SCR脱硝工艺
脱硝SCR法(中低温)
脱硝SCR工艺介绍第一章脱硝技术介绍SCR 脱硝系统是利用催化剂,在一定温度下,使烟气中的NOx 与氨气供应系统注入的氨气混合后发生还原反应,生成氮气和水,从而降低NOx 的排放量,减少烟气对环境的污染。
其中SCR 反应器中发生反应如下:4NO + 4NH3 + O2催化剂4N2 + 6H2O (1)6NO2 + 8NH3催化剂7N2 + 12H2O (2)NO + NO2 + 2NH3催化剂2N2 + 3H2O (3) SCR 脱硝工艺系统可分为氨水储运系统、氨气制备和供应系统、氨/空气混合系统、氨喷射系统、烟气系统、SCR 反应器系统和废水吸收处理系统等。
其中由氨水槽车运送氨水,氨水由槽车输入储氨罐内,并依靠氨水泵将储氨罐中的氨水输送到氨水蒸发罐内蒸发为氨气,与稀释风机鼓入的稀释空气在氨/空气混合器中混合后,送达氨喷射系统。
在SCR 入口烟道处,喷射出的氨气和来自焦炉出口的烟气混合后进入SCR 反应器,通过两层催化剂进行脱硝反应,最终通过出口烟道回至余热锅炉,达到脱硝的目的。
第二章方案编制输入条件1. 概述1.1 编制依据(1) 中华人民共和国国家标准GB 16171-2012《炼焦化学工业污染物排放标准》和临汾大气污染防治文件。
(2) 中华人民共和国的有关法律、法规、部门规章及工程所在地的地方法规;(3) 现行有关的国家标准、规范,行业标准、规范及自治区级有关标准、规范;(4)业主提供的设计资料。
1.2 主要设计原则(1)选择符合环保要求的最经济合适的烟气脱硝工艺方案,烟气脱硝系统不能影响系统正常运行;(2)烟气脱硝工程尽可能按现有设备状况及场地条件进行布置,力求工艺流程和设施布置合理、操作安全、简便,对原机组设施的影响最少;(3)对脱硝副产物的处理应符合环境保护的长远要求,尽量避免脱硝副产物的二次污染,脱硝工艺应尽可能减少噪音对环境的影响;(4)脱硝工程应尽量节约能源和水源,降低脱硝系统的投资和运行费用;(5)脱硝系统年运行小时数按8000小时,脱硝系统可利用率98%以上;(6)SCR装置按反应器出口NO x含量150mg/Nm3以下达到环保要求。
SCR脱硝技术
SCR脱硝技术及其脱硝催化剂生产工艺1、概述SCR(selective catalytic reduction)是烟气选择性催化还原法脱硝技术的简称,是指在催化剂的作用下,利用还原剂(如NH3)“有选择性”地与烟气中的NOx反应并生成无毒无污染的N2和H2O。
也就是说SCR工艺的实质就是燃煤锅炉排放烟气中的NOx污染物与喷入烟道的还原剂NH3,在催化剂的作用下发生氧化还原反应,生成无害的N2和H2O。
该工艺于20世纪70年代末首先在日本开发成功,80年代和90年代以后,欧洲和美国相继投入工业应用,现已在世界范围内成为大型工业锅炉烟气脱硝的主流工艺。
为避免烟气再加热消耗能量,一般将SCR反应器布置在锅炉省煤器出口与空气预热器之间,即高飞灰布置。
此时烟气温度(300℃-430℃)正好是催化剂的最佳活性温度窗口。
氨气在加入空气预热器前的水平管道上加入,与烟气混合,NOx在催化剂的作用下被还原为N2和H2O。
目前常规应用的SCR技术为中温催化剂(280℃-420℃),而现在正在研究开发的低温催化剂,可应用于200℃以下的烟气温度。
2、SCR反应过程SCR技术是在金属氧化物催化剂作用下,以NH3作为还原剂,将NOx还原成N2和H2O。
NH3不和烟气中的残余的O2反应,而如果采用H2、CO、CH4等还原剂,它们在还原NOx的同时会与O2作用,因此称这种方法为“选择性”。
主要反应方程式为:4NH3+4NO+O2─>4N2+6H2O (1)NO+NO2+2NH3─>2N2+3H2O (2)3、SCR系统设计条件•烟气流量•烟气温度•烟气成分和灰分成分•烟气入口NOx浓度•脱硝效率•空间速率•NH3/NOx摩尔比•SO2转化率•NH3逃逸率•反应器运行压降4 、SCR脱硝系统主要装置•氨存储和供应系统•氨/空气喷射系统•SCR反应器•SCR催化剂•SCR控制系统•吹灰和灰输送系统5、SCR催化反应还原剂用于SCR烟气脱硝的还原剂一般有3种:液氨、氨水、及尿素。
水泥厂scr脱硝工艺流程
水泥厂scr脱硝工艺流程
水泥厂的脱硝工艺是为了减少废气中的氮氧化物排放,保护环境。
一般来说,水泥厂脱硝工艺可以采用选择性催化还原(SCR)工艺。
SCR工艺是指在一定温度下,通过催化剂催化将废气中的氮氧化物(NOx)与氨(NH3)进行还原反应,生成氮气和水,从而达到脱硝的目的。
脱硝工艺的流程一般包括以下几个步骤,首先是废气预处理,包括除尘和脱硫等工序,以保证废气中的杂质对SCR催化剂的影响降到最低;其次是氨水的制备和储存,因为SCR工艺需要添加氨来进行脱硝反应,所以需要有稳定的氨水供应系统;然后是催化反应器,废气经过预处理后进入催化反应器,在催化剂的作用下进行脱硝反应;最后是系统集成和废气排放控制,对脱硝后的废气进行监测和控制,确保符合环保排放标准。
在实际应用中,SCR脱硝工艺还涉及到催化剂的选择、温度、压力、氨气与废气的混合比例等参数的控制,以及对催化剂的再生和更换等运行与维护工作。
同时,还需要考虑工艺的能耗、投资和运行成本等经济因素。
总的来说,水泥厂的SCR脱硝工艺流程是一个复杂的系统工程,需要综合考虑环保、经济和工程实际情况,以达到高效、稳定地减
少氮氧化物排放的目的。
SCR锅炉烟气脱硝1
附件二、锅炉烟气SCR脱硝一、SCR工艺原理利用选择性催化还原(SCR)技术将烟气中的氮氧化物脱除的方法是当前世界上脱氮工艺的主流。
选择性催化还原法是利用氨(NH3)对NO X的还原功能,使用氨气(NH3)作为还原剂,将一定浓度的氨气通过氨注入装置(AIG)喷入温度为280℃-420℃的烟气中,在催化剂作用下,氨气(NH3)将烟气中的NO和NO2还原成无公害的氮气(N2)和水(H2O),“选择性”的意思是指氨有选择的进行还原反应,在这里只选择NO X还原。
其化学反应式如下:4NO+4NH3+O2→4N2+6H2O2NO2+4NH3+O2→3N2+6H2O6NO2+8NH3→7N2+12H2O副反应主要有:2SO2+O2→2SO3催化剂是整个SCR系统的核心和关键,催化剂的设计和选择是由烟气条件、组分来确定的,影响其设计的三个相互作用的因素是NO X 脱除率、NH3的逃逸率和催化剂体积。
脱硝反应是在反应器内进行的,反应器布置在省煤器和空气预热器之间。
反应器内装有催化剂层,进口烟道内装有氨注入装置和导流板,为防止催化剂被烟尘堵塞,每层催化剂上方布置了吹灰器。
二、脱硝性能要求及工艺参数1、性能要求采用SCR脱硝技术时,脱硝工程应达到下列性能指标:NO X排放浓度控制到200mg/Nm3以下,总体脱硝效率约80%;氨逃逸浓度不大于3uL/L;SO2/SO3转化率小于1.0%;2、工艺参数脱硝工艺的设计参数见表液氨缓冲槽SCR工艺流程图3、高灰型SCR脱硝系统采用高灰型SCR工艺时,250~390℃的烟气自锅炉省煤器出口水平烟道引入,进入SCR脱硝装置入口上升烟道,经氨喷射系统喷入烟道的NH3与烟气混合后,在催化剂作用下,将NO X还原成N2和H2O,脱硝后的干净烟气离开SCR装置,进入空气预热器,回到锅炉尾部烟道。
高灰型SCR脱硝系统包括烟道接口、烟道、挡板、膨胀节、氨气制备与供应、氨喷射器、导流与整流、反应器壳体、催化剂、吹灰器、稀释风机、在线分析仪表及控制系统等部件,归纳起来可分为催化剂系统、反应器系统、氨供应与喷射系统及电气热控系统等几个部分。
第二天第1节 SCR脱硝原理与工艺
• 为达到系统设计要求的脱硝效率和NH3逃逸限值,在设计中要充分利用 催化剂、尽可能使氨在烟气中均匀分布。反应器入口设置烟气分布系统, 以确保烟气在反应器截面上的均匀分布,从而有效利用催化剂。
• 催化剂选型必须考虑烟气特点和运行参数范围,但是确保催化剂实现最 佳催化效果的先决条件是正确设计关键设备,如:SCR反应器、烟道内 部构件和喷氨系统,确保催化剂层均匀的烟气流动条件以及氨和烟气的 均质混合是至关重要。通过CFD和实体模型对SCR脱硝装置进行流场模 拟是达到这一目的必不可少的手段。
板式催化剂的积灰与堵塞
31
蜂窝式催化剂的积灰与堵塞
低尘布置:SCR喷氨法催化剂反应器置于 空气预热器与静电除尘器之间
空气 NH3+空气 NH3 NH3储罐蒸 发器 SCR
锅炉
空气预热器
FGD ESP 空气
去烟囱
32
优点: • 锅炉烟气经过静电除尘器后,粉尘浓度降 低,可以延长催化剂寿命; • 与锅炉本体独立,不影响锅炉正常运行; • 氨的泄漏量比高温高尘布置方式的泄漏量 要少。
SCR反应器的内部实物图
1.SCR反应器 SCR反应器截面成矩形,壳体由起到加强作用的型钢和钢板组成, 反应器的载荷通过它的两侧承重墙均匀的分布,向下传递,利用反应 器底部的弹性支座传递到SCR钢构架的支撑梁上。 SCR反应器外壁一侧在每一层催化剂处均设有检修门,用于将催 化剂模块装入催化剂层或更换催化剂模块。每个催化剂层设有人孔, 在机组停运时允许进入检查或检测催化剂模块。
26
SCR工艺布置
27
高尘布置:催化剂反应器布置在空气预热器前
NH3+空气 NH3
SCR
NH3
NH3储罐蒸发器 锅炉
SCR脱销运行工艺
SCR脱硝系统运行工艺1、SCR工艺描述SCR烟气脱硝装置的工艺流程主要由氨区系统、氨喷射系统、催化剂、烟气系统、反应器等组成。
核心区域是反应器,内装催化剂。
外运来的氨水储存在氨水储存罐内,氨水输送系统将氨水用喷枪喷喷射至氨混合器内蒸发为氨气,并通过稀释风将氨气通过喷氨格栅(AIG)的喷嘴喷入烟气中与烟气混合,充分混合后进入催化反应器。
当达到反应温度且与氨气充分混合的烟气气流经SCR反应器的催化层时,氨气与NOx发生催化氧化还原反应,将NOx还原为无害的N2和H2O。
2、主要设备介绍2.1卸氨泵卸氨泵能满足各种条件下的要求。
卸氨泵抽取氨水罐车中的氨水,将氨水罐车的氨水抽至氨水储罐中。
系统设有卸氨泵1台。
2.2 氨水储罐氨水储罐的容量,按照2台锅炉BMCR工况,在设计条件下,设置2个50M3氨水储罐,储罐上安装有液位计、液位变送器、双金属温度计、进出口关断阀、呼吸阀、压力表,在储罐附近装有氨气泄漏检测器,为氨水储罐氨气泄漏保护所用。
氨水储罐顶部四周安装有消防水喷淋管线及喷嘴,当氨水储罐区域有氨气泄漏时,检测到空气中氨含量达到设定值时自动淋水装置启动,启动自动淋水装置,对氨气进行吸收,控制氨气污染。
2.3 氨水输送泵氨水输送泵主要是将氨水储罐里的氨水输送至氨混合器中。
氨水输送泵为专门输送氨水的泵,为保证氨水的不间断供应,氨水输送泵采用一用一备。
2.4 氨混合器氨水蒸发所需要的热量采用空气加热器来提供热量。
氨混合器上装有喷枪,氨水及压缩空气通过喷枪混合气化后进入氨混合器,气化后的氨水通过加热后的稀释风将氨水蒸发为氨气后带入氨喷射(AIG)系统。
进入喷枪氨水输送管路上装有气动关断阀及气动调节阀,通过气动调节阀来调整氨水流量;进入喷枪的压缩空气管路上装有减压阀,通过减压阀来调整进入喷枪的压缩空气的压力,在氨混合器进出口位置装有温度检测器,通过温度来调整稀释风量及氨水流量;2.5 氨喷射(AIG)系统根据烟道的截面、长度、SCR反应器本体的结构型式等,设有1套完整的氨喷射系统,保证氨气和烟气在进入SCR反应器本体之前混合均匀。
燃煤电厂SCR脱硝工艺的设计
燃煤电厂SCR脱硝工艺的设计SCR脱硝工艺是利用催化剂将NOx与氨(NH3)在一定温度下催化反应,生成氮气(N2)和水蒸气(H2O)。
该工艺的基本反应方程为:4NO+4NH3+O2→4N2+6H2O。
在SCR脱硝过程中,关键是选择合适的催化剂和确定适当的反应温度。
选择催化剂是SCR脱硝工艺设计中的关键步骤之一、常用的催化剂有钒钨钛系催化剂(V-W/Ti)和铜铁催化剂(Cu-Fe)。
选择催化剂时需要考虑其催化活性、稳定性和耐高温性。
另外,还需要考虑催化剂的毒性抗性,即在燃烧过程中可能产生的硫化物等对催化剂的影响。
确定适当的反应温度是SCR脱硝工艺设计的另一个关键要点。
SCR脱硝反应的最佳温度范围是在200~400摄氏度之间。
过低的反应温度会导致反应效率低下,过高的反应温度会导致催化剂失活。
因此,需要根据燃煤电厂的实际情况和要求,选择适当的反应温度。
除了催化剂选择和反应温度确定外,SCR脱硝工艺设计还需要考虑其他因素。
首先是氨的投加量,氨的投加量需要根据燃煤电厂的NOx排放浓度和减排要求来确定。
其次是脱硝反应器的设计和选择,包括反应器的尺寸、形状和材料等。
此外,还需要考虑配套系统的设计,如氨输送系统、催化剂布置系统和SCR脱硝过程的控制系统等。
在SCR脱硝工艺设计的过程中,需要进行模拟计算和实际测试,以验证设计方案的可行性和有效性。
模拟计算可以通过建立数学模型,对SCR 脱硝过程进行模拟和优化,评估不同操作参数的影响。
实际测试可以通过建立试验装置,并采集氮氧化物和氨的浓度数据,验证SCR脱硝工艺的性能。
总之,SCR脱硝工艺是减少燃煤电厂NOx排放的有效方法。
在SCR脱硝工艺的设计过程中,需要选择合适的催化剂、确定适当的反应温度,并考虑氨的投加量、脱硝反应器的设计和选择,以及配套系统的设计。
同时,还需要进行模拟计算和实际测试,以验证设计方案的可行性和有效性。
通过科学合理的设计和优化,可以提高SCR脱硝工艺的脱硝效率,达到减少燃煤电厂NOx排放的目的。
烟气脱硝(SCR)技术和相关计算
6.氨消耗量的粗略计算
假设锅炉排放NOx浓度为400mg/m3,将锅炉NOx 排放浓度视为NO浓度和NO2浓度之和计算的氨 消耗量。
4NO + 4NH3 + O2→ 4N2+ 6H2O (1) 2NO2 + 4NH3 + O2→ 3N2 + 6H2O (2)
C NO+C NO2 = 400
(1)
4.2 SCR技术原理
作选为择还性原催剂化,还在原金法属(催SC化R技剂术作)用是下以,氨将(NONxH的3) 还原成无害的N2和H2O。 NH3有选择的与烟气中 NOx反应,而自身不被烟气中的残余的O2氧化, 因此称这种方法为“选择性”。 有氧条件下反应式如下:
4NO + 4NH3 + O2→ 4N2+ 6H2O 2NO2 + 4NH3 + O2→ 3N2 + 6H2O
4. 烟气脱硝SCR工艺
目前世界上使用最广泛的方法是选择性催化还原法(SCR) 和选择性 非催化还原(SNCR) 。 • SCR技术:选择性催化还原法(SCR为Selected Catalytic Reduction英文缩写) • SNCR技术:选择性非催化还原法(SNCR英文缩写为Selected Non-Catalytic Reduction英文缩写) • SNCR/SCR混合法技术:选择性非催化还原法和选择性催化还原 法的混合技术
烟气脱硝(SCR)技术及相关计算
内容目录
1. 火电厂烟气脱硝基本概念 2. 氮氧化物生成机理 3. 减少氮氧化物排放的方法 4. 烟气脱硝SCR工艺 5. 运行注意事项 6. 氨消耗量的粗略计算
1. 火电厂烟气脱硝基本概念
烟气脱硝是NOx生成后的控制措施,即对燃烧后产生 的含NOx的烟气进行脱氮处理的技术方法。
第11章SCR脱硝原理与工艺
一、SCR反应机理(P174) 1.SCR反应流程
图11-1 SCR反应流程示意图
2.SCR反应机理
在一定温度和催化剂作用下,还原剂(NH3、尿 素)选择性地与烟气中NOx反应生成N2和H2O。 反应如下:
主要反应,温度 4NH3 4NO O2 催化剂4N2 6H2O
(三)尿素水解与热解比较
表11-2 热解法与水解法比较
热解法
水解法
热力控制工艺
高压操作
使用气体燃料或柴油
需要高温
喷入40~50%浓度尿素溶 低浓度尿素溶液
液
跟随能力强,响应时间快 响应时间与跟随能力差
氨逃逸控制好
水用量大,浪费能源
控制简单
负荷变化时,易生成残留
尿素聚合物堵塞管道
成本较低
需高压容器,设备要求高
290~430℃
4NH3 2NO2 O2 催化剂3N2 6H2O
副反应,温度>450℃
4NH3 3O2 2N2 6H2O 4NH3 5O2 4NO 6H2O
2NH3 N2 3H2
SO2 + 1/2 O2
SO3
NH3 + SO3 + H2O
NH4 HSO4
典型SCR 脱硝反应器示意图
原
NH3
H2O 净
NOx
NH3
NOx NH3
N2 H2O
N2 H2O
图11-3 SCR工艺化学反应过 ❖NH3喷射温程度范围:290~430℃;≥90%脱硝率 ; ❖投资费用高,空间限制,NH3泄漏,SO2转化,催 化剂中毒失火,粉煤灰综合利用问题等; ❖容量范围:122-1300MW
scr脱硝技术 工艺
SCR脱硝技术工艺及应用SCR脱硝技术是目前应用最广泛的烟气脱硝技术之一。
其原理是在催化剂的作用下,还原剂(液氨)与烟气中的氮氧化物反应生成无害的氮和水。
SCR脱硝工艺流程主要包括还原剂的准备、烟气预处理、催化剂床层和烟气净化四个步骤。
SCR脱硝技术具有脱硝效率高、运行可靠、便于维护等优点,但也存在催化剂失活和尾气中残留等缺点。
SCR脱硝技术的应用范围广泛,包括火电厂、钢铁厂、化工厂等。
1. SCR脱硝技术原理SCR脱硝技术的原理是在催化剂的作用下,还原剂(液氨)与烟气中的氮氧化物(NOx)反应生成无害的氮和水。
还原剂与NOx的反应原理还原剂与NOx的反应可以表示为以下化学方程式:4NH3 + 4NO + O2 → 6H2O + 4N2该反应是可逆反应,需要在一定的温度和压力下进行。
在催化剂的作用下,该反应可以向右进行,生成无害的氮和水。
催化剂的作用催化剂是SCR脱硝技术的关键。
催化剂可以降低反应的活化能,从而提高反应的速率。
目前,SCR脱硝技术中常用的催化剂有三元催化剂和二元催化剂。
三元催化剂由钒(V)、钼(Mo)和铌(Nb)等金属组成。
二元催化剂由钒(V)和钼(Mo)等金属组成。
反应温度和压力的影响反应温度和压力对SCR脱硝技术的影响较大。
反应温度越高,反应速率越快,但催化剂的活性越低。
反应压力越高,反应速率越快,但催化剂的寿命越短。
一般来说,SCR脱硝技术的反应温度范围为300-400℃,压力范围为1-2MPa。
2. SCR脱硝工艺流程SCR脱硝工艺流程主要包括还原剂的准备、烟气预处理、催化剂床层和烟气净化四个步骤。
还原剂的准备还原剂通常为液氨。
液氨由氨罐储存,在进入SCR系统之前需要进行蒸发。
烟气预处理烟气预处理的目的是去除烟气中的杂质,以提高催化剂的活性和使用寿命。
烟气预处理通常包括以下步骤:酸碱洗涤:去除烟气中的酸性和碱性物质。
干燥:去除烟气中的水分。
除尘:去除烟气中的粉尘。
催化剂床层催化剂床层是SCR脱硝技术的核心部分。
scr脱硝技术工艺流程
scr脱硝技术工艺流程
SCR(Selective Catalytic Reduction)脱硝技术是一种采用氨水或尿素水作为还原剂,通过氨水在催化剂上与氮氧化物反应,将NOx转化为N2和H2O的方法。
其工艺流程一般包括以下步骤:
1. 脱硝剂制备:首先,制备氨水或尿素水作为还原剂。
氨水可以通过氨气和水的反应得到,尿素水可以通过尿素和水的反应得到。
2. 燃料氧化:将燃料进行完全燃烧,以生成热量和NOx。
3. 烟气预处理:将燃烧后的烟气经过除尘处理,除去其中的灰尘和大颗粒物。
4. 脱硝反应:将预处理后的烟气与脱硝剂(氨水或尿素水)混合,进入脱硝催化剂层。
在催化剂的作用下,氨水或尿素水中的氨和NOx发生氧化还原反应,将NOx转化为N2和H2O。
5. 余氨去除:脱硝反应后,烟气中可能会残留一定量的氨气。
为了避免氨气对环境造成污染,需要进行余氨的去除。
一般采用氨氧化法或吸收剂法来去除残余氨气。
6. 排放:经过脱硝处理后,烟气中的NOx已经转化为无害的氮气和水,排放到大气中。
SCR脱硝技术流程的具体实施细节可能受到具体设备和工艺
参数的影响,上述步骤仅为一般的概述。
实际应用中,根据不同的工艺和设备要求,可能会有一些变化和调整。
scr脱硝催化剂工艺
scr脱硝催化剂工艺SCR脱硝催化剂工艺引言:SCR(Selective Catalytic Reduction)脱硝技术是一种常用的工业氮氧化物(NOx)排放控制技术。
SCR脱硝催化剂工艺是SCR技术的核心部分,通过催化剂的作用将尾气中的氮氧化物转化为无害的氮和水,从而实现对燃煤电厂、燃气发电厂等工业领域的NOx排放进行有效控制。
一、SCR脱硝催化剂工艺的原理SCR脱硝催化剂工艺的原理是利用催化剂对尾气中的氮氧化物进行选择性催化还原反应。
催化剂通常是由钛、钒、钼等过渡金属氧化物组成的,它们具有较高的催化活性和选择性。
在SCR脱硝催化剂中,氨气(NH3)或尿素(CO(NH2)2)作为还原剂,与催化剂表面吸附的氮氧化物发生反应,生成氮和水,完成脱硝过程。
二、SCR脱硝催化剂工艺的工作原理SCR脱硝催化剂工艺主要通过以下几个步骤实现对尾气中氮氧化物的脱除:1. 还原剂喷射:将氨气或尿素溶液喷射到烟道尾气中,使其与氮氧化物发生反应。
还原剂的喷射位置一般选择在锅炉汽包出口处或烟囱的上游位置,以确保尾气中的氮氧化物与还原剂充分接触。
2. 氮氧化物吸附:氮氧化物在催化剂的表面吸附,形成吸附态氮氧化物。
吸附态氮氧化物主要是亚硝酸盐和硝酸盐,它们与还原剂发生反应生成氮和水。
3. 反应生成:吸附态氮氧化物与还原剂发生反应,生成氮和水。
催化剂的作用是降低反应的活化能,提高反应速率,使脱硝反应在较低的温度下进行。
4. 除氨处理:SCR脱硝过程中还原剂中的氨气未完全反应生成氮和水,残留的氨气需要通过除氨装置进行处理,以避免对环境造成污染。
三、SCR脱硝催化剂工艺的优势SCR脱硝催化剂工艺具有以下几个优势:1. 高效脱硝:SCR工艺能够将尾气中的NOx排放降低到较低水平,能够满足严格的排放标准要求。
2. 选择性高:SCR脱硝反应是一种选择性催化还原反应,只对氮氧化物起作用,不对其他组分发生反应,减少了副产物的生成。
3. 适应性强:SCR工艺对尾气温度的适应性较好,可以在较宽的温度范围内进行脱硝反应。
scr脱硝原理及工艺
scr脱硝原理及工艺SCR脱硝原理及工艺。
SCR脱硝是一种常用的烟气脱硝技术,它通过在烟气中喷射氨水或尿素溶液,利用催化剂将氮氧化物(NOx)转化为氮气和水,从而达到减少大气污染的目的。
SCR脱硝技术已经在电厂、钢铁厂、水泥厂等工业领域得到广泛应用,成为减少大气污染的重要手段。
SCR脱硝的原理非常简单,它利用催化剂将氨水或尿素溶液与烟气中的氮氧化物进行催化还原反应,将NOx转化为无害的氮气和水。
催化剂通常采用钒、钨、钼等金属氧化物,具有高效催化作用。
在SCR脱硝系统中,氨水或尿素溶液首先通过喷嘴喷射到烟气中,然后与催化剂接触,发生化学反应,最终将NOx转化为氮气和水,从而达到脱硝的效果。
SCR脱硝工艺主要包括喷射系统、反应器和催化剂再生系统。
喷射系统负责将氨水或尿素溶液喷射到烟气中,要求喷射均匀、稳定,以确保与烟气中的NOx充分混合。
反应器是SCR脱硝系统的核心部件,其中装填有催化剂,烟气经过反应器时与催化剂发生化学反应。
催化剂再生系统用于对催化剂进行再生,通常采用高温空气或蒸汽进行再生,以去除催化剂表面的积灰和硫化物,恢复催化剂的活性。
SCR脱硝技术具有高效、可靠、稳定的优点,能够将烟气中的NOx去除率达到90%以上。
与传统的烟气脱硝技术相比,SCR脱硝技术具有更高的脱硝效率和更低的氨逸失率,对烟气中的其他污染物几乎没有影响。
因此,SCR脱硝技术被广泛应用于工业烟气治理领域。
在实际应用中,SCR脱硝技术需要根据不同的烟气特性和排放标准进行合理的工艺设计和操作控制。
首先,需要根据烟气中的NOx浓度和温度确定适宜的催化剂种类和喷射剂用量,以保证脱硝效果。
其次,需要对SCR脱硝系统进行合理的布局和设计,确保烟气与喷射剂、催化剂充分接触,提高脱硝效率。
最后,需要对SCR脱硝系统进行严格的操作控制和监测,确保系统稳定运行,达到排放标准要求。
总的来说,SCR脱硝技术是一种高效、可靠的烟气脱硝技术,具有广泛的应用前景。
SCR脱硝工艺原理和流程介绍
SCR脱硝工艺原理和流程介绍
选择性催化还原脱硝技术
在氮氧化物(NOx)选择催化还原过程中,通过加氨(NH3),在320~400℃,TI-V-W(Mo)催化剂的作用下,可以把NOx转化为氮气(N2)和水(H2O)。
还原剂:液氨、尿素、氨水
SCR脱硝工艺流程
烟气从锅炉省煤器或空预器出来,与氨气充分混合,经过导流片和整流板均布后进入催化剂层进行脱硝反应,反应后的烟气至下游的空预器或省煤器。
SCR脱硝工艺特点
脱硝效率较高;
技术成熟,运行可靠,便于维护;
系统阻力小。
SCR脱硝主要技术指标
脱硝效率大于90%;
氨逃逸率小于3ppm;
SO2/SO3转化率小于1%。
莱特莱德脱硫脱硝研究中心以烟气脱硫脱硝、废气处理、脱硫除尘、火电厂改造等技术为依托,主营废气处理设备、脱硫脱硝设备、脱硫除尘设备、烟气脱硫设备、锅炉脱硫除尘器、湿式脱硫除尘器、水膜脱硫除尘器等产品。
拥有先进的氨法脱硫、干法脱硫、湿法脱硫、锅炉脱硫脱硝、双碱法脱硫、电厂脱硫脱硝工艺。
SCR脱硝原理及工艺
操作条件
ቤተ መጻሕፍቲ ባይዱ
01
温度: 300400℃
02
压力: 1-3bar
03
催化剂: 钒钛系 催化剂
04
氨氮比: 1:1
SCR脱硝应用
燃煤电厂
SCR脱硝技术在 燃煤电厂中的应 用广泛
燃煤电厂的烟气 中含有大量的 NOx,需要进 行脱硝处理
SCR脱硝技术可 以有效降低燃煤 电厂的NOx排 放
燃煤电厂采用 SCR脱硝技术可 以提高环保性能, 降低环境污染
工业锅炉
01 02 03 04
01
应用领域:电力、化工、冶 金、建材等工业领域
脱硝原理:利用催化剂,将
02 NOx转化为无害的N2和
H2O
03
工艺流程:烟气脱硝、催化 剂再生、烟气再热等
04
技术特点:高效、节能、环 保,满足国家排放标准要求
移动源排放控制
汽车尾气排放:SCR技术应用于汽车尾气净化, 降低污染物排放
02 反应过程:在催化剂表面,
氨气或尿素与NOx发生 化学反应,生成无害的氮 气和水。
04 反应条件:反应温度、压
力、气体浓度等对反应速 率和效率有影响,需要控 制好反应条件以实现高效 脱硝。
催化剂作用
降低反应活化能,提高反 应速率
选择性催化NOx还原为 N2和H2O
防止氨气氧化,提高脱硝 效率
减少副产物生成,降低环 境污染
SCR脱硝原理及工艺
演讲人
目录
01. SCR脱硝原理 02. SCR脱硝工艺 03. SCR脱硝应用
SCR脱硝原理
化学反应
01 SCR脱硝原理:选择性催
化还原技术,利用氨气或 尿素作为还原剂,在催化 剂作用下将NOx转化为无 害的氮气和水。
scr 脱硝工艺流程
scr 脱硝工艺流程SCR脱硝工艺流程SCR脱硝工艺是目前应用最广泛的烟气脱硝技术之一,主要用于燃煤电厂等大型工业排放氮氧化物的治理。
SCR脱硝工艺具有高效、节能、环保等优点,是当前减少大气污染、保护环境的重要手段之一。
SCR脱硝工艺的原理是利用催化剂将烟气中的氮氧化物(NOx)与氨(NH3)进行化学反应,生成氮气(N2)和水(H2O),从而达到脱硝的目的。
SCR脱硝工艺流程通常包括以下几个步骤:1. 烟气预处理:烟气经过除尘、脱硫等预处理后,进入SCR脱硝反应器。
烟气中的NOx浓度、温度等参数需要在一定范围内控制,以保证SCR反应的高效性。
2. 氨水喷射:在SCR反应器中,将氨水喷射到烟气中。
氨水可以通过溶液喷淋、气雾喷淋等方式加入烟气中。
喷射的氨水量需要根据烟气中NOx的浓度和温度等参数进行调节。
3. 反应催化:烟气中的NOx与氨水在催化剂的作用下发生化学反应,生成氮气和水。
催化剂通常采用钒、钨、钼等金属氧化物或金属酸盐,以及硅胶等载体。
4. 烟气后处理:烟气在SCR反应器中脱硝后,需要经过后处理设备进行进一步处理,以达到排放标准。
后处理设备包括除尘器、脱硝吸收塔等。
SCR脱硝工艺流程的优点在于脱硝效率高、能耗低、稳定性好,可以达到较高的脱硝效果。
同时,SCR工艺对燃料种类、燃烧方式等参数的适应性较强,适用于各种燃煤锅炉、燃气锅炉等大型工业锅炉的烟气脱硝处理。
需要注意的是,SCR脱硝工艺中的氨水需要在一定范围内控制,过多或过少的氨水都会影响SCR反应的效果。
此外,SCR反应器中的催化剂需要定期更换或清洗,以保证催化剂的活性。
因此,SCR脱硝工艺的运行和维护需要专业的技术人员进行管理。
scr脱硝原理及工艺
scr脱硝原理及工艺SCR脱硝原理及工艺SCR(Selective Catalytic Reduction)是一种常用的脱硝技术,它能够通过催化剂使氮氧化物被氮气中的氨分解为无害的氮气和水蒸气而达到脱硝的目的。
SCR脱硝原理及工艺包含以下几个方面:一、原理SCR脱硝原理是利用催化剂将氮氧化物在高温下(400~900℃)与氨气反应分解,形成无害的氮气和水蒸气:4NOx +4NH3 → 4N2 + 6H2O氮氧化物的分解主要受到催化剂活性、反应温度和氨/氮氧化物浓度比例的影响。
因此,SCR脱硝工艺不但需要使用催化剂,同时也需要控制反应温度及氨/氮氧化物浓度比例来保证有效脱硝。
二、催化剂SCR脱硝所使用的催化剂有很多种,如V2O5-WO3/TiO2、V2O5-WO3/ZrO2、V2O5-MoO2/TiO2、V2O5-MoO2/ZrO2等。
其中V2O5-WO3/TiO2和V2O5-MoO2/TiO2催化剂具有较强的抗抑制硝酸盐的能力,因此在温度较低的情况下也能够有效的进行脱硝反应,但其活性也较低,反应温度需要控制在450~550°C之间;V2O5-WO3/ZrO2和V2O5-MoO2/ZrO2催化剂具有高的活性和耐热性,可以在更高的温度(600~700°C)下有效的进行脱硝反应,但其抗抑制硝酸盐的能力较弱。
三、工艺(1)技术流程SCR脱硝工艺的技术流程主要包括以下几步:烟气预处理、催化剂装载、氨气注入、催化剂上温、烟气排放,其中烟气预处理是最重要的步骤,它不仅能够降低烟气中的硝酸盐含量,对SCR脱硝反应也有重要的作用。
(2)仪表控制SCR脱硝工艺的仪表控制主要由一个主控系统完成,它可以根据环境变化和反应条件的变化来自动调节反应温度和氨/氮氧化物浓度比例,以保证脱硝效果。
同时,主控系统还可以实时监测烟气中的氮氧化物含量,并对其进行实时调节,以达到排放标准要求。
四、优缺点SCR脱硝技术具有脱硝效率高、操作简单、成本低和可自动控制等优点,因此在大气污染控制方面有着广泛的应用,尤其是在燃煤发电厂中,SCR脱硝技术可以有效的降低氮氧化物的排放量。
(完整版)SCR烟气脱硝工艺简介
SCR烟气脱硝工艺简介吴金泉1李勇1,2(1 福建鑫泽环保设备工程有限公司,福建福州350002;2 江西理工大学环境与建筑学院,江西赣州 341000)摘要:选择性催化还原法(SCR)是目前国际上处理火电厂氮氧化物的最主要处理方法。
我公司于2004年与德国STEULER公司在烟气脱硝技术方面展开了全方位的合作,并在国内开发烟气脱硝市场。
本文从SCR工艺原理出发,介绍了合作公司的相关运行工艺。
关键词:烟气脱硝;SCR;脱硝催化剂;脱硝工艺随着我国经济的发展, 在能源消费中带来的环境污染也越来越严重。
其中,大气烟尘、酸雨、温室效应和臭氧层的破坏已成为危害人民生存的四大杀手。
燃煤烟气所含的烟尘、二氧化硫、氮氧化物等有害物质是造成大气污染、酸雨和温室效应的主要根源。
在我国,二氧化硫、氮氧化物等有害物质主要是由燃煤过程产生的。
随着我国经济实力的增强,耗电量也将逐步加大。
目前,我国已经开展了大规模的烟气脱硫项目, 但烟气脱硝还未大规模的开展。
有研究资料表明,如果继续不加强对烟气中氮氧化物的治理, 氮氧化物的总量和在大气污染物中的比重都将上升, 并有可能取代二氧化硫成为大气中的主要污染物。
我国烟气脱硝项目起步较晚,目前国内运行的烟气脱硝项目所采用的工艺也是引进欧、美、日等发达国家和地区烟气脱硝技术, 为适应国内烟气脱硝市场的需要,我公司于2004年与德国STEULER公司在烟气脱硝技术方面展开了全方位的合作,主要由德方提供技术支持,我方负责开拓市场、消化有关技术。
1 SCR脱硝技术简介在众多的脱硝技术中,选择性催化还原法(SCR)是脱硝效率最高,最为成熟的脱硝技术。
1975 年在日本Shimoneski 电厂建立了第一个SCR系统的示范工程,其后SCR技术在日本得到了广泛应用。
在欧洲已有120 多台大型装置的成功应用经验,其NOx的脱除率可达到80%~90%。
日本大约有170套装置,接近100GW 容量的电厂安装了这种设备,美国政府也将SCR技术作为主要的电厂控制NOx技术,SCR 方法已成为目前国内外电厂脱硝比较成熟的主流技术。
scr脱硝原理及工艺
scr脱硝原理及工艺脱硝是指从燃煤锅炉、发电厂等排放出的废气中去除氮(NOx)化合物的工艺。
脱硝工艺通常包括选择性催化还原(SCR)和非选择性催化还原(SNCR)两种主要方法。
本文将详细介绍SCR脱硝原理及工艺。
选择性催化还原(SCR)脱硝是目前应用较广的一种技术。
其原理为在一定的温度范围内,将烟气与还原剂(常见为氨气,NH3)在催化剂的作用下进行反应,生成非毒性的氮气和水。
整个反应过程主要分为四个步骤:颗粒物脱除、氮氧化物的吸附、氮氧化物的还原和催化剂再生。
在SCR脱硝工艺中,首先需要进行颗粒物的脱除。
这是因为颗粒物会在催化剂表面形成堵塞层,影响反应效率。
通过静电沉降、降尘器等设备,可以有效去除颗粒物。
接下来,氮氧化物以氮氧化物分子(NO、NO2)的形式进入SCR反应器,与还原剂(氨气)在催化剂表面发生吸附。
催化剂通常采用V2O5,WO3等金属氧化物,其表面具有大量的催化活性点,有利于反应进行。
吸附过程中,NOx与氨气发生复杂的化学反应,生成氮气和水。
发生吸附反应后,还原剂在催化剂表面被消耗殆尽,需要定期进行再生。
再生过程中,通过氨气的还原反应,可以将催化剂上吸附的氮氧化物彻底还原,重新生成催化活性点。
再生一般采用高温氨气冲洗等方法。
SCR脱硝工艺在控制氮氧化物排放中具有较高的效率和选择性。
然而,该工艺的适用温度范围较为狭窄,通常为200°C-400°C之间,过低或过高的温度都会降低反应效率。
此外,还需要注意催化剂的选择、催化剂中毒等问题,以确保脱硝工艺的稳定和可靠运行。
除了SCR脱硝,非选择性催化还原(SNCR)脱硝也是常用的一种方法。
SNCR脱硝通过在高温下直接喷射氨水或尿素溶液到烟气中,利用高温下氨水的还原性质,将氮氧化物直接还原为氮气。
SNCR工艺相对于SCR工艺而言,具有操作简单、设备投资少等优点,但效率较低,易产生副产物(如氨硝酸盐)。
综上所述,SCR脱硝是目前应用较广的脱硝工艺之一。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5、烟气SCR设备 (氨站-水喷淋中实景)
氨罐四周的喷淋头用于氨气泄漏时应急喷淋及夏 季高温下罐体的降温喷淋。
5、烟气SCR设备 (后石电厂氨站)参照对比图
5、烟气SCR设备 (氨站-设备图片)
气化器
压缩机
5、烟气SCR设备 (SCR反应器实景图片 )
嵩屿电厂#3机SCR反应器
嵩屿电厂#2机SCR反应 器
规格 蜂窝型 7.0 mm 21 孔×21 孔 150 mm×150 mm×606
mm 6,890 h-1
146.5m3
410℃ 300℃ 450℃ 280℃
8、影响催化降解效果的因素
(1)反应温度
反应温度决定着反应速度和反应活性。目前的SCR系统大多 设定在320℃~420℃之间。 (2)空间速度
➢2004年一期工程NOx的排放量:7211吨 ➢2005年一期工程NOx的排放量:7668吨
➢环保部门要求的NOx排放指标: A、浓度≤225 mg/m3。 B、脱硝率>60%
➢现有的排放浓度:450~600 mg/m3
4、NOx生的原因
➢燃料型NOx ➢热力型NOx
4、NOx产生的原因
➢燃料型NOx
4、NOx产生的影响因素
➢煤种(挥发份、氮量、固定碳) ➢燃料温度 ➢过量空气系数(a值) ➢反应区的烟气组成(O2、N2、CO等 ) ➢反应停留时间 ➢煤粉细度
✓过量空气系数a为最重要的影响因素
5、NOx的控制技术
主要有两大类:
(1)低NOx燃烧技术 在锅炉炉膛内减少煤燃烧生成NOx的量
(2)烟气脱氮技术 在烟气中脱除NOx,以减少向环境排放 。
A、定义:空气中的氧与煤中氮元素 热解产物发生反应,生成NOx。
B、比例:占燃烧过程所产生NOx的 75%~90%,是燃烧过程中NOx的主 要来源。
C、煤中氮量:煤中含氮0.5~3.0%
4、NOx产生的原因
➢热力型NOx
A、定义:燃烧时空气中的N2和O2在 高温下生成的NOx。
B、条件:热力型NOx是在温度高于 1500K时产生的,并随着温度的升高而 增多 。
催化剂是SCR系统中最关键的部分,其类型、结构和表面积 都对脱除NOx效果有很大影响。
但脱氮效率较低。
✓Selective Catalytic Reduction (SCR) 选择性催化还原法 (SCR) (在450 °C 喷射氨水和空气,用V-Mo 催化剂使 NOx 转化为 N2 和蒸汽)
* 被广泛的应用 * 不利的因素有:氨水的挥发 * NH /尿素存储
烟气SCR脱硝工艺
第二部分: SCR工艺与设备
5、烟气SCR设备 (AIG-喷嘴)
氨母管
调节阀 流量计
烟道 喷嘴
AIG喷嘴分布示意图
白色金属部分为注氨喷嘴
5、烟气SCR设备 (吹灰器)
吹灰器的作用是定期吹去催化剂层上的积灰
5、烟气SCR设备 (氨站-参数)
➢氨站设3座100m3的氨储罐,储存的 氨数量为165吨,满足电厂4台机组锅炉 脱硝15天储存量的需要。 ➢汽化器:3台,气化能力约 500kg/h (液氨转为气氨) ➢稳压罐:约4m3 (储存气氨) ➢4氨中和装置、消防装置、卸氨装置、 劳保(洗眼器)等
2、燃料分级燃烧 实质:NOx被还原
5、NOx控制技术(DRB型低NOx燃烧器
)
5、NOx控制技术(低NOx燃烧模拟图)
5、NOx的控制技术(烟气脱硝)
✓Selective Non - Catalytic Reduction (SNCR) 选择性非催化还原法
(氨和尿素在1000 °C下发生反应):工艺简化,
注氨格栅 膨胀节
省煤器
灰斗
混合器 导流板
整流层 运行层 备用层
FL 39650 mm
FL 34550 mm
FL 26500 mm
空预器
一次风机
FL 18690 mm
FL 13990 mm
图例 新增的设备
原有的设备
改造的立柱 原有的立柱
K
L
MN
O
P
4、烟气SCR脱硝工艺( 主要技术指标)
4、烟气SCR脱硝工艺( 主要经济指标)
硫 240
酸 230
氢 220
铵 的
210
凝 200
固 190
点 180 / ℃ 170
NH3=1ppm NH3=2ppm NH3=5ppm NH3=10ppm
160
150 1
10
100
二氧化硫浓度/ppm
烟气经SCR处理后,少量未参加脱硝反应的NH3会与 SO3反应生成NH4HSO4和(NH4)2SO4,对空预器造成粘
形成了极易降解为N2和H2O的亚硝基中间产物。随着还原 态的催化剂被烟气中的氧气所氧化,催化剂得到复原,实
现了催化循环。
H
H ON
OVO
H
O
. .H ON O V OH H
O
. NO H
.N ON O V OH H O
O
O OVO
. 1/4O 2
O
O V OH
NN
NH3
O
O
H 2O
1/2H 2O
1、烟气SCR脱硝原理(化学反应过程)
5、烟气SCR设备 (SCR反应器实景图片
)
嵩屿
嵩屿电厂#2-#4机SCR反应器
5、烟气SCR设备 (SCR反应器实景图片 )
台塑集团SCR反应器
漳州后石电厂SCR反应器
5、烟气SCR设备 (SCR反应器实景图片 )
江苏太仓电厂SCR反应器
6、运行机组改造(对原空预器的影响)
NH3+SO3——(NH4)2SO4+ NH4HSO4
2、催化剂的成份
以 V2O5-WO3(MoO3)/TiO2 为例: ▪TiO2:90%左右(w/w) ▪V2O5:0.3-1.5%(w/w) ▪WO3、MoO3(分别约为10%和6%,w/w ) 注: WO3、MoO3一般只选用其中一种
3、催化剂各成份的作用
以V2O5-WO3(MoO3)/TiO2 为例: ✓TiO2:起载体作用 ✓V2O5:催化反应的活性组分,降解NOx ,同时会把SO2氧化为SO3。 ✓WO3、MoO3:作为结构助剂,提高催化 剂的稳定性,防止钒出现高温烧结现象。
➢每台机每小时耗氨量为110Kg,
➢4台机每天耗氨量约为10 吨
➢4台机年耗量为3300 吨(按100%负荷, 7500 hr计)
➢4台机年耗氨总费用约为1000万元,(按 3100元/吨氨计)
5、烟气SCR设备 (反应器基础与砼支承)
#1机反应器基础改造
#1机反应器砼支座
5、烟气SCR设备 (反应器安装图)
6、催化剂的组装(示意图)
氨喷射格栅
外壳
进口烟道 起重机
催化剂块 出口烟道
支撑结构
6、催化剂的箱体(安装图)
吊装中的催化剂箱体
安装中的催化剂箱体
6、催化剂层(安装后的实景图)
7、催化剂的参数
项目 类型 催化剂模块孔径 催化剂模块孔数 催化剂块尺寸 SV值 每台炉的总催化剂量 持续运行的最高温度 持续运行的最低温度 短期运行的最高温度 短期运行的最低温度
反应器钢架安装图
反应器壳体安装图NH3)注入烟道的绝对安全以及均匀混合, 将氨浓度降低到爆炸极限(其爆炸极限:在空气中体积比 为 15%~28%)下限以下,控制在5%以内。
一期风机房 布置在反应器前侧
二期风机房 布置在反应器后侧
5、烟气SCR设备 (AIG示意图)
1、NOx的来源
➢通常以NOx表示NO(90%)和NO2 (10%) ➢天然源:闪电、火灾、大气中NH3、N2O的氧化 ➢人为源:燃煤电厂、硝酸厂、汽车排放等
2、NOx的危害性(酸雨的定义)
降水pH<5.6称为酸雨
2、NOx的危害性(受酸雨破坏的红杉树 )
2、NOx的危害性(臭氧层受破坏)
2、NOx的危害性(臭氧层受破坏)
2、NOx的危害性(光化学烟雾事件
)NOx与HC等污染物,在合适的气象、地理条件下,受强
烈的光照后形成光化学烟雾。1940年首次出现于美国洛杉
矶。
现象:强
烈刺激性的
浅蓝色烟雾
使能见度降
低;行人眼
睛红肿流泪,
刺激呼吸系
统,损害肺
功能;橡胶
开裂,植物
叶片受毒变
黄以致枯死。
2、NOx的危害性(温室效应)
空间速度是烟气在催化剂容积内的停留时间尺度。空间速度 大,烟气在反应器内的停留时间短,则反应有可能不完全。 一般在2500~3500h-1。 (3)烟气流型及与氨的湍流混合
在工程设计中必须重视烟气的流场,喷氨点应具有湍流条 件以实现与烟气的最佳混合,形成明确的均项流动区域。 (4)催化剂的类型、结构和表面积
4、商用催化剂的型式(比较图)
蜂窝式催化剂 (嵩屿电厂)
平板式催化剂 (后石电厂)
4、商用催化剂的型式(比较图)
蜂窝式催化剂 (嵩屿电厂)
平板式催化剂 (后石电厂)
4、商用催化剂的型式(比较图)
平板式催化剂 (后石电厂)
蜂窝式催化剂 (嵩屿电厂)
5、蜂窝式催化剂的外形
不同气流孔径的催化剂模块
1、烟气SCR脱硝原理(化学反应原理) 在氮氧化物(NOx)选择催化还原过程中,通
过加氨(NH3)可以把NOx转化为氮气(N2)和水 (H2O)。
主要的化学反应方程式如下:
4NO+4NH3+O2→4N2+6H2O 6NO+4NH3→5N2+6H2O
1、烟气SCR脱硝原理(化学反应机理)
氨首先被催化剂活化成氨基,再与烟气中的NO偶合,