,直线4x =与直线(1)2y m x m =+-交于点A .(1)请证明:无论m 为何值,直线(1)2y m x m =+-,总经过点()2,2.(2)当12m =-时,求点A 的坐标. (3)函数1(04)y x x=<≤的图像与直线4x =、直线(1)2y m x m =+-围成的封闭区域(不含边界)为W ,横纵坐标都为整数的点叫做整点.△当12m =-时,画出函数图像,并直接写出区域W 内整点的个数. △当区域W 内恰好有三个整点时,直接写出m 的取值范围.29.如图,在平面直角坐标系中,直线y =﹣0.5x +2与x 轴,y 轴分别交于点A 和点B ,与直线y =x 交于点C 、P (m ,0)为x 轴上一动点(P 不与原点重合),过P 作x 轴垂线与直线y =x 和y =﹣0.5x +2分别交于点M 和点N ,过N 作x 轴的平行线交直线y =x 于D .(1)求C 点坐标;(2)求当MN =OB 时,m 的值;并直接写出此时四边形COPN 的面积= ;(3)直接写出当DN =2NP 时,m 的值= ;(4)过D 作y 轴平行线交直线AB 于点E ,P 点在运动过程中,MN DE的值= .x+3,与x轴、y轴30.如图,在平面直角坐标系中,直线l1的解析式为y=x,直线l2的解析式为y=﹣12分别交于点A、点B,直线l1与l2交于点C.(1)求出点A、点B的坐标;(2)求△COB的面积;(3)在y轴上是否存在一点P,使得△PBC为等腰三角形?若存在,请直接写出点P坐标,若不存在,请说明理由.。
五年级 图形题面积计算(必练题题库)
五年级图形题必练题知识要点:组合图形是由两个或两个以上的简单的几何图形组合而成的。
组合的形式分为两种:一是拼合组合,二是重叠组合。
由于组合图形具有条件相等的特点,往往使得问题的解决无从下手。
要正确解答组合图形的面积,应该注意以下几点:1.切实掌握有关简单图形的概念、公式,牢固建立空间观念;2.仔细观察,认真思考,看清所求图形是由哪几个基本图形组合而成的;3.适当采用增加辅助线等方法帮助解题;4,采用割、补、分解、代换等方法,可将复杂问题变得简单。
基础练习:1、 求下面图形的面积。
(单位:cm )152、计算下面图形中阴影部分的面积。
2010643482 1032 201230dm12dm 5m25dm 5m3、求下列阴影部分的面积。
① ②已知S 平=48dm 2,求S 阴。
③已知:阴影部分的面积为24④求S 阴。
平方厘米,求梯形的面积。
4、求下面各图形的面积。
(单位:分米)3m13cm 16cm8dm3dm12cm 7cm4dm8dm5、“实践操作”显身手:10分6、已知右面的两个正方形边长分别为6分米和4分米,求图中阴影部分的面积。
7、右图是两个相同的直角三角形叠在一起,求阴影部分的面积。
(单位:厘米)8、如图,这个长方形的长是9厘米,宽是8厘米,A 和B 是宽的中点,求长方形内阴影部分的面积。
9、在右图中,三角形EDF 的面积比三角形ABE 的面积大6平方厘米,已知长方形ABDC 的长和宽分别为6厘米、4厘米,DF 的长是多少厘米?16cm12cm14cm 24m10m8m1、求下面图形中阴影部分的面积。
2、求下面图形的面积。
10、右图是一块长方形公园绿地,绿地长24米,宽16米,中间有一条宽为2米的道路,求草地(阴影部分)的面积。
11、如图,三角形ABC的面积是24平方厘米,且DC=2AD,E、F分别是AF、BC的中点,那么阴影部分的面积是多少?12、如图,三角形ABC的面积是90平方厘米,EF平行于BC,AB=3AE,那么三角形甲、乙、丙的面积各是多少平方厘米?13、如图长方形,长18厘米,宽12厘米,AE、AF两条线段把长方形面积三等分,求三角形AEF的面积。
小学六年级数学面积计算讲解提高练习(附答案及解析)
面积计算(一)一、知识要点计算平面图形的面积时,有些问题乍一看,在已知条件与所求问题之间找不到任何联系,会使你感到无从下手。
这时,如果我们能认真观察图形,分析、研究已知条件,并加以深化,再运用我们已有的基本几何知识,适当添加辅助线,搭一座连通已知条件与所求问题的小“桥”,就会使你顺利达到目的。
有些平面图形的面积计算必须借助于图形本身的特征,添加一些辅助线,运用平移旋转、剪拼组合等方法,对图形进行恰当合理的变形,再经过分析推导,方能寻求出解题的途径。
二、精讲精练【例题1】已知如图,三角形ABC的面积为8平方厘米,AE=ED,BD=2/3BC,求阴影部分的面积。
练习1:1、如图,AE=ED,BC=3BD,S△ABC=30平方厘米。
求阴影部分的面积。
2、如图所示,AE=ED,DC=1/3BD,S△ABC=21平方厘米。
求阴影部分的面积。
3、如图所示,DE=1/2AE,BD=2DC,S△EBD=5平方厘米。
求三角形ABC的面积。
【例题2】两条对角线把梯形ABCD分割成四个三角形,如图所示,已知两个三角形的面积,求另两个三角形的面积各是多少?练习2:1、两条对角线把梯形ABCD分割成四个三角形,(如图所示),已知两个三角形的面积,求另两个三角形的面积是多少?2、已知AO=1/3OC,求梯形ABCD的面积(如图所示)。
【例题3】四边形ABCD的对角线BD被E、F两点三等分,且四边形AECF的面积为15平方厘米。
求四边形ABCD的面积(如图所示)。
练习3:1、四边形ABCD的对角线BD被E、F、G三点四等分,且四边形AECG的面积为15平方厘米。
求四边形ABCD的面积(如图)。
2、如图所示,求阴影部分的面积(ABCD为正方形)。
【例题4】如图所示,BO=2DO,阴影部分的面积是4平方厘米。
那么,梯形ABCD的面积是多少平方厘米?练习4:1、如图所示,阴影部分面积是4平方厘米,OC=2AO。
求梯形面积。
2、已知OC=2AO,S△BOC=14平方厘米。
巧用转化思想求作梯形面积等分线
巧用转化思想求作梯形面积等分线——对一道中考试题的探究一、问题的缘起原题(2005年贵阳中考题)如图1,在一次数学实践探究活动中,小强用两条直线把平行四边形ABCD分割成四个部分,使含有一组对顶角的两个图形全等;(1)根据小强的分割方法,你认为把平行四边形分割成满足以上全等关系的直线有多少组;(2)请在平行四边形中画出满足小强分割方法的不同的直线;(3)由上述实验操作过程,你发现所画的两条直线有什么规律?解 (1)无数;(2)作图的时候要首先找到对角线的交点,只要过对角线的交点,任画两条直线即可.(3)这两条直线过平行四边形的对称中心(或对角线的交点).图2中前两个图中四部分面积相等,第三个图只是相对的面积相等.由此我们想到新问题:怎样在平行四边形中作两条直线,把其面积四等分?我们知道,过平行四边形对称中心的直线平分其面积,在图3中,EF 把□ABCD的面积分为两个全等等积的梯形,因此只要过一腰中点作梯形的面积等分线即可.二、问题的探究问题梯形ABCD中,AD∥BC,点O是CD的中点,在AB上求作一点P,使直线OP平分梯形ARCD的面积.分析1 假设直线OP已作出,如图4.由合比定理,得,故而AF=BP.作法1 如图4.1.连结AO并延长,交BC延长线于点E;2.过点C作CF∥AE,交AB于点F;3.在BA上作BP=AF;4.作直线OP.分析2 假设直线OP已作出,如图5.要使S△APD=S△BPC,只需AP·AD=BP·BC.将AD平移至BE,在AB上截取AF=BP,则AP=BF,则只需BF·BE=BP·BC,即,则PE∥CF,四边形ECFP为梯形.取其中位线MN,则MN∥EP,此时N为AB的中点.作法2 如图5.1.过点D作DE∥AB,交BC于点E;2.分别作EC、AB的中点M、N,连结MN;3.过点E作EP∥MN,交AB于点P;4.作直线OP.分析3 假设直线OP已作出,如图6.要使S△APD=S△BPC,将AD平移至BE,则S△APD=S△PAE.过点A作AF∥PE,则S△PAE=S△PEF.故只需S△BPC=S△PEF,由于同高,故而BE=CF.作法3 如图6.1.过点D作DE∥AB,交BC于点E;2.在BC延长线上作CF=BE,连结AF;3.过点E作EP∥AF,交AB于点P;4.作直线OP.分析4 在图6中明显地看到AF经过点O,这是巧合吗?由CF=BE,而AD=BE,故CF=AD且平行,由平行四边形对角线互相平分易证AF 经过点O.看来是偶然中的必然,为此可改良作法3.作法4 如图6.1.过点D作DE∥AB,交BC于点E;2.连结AO并延长,交BC延长线于点F;3.过点E作EP∥AF,交AB于点P;4.作直线OP.分析5 假设直线OP已作出,如图7.将AD平移至BE,连结AO并延长,交BC延长线于点F,则S△BOE=S△OCF=S△OAD,S△BAO=S△BFO,∴S△BPO+S△PAO=S△BOC+S△OCF. ①要使S四边形APOD=S四边形BCOP,即S△PAO+S△OAD=S△BOC+S△BPO. ②由①、②,得S△BPO=S△OCF,故S△BPO=S△BOE.△BPO与△BOE同底OB,只需等高即可.作法5 如图7.1.过点D作DE∥AB,交BC于点E;2.作点E关于BO的对称点E’;3.过点E’作E'P∥BO,交AB于点P;4.作直线OP.注图中还有S△APO=S△BOC,分析6 假设直线OP已作出,如图8.将AD平移至CE,取AE中点F,则O-F-B等分梯形面积.连结BO、PF,则S四边形APOD=S□AFOD+S△APF+S△PFO=S□AFOD+S△ABF-S△PFB+S△PFO,故S△PFB=S△PFO,因而PF∥BO.作法6 如图8.1.过点A作AE∥DC,交BC于点E;2.取AE中点F,连结OB;3.过点F作FP∥BO,交AB于点P;4.作直线OP.分析7 假设直线OP已作出,如图9.连结AC;过点D作DE∥AC,交BA延长线于点E则S△ACD=S△ACE,梯形面积转化为△BCE的面积.取BE中点F,连结OF,则S△EFC=S△BCE=S四边形APOD而S△EFC=S△AFC+S△ACE=S△AFC+S△ACD=S四边形AFCD.故只需S四边AFCD=S四边形APOD,只需S△OFP=S△OFC,因而CP∥OF.作法7 如图9.1.连结AC;过点D作DE∥AC,交BA延长线于点E;2.取BE中点F,连结OF;3.过点C作CP∥OF,交AB于点P;4.作直线OP.分析8 假设直线OP已作出,如图10.连结AO、BO;分别过点D、C作DE∥AO、CF∥BO、交直线AB于点E、F,则梯形面积转化为△EOF 的面积,此时只需作EF上的中线即可.作法8 如图10.1.连结AO、BO;2.分别过点D、C作DE∥AO、CF∥BO,交直线AB于点E、F;3.取EF的中点P;4.作直线OP.注图9、图10的方法也是过任意四边形边上一点作四边形的面积等分线的通法,之所以把这两种通法放到最后,是以防通法禁锢住我们的思维而陷入思维定势,让我们不再动脑多思而漏掉前6种作法.以上解法,多次用到了转化的思想,如等线段代换,等积代换等等,让我们感受到了转化的神奇魅力.同时,“老题”不“老”,“老题”也能发“新芽”,也能焕发出勃勃生机!。
中考数学:以四边形为载体的几何压轴问题真题+模拟(原卷版北京专用)
中考数学以四边形为载体的几何压轴问题【方法归纳】北京市中考数学倒数第二道压轴题会以四边形为载体的几何压轴题出现,要求学生理解和掌握平行四边形、矩形、菱形、正方形的性质定理和判定定理,会画出四边形全等变换后的图形,并会结合其他知识解答一些有探索性、开放性的问题,提高解决问题的能力.解决此类问题的关键是要牢牢把握四边形的性质与特征,挖掘相关图形之间的联系,利用所给图形及图形之间形状、大小、位置关系,进行观察、实验、比较、联想、类比、分析、综合等.常用到的矩形、菱形、正方形的解题策略有:(1)对于矩形:①判定四边形是矩形,一般先判定是平行四边形,然后再判定是矩形;②矩形的内角是直角和对角线相等,相对于平行四边形来说是矩形特殊的性质;③利用矩形的性质计算或证明时,常常运用勾股定理,锐角三角函数或相似三角形求解.(2)对于菱形:①判定四边形是菱形,一般先判定是平行四边形,然后再判定是菱形;②菱形的邻边相等和对角线垂直,相对于平行四边形来说是菱形特殊的性质;③利用菱形的性质计算或证明时,常常运用勾股定理,锐角三角函数或相似三角形求解;④求线段和的最小值时,往往运用菱形的轴对称的性质转化为求线段的长度.(3)对于正方形:①判定四边形是正方形,一般先判定是平行四边形,然后再判定是矩形或菱形,最后判定这个四边形是正方形;②正方形是最特殊的四边形,在正方形的计算或证明时,要特别注意线段或角的等量转化.【典例剖析】【例1】(2018·北京·中考真题)如图,在正方形ABCD中,E是边AB上的一动点(不与点A、B重合),连接DE,点A关于直线DE的对称点为F,连接EF并延长交BC于点G,连接DG,过点E作EH⊥DE交DG的延长线于点H,连接BH.(1)求证:GF=GC;(2)用等式表示线段BH与AE的数量关系,并证明.【真题再现】1.(2014·北京·中考真题)在正方形ABCD外侧作直线AP,点B关于直线AP的对称点为E,连接BE,DE,其中DE交直线AP于点F.(1)依题意补全图1.(2)若∠PAB=20°,求∠ADF的度数.(3)如图2,若45°<∠PAB<∠90°,用等式表示线段AB,FE,FD之间的数量关系,并证明.2.(2015·北京·中考真题)在正方形ABCD中,BD是一条对角线.点P在射线CD上(与点C,D不重合),连接AP,平移△ADP,使点D移动到点C,得到△BCQ,过点Q作QH⊥BD于点H,连接AH、PH.(1)若点P在线CD上,如图1,①依题意补全图1;②判断AH与PH的数量关系与位置关系并加以证明;(2)若点P在线CD的延长线上,且∠AHQ=152°,正方形ABCD的边长为1,请写出求DP长的思路.(可以不写出计算结果)3.(2013·北京·中考真题)请阅读下列材料:小明遇到这样一个问题:如图1,在边长为a(a>2)的正方形ABCD各边上分别截取AE=BF=CG=DH=1,当∠AFQ=∠BGM=∠CHN=∠DEP=45°时,求正方形MNPQ的面积.小明发现,分别延长QE,MF,NG,PH交F A,GB,HC,ED的延长线于点R,S,T,W,可得△RQF,△SMG,△TNH,△WPE是四个全等的等腰直角三角形(如图2) .请回答:(1)若将上述四个等腰直角三角形拼成一个新的正方形(无缝隙不重叠),则这个新正方形的边长为_________;(2)求正方形MNPQ的面积;(3)参考小明思考问题的方法,解决问题:如图3,在等边△ABC各边上分别截取AD=BE=CF,,求AD的再分别过点D,E,F作BC,AC,AB的垂线,得到等边△RPQ.若S△RPQ=√33长.4.(2016·北京·中考真题)如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.(1)求证:BM=MN;(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.【模拟精练】1.(2022·北京昌平·模拟预测)两张宽度均为4的矩形纸片按如图所示方式放置(1)如图①,求证:四边形ABCD是菱形.(2)如图②,点P在BC上,PF⊥AD于F,若S四边形ABCD=16√2,PB=2,①求∠BAD的度数;②求DF的长.2.(2021·北京四中模拟预测)如图所示,四边形ABCD为菱形,AB=2,∠ABC=60°,点E为边BC上动点(不含端点),点B关于直线AE的对称点为点F,点G为DF中点,连接AG.(1)依题意,补全图形;(2)点E运动过程中,是否可能EF∥AG?若可能,求BE长;若不可能,请说明理由;(3)连接CG,点E运动过程中,直接写出CG的最小值.3.(2021·北京门头沟·一模)在正方形ABCD中,将边AD绕点A逆时针旋转a(0°<a<90°)得到线段AE,AE与CD延长线相交于点F,过B作BG//AF交CF于点G,连接BE.(1)如图1,求证:∠BGC=2∠AEB;(2)当(45°<a<90°)时,依题意补全图2,用等式表示线段AH,EF,DG之间的数量关系,并证明.4.(2020·北京亦庄实验中学二模)如图,在正方形ABCD中,E是边BC上一动点(不与点B,C重合),连接DE,点C关于直线DE的对称点为C′,连接AC′并延长交直线DE于点P,过点D作DF AP于F.(1)求∠FDP的度数;(2)连接BP,请用等式表示线段BP与线段AF之间的数量关系,并证明.(3)连接PC,若正方形的边长为√2,直接写出△BCP面积的最大值.5.(2020·北京四中模拟预测)在△ABC中,点D在AB边上(不与点B重合),DE⊥BC,垂足为点E,如果以DE为对角线的正方形上的所有点都在△ABC的内部或边上,则称该正方形为△ABC的内正方形.(1)如图,在△ABC中,AB=4,∠B=30°,点D是AB的中点,画出△ABC的内正方形,直接写出此时内正方形的面积;t,0).(2)在平面直角坐标系xOy中,点A(t,2),B(0,0),C(32①若t=2,求△ABC的内正方形的顶点E的横坐标的取值范围;②若对于任意的点D,△ABC的内正方形总是存在,直接写出t的取值范围.6.(2020·北京延庆·一模)四边形ABCD 中,∠A=∠B= 90°,点E在边AB上,点F在AD的延长线上,且点E与点F关于直线CD对称,过点E作EG∥AF交CD于点G,连接FG,DE.(1)求证:四边形DEGF 是菱形;(2)若AB=10,AF=BC=8,求四边形DEGF 的面积.7.(2019·北京·一模)如图1,正方形ABCD中,AB=5,点E为BC边上一动点,连接AE,以AE为边,在线段AE右侧作正方形AEFG,连接CF、DF.设BE=x.(当点E与点B重合时,x的值为0),DF=y,CF=y2.小明根据学习函数的经验,对函数y1、y2随自变量1x的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整:(1)通过取点、画图、测量、观察、计算,得到了x与y1、y2的几组对应值;(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x , y1) , (x , y2),并画出函数y1,y2的图象;(3)结合函数图象2,解决问题:当△CDF为等腰三角形时,BE的长度约为cm.8.(2017·北京顺义·一模)在正方形ABCD和正方形DEFG中,顶点B、D、F在同一直线上,H是BF的中点.(1)如图1,若AB=1,DG=2,求BH的长;(2)如图2,连接AH,GH.小宇观察图2,提出猜想:AH=GH,AH⊥GH.小宇把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:延长AH交EF于点M,连接AG,GM,要证明结论成立只需证△GAM是等腰直角三角形;想法2:连接AC,GE分别交BF于点M,N,要证明结论成立只需证△AMH≌△HNG.…请你参考上面的想法,帮助小宇证明AH=GH,AH⊥GH.(一种方法即可)9.(2018·北京顺义·一模)如图1,在长方形ABCD中,AB=12cm,BC=10cm,点P从A出发,沿A→B→C→D的路线运动,到D停止;点Q从D点出发,沿D→C→B→A路线运动,到A点停止.若P、Q两点同时出发,速度分别为每秒1cm、2cm,a秒时P、Qcm(P、Q两点速度改变后一直保持此速度,直到两点同时改变速度,分别变为每秒2cm、54停止),如图2是ΔAPD的面积s(cm2)和运动时间x(秒)的图象.(1)求出a值;(2)设点P已行的路程为y1(cm),点Q还剩的路程为y2(cm),请分别求出改变速度后,y1,y2和运动时间x(秒)的关系式;(3)求P、Q两点都在BC边上,x为何值时P,Q两点相距3cm?10.(2021·北京四中模拟预测)在平面直角坐标系xOy中,如果点A,点C为某个菱形的一组对角的顶点,且点A,C在直线y=x上,那么称该菱形为点A,C的“极好菱形”.如图为点A,C的“极好菱形”的一个示意图.已知点M的坐标为(1,1),点P的坐标为(3,3).(1)点E(2,1),F(1,3),G(4,0)中,能够成为点M,P的“极好菱形”的顶点的是;(2)如果四边形MNPQ是点M,P的“极好菱形”.①当点N的坐标为(3,1)时,求四边形MNPQ的面积;②当四边形MNPQ的面积为8,且与直线y=x+b有公共点时,写出b的取值范围.11.(2021·北京四中九年级开学考试)定义:如果一条直线把一个平面图形的面积分成相等的两部分,我们把这条直线称为平面图形的一条面积等分线.(1)如图1,已知△ABC,请用尺规作出△ABC的一条面积等分线.(2)已知:如图2,在平面直角坐标系xOy中,矩形OABC的边OA在x轴的正半轴上、OC在y轴的正半轴上,OA=6,OC=4.①请判断直线y=43x−83是否为矩形OABC的面积等分线,并说明理由;②若矩形OABC的面积等分线与坐标轴所围成的三角形面积为4,请直接写出此面积等分线的函数表达式.(3)如图3,在△ABC中,点A的坐标为(−2,0),点B的坐标为(4,3),点C的坐标为(2,0),点D的坐标(0,−2),求过点D的一条△ABC的面积等分线的解析式.(4)在△ABC中点A的坐标为(−1,0),点B的坐标为(1,0),点C的坐标为(0,1),直线y= ax+b(a>0)是△ABC的一条面积等分线,请直接写出b的取值范围.12.(2021·北京·九年级专题练习)如图,在四边形ABCD中,∠ACB=∠CAD=90°,点E在BC上,AE//DC,EF⊥AB,垂足为F.(1)求证:四边形AECD是平行四边形;(2)若AE平分∠BAC,BE=5,cosB=45,求BF和AD的长.13.(2021·北京·九年级专题练习)如图,在正方形ABCD中,AB=3,M是CD边上一动点(不与D点重合),点D与点E关于AM所在的直线对称,连接AE,ME,延长CB到点F,使得BF=DM,连接EF,AF.(1)依题意补全图1;(2)若DM=1,求线段EF的长;(3)当点M在CD边上运动时,能使△AEF为等腰三角形,直接写出此时tan∠DAM的值.14.(2021·北京石景山·九年级期末)已知矩形MBCD的顶点M是线段AB上一动点,AB=BC,矩形MBCD的对角线交于点O,连接MO,BO.点P为射线OB上一动点(与点B不重合),连接PM,作PN⊥PM交射线CB于点N.(1)如图1,当点M与点A重合时,且点P在线段OB上.①依题意补全图1;②写出线段PM与PN的数量关系并证明.(2)如图2,若∠OMB=α,当点P在OB的延长线上时,请补全图形并直接写出PM与PN的数量关系.15.(2020·北京·北师大实验中学九年级开学考试)如图,在正方形ABCD中,AB=6,M是CD边上一动点(不与D点重合),点D与点E关于AM所在的直线对称,连接AE,ME,延长CB 到点F,使得BF=DM,连接EF,AF.(1)当DM=2时,依题意补全图1;(2)在(1)的条件下,求线段EF的长;(3)当点M在CD边上运动时,能使△AEF为等腰三角形,请直接写出此时DM与AD的数量关系________.16.(2017·全国·九年级专题练习)猜想与证明:如图①摆放矩形纸片ABCD与矩形纸片ECGF,使B,C,G三点在一条直线上,CE在边CD上.连结AF,若M为AF的中点,连结DM,ME,试猜想DM与ME的数量关系,并证明你的结论.拓展与延伸:(1)若将“猜想与证明”中的纸片换成正方形纸片ABCD与正方形纸片ECGF,其他条件不变,则DM和ME的关系为__________________;(2)如图②摆放正方形纸片ABCD与正方形纸片ECGF,使点F在边CD上,点M仍为AF的中点,试证明(1)中的结论仍然成立.[提示:直角三角形斜边上的中线等于斜边的一半]①②17.(2020·北京通州·一模)已知线段AB,过点A的射线l⊥AB.在射线l上截取线段AC=AB,连接BC,点M为BC的中点,点P为AB边上一动点,点N为线段BM上一动点.以点P为旋转中心,将△BPN逆时针旋转90°得到△DPE,B的对应点为D,N的对应点为E.(1)当点N与点M重合,且点P不是AB中点时,①据题意在图中补全图形;②证明:以A,M,E,D为顶点的四边形是矩形.(2)连接EM,若AB=4,从下列3个条件中选择1个:①BP=1,②PN=1,③BN=√2,当条件______(填入序号)满足时,一定有EM=EA,并证明这个结论.18.(2020·北京一七一中九年级阶段练习)在四边形ABCD中,∠B+∠D=180°,对角线AC 平分∠BAD.(1)如图1,若∠DAB=120°,且∠B=90°,直接写出线段AD、AB、AC的数量关系.(2)如图2,若将(1)中的条件“∠B=90°”去掉,求边AD、AB与对角线AC的数量关系.请证明.(3)如图3,若∠DAB=2αAD、AB与对角线AC的数量关系(用α来表示)19.(2020·北京四中九年级阶段练习)在菱形ABCD中,∠BAD=60°.(1)如图1,点E为线段AB的中点,连接DE,CE.若AB=4,求线段EC的长.(2)如图2,M为线段AC上一点(不与A,C重合),以AM为边向上构造等边三角形△AMN,线段AN与AD交于点G,连接NC,DM,Q为线段NC的中点.连接DQ,MQ,判断DM与DQ的数量关系,并证明你的结论.(3)在(2)的条件下,若AC=√3,请你直接写出DM+CN的最小值.20.(2020·北京顺义·九年级期末)已知:如图,在正方形ABCD中,点E在AD边上运动,从点A出发向点D运动,到达D点停止运动.作射线CE,并将射线CE绕着点C逆时针旋转45°,旋转后的射线与AB边交于点F,连接EF(1)依题意补全图形;(2)猜想线段DE,EF,BF的数量关系并证明;(3)过点C作CG⊥EF,垂足为点G,若正方形ABCD的边长是4,请直接写出点G运动的路线长.21.(2022·北京·九年级单元测试)图1,菱形ABCD的顶点A,D在直线上,∠BAD=60°,以点A为旋转中心将菱形ABCD顺时针旋转α(0°<α<30°),得到菱形AB′C′D′,B′C′交对角线AC于点M,C′D′交直线l于点N,连接MN.(1)当MN∥B′D′时,求α的大小.(2)如图2,对角线B′D′交AC于点H,交直线l与点G,延长C′B′交AB于点E,连接EH.当△HEB′的周长为2时,求菱形ABCD的周长.22.(2022·北京·九年级单元测试)综合与实践动手操作:第一步:如图1,正方形纸片ABCD沿对角线AC所在直线折叠,展开铺平.在沿过点C的直线折叠,使点B,点D都落在对角线AC上.此时,点B与点D重合,记为点N,且点E,点N,点F三点在同一直线上,折痕分别为CE,CF.如图2.第二步:再沿AC所在的直线折叠,△ACE与△ACF重合,得到图3第三步:在图3的基础上继续折叠,使点C与点F重合,如图4,展开铺平,连接EF,FG,GM,ME,如图5,图中的虚线为折痕.问题解决:(1)在图5中,∠BEC的度数是,AE的值是;BE(2)在图5中,请判断四边形EMGF的形状,并说明理由;(3)在不增加字母的条件下,请你以图中5中的字母表示的点为顶点,动手画出一个菱形(正方形除外),并写出这个菱形:.23.(2019·北京·101中学九年级阶段练习)在平行四边形ABCD中,E是AD上一点,AE=AB,过点E作射线EF,(1)若∠DAB=60°,EF∥AB交BC于点H,请在图1中补全图形,并直接写出四边形ABHE 的形状;(2)如图2,若∠DAB=90°,EF与AB相交,在EF上取一点G,使得∠EGB=∠EAB,连接AG.请在图2中补全图形,并证明点A,E,B,G在同一个圆上;(3)如图3,若∠DAB=α(0°<α<90°),EF与AB相交,在EF上取一点G,使得∠EGB=∠EAB,连接AG.请在图3中补全图形(要求:尺规作图,保留作图痕迹),并求出线段EG、AG、BG 之间的数量关系(用含α的式子表示);24.(2022·北京朝阳·二模)在正方形ABCD中,E为BC上一点,点M在AB上,点N在DC上,且MN⊥DE,垂足为点F.(1)如图1,当点N与点C重合时,求证:MN=DE;(2)将图1中的MN向上平移,使得F为DE的中点,此时MN与AC相交于点H,①依题意补全图2;②用等式表示线段MH、HF,FN之间的数量关系,并证明.25.(2022·北京四中模拟预测)已知,点B是射线AP上一动点,以AB为边作△ABC,∠BCA= 90°,∠A=60°,将射线BC绕点B顺时针旋转120°,得到射线BD,点E在射线BD上,BE+BC= m.(1)如图1,若BE=BC,求CE的长(用含m的式子表示);(2)如图2,点F在线段AB上,连接CF、EF.添加一个条件:AF、BC、BE满足的等量关系为______,使得EF=CF成立,补全图形并证明.。
中考数学分面积类压轴题集锦
1、(2008莆田)某市要在一块平行四边形ABCD 的空地上建造一个四边形花园,要求花园所占面积是面积的一半,并且把四边形花园的四个顶点作为出入口,要求分别在中的四条边上,请你设计两种方案:方案(一):如图①所示,两个出入口F E ,以确定,请在图①上画出符合要求的四边形花园,并简要说明画法; 方案(二):如图②所示,一个出入口M 已确定,请在图②上画出符合要求的梯形花园,并简要说明画法【解答】方案(1)画法1: 画法2: 画法3: (1)过F 作FH ∥AD 交 (1)过F 作FH ∥AB 交 (1)在AD 上取一点AD 于点H AD 于点H H ,使DH=CF (2)在DC 上任取一点G (2)过E 作EG ∥AD 交 (2)在CD 上任取连接EF 、FG 、GH 、 DC 于点G 一点GHE ,则四边形EFGH 连接EF 、FG 、GH 、 连接EF 、FG 、GH 、 就是所要画的四边形; HE ,则四边形EFGH HE ,则四边形EFGH 就是所要画的四边形 就是所要画的四边形 (画图正确得4分,简要说明画法得1分)方案(2) 画法:(1)过M 点作MP ∥AB 交AD 于点P ,(2)在AB 上取一点Q ,连接PQ ,(3)过M 作MN ∥PQ 交DC 于点N , 连接QM 、PN 、MN则四边形QMNP 就是所要画的四边形(画图正确的2分,简要说明画法得1分)(本题答案不唯一,符合要求即可)2、问题发现:(1)在我们学习过的几何图形里,有很多图形的面积和周长能同时被某条直线平分,如图1,⊙O 的周长和面积能被过圆心的任意一条直线同时平分.请你在图2和图3中分别做两条..不同的直线将矩形ABCD 和等腰梯形ABCD 的周长和面积同时平分,并简要说明作法.问题解决如图4,在等腰梯形ABCD 中,AB=DC=5,AD=4,BC=10. 点E .在下底边....BC ..上,点...F .在腰..AB ..上.. (2)是否存在线段EF 将等腰梯形ABCD 的周长和面积同时平分?若存在,求出此时BE 的长;若不存在,请说明理由; (3)是否存在线段EF 将等腰梯形ABCD 的周长和面积同时分成1∶2的两部分?若存在,求出此时BE 的长;若不存在,请说明理由.【解答】(1)如图(图2) (图3) (图4)(语言描述略)(2)存在.设BE=x, 由已知条件得:梯形周长为24,高4,面积为28。
五年级上册数学试题-6《多边形的面积》专项培优 人教新课标含答案
《多边形的面积》专项培优专项一运用等分法巧求面积例1 如图是两个完全一样的等腰直角三角形,图①中正方形的面积是40平方分米,则图②中正方形的面积是多少平方分米?分析等分法,就是将整个图形平均分成若干份,再看所求图形的面积占多少份,从而求出所要求的图形面积。
本题中,根据图①中正方形的面积与大等腰直角三角形的面积关系,可求出大等腰直角三角形的面积;然后根据图②中正方形的面积与大等腰直角三角形的面积关系,求出图②中正方形的面积。
解答如图,运用等分法把图①平均分成9份,正方形的面积相当于这样的4份;把图②平均分成4份,正方形的面积相当于这样的2份。
等腰直角三角形的面积为40÷4×9=90(平方分米),图②中正方形的面积为90÷2=45(平方分米)。
反馈练习1.如图,七巧板拼成的正方形边长是20厘米,求图中阴影部分的面积2.如图,在一个面积是36平方分米的大正方形中,有两个带阴影的小正方形。
求阴影部分的面积和。
3.如图,将等腰直角三角形ABC与等腰直角三角形DEC重叠在一起,阴影部分是一个正方形。
已知三角形ABC的面积是72平方厘米,求三角形DEC的面积。
专项二运用等积变换巧求面积例2 如图,已知长方形ABCD的面积是1200平方厘米,阴影部分的面积是750平方厘米,求四边形EFGO的面积。
分析根据图形特点,由面积与面积之间的相等关系,进行一些转化,从而使间题得到简便解决。
本题根据题目中图形之间面积相等的关系可以将上图中的阴影部分三角形ABE移至三角形DFE中,从而求出四边形EFGO的面积。
解答在长方形ABCD中,三角形ABF与三角形DBF同底(即BF的长)、等高(即长方形的宽),所以三角形ABF与三角形DBF的面积相等。
若从这两个三角形中同时减去三角形BEF则剩下的图形面积相等,即:三角形ABE与三角形DFE 的面积相等。
这样阴影部分的面积就等于四边形EFCO加上三角形ACD的面积,要求四边形EFGO的面积,只要用阴影部分的面积减去三角形ACD的面积,列式为750-1200÷2=150(平方厘米)。
图形面积分割问题专项练习
图形面积分割问题专题数学中有很多有趣的题,图形分割就是其中一种,请你展开想象的翅膀,来对下列图形进行巧妙的分割吧.(1)请将一个等边三角形(图1)分割成形状面积都相同的3个部分.(2)接下来请将图2分割成形状面积都相同的4个部分.(此图由5个相同的正方形组成)(3)请将图3分割成形状面积相同的8个部分,(此图由三个相同的正方形组成)2、某市要在一块平行四边形ABCD的空地上建造一个四边形花园,要求花园所占面积是面积的一半,并且把四边形花园的四个顶点作为出入口,要求分别在中的四条边上,请你设计两种方案:方案(一):如图①所示,两个出入口FE,以确定,请在图①上画出符合要求的四边形花园,并简要说明画法;方案(二):如图②所示,一个出入口M已确定,请在图②上画出符合要求的梯形花园,并简要说明画法图①D CE图②D C3、如果一条直线把一个平面图形的面积分成相等的两部分,我们把这条直线称为这个平面图形的一条面积等分线.如:平行四边形的一条对线所在的直线就是平行四边形的一条面积等分线.(1)三角形的中线、高线、角平分线分别所在的直线一定是三角形的面积等分线的有___;(2)三角形有条面积等分线,平行四边形有条面积等分线;(3)如图①所示,在矩形中剪去一个小正方形,请画出这个图形的一条面积等分线;(4)如图1,梯形ABCD中,AB∥DC,如果延长DC到E,使CE=AB,连接AE,那么有S梯形ABCD=S△ADE.请你给出这个结论成立的理由,并过点A作出梯形ABCD的面积等分线(不写作法,保留作图痕迹);(5)如图,四边形ABCD中,AB与CD不平行,S△ADC>S△ABC,过点A能否作出四边形ABCD的面积等分线?若能,请画出面积等分线,并给出证明;若不能,说明理由.4、如图①所示,已知直线m∥n,A,B为直线n上的两点,C,D为直线m上的两点.(1)写出图中面积相等的各对三角形;(2)如果A,B,C为三个定点,点D在m上移动,那么无论D点移动到任何位置,总有与△ABC的面积相等,理由是;解决以下问题:如图②所示,五边形ABC DE是张大爷十年前承包的一块土地的示意图,经过多年开垦荒地,现已变成如图③所示的形状,但承包土地与开垦荒地的分界小路(即图中的折线C DE)还保留着.张大爷想过E点修一条直路,使直路左边的土地面积与承包时的一样多,右边的土地面积与开垦荒地面积一样多.请你用相关的几何知识,按张大爷的要求设计出修路方案.(不计分界小路与直路的占地面积)(3)写出设计方案,并在图③中画出相应的图形;(4)说明方案设计的理由.5、6、提出问题:如图,有一块分布均匀的等腰三角形蛋糕(AB=BC,且BC≠AC),在蛋糕的边缘均匀分布着巧克力,小明和小华决定只切一刀将这块蛋糕平分(要求分得的蛋糕和巧克力质量都一样).背景介绍:这条分割直线即平分了三角形的面积,又平分了三角形的周长,我们称这条线为三角形的“等分积周线”.尝试解决:(1)小明很快就想到了一条分割直线,而且用尺规作图作出.请你帮小明在图1中画出这条“等分积周线”,从而平分蛋糕.(2)小华觉得小明的方法很好,所以自己模仿着在图1中过点C画了一条直线CD交AB于点D.你觉得小华会成功吗如能成功,说出确定的方法;如不能成功,请说明理由.(3)通过上面的实践,你一定有了更深刻的认识.请你解决下面的问题:若AB=BC=5 cm,AC=6 cm,请你找出△ABC的所有“等分积周线”,并简要的说明确定的方法.7。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如果一条直线把一个平面图形的面积分成相等的两部分,我们把这条直线称为这个平面图形的一条面积等分线.
(1)三角形有____________条面积等分线,平行四边形有____________条面积等分线;
(2)如图①所示,在矩形中剪去一个小正方形,请画出这个图形的一条面积等分线;
(3)如图②,四边形ABCD中,AB与CD不平行,AB≠CD,且S△ABC<S△ACD,过点A画出四边形ABCD的面积等分线,并写出理由.
答案:
解:(1)根据“面积等分线”的定义知,一定是三角形的面积等分线的是三角形的中线所在的直线,所以三角形有3条面积等分线;平行四边形的一条对角线所在的直线就是平行四边形的一条面积等分线、平行四边形的中位线所在的直线也是平行四边形的面积等分线,所以平行四边形有2+2=4条面积等分线;
(2)如图①所示:正方形BF的中垂线交CD于点E,连接AE,AE即为这个图形的一条面积等分线;
(3)如图②所示.能,过点B作BE∥AC交DC的延长线于点E,连接AE.
∵BE∥AC,
∴△ABC和△AEC的公共边AC上的高也相等,
∴有S△ABC=S△AEC,
∴S四边形ABCD=S△ACD+S△ABC=S△ACD+S△AEC=S△AED;
∵S△ACD>S△ABC,
所以面积等分线必与CD相交,取DE中点F,则直线AF即为要求作的四边形ABCD的面积等分线.
解析:
分析:(1)读懂面积等分线的定义,不难得出:一定是三角形的面积等分线的是三角形的中线所在的直线;平行四边形的一条对角线所在的直线就是平行四边形的一条面积等分线;
(2)由(1)知,矩形的一条对角线所在的直线就是矩形的一条面积等分线;
(3)能.过点B作BE∥AC交DC的延长线于点E,连接AE.根据“△ABC和△AEC的公共边AC上的高也相等”推知S△ABC=S△AEC;然后由“割补法”可以求得S四边形
ABCD=S△ACD+S△ABC=S△ACD+S△AEC=S△AED.
点评:本题考查了学生的阅读理解能力、运用作图工具的能力,以及运用三角形、
等底等高性质等基础知识解决问题的能力都有较高的要求.还渗透了由“特殊”到“一般”的数学思想.。