2018年浙江高考压轴题之数列不等式的证明
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6
1 1. (2015浙江)已知数列an 满足a1 ,且an 1 an an 2 (n N * ) 2 an (1 )证明: 1 2(n N * ); (2)设数列an 2 的前n 项和为S n . an 1 Sn 1 1 证明: (n N * ). 2(n 2) n 2(n 2)
2
放缩法: 放缩法的常见情形: 1 1 1 1 ①如含 2 + 2 + 2 + + 2 因子,可以做如下放缩: 1 2 3 n 1 1 1 1 + + + + 1 2 2 3 3 4 n ( n 1) 1 1 1 1 2 + 2 + 2 + + 2 1 2 3 n 1 1 1 1 + + + + . 1 1 2 2 3 (n 1) n
8
3.(2016宁波一模)已知对任意正数n, 满足an是方程 x x 1的正根.求证: (1)an 1 an; n 1 1 1 1 1 1 1 (2) 1 . 2a2 3a3 4a4 nan 2 3 n
2
9
1 4.(2016杭州二模)已知数列{an }满足a1 =1, an +1 an an (n N * );(1)证明: 2 an +12 an 2 3; 3n 1 an +1 2n (2)证明: . 3n 2 an 2n 1
4
(4)熟练掌握递推公式: 举例: (1)已知a1 1, an 1 an , 则an 1. an 1 an an a1 (2)已知a1 2, , 则 = an na1. n 1 n n 1 (3)已知an 1 an (1 an ),则an an 1 (1 an 1 )= a1 (1 a1 ) (1 an 1 )(1 an ).
1
一.数列证明必备知识(1):
(1)累加法: 已知: (an an 1 )、 (an a
2 2 n 1
1 1 )、 ( )等可用累加: an an 1
如: an (an an 1 ) (an 1 an 2 ) (a2 a1 ) a1. an 2 =(an 2 an 12 ) (an 12 an 2 2 ) (a2 2 a12 ) a1. 1 1 1 1 1 1 1 1 ( )( ) ( ) . an an an 1 an 1 an 2 a2 a1 a1
10
5.(2017浙江模拟)已知数列{an }满足a1 =1, an +1an an 2 +1, (1)证明: 2n 1 an 2 3n 2.(2)当 a2017 t 取得最小值时, 求正数t的值.
11
2 6.已知数列{an }各项Baidu Nhomakorabea为正数,且an +1 =an + 1,前n项 an 和为Sn .(1)若{an }为递增数列,求a1的取值范围。 1 (2)若a1 2, 都有Sn na1 (n 1),证明:Sn 2n 1. 3
12
n 2 an 7.(2016绍兴二模)已知数列{an }满足a1 =1, an +1 = 2 (n N * ). n 1 an a1 a2 1 (1)证明:an +1 an ;(2)证明: ... n2 ; a2 a3 an 1 n 1 (3)证明:an . 4
5
(5)充分利用已知条件。 如:已知an 1 an an 2,可以得到如下结论: (1)an 1 an an 2 0, an 1 an ; an 1 an 1 (2) 1 an , 或 ; an an 1 1 an (3)an 2 an an 1 , a12 a2 2 an 2 (a1 a2 ) (a2 a3 ) (an an 1 ) a1 an ; (4)an 1 an (1 an ) an 1 (1 an 1 )(1 an ) a1 (1 a1 ) (1 an 1 )(1 an ).
7
n 2 an 2.(2016绍兴二模)已知数列{an }满足a1 =1, an +1 = 2 (n N * ). n 1 a a a 1 (1)证明:an +1 an ;(2)证明:1 2 ... n n 2 ; a2 a3 an 1 n 1 (3)证明:an . 4
13
an 6 8.(2017宁波二模)已知数列{an }满足a1 4, an +1 , 2 Sn为{an }的前n项之和; (1)证明:n N *时, an an 1; 16 (2)当n N 时, 2 Sn 2n . 7
*
14
9.(2017杭州二模)已知数列{an }的各项均为非负数,其前n an +an 2 项之和为Sn,且对任意的n N ,都有an +1 . 2 (1)若a1 1,a505 2017,求a6的最大值.
3
放缩法常见情形: 1 1 ②如通项公式含 n , n 等, 2 1 3 1 n 1, 2n 1 1, 3n 1 1, 故: 1 1 1 1 1 1 1 1 n n = n 1 ;n n n n 1 = . n n 1 n 1 2 2 1 2 2 2 3 3 1 3 3 23 如2014年全国新课标2: 3n 1 1 1 1 3 已知an = ,求证: . 2 a1 a2 an 2 1 2 2 1 提示: = n = n 1 . n 1 an 3 1 2 3 3