算理和算法的关系
怎样处理算理和算法的关系

怎样处理算理和算法的关系算理和算法的关系是计算机科学中一个非常重要的问题。
算理,又称为理论计算机科学,研究的是计算的本质、边界和原理,旨在寻找问题的求解能力和计算的极限。
而算法,则是指解决问题的有序的计算步骤。
算法是算理的应用,而算理则为算法提供了基础和指导。
下面将详细探讨算理和算法的关系,并提出一些处理该关系的方法。
首先,算理为算法提供了基础。
算理研究的是计算机科学的本质和理论模型,例如图灵机、自动机等。
这些理论模型提供了计算过程的抽象和形式化描述,为算法设计和分析提供了基本的数学语言和工具。
算理通过数学和逻辑方法,对算法的正确性、效率和可实现性进行研究,为算法的设计和分析提供了理论基础。
其次,算理为算法提供了指导。
算理研究的是计算的极限和难题,包括NP完全性、不可计算性等。
这些理论结果为算法设计和分析提供了指导方针。
例如,对于NP完全问题,算理的理论结果表明不存在多项式时间的算法来解决这些问题,因此算法设计者不必再花费精力去寻找多项式时间算法,而可以转而寻找近似算法或启发式算法。
算理通过对计算的边界和难题的研究,为算法设计提供了指导,帮助设计者做出更明智的选择。
同时,算法也为算理提供了实践验证和驱动力。
算法是对现实问题的求解过程的抽象和模拟,它们通过一系列的计算步骤来解决问题。
算法的实际应用和效果可以为算理提供实践验证,验证算理研究的正确性和可行性。
而实践中的问题和需求也可以为算理的研究提供驱动力。
算法在实际应用中暴露出的问题和挑战,可以推动算理研究对计算模型和理论的改进和完善。
为了更好地处理算理和算法的关系,可以采取一些方法和策略。
算理与算法

算理与算法摘要:一、引言1.计算的重要性2.算理与算法的概念二、算理简介1.算理的定义2.算理的分类3.算理的发展历史三、算法简介1.算法的定义2.算法的基本特性3.算法的发展历史四、算理与算法的关系1.算理是算法的理论基础2.算法是算理的实际应用3.算理与算法相互促进和发展五、算理与算法在实际应用中的案例1.日常生活应用2.科学研究应用3.工业生产应用六、我国在算理与算法领域的发展1.我国古代算理与算法的发展2.现代我国在算理与算法的研究成果3.我国在算理与算法领域的发展趋势七、结论1.算理与算法的重要性2.算理与算法的发展前景正文:一、引言计算是人们日常生活中必不可少的一部分,无论是简单的加减乘除,还是复杂的科学研究,都离不开计算。
在计算过程中,算理与算法是计算的核心。
本文将介绍算理与算法的相关知识。
二、算理简介算理,又称计算原理,是指计算过程中遵循的逻辑规则和原理。
算理可以分为两大类:一类是关于数的概念、性质、运算等方面的算理;另一类是关于量度、测量、统计等方面的算理。
算理的发展历史悠久,可以追溯到古代文明中的数学知识。
三、算法简介算法,又称计算方法,是指解决计算问题的步骤和技巧。
算法具有五个基本特性:确定性、有穷性、可执行性、输入和输出。
算法的发展历史同样悠久,可以追溯到古代文明中的数学知识。
四、算理与算法的关系算理与算法相互依存,算理为算法提供理论基础,算法是算理的实际应用。
算理与算法相互促进和发展,共同推动了计算科学的进步。
五、算理与算法在实际应用中的案例在日常生活中,人们会用到算理与算法解决各种问题,如购物时计算价格、预算家庭支出等。
在科学研究领域,算理与算法被应用于理论研究、实验设计和数据分析等。
在工业生产领域,算理与算法在自动化生产线、计算机辅助设计和人工智能等方面发挥着重要作用。
六、我国在算理与算法领域的发展我国在古代就有着丰富的算理与算法知识,如《九章算术》、《周髀算经》等。
浅谈小学数学计算教学中算理和算法的有效结合

浅谈小学数学计算教学中算理和算法的有效结合小学数学计算教学是一项重要的工作,对于孩子们的学习和未来的发展都有着不可忽视的作用。
在小学数学计算教学中,算理和算法的有效结合是非常重要的,可以帮助学生更好地掌握数学知识,提高他们的计算能力。
算理和算法是小学数学计算教学中的核心概念。
算理是指数学计算中的基本原理,包括加减乘除等。
这些原理是数学计算的基础,是学生掌握其他数学知识的必要前提。
而算法是指具体计算过程,它是根据算理原则设计出来的一种计算方法,用于解决具体数学问题。
算法是数学计算的重要组成部分,可以帮助学生更有效地应用算理原则,完成各种数学计算任务。
在小学数学计算教学中,教师需要将算理和算法有机结合起来,使学生能够真正地理解数学计算的原理,同时也能够掌握具体的计算方法。
这样,学生才能在实际运用中更好地应用所学知识,提高他们的数学能力。
具体来说,需要采取以下措施:首先,教师要将算理和算法的关系作为教学内容的重点,通俗易懂地讲解二者的概念和关系。
在讲解算理原理时,可以采用生动的故事和例子来帮助学生理解。
例如,在讲解加减法时,可以用小动物的故事来说明,并通过举例演示加减法的计算过程。
在讲解算法时,可以进行一些具体数学练习,帮助学生掌握具体的计算方法。
其次,教师要结合实际生活中的数学问题来进行教学。
通过讲解实际生活中的数学问题,例如购物、旅游等,可以帮助学生更好地理解算理原理和算法。
并且,通过实际生活中的问题,可以帮助学生将所学知识应用到实际中,更好地掌握数学知识。
最后,教师需要进行不同层次的教学,根据学生的实际情况进行个性化教学。
部分学生可能在算理方面较为弱势,需要进行一些基础练习来提高他们的算理能力。
而另一些学生可能比较擅长算理,需要更多地练习算法,以提高他们的计算能力。
因此,教师需要根据不同学生的情况,量身定制教学计划。
如何处理算理和算法的关系

如何处理算理和算法的关系算理是算法的理论依据,算法是算理的提炼和概括,它们是相辅相成的,算理与算法,贵在合谐,而寻求算理与算法的平衡点是计算教学理性回归需要解决的主要问题。
算法多样化,算理要让学生掌握数学思想方法。
怎样处理好算理与算法教学统一,使学生既理解算理,又能牢固掌握算法、提高计算的速度和正确率呢?下面就以两位数乘一位数为例,说说如何实现理算理与算法的的教学统一。
1、引导研究,理解算理学生只有理解了计算的道理,才能“创造”出计算的方法,才能理解和掌握计算方法,才能正确迅速地计算,所以计算教学必须从算理开始。
教学中要引导学生对计算的道理进行深入的研究,帮助学生应用已有的知识领悟计算的道理。
首先引导学生思考:为什么可以用14×2计算?使学生明白14×2表示求2个14是多少;其次,让学生思考:你打算怎么计算14×2?使学生明白14是由1个十和4个一组成的,可以把14×2转化成已经学过的乘法计算:先算2个10 是多少,再算2个4是多少,最后把两次算的得数合并,计算的过程有三个算式:4×2=8,10×2=20,20+8=28。
通过这样的研究学生就理解两位数乘一位数计算的道理,学生就能应用这样的道理解决其他两位数乘一位数的计算问题。
2、及时练习,巩固内化通过上面的计算研究,学生虽然理解了两位数乘一位数的道理,但是此时学生对算理的理解还处于似懂非懂的状态,学生是否真正掌握了算理还要经过实际计算才能得到检验和巩固,此时及时组织学生进行相应的练习是很有必要的,只有在练习中才能把算理内化为自己的理解,才能使学生理解和掌握算理。
所以在学生初步理解了算理后,应当及时组织学生用三个算式进行两位数乘一位数的练习,使学生在练习中加深对算理的理解,在练习中牢固掌握算理,为后面的抽象、概括计算方法奠定坚实的基础。
3、应用算理,进行创造。
算理是计算的思维本质,如果都这样思考着算理进行计算,不但思维强度太大,而且计算的速度很慢算。
小学数学计算课理解算理和掌握算法之浅谈

小学数学计算课理解算理和掌握算法之浅谈计算是学生最基本的数学素养。
小学数学教学内容分为数与代数、图形与几何、统计与概率、综合与实践四大板块。
数与代数包括整数、小数、分数、百分数加减乘除四则运算,运用运算定律进行简算,等式与方程等计算内容;图形与几何包括平面图形的周长与面积、立体图形的表面积与体积等计算内容;统计与概率包括求平均数、众数、中位数等计算内容;综合与实践以问题为载体,学生综合应用计算内容和方法解决简单的生活实际问题。
可以说计算贯穿小学数学教学的始终。
从思维角度看,计算是依据数和运算的意义以及运算的定律进行逻辑推理的过程。
就计算的种类来讲可以分为口算、笔算、估算三大类。
比较简单的计算通过心算可以得出结果就是我们所说的口算;当数字较大不能很快算出得数,需要把计算过程书写下来,就是我们所说的笔算;估算就是大致推算,可以推算最大值、最小值或大约是多少。
2011年新课程标准把发展学生的运算能力当做十大核心概念之一,可见计算在小学课程中的重要性。
无论哪种类型的计算都离不开学生对算理的理解,算法的掌握与应用。
下面结合自己的教学实践谈谈对理解算理和掌握算法的几点体会。
一、算理与算法的关系算理是客观存在的规律,是计算过程中的道理,是指计算过程的思维方式,解决为什么这样算的问题。
算法是计算的方法,主要是指计算的法则,就是简化了复杂的思维过程,添加了认为规定的程序化的操作步骤,解决如何算的方便、准确的问题。
如:计算312+56时,根据数的组成进行计算312是由3个百、1个十、2个一组成的,56是由5个十、6个一组成的。
先把2个一与6个一相加是8个一,然后1个十与5个十相加是6个十,最后把3个百、6个十、8个一合并的368,这就是算理。
当学生进行一定量的练习后,发现了这样的计算规律:个位只能与个位相加,十位只能与十位相加,百位只能与百位相加,也就是相同数位上的数才能直接相加,再把几个得数合并起来,这个过程就是学生感悟算理的过程。
算理与算法并重

算理与算法并重,促进学生计算能力的培养算理:即计算的原理或者道理,是解决“为什么这样算的问题”。
算法:即计算的方法,是解决“怎么算”的问题。
也就是说计算教学是由计算原理教学和技能训练两部分组成。
在教学时,每一位教师应让算理与算法并重,加强学生计算能力的培养,从而提高学生的计算能力。
在我身边的一些数学教师总认为,计算教学没有什么道理可讲,不必浪费时间去理解算理,只要让学生死记硬背法则,掌握计算方法,反复练习就可以达到正确、熟练的要求。
还有一些教师对“算理”和“算法”的处理,存在着一定的偏差,单纯地讲“算理”,缺乏对“算法”的提炼,或用“算法”讲“算法”,忽视“算理”的教学,遇到一些教师不好讲解或学生不易懂的算理,就一带而过。
更有一部分学生认为自己早在学前就会计算了,而不懂得要去探索计算中的“所以然”,因此造成只知其然不知其所以然的局面。
这样不明算理的机械算法,最终使学生计算的正确率较低,计算技能技巧也无法得到提高。
从六年级毕业班教学下来的我,作为学校数学教研组长的我,深知肩上的责任,就是要在教学中起到引领的作用,于是我下定决心改变上述状况。
首先我认真钻研新大纲,新教材,然后根据班上学生的实际情况,在数学计算教学中,我尝试做到以下五点:一、正确处理好“算理”与“算法”的关系算理是计算的理论依据,而算法则是依据算理提炼出来的计算程序和方法,它是算理的具体体现。
在教学三年级上册的两位数乘一位数不进位乘法时,我是这样设计的:我首先引导学生思考:为什么可以用14×2计算?使学生明白14×2表示求2个14是多少;其次,让学生思考:你打算怎么计算14×2?使学生明白14是由1个十和4个一组成的,可以把14×2转化成已经学过的乘法计算:先算2个10 是多少,再算2个4是多少,最后把两次算的得数合并,计算的过程有三个算式:4×2=8,10×2=20,20+8=28。
计算教学中如何正确处理算理和算法的关系

计算教学中如何正确处理算理与算法的关系通贤中心小学黄和春算理是指计算的理论依据,通俗地讲就是计算的道理。
算理一般由数学概念、定律、性质等构成,用来说明计算过程的合理性和科学性。
算法是计算的基本程序或方法,是算理指导下的一些人为规定,用来说明计算过程中的规则和逻辑顺序。
算理和算法既有联系,又有区别。
算理是客观存在的规律,算理是计算的依据,是算法的基础,主要回答“为什么这样算”的问题;算法是人为规定的操作方法,算法是依据算理提炼出来的计算方法和规,主要解决“怎样计算”的问题。
算理为计算提供了正确的思维方式,保证了计算的合理性和可行性;算法为计算提供了便捷的操作程序和方法,保证了计算的正确性和快速性。
算理和算法是计算教学中相辅相成、缺一不可的两个方面。
理解了算理和算法之间的关系,在教学中,如何让学生经历充分理解算理的过程,又能让学生感悟出算法,也就是教学中如何正确处理算理与算法的关系?下面以“整百整千数加减法”的教学进行一些探讨:一、引导研究,理解算理。
学生只有理解了算理,才能“创造”出计算的方法,正确地计算,所以计算教学必须从算理开始。
教学时要着重帮助学生应用已有的知识领悟计算的道理。
所以首先让学生主动探索算理:五一期间,桦南家电商场搞促销活动。
我队的王大爷,买了一台电视机花1000元,一台电冰箱花2000元。
(1)小朋友看到这两个数学信息,能提出什么数学问题呢?(电视机和电冰箱一共要多少元?电视机比电冰箱便宜多少元?电冰箱比电视机贵多少元?)(2)同学们提出了这么有价值的问题。
你们能解决吗?学生尝试解决第一问题。
1000+2000=怎样计算1000+2000等于多少呢?生独立计算,同桌交流算法,反馈(几种可能性如下:)生:1个千加2个千是3个千,3个千是3000.生:从1+2=3想出1000+2000=3000.生:从100+200=300想出1000+2000=3000.由此可以看到,学生已经知道 1000+2000的算理实际就是1个千加2个千是3个千,3个千是3000.,教师引导学生:根据算理解决另外两个问题,从而引出整百整千数加法的计算方法。
算理与算法的关系

算理与算法的关系
算法主要解决“怎样计算”的问题,算理主要回答“为什么这样算”的问题。
算理是计算的依据,是算法的基础,而算法是依据算理提炼出来的计算方法和规则,它是算理的具体体现。
算理和算法是计算教学中相辅相成、缺一不可的两个方面。
处理好算理与算法的关系对于突出计算教学核心,抓住计算教学关键具有重要的作用。
当前,计算教学中“走极端”的现象实质上是没有正确处理好算理与算法之间关系的结果。
一些教师受传统教学思想、教学方法的支配,计算教学只注重计算结果和计算速度,一味强化算法演练,忽视算理的推导,教学方式“以练代想”,学生“知其然,不知其所以然”,导致教学偏向“重算法、轻算理”的极端。
与此相反,一些教师片面理解了新课程理念和新教材,他们把过多的时间用在形式化的情境创设、动手操作、自主探索、合作交流上,在理解算理上大做文章,过分强调为什么这样算,还可以怎样算,却缺少对算法的提炼与巩固,造成学生理解算理过繁,掌握算法过软,形成技能过难,教学走向“重算理、轻算法”的另一极端。
要正确处理好算理与算法的关系,就应引导学生在理解算理的基础上自主地生成算法,在算法形成与巩固的过程中进一步明晰算理。
算法的形成不能依赖形式上的模仿,而要依靠算理的透彻理解,只有在真正理解算理的基础上掌握算法、形成计算技能,才能算是找到了算理与算法的平衡点。
计算题教学中的算理和算法

计算题教学中的算理和算法计算题教学中的算理和算法在小学数学教学过程中,很多教师受传统教学思想和教学方法的影响,只注重计算题的计算方法与计算结果,而忽视了计算题教学的算理,致使学生陷入知其然而不知其所以然的困境。
因此,探究算理与算法两者之间的关系,处理好二者之间的平衡对于小学数学计算题教学的重要性不言而喻。
一、小学数学计算题教学中算理与算法之间的关系处理1、算理与算法彼此相辅相成、密不可分。
算法是简化数学计算思维过程,依据公式化的解题步骤,提高学生计算的速度和准确率。
算理是计算过程所依据的公式和思维方式,指导学生如何思考。
简单来说,算理为算法指明了思维的方向,算法是算理正确的具体体现。
因此,教师在教学中,既要详细地向学生讲明计算题的算法,更要让学生理解计算题的正确思维过程,从而帮助学生养成良好的思维模式和计算习惯,促进学生数学综合能力的提升。
2、因材施教,平衡二者之间的关系。
算理与算法在数学教学中的地位同等重要,教师既可以在学生掌握正确算法的基础上,引导学生总结和掌握相应的算理,也可以在指导学生在掌握正确的算理之后,再进行具体的算法练习。
这不但取决于教师教学的内容和学生实际的数学水平,而且还需要教师具有良好的教学方法和正确的教学观念,平衡好二者之间的关系,使得不同的教学方法和教学模式殊途同归,最终促进学生计算能力和思维能力的提高。
二、算理和算法融合教学的具体策略1、立足于基本知识和方法,促进算理和算法的相互迁移。
教师在教学中,要引导学生利用已经掌握的知识和方法,完成算法和算理的相互迁移。
以苏教版小学数学五年级上册中“小数加法和减法”的教学内容为例,教师可以通过情景图中小明、小丽和小芳到超市买文具,钢笔的单价8元,笔记本的单价3.4元,讲义夹的单价4.75元,彩笔的单价2.65元。
小明买一个讲义夹,小丽买1本笔记本,求①小明和小丽一共用多少元?②小明比小丽多用多少元?引导学生掌握算法和算理之间的相互迁移。
小学数学教学如何处理“算理与算法”的关系

小学数学教学如何处理“算理与算法”的关系【摘要】本文将探讨小学数学教学中如何处理“算理与算法”的关系。
通过引言部分的教学目标和背景介绍,为读者提供研究的背景和目的。
在正文中,我们将首先讨论算理与算法的区别,然后分析二者之间的联系,探讨如何将它们结合起来进行教学。
接着我们将介绍一些有效的教学方法,并通过案例分析和课堂实践来展示如何在实际教学中应用算理与算法。
最后在我们将对本文进行总结,展望未来研究方向,并提出教学的启示。
通过本文的研究,希望可以为小学数学教学中“算理与算法”的处理提供一些启发和参考。
【关键词】小学数学教学、算理与算法、教学目标、背景介绍、算理与算法的区别、算理与算法的联系、教学方法、案例分析、课堂实践、总结、展望、启示1. 引言1.1 教学目标教学目标是指在小学数学教学中,要重点培养学生的算理思维能力和解决问题的能力。
具体来说,教学目标可以包括以下几个方面:1. 帮助学生掌握基本的算理概念,包括数学表达的逻辑关系和推理过程。
2. 培养学生对问题的分析能力和解决问题的思考能力,使他们能够运用所学知识解决实际生活中的问题。
3. 激发学生对数学的兴趣和学习动力,培养他们对数学的兴趣和探究精神。
4. 培养学生的逻辑思维和数学推理能力,使他们能够理解和运用数学规律。
5. 培养学生的合作意识和团队精神,使他们能够通过协作与交流解决复杂问题。
通过设置明确的教学目标,可以引导教师合理设计教学内容和教学方法,使教学过程更加有针对性和有效性,提高学生的学习效果和学习兴趣。
的达成既需要教师的引导和激发,也需要学生的主动参与和努力,只有双方共同努力,才能实现教学目标的最终目的。
1.2 背景介绍随着教育教学理念的不断更新和发展,传统的死记硬背和机械计算的教学方式已逐渐被淘汰,越来越重视培养学生的数学思维和解决问题的能力。
教师需要在教学中灵活运用算理和算法,引导学生理解数学背后的逻辑,培养他们的数学思维和创新能力。
如何处理运算教学中算理与算法的关系

如何处理运算教学中算理与算法的关系《课标》明确指出:“教学时,应通过解决实际问题进一步培养学生的数感,增进对运算意义的理解。
”因此,在教学时,教师应以清晰的理论指导学生掌握计算方法,理清并训练掌握计算法则、运算性质、运算定律以及计算公式的推导方法,培养学生的简便意识。
对于计算教学的研究还要正确处理好算法与算理的关系。
掌握算法和探究算理是计算教学的两大任务,算法是解决问题的操作程序,算理是算法赖以成立的数学原理。
在计算教学中,算理探究与算法掌握具有同等重要的地位。
但在新课程实施过程中,由于部分教师对算法多样化教学理念的片面认识,出现了一味追求多种算法,而忽视算理探究的新问题,值得我们反思。
因此,在计算教学时,首先必须让学生明确怎样算,也就是是要加强法则及算理的理解,并在理解算理的基础上掌握计算方法,正所谓“知其然,知其所以然”。
下面,我就粗谈一下如何在运算教学中处理好算理与算法的关系。
一、精心设计,正确处理算法与算理的关系1、算理应是学生在自主探索中建构在计算碰到新问题时总有相当多的学生会应用已有的经验想办法解决问题,教师应为学生提供探索的空间,交流的平台,在交流中明白一个个算理,从而发展学生的思考能力,不但能提升认识,还能为新知的学习打下基础,缩短教学的时间。
2、展现多种算理时要找到突破点。
叶澜教授说过,没有聚焦的发散是没有价值的,聚焦的目的是为了发展。
为此,在交流多种想法时,教师要善于抓住恰当的一种切入口,大部分学生容易理解的进行突破。
这样效率就提高了。
例如:教学十几减9时,学生出现了好多种算法,如果要一一解释每个学生的算理确实要花好长时间,而且其他学生还会有一种云里雾里的感觉,结果什么都不清楚,因为每种计算都会有一般的算法,为后续学习打基础的。
这时教师只有选择其中最容易理解的破十法和想加算减这两种方法讲解,让学生理解算理。
这样既能让所有学生都能理解又提高了教学效率。
3、注重算理与算法的沟通。
算理与算法

算理与算法1. 引言在现代科学和技术领域中,算理与算法是两个重要的概念。
算理是指数学理论和逻辑推理,而算法是指解决问题的一系列有序步骤。
算理与算法的研究和应用对于计算机科学、人工智能、数据科学等领域具有重要意义。
本文将深入探讨算理与算法的关系,以及它们在现实世界中的应用。
2. 算理的基础算理是数学理论和逻辑推理的结合体,它研究的是数学对象的性质和规律。
算理的基础包括数学的各个分支,如代数、几何、概率论等。
数学提供了一种精确的描述和分析问题的工具,它的逻辑性和严谨性使得我们能够准确地推导和证明各种数学命题和定理。
除了数学,算理还包括逻辑推理。
逻辑是一种思维方式,通过推理和推断来得出结论。
逻辑推理的基础是命题逻辑和谓词逻辑。
命题逻辑研究的是命题之间的关系,而谓词逻辑则研究的是谓词和量词的运用。
逻辑推理能够帮助我们分析问题,找出问题的解决方法。
3. 算法的概念与分类算法是解决问题的一系列有序步骤。
它是计算机科学的核心概念,也是现代科学和技术的基石之一。
算法可以用来解决各种问题,包括数学问题、工程问题、优化问题等。
一个好的算法应该具备以下几个特征:正确性、可行性、确定性和有限性。
根据问题的性质和解决方法的不同,算法可以分为多种类型。
常见的算法类型包括搜索算法、排序算法、图算法、动态规划算法等。
搜索算法用于在一个数据集中查找目标元素,排序算法用于对数据集进行排序,图算法用于解决与图相关的问题,动态规划算法用于解决具有最优子结构的问题。
4. 算理与算法的关系算理和算法之间存在着密切的关系。
算理提供了算法设计和分析的理论基础,而算法则是算理在实际问题中的应用。
算理通过数学的抽象和逻辑的推理,帮助我们理解问题的本质和规律。
而算法则是基于算理的思想,将问题的解决方法转化为一系列可执行的步骤。
算理和算法的关系可以用一个简单的比喻来理解:算理是一座大桥,而算法是桥上的车辆。
桥的存在使得车辆能够安全地通过河流,而车辆的运行也验证了桥的可靠性和有效性。
算理和算法

举例说明算理和算法简介:举例说明算理和算法,教师在使学生理解算理上有哪些好的经验和做法,举例说明。
.举例说明算理和算法正文:举例说明算理和算法小数乘小数运算的算理究竟是什么?算理与算法的关系是什么?(1)小数乘小数运算的算理究竟是什么?算理与算法的关系是什么?算理是计算的理论依据,是由数学概念、性质、定律等内容构成的数学基础理论知识。
算理是计算的理论依据,是由数学概念、性质、定律等内容构成的数学基础理论知识。
而算法是实施四则计算的基本程序和方法,通常是算理指导下的人为规定。
新课程标准把义务教育阶段数学课程目标明确划分成了知识技能目标和过程性目标两大类,其实知识技能与过程性目标作为数学课程目标的两个组成部分并无主次之分,它们是一个互相影响、相辅相成的有机体,因此,在计算教学中理解算理固然重要,掌握算法同样不容忽视。
(2)教师在使学生理解算理上有哪些好的经验和做法,举例说明。
教学片段:已知36×28=1008 36×280= 36×2.8= 36×0.28= 3.6×2.8= 师:先观察,再说说自己体会。
生1:一个因数不变另,另一个扩大10 倍,积也扩大了10 倍。
生2:36×2.8 28 缩小10 倍,是2.8,积是1 位小数.。
师:那么积的小数点应该点在哪里呢?生3:点在0 和8 之间。
师:怎么想的?生4:一个因数缩小10 倍,另一个因数不变,积也缩小10 倍,所以点在0 和8 之间。
生5;因数中是一位小数,所以积也是一位小数。
师:那么3.6×2.8 呢?积大概是几位小数?生6:一个因数是一位小数,另一位因数也是一位小数,所以,积是两位小数。
师:猜一猜,积是多少,小数点又应该点在哪里呢?生7:10.08。
师:用计数器验证一下. 学生用计数器验证。
师:能用竖式计算么?(由学生自己完成)让学生以小组合作学习的方式,自主找出解决问题的办法,让学生尝试自主学习的快乐。
小学数学计算课理解算理和掌握算法之浅谈

小学数学计算课理解算理和掌握算法之浅谈计算是学生最基本的数学素养。
小学数学教学内容分为数与代数、图形与几何、统计与概率、综合与实践四大板块。
数与代数包括整数、小数、分数、百分数加减乘除四则运算,运用运算定律进行简算,等式与方程等计算内容;图形与几何包括平面图形的周长与面积、立体图形的表面积与体积等计算内容;统计与概率包括求平均数、众数、中位数等计算内容;综合与实践以问题为载体,学生综合应用计算内容和方法解决简单的生活实际问题。
可以说计算贯穿小学数学教学的始终。
从思维角度看,计算是依据数和运算的意义以及运算的定律进行逻辑推理的过程。
就计算的种类来讲可以分为口算、笔算、估算三大类。
比较简单的计算通过心算可以得出结果就是我们所说的口算;当数字较大不能很快算出得数,需要把计算过程书写下来,就是我们所说的笔算;估算就是大致推算,可以推算最大值、最小值或大约是多少。
2021年新课程标准把发展学生的运算能力当做十大核心概念之一,可见计算在小学课程中的重要性。
无论哪种类型的计算都离不开学生对算理的理解,算法的掌握与应用。
下面结合自己的教学实践谈谈对理解算理和掌握算法的几点体会。
一、算理与算法的关系计算理论是客观规律,是计算过程中的真理,是计算过程中解决为什么要这样计算的一种思维方式。
算法是一种计算方法,主要指计算规律,它简化了复杂的思维过程,增加了规定的程序操作步骤,解决了如何方便、准确地计算的问题。
例如,当计算312+56时,它是根据数字的组成来计算的。
312由3百、1十和2个一组成,56由5十和6个一组成。
先加2个1和6个1,得到8个1,再加1个10和5个10,得到6个10,最后加3个100,6个10和8个1,得到368,这是算术。
经过一定的实践,学生们发现了这样一个计算规律:单个位只能与单个位相加,十位只能与十位相加,百位只能与百位相加,即同一位数上的数字可以直接相加,然后,可以将得到的几个数进行组合。
这个过程就是学生对计算理论的认知过程。
论算理与算法的关系

授“渔”or授“鱼”?观摩了刘老师的这节课,在刘老师的课堂上对算理和算法完美结合给了我很大的感触:数学是理科,有着其理性之美,理法并融,才能有其厚度和深度,一个是“什么”,一个是“是什么”,二者地位都很重要,不可忽视其中的任何一个方面,二者相辅相成。
通过今天的学习,我对算理和算法的关系有一点不成熟的理解,如有错误之处,希望专家批评指正。
俗话说:“授之以鱼不如授之以渔。
”主要意思是说给人一些鱼不如教授他捕鱼的方法和技能。
对这种说法,我有点自己的理解:想象下在古时的人们,“鱼”是食物,没有食物就面临着饥饿甚至是死亡。
只教授方法,不注重实践,捕不到鱼最终的结果还是挨饿,所以我认为不仅仅要教授方法,而且还要给予一定的物质基础,在每次”有效”的实践后通过奖励的方式给予“鱼”。
通过对以上案例的理解,在这里我把算理理解为“渔”,把算法理解为“鱼”,只把算理交给学生而不注重算法的培养,计算找不到方法,会使学生产生疑惑;或者只注重算法而不注重算理的研究,会使学生产生为什么这样计算的困惑,以上两种情况都会使学生产生迷茫困惑的心理。
为此作为传道授业解惑者的我们,要正确处理好算理和算法的关系:首先,要明确“渔”和“鱼”的关系。
算理与算法是计算教学中有机统一的整体,形式上可分,实质上不可分,重算法必须重算理,重算理也要重算法。
其次,凸显“渔”对“鱼”的指导作用。
计算方法是以算理为依据的,只有在理解了原理之后才能在练习中找到依据,从而产生计算方法。
再次,要充分发挥“鱼”对“渔”的积极作用。
计算教学的问题情境既为引出新知服务,体现“学以致用”,也为理解算理、提炼算法服务,教学要注意在“学用结合”的基础上,以理解算理,掌握算法,形成技能为主。
通过练习实践,加强对算法的应用,逐步提高学生计算的信心和成就感,从而使学生好学、爱学,进而加深对算理的理解。
总之,只有正确处理好算理和算法的关系,以算理为先导、以创造为契机,学生不但理解了算理,而且创造出简便的计算方法,并归纳出计算的法则,才能实现算理与算法的和谐统一,既要授“渔”,也要授“鱼”!算理和算法的关系简言之,算法就是计算方法,而算理则是计算的道理、依据,它们分别解决“怎样算”和“为什么这样算”的问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
算理和算法的关系
丁会芳“兵马未动,粮草先行。
”不错,我们再上每一堂课前,都要做好充分的准备。
在这一课例中,要真正的做好计算教学,就必须要让学生“会算”,核心问题就是要处理好算理和算法之间的关系。
那么算理和算法之间是什么关系呢?算理是客观存在的规律,算法是人为规定的操作方法;算理为计算提供了正确的思维方式,保证了计算的合理性和正确性,算法为计算提供了快捷的操作方法,提高了计算的速度;算理是算法的理论依据,算法是算理的提炼和概括,它们是相辅相成的。
在新课程的教学中,教材特别突出对算理的理解,还注重了追求算法多样化。
在实际教学过程中,有很多老师认为只要学生最后能算出题目的答案就可以了。
其实这种想法是错误的,会导致我们的教学偏向于“重算法,轻算理”。
教学中,我们为了让学生理解算理,课堂上都在让学生进行交流、进行练习。
以至于上完课后,学生对于算法还模模糊糊,不知道题目到底是怎么做的,这其中的原因就是我们的教学偏向了“重算理,轻算法”。
事实上这都与我们没有处理好算理和算法之间的关系有关。
处理好算理和算法之间的关系
朱荣英
1、在课堂上,我们可以精心创设几个错误案例,然后引导学生有目的、有步骤地去发现问题,解决问题,掌握计算方法。
2、在学习新课的过程中,我们可以采用自主探索和合作交流相结合的教学方法,充分发挥学生的主观能动性。
在新授结束以后,要让学生交流“如何算?怎样算?为什么这样算?”组织学生进一步提炼算法。
3、学生虽然理解了算理,但只有在练习中才能把算理内化为自己的认识。
所以,我们要加大练习,包括口算,估算和笔算。
还要要注重对学生算法习惯的培养和养成及时验算的习惯。
使学生在练习中加深对算理的理解,为后面抽象、概括计算方法奠定坚实的基础。