黄冈中学期中考试初一数学上试卷及答案
2023黄冈市七年级上册期中数学试卷含答案
2023黄冈市七年级上册期中数学试卷含答案一、选择题1.在3.14,327-,0,π,227-,0.1010010001…(相邻两个1之间依次多一个0)中无理数的个数是( ) A .5个B .4个C .3个D .2个2.“互联网+”已全面进入人们的日常生活,据有关部门统计,目前全国5G 用户数达到6000万,其中6000万用科学计数法表示为( )A .7610⨯B .6610⨯C .8610⨯D .90.610⨯3.下列计算正确的是( ) A .246+=a a aB .248a a a ⋅=C .()326a a =D .824a a a ÷=4.若﹣x m +(n ﹣3)x +4是关于x 的二次三项式,则m .n 的值是( ) A .m =2,n =3 B .m =2,n ≠3 C .m ≠2,n =3D .m =2,n 为任意数5.如图是一个简单的数值运算程序,当输入的x 的值为1-时,则输出的值为( ) 输入x →(3)⨯-→2-→输出 A .1 B .–5 C .-1 D .56.已知关于x 的多项式﹣2x 3+6x 2+9x+1﹣2(3ax 2﹣5x+3)的结果不含x 2项,那么a 的值是( ) A .﹣1B .1C .﹣2D .27.已知有理数,,a b c 在数轴上的位置如图所示,且满足a c b <<.则下列各式: ①b a c ->->-;②0ab ac ab ac-=;③+=+a b a b ;④0a b c b a c ---+-=.其中正确的有( )A .4个B .3个C .2个D .1个8.已知 {}2min ,,x x x 表示取三个数中最小的那个数,例如:当x=9时,{}{}22min,,min9,9,9x x x = .当 {}21min,,4x x x =时,则x 的值为( ) A .12 B .12-C .14D .1169.如图,下列图形都是由大小相等的小正方形按一定的规律组成,其中,图1中有小正方形9个,图2中小正方形14个,…,按此规律,图8中小正方形的个数为( )A .39B .44C .49D .5410.如图所示的数码叫“莱布尼茨调和三角形”,它们是由整数的倒数组成的,第n 行有n 个数,且两端的数均为1n,每个数是它下一行左右相邻两数的和,则第6行第3个数(从左往右数为( )A .130B .148C .160D .1105二、填空题11.如果收入1000元记作+1000元,那么支出2000元记作____元.12.如果221(1)n a x y -+是关于,x y 的五次单项式,则,a n 应满足的条件是_____________. 13.根据如图所示的计算程序,若输入x 的值为2-,则输出y 的值为__________.14.一个两位数,个位数字为a ,十位数字为b ,把这两个数的个位数字与十位数字交换,得到一个新的两位数,则新两位数与原两位数的和为______.15.下列说法:①﹣a 是负数:②一个数的绝对值一定是正数:③一个有理数不是正数就是负数:④绝对值等于本身的数是非负数,其中正确的是_____.16.已知a ,b ,c 在数轴上的位置如图所示,化简:a b c b a c +++--=__________.17.如图,下列图形都是由同样大小的小圆圈按一定规律所组成的,则第n 个图形中小圆圈的个数为_____.18.填在各正方形中的四个数字之间具有相同的规律,根据这种规律,m 的值应是_______.三、解答题19.如图A 、B 为数轴上不同两点,所对应的数分别为a ,b .用“<”或“>”号填空(1)-a b __________0,(2)+a b __________0,(3)a - __________b , (4)ab __________0,(5)b a - __________0.20.计算:(1)(180)(20)-++ (2)-13+34-16+1421.化简:(1)15132a a a +-(2)()()22222334a b ab a b ab --+22.先化简,再求值:-3a 2b +(3ab 2-a 2b )-2(2ab 2-a 2b ), 其中a =-1,b =223.小慧坐公交车从家里出发去学校,他从家门口的公交站上年,上车后发现车上连自己共座了9人,之后经过A 、B 、C 3个站点,他观察到上下车情况如下(记上车为正,下车为负):()()()5,3,3,4,2,5A B C +-+-+-.(1)若公交车费每人每趟2元,则公交车在A 、B 、C 这3个站点共收入多少元? (2)经过A 、B 、C 这3个站点后,车上还有多少人? 24.填写下表 序号 n 1 2 … ① 41n +5 … ② 21n + 2 … ③2n4…n (1)当5n =时,这三个代数式中 的值最小;(2)你预计代数式的值最先超过1000的是代数式 ,此时n 的值为 . 25.数学规律在数学中有着极其重要的意义,我们要善于抓住主要矛盾,提炼出我们需要的信息,从而解决问题.(1)观察下列算式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561,…,通过观察,用你所发现的规律确定32014的个位数字是(2)观察一列数2,4,8,16,32,…,发现从第二项开始,每一项与前一项之比是一个常数,这个常数是;根据此规律,如果a n(n为正整数)表示这个数列的第n项,那么a18=,a n=;(3)观察下面的一列单项式:x,﹣2x2,4x3,﹣8x4,…根据你发现的规律,第7个单项式为;第n个单项式为.二26.已知a是最大的负整数,b是15的倒数,c比a小1,且a、b、c分别是A、B、C在数轴上对应的数.若动点P从点A出发沿数轴正方向运动,动点Q同时从点B出发也沿数轴负方向运动,点P的速度是每秒3个单位长度,点Q的速度是每秒1个单位长度.(1)在数轴上标出点A、B、C的位置;(2)运动前P、Q两点间的距离为;运动t秒后,点P,点Q运动的路程分别为和;(3)求运动几秒后,点P与点Q相遇?(4)在数轴上找一点M,使点M到A、B、C三点的距离之和等于11,直接写出所有点M 对应的数.【参考答案】一、选择题1.D解析:D【分析】根据无理数是无限不循环小数,可得答案.【详解】解:3.14是有限小数,属于有理数;327-−3,是整数,属于有理数;0是整数,属于有理数;227-是分数,属于有理数;无理数有π,0.1010010001…(相邻两个1之间依次多一个0),共2个.故选:D.【点睛】本题主要考查了无理数的定义,无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n解析:A 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】解:将6000万用科学记数法表示为:6×107. 故选:A . 【点睛】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 3.C 【分析】由合并同类项、单项式乘以单项式、幂的乘方、同底数幂的除法,分别进行判断,即可得到答案. 【详解】解:A 、24a a +不能合并,故A 错误; B 、2248a a a ⋅=,故B 错误; C 、()326a a =,故C 正确;D 、826a a a ÷=,故D 错误; 故选:C . 【点睛】本题考查了合并同类项、单项式乘以单项式、幂的乘方、同底数幂的除法,解题的关键是掌握运算法则分别进行判断. 4.B 【分析】根据二次三项式的定义求解即可. 【详解】解:由题意得:m=2;n-3≠0, ∴m=2,n≠3. 故选B . 【点睛】本题考查了多项式次数和项数.解题的关键是能够从次数和项数两方面同时进行考虑.【分析】根据有理数的混合运算顺序计算即可.【详解】()()132321-⨯--=-=,故选:A.【点睛】本题主要考查有理数的运算,掌握有理数混合的运算法则是解题的关键.6.B【分析】先去括号、合并同类项化简,然后根据题意令x2的系数为0即可求出a的值.【详解】解:﹣2x3+6x2+9x+1﹣2(3ax2﹣5x+3)=﹣2x3+6x2+9x+1﹣6ax2+10解析:B【分析】先去括号、合并同类项化简,然后根据题意令x2的系数为0即可求出a的值.【详解】解:﹣2x3+6x2+9x+1﹣2(3ax2﹣5x+3)=﹣2x3+6x2+9x+1﹣6ax2+10x﹣6=﹣2x3+(6﹣6a)x2+19x﹣5,∵关于x的多项式﹣2x3+6x2+9x+1﹣2(3ax2﹣5x+3)的结果不含x2项,∴6﹣6a=0,解得a=1,故选:B.【点睛】此题考查的是整式的加减中不含某项的问题,掌握去括号法则、合并同类项法则和不含某项即化简后,令其系数为0是解决此题的关键.7.B【分析】根据数a、b、c在数轴上的位置和绝对值的意义,进行逐一计算即可判断.【详解】解:∵|a|<|b|<|c|,∴①−b>−a>−c,故①正确;②=1+1=2,故②错误;③,故③正解析:B根据数a 、b 、c 在数轴上的位置和绝对值的意义,进行逐一计算即可判断. 【详解】解:∵|a|<|b|<|c|, ∴①−b >−a >−c ,故①正确;②ab ac ab ac ab ac ab ac-=--=1+1=2,故②错误; ③+=+a b a b ,故③正确;④|a−b|−|c -b|+|a−c|=a−b−(c−b)+(c−a)=a -b-c+b+c-a=0,故④正确: 所以正确的个数有①③④,共3个. 故选:B . 【点睛】本题考查了数轴、绝对值,解决本题的关键是掌握数轴和绝对值.8.A 【分析】由于<1,根据有理数乘方的性质可知, 可得x2=, 解方程即知答案. 【详解】 解:∵<1, ∴, ∴ =x2, ∴x2=,x=或x=-(不符合题意舍去). ∴x= 故选解析:A 【分析】由于14<1,根据有理数乘方的性质可知2x x << 可得x 2=14, 解方程即知答案.【详解】 解:∵14<1,∴2x x <<∴ }2minx x , =x 2,∴x 2=14,x=12或x=-12(不符合题意舍去). ∴x=12【点睛】本题主要考查了新定义,以及实数大小比较,有理数乘方,解决此题的关键是根据题意判断出2x x <<9.B 【分析】根据各图形中小正方形个数的变化可找出变化规律“an =5n +4(n 为正整数)”,再代入n =8即可求出答案. 【详解】解:设第n 个图形中小正方形的个数为an (n 为正整数), ∵a1=9=解析:B 【分析】根据各图形中小正方形个数的变化可找出变化规律“a n =5n +4(n 为正整数)”,再代入n =8即可求出答案. 【详解】解:设第n 个图形中小正方形的个数为a n (n 为正整数), ∵a 1=9=5+4,a 2=14=5×2+4,a 3=19=5×3+4,…, ∴a n =5n+4(n 为正整数), ∴a 8=5×8+4=44. 故选:B . 【点睛】本题考查了规律型:图形的变化类,根据各图形中小正方形个数的变化,找出变化规律“a n =5n +4(n 为正整数)”是解题的关键.10.C 【分析】根据给出的数据可得:第n 行的第一个数等于,第n 行的第二个数等于的结果,第n 行的第三个数等于的结果,再把n 的值代入即可得出答案. 【详解】 解:寻找规律:∵第n 行有n 个数,且两端的数均解析:C 【分析】根据给出的数据可得:第n 行的第一个数等于1n ,第n 行的第二个数等于11-1n n-的结果,第n 行的第三个数等于()()()112-11n n n n ---的结果,再把n 的值代入即可得出答案.解:寻找规律:∵第n行有n个数,且两端的数均为1n ,1n,每个数是它下一行左右相邻两数的和,∴第4,5,6行从左往右第1个数分别为14,15,16;第5,6行从左往右第2个数分别为111-=4520,111-=5630;第6行从左往右第3个数分别为120-130=160.故选择:C.【点睛】本题考查了数字的变化类,解题的关键是通过观察、分析、归纳推理,得出各数的关系,找出规律.二、填空题11.-2000【分析】用正数表示收入,则需要用负数表示支出【详解】∵收入用“﹢”表示又∵支出是与收入相反意义的量∴支出用“-”表示∴支出2000元表示为:-2000元故答案为:-2000解析:-2000【分析】用正数表示收入,则需要用负数表示支出【详解】∵收入用“﹢”表示又∵支出是与收入相反意义的量∴支出用“-”表示∴支出2000元表示为:-2000元故答案为:-2000本题是相反意义量的考查,此类题型需要注意题干中是将什么量设为正数(将支出设为正数也是可行的)12., 【分析】根据单项式得概念求解. 【详解】∵(a+1)2x2yn-1是关于x 、y 的五次单项式, ∴a+1≠0,n-1=3, 解得:a≠-1,n=4.答:n 、a 应满足的条件是a≠-1,n=4.解析:1a ≠-,4n = 【分析】根据单项式得概念求解. 【详解】∵(a+1)2x 2y n-1是关于x 、y 的五次单项式, ∴a+1≠0,n-1=3, 解得:a≠-1,n=4.答:n 、a 应满足的条件是a≠-1,n=4. 故答案是:a≠-1,n=4. 【点睛】此题考查单项式,解题关键在于掌握一个单项式中所有字母的指数的和叫做单项式的次数.13.【分析】根据所示的程序,先输入-2,求出-2×2得-4,再算-4+(-5)得-9,因为-9<0,所以再用-9乘-1得9,最后输出的y 的值是9.由此列式计算即可. 【详解】 解:-2→-2×2→-解析:【分析】根据所示的程序,先输入-2,求出-2×2得-4,再算-4+(-5)得-9,因为-9<0,所以再用-9乘-1得9,最后输出的y 的值是9.由此列式计算即可. 【详解】解:-2→-2×2→-4+(-5)→-9<0→(-9)×(-1)→9. 故答案为:9. 【点睛】此题考查了正、负数的简单运算,关键是把握运算的顺序.14.【分析】根据题意可以写出原两位数与新两位数,从而可以解答本题.【详解】解:由题意可得,原来的两个位数是:10b+a ,新两位数是:10a+b∴原两位数与新两位数的和为:(10b+a )+解析:1111a b +【分析】根据题意可以写出原两位数与新两位数,从而可以解答本题.【详解】解:由题意可得,原来的两个位数是:10b+a ,新两位数是:10a+b∴原两位数与新两位数的和为:(10b+a )+(10a+b )=11a+11b .故答案为:1111a b +.【点睛】本题考查列代数式,解答此类问题的关键是明确题意,列出相应的代数式.15.④【分析】负数是比0小的数,带负号不一定是负数;绝对值具有非负性;有理数可分为正数、负数与0;绝对值等于本身的数为0和正数;据此依次判断即可.【详解】①﹣a 不一定是负数.故①错误;②一个数解析:④【分析】负数是比0小的数,带负号不一定是负数;绝对值具有非负性;有理数可分为正数、负数与0;绝对值等于本身的数为0和正数;据此依次判断即可.【详解】①﹣a 不一定是负数.故①错误;②一个数的绝对值一定是非负数,故②错误;③一个有理数包括正数、负数、0,故③错误;④绝对值等于本身的数是非负数,故④正确;故答案为④【点睛】本题主要考查了有理数的相关性质,熟练掌握各自概念是解题关键.16.0【分析】先根据数轴判断出、的大小顺序和,再判断各个绝对值内式子的正负性,然后去除绝对值再合并同类项即可.【详解】由题得:,∴,,∴故填:0.【点睛】本题考查了利用数轴比较有理数的解析:0【分析】先根据数轴判断出a b c 、、、0的大小顺序和b a c <<,再判断各个绝对值内式子的正负性,然后去除绝对值再合并同类项即可.【详解】由题得:0a b c <<<,b a c <<∴0a b +<,0c b +>,0a c -< ∴0a b c b a c a b c b a c +++--=--+++-=故填:0.【点睛】本题考查了利用数轴比较有理数的大小及判断式子的正负、化简绝对值,也就是把“数”和“形”结合起来,注意数轴上的数右边的数总比左边的数大,负数绝对值越大的反而越小. 17.3n+3【分析】根据题目中的图形,可以发现小圆圈个数的变化规律,从而可以得到第n 个图形中小圆圈的个数.【详解】解:由图可得,图1中小圆圈的个数为:1+2+3=6,图2中小圆圈的个数为:2解析:3n +3【分析】根据题目中的图形,可以发现小圆圈个数的变化规律,从而可以得到第n 个图形中小圆圈的个数.【详解】解:由图可得,图1中小圆圈的个数为:1+2+3=6,图2中小圆圈的个数为:2+3+4=9,图3中小圆圈的个数为:3+4+5=12,…,则第n个图形中小圆圈的个数为:n+(n+1)+(n+2)=3(n+1)=3n+3,故答案为:3n+3.【点睛】本题考查图形的变化类、列代数式,解答本题的关键是明确题意,发现题目中小圆圈的变化规律,利用数形结合的思想解答.18.184【分析】根据题意知:前三个图形的左上角与右下角数的和等于右上角与左下角数的积,且左上,左下,右上三个数是相邻的奇数.据此解答.【详解】由前面数字关系:1,3,5;3,5,7;5,7,9解析:184【分析】根据题意知:前三个图形的左上角与右下角数的和等于右上角与左下角数的积,且左上,左下,右上三个数是相邻的奇数.据此解答.【详解】由前面数字关系:1,3,5;3,5,7;5,7,9,可得最后一个三个数分别为:11,13,15,3×5-1=14;5×7-3=32;7×9-5=58;由于左上的数是11,则左下角的是13,右上角的是15,∴m=13×15-11=184.故答案为:184.【点睛】本题考查了数字的变化类,解答本题的关键是明确题意,发现数字的变化特点,求出m的值.三、解答题19.(1)<,(2)<,(3)>,(4)<,(5)<【分析】先根据数轴判断出a、b的正负情况以及绝对值的大小,然后对各小题分析判断即可求解.【详解】解:根据图形可得,a <0,b >0且|a|>|b解析:(1)<,(2)<,(3)>,(4)<,(5)<【分析】先根据数轴判断出a 、b 的正负情况以及绝对值的大小,然后对各小题分析判断即可求解.【详解】解:根据图形可得,a <0,b >0且|a |>|b |,(1)a ﹣b =a +(﹣b )<0,故答案为:<,(2)a +b <0,故答案为:<,(3)﹣a >b ,故答案为: >,(4)ab <0.故答案为:<,(5)b a -<0故答案为:<.【点睛】本题考查了数轴的知识与有理数的加法运算法则,根据图形判断出a 、b 的正负情况以及绝对值的大小是解题的关键.20.(1)-160;(2);【解析】【分析】(1)原式利用异号两数相加的法则计算即可得到结果;(2)运用加法交换律和结合律进行计算即可.【详解】(1),=-(180-20),=-1解析:(1)-160;(2)12; 【解析】【分析】(1)原式利用异号两数相加的法则计算即可得到结果;(2)运用加法交换律和结合律进行计算即可.【详解】(1)()()18020-++,=-(180-20),=-160;(2)-13+34-16+14=(-13-16)+(34+14), =-12+1, =12. 【点睛】本题主要考查了有理数加减运算,掌握运算法则是解题关键.21.(1);(2)【分析】(1)直接进行合并同类项求解即可;(2)先去括号,再进行合并同类项即可.【详解】解:(1)==;(2)==.【点睛】本题主要考查合并同类项问题,掌握合解析:(1)152a -;(2)22314a b ab - 【分析】(1)直接进行合并同类项求解即可;(2)先去括号,再进行合并同类项即可.【详解】解:(1) 15132a a a +- =11132a a - =152a -; (2)()()22222334a b ab a b ab --+ =222236212a b ab a b ab ---=22314a b ab -.【点睛】本题主要考查合并同类项问题,掌握合并同类项法则是解题的关键.22.-2a2b-ab2;0【分析】根据整式的加减运算法则先化简,然后求值即可.【详解】解:,把,代入上式中,原式【点睛】本题主要考查了整式的化简求值,解题的关键在于能够熟练掌握相关知识 解析:-2a 2b -ab 2;0【分析】根据整式的加减运算法则先化简,然后求值即可.【详解】解:()()222223322a b ab a b ab a b -+---222223342a b ab a b ab a b -+-+=-222a b ab =--,把1a =-,2b =代入上式中,原式()()22212120=-⨯-⨯--⨯=【点睛】本题主要考查了整式的化简求值,解题的关键在于能够熟练掌握相关知识进行求解. 23.(1)20元;(2)7人【分析】(1)车票的收入由上车人数决定;(2)分别求出三站上车人数和下车人数,即可求出车上还有的人数.【详解】解;(1)上车人数共有: 5+3+2=10人,∴收入解析:(1)20元;(2)7人【分析】(1)车票的收入由上车人数决定;(2)分别求出三站上车人数和下车人数,即可求出车上还有的人数.【详解】解;(1)上车人数共有: 5+3+2=10人,∴收入为:10×2=20元,∴公交车在A 、B 、C 这3个站点共收入20元;(2)上车人数为10人,下车人数为3+4+5=12人,∴经过三站后车上还有9+10-12=7人.【点睛】本题考查正数与负数的意义,结合问题情境,合理用正负数计算是解题的关键. 24.表格见解析;(1);(2),10【分析】将n=1和2分别代入三个代数式计算即可填表;(1)当n=5时,分别代入各个代数式计算即可得到答案;(2)预计得到最先超过1000的,求出n 的值即可.解析:表格见解析;(1)41n +;(2)2n ,10【分析】将n=1和2分别代入三个代数式计算即可填表;(1)当n=5时,分别代入各个代数式计算即可得到答案;(2)预计得到最先超过1000的,求出n 的值即可.【详解】解:填表:当n=2时,419n +=,215n +=;当n=1时,122=,故表格如下:(1)当n=5时,4n +1=4×5+1=21,n 2+1=25+1=26,2n =25=32,∵32>26>21,∴当n=5时,4n +1的值最小.故答案为:41n +;(2)预计代数式的值最先超过1000的是2n ;此时n 的值为10.故答案为:2n ,10.【点睛】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.25.(1)9;(2)2;218,an=2n ;(3),【分析】(1)列举出个位数字分别为:3,9,7,1,3,9,7,1,…,观察发现,个位数字有规律可循,为3,9,7,1四个数字一循环,根据此规律求解析:(1)9;(2)2;218,a n =2n ;(3)764x ,1(2)n n x --【分析】(1)列举出个位数字分别为:3,9,7,1,3,9,7,1,…,观察发现,个位数字有规律可循,为3,9,7,1四个数字一循环,根据此规律求出32014的个位数字即可. (2)通过计算,不难发现,每一项与前一项之比是一个常数2,写出a n 的表达式,并计算出a 18的值即可.(3)通过观察,奇数项符号为正,偶数项符号为负,数字的变化规律是12n -,字母变化规律是n x .【详解】(1)个位数字有规律可循,为3,9,7,1四个数字一循环,2014÷4=503…2,∴32014的个位数字是9.(2)从第二项开始,每一项与前一项之比是一个常数,这个常数是2,a n =2n ,a 18=218.(3)第7个单项式为:717177(1)264x x ---=,第n 个单项式为:111(1)2(2)n n n n n x x ----=-.【点睛】本题主要考查根据数字的变化规律列代数式,找出数字的变化规律与循环规律是解题关键.二26.(1)见解析;(2)6,3t ,t ;(3)1.5;(4)3或-3.【分析】(1)理解与整数、倒数有关概念,能够正确在数轴上找到所对应的点; (2)根据数轴上两点间的距离的求法,以及路程=速度×时间解析:(1)见解析;(2)6,3t ,t ;(3)1.5;(4)3或-3.【分析】(1)理解与整数、倒数有关概念,能够正确在数轴上找到所对应的点;(2)根据数轴上两点间的距离的求法,以及路程=速度×时间进行求解;(3)根据速度和×时间=路程和,列出方程求解即可;(4)分当M 在C 点左侧,当M 在线段AC 上,当M 在线段AB 上(不含点A ),当M 在点B 的右侧,四种情况列出方程求解.【详解】解:(1)∵a 是最大的负整数,∴a=-1,∵b 是15的倒数, ∴b=5,∵c 比a 小1,∴c=-2,如图所示:(2)运动前P、Q两点之间的距离为5-(-1)=6;运动t秒后,点P,点Q运动的路程分别为3t和t,故答案为:6,3t,t;(3)依题意有3t+t=6,解得t=1.5.故运动1.5秒后,点P与点Q相遇;(4)设点M表示的数为x,使P到A、B、C的距离和等于11,①当M在C点左侧,(-1)-x+5-x+(-2)-x=11.解得x=-3,即M对应的数是-3.②当M在线段AC上,x-(-2)-1-x+5-x=11,解得:x=-5(舍);③当M在线段AB上(不含点A),x-(-1)+5-x+x-(-2)=11,解得x=3,即M对应的数是3.④当M在点B的右侧,x-(-1)+x-5+x-(-2)=11,解得:x=133(舍),综上所述,点M表示的数是3或-3.【点睛】此题主要考查了一元一次方程的应用,与数轴有关计算问题,能够正确表示数轴上两点间的距离.。
2020-2021学年湖北省黄冈市麻城市部分初中学校七年级(上)期中数学试卷(附答案详解)
2020-2021学年湖北省黄冈市麻城市部分初中学校七年级(上)期中数学试卷一、选择题(本大题共8小题,共24.0分)1.下列运算结果等于1的是()A. −3+(−3)B. −3−(−3)C. −3÷(−3)D. −3×(−3)2.如果把向东走4km记作+4km,那么−2km表示的实际意义是()A. 向东走2kmB. 向西走2kmC. 向南走2kmD. 向北走2km3.ǀ−3−8ǀ的倒数是()A. 11B. −5C. −111D. 1114.受新型冠状病毒的影响,内蒙古自治区103个旗县的150000名高三学子、221000名初三学子,共计371000名学生于2020年3月30日起重返校园,其中371000用科学记数法表示正确的是()A. 3.71×105 B. 37.1×105 C. 3.71×106D. 3.71×1075.下列四个数中,最小的是()A. −1B. −12C. 0D. 26.全校学生总人数是x人,其中女生人数占总人数的48%,则男生比女生多多少人()A. 0.52xB. 0.48xC. 0.04xD. 0.4x7.已知2a+3b=4,则整式−4a−6b+1的值是()A. 5B. 3C. −7D. −108.如图所示,在这个数据运算程序中,若开始输入的x的值为2,结果输出的是1,返回进行第二次运算则输出的是−4,…,则第2020次输出的结果是()A. −1B. 3C. 6D. 8二、填空题(本大题共8小题,共24.0分)9.单项式2x m y3与−3x y3n是同类项,则m+n=______。
10.若数轴上点A表示的数为−2,将点A沿数轴正方向平移4个单位,则平移后所得到的点表示的数是______.11. 如果|m|=|−5|,那么m = ______ .12. 某地冬日的一天,早晨的气温是−1℃,到中午上升了6℃,到晚上又下降了7℃,则晚上的气温是______℃.13. 绝对值不大于11.1的整数有______个. 14. 若定义一种新运算,规定∣∣∣ab cd ∣∣∣=ad −bc ,则∣∣∣5−3−11−2∣∣∣=______. 15. 若a 2=4,|b|=3且a >b ,则a −b =______.16. 设f(x)=xx+1,则f(199)+f(198)+⋯+f(12)+f(2)+f(3)+⋯+f(99)=______. 三、计算题(本大题共1小题,共16.0分) 17. 计算:(1)(+18)+(−32)+(−16)+(+26); (2)−23−(−134)−(−123)+(−1.75);(3)(−12)÷(12−34+23);(4)−14−13×[10−(3−5)2]−(−1)3.四、解答题(本大题共7小题,共56.0分) 18. 化简下列各式:(1)3(4a 2+2a)−(2a 2+3a −5). (2)(7m 2n −5mn)−(4m 2n −5mn).19.画出数轴,用数轴上的点表示下列各数,并用“<”将它们连接起来:3,−2,1.5,0,−0.5.(4x2y+10xy−14x),其中x=1,y=−2.20.化简求值:(5x2y+5xy−7x)−1221.出租车司机小王某天上午营运是在东西走向的大街上进行的,如果规定向东为正,向西为负,他这天上午行车里程(单位:千米)如下:+15,−2,+5,−1,+10,+3,−2,+12,+4,−5,+6.(1)将最后一名乘客送到目的地时小王距上午出发时的出发点多远?(2)若汽车耗油量为0.12升/千米,这天上午小王的汽车共耗油多少升?22.化简求值:已知A=−a2+2ab+2b2,B=2a2−2ab−b2,当a=−12,b=1时,求2A+B的值.23.对于题目:“已知x2−2x−1=0,求代数式3x2−6x+2020的值”,采用“整体代入”的方法(换元法),可以比较容易的求出结果.(1)设x2−2x=y,则3x2−6x+2020=______(用含y的代数式表示).(2)根据x2−2x−1=0,得到y=1,所以3x2−6x+2020的值为______.(3)用“整体代入”的方法(换元法),解决下面问题:已知a+1a −5=0,求代数式a2−4a+1a的值.24.2020年的“新冠肺炎”疫情的蔓延,使得医用口罩销量大幅增加,某口罩加工厂每名工人计划每天生产300个医用口罩,一周生产2100个口罩.由于种种原因,实际每天生产量与计划量相比有出入.如表是工人小王某周的生产情况(超产记为正,减产记为负):(1)根据记录的数据可知,小王星期五生产口罩______个.(2)根据表格记录的数据,求出小王本周实际生产口罩数量.(3)若该厂实行每周计件工资制,每生产一个口罩可得0.6元,若超额完成周计划工作量,则超过部分每个另外奖励0.15元,若完不成每周的计划量.则少生产一个扣0.2元,求小王这一周的工资总额是多少元?(4)若该厂实行每日计件工资制,每生产一个口罩可得0.6元,若超额完成每日计划工作量.则超过部分每个另外奖励0.15元,若完不成每天的计划量,则少生产一个扣0.2元,请直接写出小王这一周的工资总额是多少元.答案和解析1.【答案】C【解析】解:∵−3+(−3)=−6≠1,∴选项A不符合题意;∵−3−(−3)=0≠1,∴选项B不符合题意;∵−3÷(−3)=1,∴选项C符合题意;∵−3×(−3)=9≠1,∴选项D不符合题意.故选:C.根据有理数加减乘除的运算方法,逐项判断即可.此题主要考查了有理数加减乘除的运算方法,要熟练掌握.2.【答案】B【解析】解:向东走4km记作+4km,那么−2km表示向西走2km,故选:B.首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.3.【答案】D.【解析】解:ǀ−3−8ǀ=11的倒数是:111故选:D.直接利用绝对值的性质化简,再利用倒数的定义得出答案.此题主要考查了绝对值的性质以及倒数,正确化简各数是解题关键.4.【答案】A【解析】解:371000=3.71×105.故选:A.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.【答案】A<0<2,【解析】解:因为−1<−12所以最小的数是−1.故选:A.根据“正数大于0,0大于一切负数,两个负数,绝对值大的而反而小”进行比较即可判定选择项.此题主要考查了实数的大小的比较,比较两个实数的大小,可以采用作差法、取近似值法等.实数大小比较法则:(1)正数大于0,0大于负数,正数大于负数;(2)两个负数,绝对值大的反而小.6.【答案】C【解析】解:∵学生总数是x人,其中女生人数占总数的48%,∴女生人数是48%x,男生人数是(1−48%)=52%x.∴52%x−48%x=4%x=0.04x,即男生比女生多0.04x人.故选:C.用学生总数乘以女生人数所占的百分比和男生人数所占的百分比,即可得出答案.此题考查了列代数式,关键是读懂题意,找到所求的量的数量关系,列出代数式.7.【答案】C【解析】解:∵2a+3b=4,∴−2a−3b=−4,∴−4a−6b+1=2(−2a−3b)+1=−8+1=−7,故选:C.根据相反数的定义得:−2a−3b=−4,首先化简−4a−6b+1,然后把−2a−3b=−4代入化简后的算式,求出算式的值是多少即可.此题主要考查了代数式求值的方法,要熟练掌握,解答此题的关键是要明确:求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.8.【答案】A×2=1,【解析】解:把x=2代入得:12把x=1代入得:1−5=−4,×(−4)=−2,把x=−4代入得:12×(−2)=−1,把x=−2代入得:12把x=−1代入得:−1−5=−6,×(−6)=−3,把x=−6代入得:12把x=−3代入得:−3−5=−8,×(−8)=−4,把x=−8代入得:12以此类推,∵(2020−1)÷6=336…3,∴第2020次输出的结果为−1,故选:A.把x=2代入程序中计算,以此类推得到一般性规律,即可确定出第2020次输出的结果.此题考查了代数式求值,弄清题中的程序框图是解本题的关键.9.【答案】2【解析】解:由单项式2x m y3与−3x y3n是同类项,得m=1,3n=3,解得m=1,n=1,∴m+n=1+1=2,故答案为2。
黄冈中学初一上数学期中考试试题及参考答案
黄冈中学秋季七年级数学期中考试试题(分数:120分 时间:120分钟)一、填空题(每小题3分,共30分)1.-3的相反数为 ;-1.5的倒数为 ;35.2.零下5℃比零下8℃低 ℃;将收入200元记作:+200,则支出150元记作: ;某天白天的平均气温为5℃,夜晚平均气温比白天下降了8℃,则夜晚的平均气温为 ℃.3.废旧电池对环境的危害十分大,一粒纽扣电池能污染600立方米的水(相当于一个人一生的饮水量).我校七年级有6个班,每班60人,如果每名学生一年丢弃一粒纽扣电池,且没有回收,那么我们年级学生一年丢弃的纽扣电池能污染的水用科学记数法表示为 立方米. 4.若单项式1413x a b 与2146x a b 的和仍为单项式,则x = .5.若31520a b ,则3(65)6(65)2(65)a b a b a b = .6.若y=-3是方程2(51)40my m y 的解,则m= .7.已知3,2x y ,且x y y x ,则x y 的值为 .8.已知2(1)(1)80m x m x 是关于x 的一元一次方程,则m x 的值为 .9.已知方程1152()620066x,则代数式211545()2006x = . 10.我们平常的数都是十进制数,如322639210610310+9,表示十进制的数要用10个数码(也叫数字):0,1,2,3,4,5,6,7,8,9.在电子数字计算机中用二进制,只要两个数码0和1.如二进制数21101120215,故二进制的101等于十进制的数5;43210111120212121=23,故二进制的10111等于十进制的数23.那么二进制的110111等于十进制的数 .二、选择题(每小题3分,共30分)11.下列各数中:53,.3.3,0, 3.14,4,1,227.整数有a 个,负数有b 个,则a+b 等于( )A .5B .6C .7D .812.把数轴上表示4的点沿数轴移动5个单位后所得的点所表示的数为( )A .9B .-1C .9或-1D .-9或1 13.有理数a b 、在数轴上的位置如图所示,下列各式错误的是( )A .(1)(1)ab >0 B .ab <1 C .a b <2 D .(1)(1)a b >414.下列等式变形,正确的是( )A .若22x x ,则2x B .若ax ay ,则xyC .若382x ,则12x D .若x ya a,则bx by15.方程247236x x 去分母得( )A .22(24)(7)x xB .122(24)7x xC .1248(7)x x D .122(24)(7)x x16.下列计算:①224a a a ;②22321x yx y;③330ab ba;④538a b ab .其中正确的个数有( )A .1个B .2个C .3个D .4个 17.已知3,4,5ab bc cd ,则()()a c d b 的值为( )A .7B .9C .-63D .-718.某商场先将彩电按原价提高40%,然后在广告中写上“大酬宾,八折优惠”,结果每台彩电比原价多赚了270元,那么每台彩电原价应是( )A .2150元B .2200元C .2250元D .2300元 19.某书中有道方程题:213xx ,在印刷时被墨水盖住了,查后面的答案,这道方程的解是 2.5x ,那么处应该是数( )A . 2.5B .2.5C .5D .7 20.下面的数阵是由50个连续偶数排列而成的(如图).现有一菱形恰好能框住其中的4个数.则这4个数的和可能是( )A .322B .328C .332D .340三、解答题(60分)21.计算:(每小题4分,共8分)(1)225332(3)5; (2)241310.25()(12 3.75)24283.22.解方程:(每小题4分,共8分)2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 … … … … … 92 94 96 98 100(1)3(1)2(2)23x x x ; (2)21534xx .23.(6分)化简求值:222232(2)4x yx y xyz x z x zxyz .其中2,3,1x y z24.(8分)已知关于x 的方程42313261xm x x m x 与的解相同.(1)求m 的值; (2)求200520063(42)()2mm的值. 25.(7分)某商店有两台进价不同的计算器都卖80元,其中一台赢利60%,另一台赔本20%,在这次买卖中,这家商店是赔了、赚了还是不赔也不赚?试说明你的理由. 26.(5分)已知有理数a b c 、、在数轴上的位置如图所示.试化简:ab c b c a .27.(6分)如图摆放在地上的正方体的大小均相等,现在把露在外面的表面涂成红色,从上向下数,每层正方体被涂成红色的面数分别为: 第一层:侧面个数+上面个数=1×4+1=5; 第二层:侧面个数+上面个数=2×4+3=11;第三层:侧面个数+上面个数=3×4+5=17;第四层:侧面个数+上面个数=4×4+7=23;……根据上述的计算方法,总结规律,并完成下列问题: (1)求第6层有多少个面被涂成了红色?(2)求第n 层有多少个面被涂成了红色?(用含n 的式子表示)(3)若第m 层有89个面被涂成红色,请你判断这是第几层?并说明理由。
【6套打包】黄冈市七年级上册数学期中考试检测试题(含答案)
人教版七年级数学上册期中考试试题及答案一、选择题(每题4分,共48分)1.如果+10%表示“增加10%”,那么“减少8%”可以记作()A.﹣18% B.﹣8% C.+2% D.+8%2.﹣2的相反数是()A.﹣2 B.﹣C.2 D.3.下列代数式中:,2x+y,,,,0,整式有()A.3个B.4个C.5个D.6个4.当x<3时,式子|x﹣3|化简为()A.﹣3 B.x C.x﹣3 D.3﹣x5.在﹣22,(﹣2)2,﹣(﹣2),﹣|﹣2|中,负数的个数是()A.1个B.2个C.3个D.4个6.我市加大农村沼气等清洁能源推广,年产沼气21700000立方米,这个数用科学记数法精确到百万位可表示为()A.217×105B.21.7×106C.2.17×107D.2.2×1077.下列单项式中,系数最大的是()A.﹣2ax3B.﹣xy2C.﹣abc3D.﹣xy28.现有以下四个结论:①任何数都不等于它的相反数;②互为相反数的两个数的同一偶数次方相等;③如果a>b,那么a的倒数小于b的倒数;④倒数等于其本身的有理数只有1.其中正确的有()A.1个B.2个C.3个D.4个9.如果2x3n y m+4与﹣3x9y2n是同类项,那么m、n的值分别为()A.m=﹣2,n=3 B.m=2,n=3 C.m=﹣3,n=2 D.m=3,n=2 10.对于多项式﹣x3﹣3x2+x﹣7,下列说法正确的是()A.最高次项是x3B.二次项系数是3C.多项式的次数是3 D.常数项是711.2012年6月15日,重庆市物价局发出相关通知,从今年7月1日起,我市将开始执行居民生活用电试行阶梯电价方案.方案的具体电价标准为:凡我市实行“一户一表”的城乡居民用户,月用电量200千瓦时(含)以内的为第一档,维持现行电价标准,即每千瓦时0.52元;月用电量201﹣400千瓦时(含)的为第二档,每千瓦时提高5分,即每千瓦时0.57元;月用电量在401千瓦时(含)以上的为第三档,每千瓦时提高0.30元,即每千瓦时0.82元.某居民今年11月用电量为t千瓦时(200<t≤400),则该居民所付电费为()A.0.52tB.0.57tC.0.52×20 0+0.57tD.0.52×200+0.57×(t﹣200)12.下列图象都是由相同大小的按一定规律组成的,其中第①个图形中一共有4颗,第②个图形中一共有11颗,第③个图形中一共有21颗,…,按此规律排列下去,第⑨个图形中的颗数为()A.116 B.144 C.145 D.150二、填空题(每题4分,共24分)13.(﹣3)2﹣1=.14.的系数为,次数为.15.关于x的多项式4x n+1﹣3x2﹣x+2是四次多项式,则n=.16.多项式x2﹣3kxy﹣3y2+6xy﹣8不含xy项,则k=.17.已知=﹣1,则的值为.18.若规定一种运算:a*b=(a+b)﹣(a﹣b),其中a,b为有理数,则a*b+(b﹣a)*b 等于.三、解答题(每题8分,共16分)19.(8分)在数轴上表示下列各数,并用“<”把这些数连接起来.﹣2.5,﹣3,0,2,|﹣3|20.(8分)把下面各数对应的序号填在相应的大括号里.①﹣5,②|﹣|,③0,④﹣3.14,⑤,⑥﹣12,⑦0.1010010001…,⑧+1.99,⑨﹣,⑩﹣(﹣3)2分数集合:(…)负有理数集合:(…)四、解答题(21题12分,22题8分,23-25每题10分,26题12分,共62分)21.(12分)计算(1)(﹣18)+(+5)﹣(﹣7)﹣(+11)(2)(﹣)×(﹣1)÷(﹣2)(3)25×+(﹣25)×+25×(﹣)(4)﹣12﹣[1+(﹣12)÷6]×(﹣)322.(8分)某冰箱销售商,今年四月份销售冰箱(a﹣1)台,五月份销售冰箱比四月份的2倍少1台,六月份销售冰箱比前两个月的总和还多5台.(1)求五月份和六月份分别销售冰箱多少台?(2)六月份比五月份多销售冰箱多少台?23.(10分)先化简再求值:5abc﹣2a2b﹣[3abc+2(ab2﹣a2b)],其中a=﹣,b=﹣1,c =3.24.(10分)已知|a﹣2|+(b+1)2=0,c与互为倒数,(d﹣1)的平方是25,求代数式a c﹣2c a的值.(要求写出过程)参考答案一、选择题1.如果+10%表示“增加10%”,那么“减少8%”可以记作()A.﹣18% B.﹣8% C.+2% D.+8%【分析】正数和负数可以表示一对相反意义的量,在本题中“增加”和“减小”就是一对相反意义的量,既然增加用正数表示,那么减少就用负数来表示,后面的百分比的值不变.解:“增加”和“减少”相对,若+10%表示“增加10%”,那么“减少8%”应记作﹣8%.故选:B.【点评】解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.2.﹣2的相反数是()A.﹣2 B.﹣C.2 D.【分析】根据只有符号不同的两个数互为相反数,可得答案.解:﹣2的相反数是2,故选:C.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.3.下列代数式中:,2x+y,,,,0,整式有()A.3个B.4个C.5个D.6个【分析】分母不含字母的式子即为整式.解:整式有:2x+y,a2b,,0,故选:B.【点评】本题考查分式与整式的概念,注意π不是字母.4.当x<3时,式子|x﹣3|化简为()A.﹣3 B.x C.x﹣3 D.3﹣x【分析】由x<3可得x﹣3<0,再根据绝对值的性质即可求解.解:∵x<3,∴x﹣3<0,∴|x﹣3|=3﹣x.故选:D.【点评】考查了绝对值,如果用字母a表示有理数,则数a绝对值要由字母a本身的取值来确定:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.5.在﹣22,(﹣2)2,﹣(﹣2),﹣|﹣2|中,负数的个数是()A.1个B.2个C.3个D.4个【分析】根据有理数的乘方、正数和负数、绝对值的知识对各选项依次计算即可.解:﹣22,=﹣4,(﹣2)2=4,﹣(﹣2)=2,﹣|﹣2|=﹣2,∴是负数的有:﹣4,﹣2.故选:B.【点评】本题考查了有理数的乘方、正数和负数、绝对值的知识,此题比较简单,计算时特别要注意符号的变化.6.我市加大农村沼气等清洁能源推广,年产沼气21700000立方米,这个数用科学记数法精确到百万位可表示为()A.217×105B.21.7×106C.2.17×107D.2.2×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,n的值是这个数的整数部分位数减1.有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字.解:21700000=2.17×107≈2.2×107.故选:D.【点评】此题考查科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法.7.下列单项式中,系数最大的是()A.﹣2ax3B.﹣xy2C.﹣abc3D.﹣xy2【分析】根据单项式系数的定义即可求解.解:∵﹣2ax3的系数是﹣2,﹣xy2的系数是﹣,﹣abc3的系数是﹣,﹣xy2的系数是﹣,﹣>﹣2>﹣>﹣,∴单项式中,系数最大的是﹣xy2.故选:B.【点评】考查了单项式,单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.8.现有以下四个结论:①任何数都不等于它的相反数;②互为相反数的两个数的同一偶数次方相等;③如果a>b,那么a的倒数小于b的倒数;④倒数等于其本身的有理数只有1.其中正确的有()A.1个B.2个C.3个D.4个【分析】根据有理数的乘方法则,相反数、倒数的定义对四个选项进行逐一解答即可.解:①任何数都不等于它的相反数,错误,例如0;②互为相反数的两个数的同一偶数次方相等,正确;③如果a>b,那么a的倒数小于b的倒数,错误,0>﹣1,而0没有倒数;④倒数等于其本身的有理数只有1,错误,还有﹣1;故选:A.【点评】此题主要考查了有理数的乘方以及相反数,正确把握相关定义是解题关键.9.如果2x3n y m+4与﹣3x9y2n是同类项,那么m、n的值分别为()A.m=﹣2,n=3 B.m=2,n=3 C.m=﹣3,n=2 D.m=3,n=2 【分析】要使两个单项式同类项必须使其所含的字母相同且字母的指数也相同,观察可看出其所含的字母相同,则只要使其相同字母的指数相同.可得3n=9,m+4=2n,解方程即可求得.解:∵2x3n y m+4与﹣3x9y2n是同类项,∴3n=9,m+4=2n,∴n=3,m=2,故选:B.【点评】要使两个单项式成为同类项,只要使其满足同类项定义中的两个“相同”即可.10.对于多项式﹣x3﹣3x2+x﹣7,下列说法正确的是()A.最高次项是x3B.二次项系数是3C.多项式的次数是3 D.常数项是7【分析】根据多项式的项和次数的定义,确定各个项和各个项的系数,要带有符号.解:A、多项式﹣x3﹣3x2+x﹣7的最高次项是﹣x3;故A错误.B、多项式﹣x3﹣3x2+x﹣7的二次项系数是﹣3;故B错误.C、多项式﹣x3﹣3x2+x﹣7的次数是3;故C正确.D、多项式﹣x3﹣3x2+x﹣7的常数项是﹣7;故D错误.故选:C.【点评】本题考查与多项式相关的概念,多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.11.2012年6月15日,重庆市物价局发出相关通知,从今年7月1日起,我市将开始执行居民生活用电试行阶梯电价方案.方案的具体电价标准为:凡我市实行“一户一表”的城乡居民用户,月用电量200千瓦时(含)以内的为第一档,维持现行电价标准,即每千瓦时0.52元;月用电量201﹣400千瓦时(含)的为第二档,每千瓦时提高5分,即每千瓦时0.57元;月用电量在401千瓦时(含)以上的为第三档,每千瓦时提高0.30元,即每千瓦时0.82元.某居民今年11月用电量为t千瓦时(200<t≤400),则该居民所付电费为()A.0.52tB.0.57tC.0.52×20 0+0.57tD.0.52×200+0.57×(t﹣200)【分析】某居民家11月份用电t千瓦时,交电费y元,根据等量关系列出关于y的方程即可.解:设该居民所付电费为y元,则依题意有y=0.52×150+0.57(t﹣200),故选:D.【点评】本题主要考查了列代数式的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出代数式即可.12.下列图象都是由相同大小的按一定规律组成的,其中第①个图形中一共有4颗,第②个图形中一共有11颗,第③个图形中一共有21颗,…,按此规律排列下去,第⑨个图形中的颗数为()A.116 B.144 C.145 D.150【分析】根据题意将每个图形都看作两部分,一部分是上面的构成规则的矩形的,另一部分是构成下面的近似金字塔的形状,然后根据递增关系得到答案.解:∵4=1×2+2,11=2×3+2+321=3×4+2+3+4第4个图形为:4×5+2+3+4+5,∴第⑨个图形中的颗数为:9×10+2+3+4+5+6+7+8+9+10=144.故选:B.【点评】此题主要考查了图形变化规律,正确得出每个图形中小星星的变化情况是解题关键.二、填空题(每题4分,共24分)13.(﹣3)2﹣1=8 .【分析】根据有理数的运算法则进行计算.解:(﹣3)2﹣1=9﹣1=8.故填8.【点评】本题考查的是有理数的运算能力,注意符号的处理.14.的系数为,次数为 3 .【分析】根据单项式系数、次数的定义来求解.解:的系数为,次数为3.故答案为:,3.【点评】此题考查的是单项式,确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.15.关于x的多项式4x n+1﹣3x2﹣x+2是四次多项式,则n= 3 .【分析】由于多项式是关于x的四次多项式,所以n+1=4,解方程可求n的值.解:∵关于x的多项式4x n+1﹣3x2﹣x+2是四次多项式,∴n+1=4,解得n=3.故答案为:3.【点评】本题考查了多项式的知识,几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数.16.多项式x2﹣3kxy﹣3y2+6xy﹣8不含xy项,则k= 2 .【分析】先将原多项式合并同类项,再令xy项的系数为0,然后解关于k的方程即可求出k.解:原式=x2+(﹣3k+6)xy﹣3y2﹣8,因为不含xy项,故﹣3k+6=0,解得:k=2.故答案为:2.【点评】本题考查了合并同类项法则及对多项式“项”的概念的理解,题目设计巧妙,有利于培养学生灵活运用知识的能力.17.已知=﹣1,则的值为 1 .【分析】由=﹣1,可得m、n、p两负一正,再去绝对值计算即可求解.解:∵=﹣1,∴m、n、p两负一正,∴==1.故答案为:1.【点评】考查了绝对值的性质,能够根据已知条件正确地判断出m、n、p的值是解答此题的关键.18.若规定一种运算:a*b=(a+b)﹣(a﹣b),其中a,b为有理数,则a*b+(b﹣a)*b 等于4b.【分析】先根据新定义展开,再去括号合并同类项即可.解:a*b+(b﹣a)*b=(a+b)﹣(a﹣b)+(b﹣a+b)﹣(b﹣a﹣b)=a+b﹣a+b+2b﹣a+a=4b.故答案为4b.【点评】本题考查了整式的加减,主要考查学生的理解能力和计算能力,题目比较好,难度适中.三、解答题(每题8分,共16分)19.(8分)在数轴上表示下列各数,并用“<”把这些数连接起来.﹣2.5,﹣3,0,2,|﹣3|【分析】先在数轴上表示出各个数,再比较即可.解:﹣3<﹣2.5<0<2<|﹣3|.【点评】本题考查了有理数的大小比较法则和数轴、绝对值等知识点,能熟记有理数的大小比较法则的内容是解此题的关键,注意:在数轴上表示的数,右边的数总比左边的数大.20.(8分)把下面各数对应的序号填在相应的大括号里.①﹣5,②|﹣|,③0,④﹣3.14,⑤,⑥﹣12,⑦0.1010010001…,⑧+1.99,⑨﹣,⑩﹣(﹣3)2分数集合:(②,④,⑤,⑧…)负有理数集合:(①,④,⑥,⑩…)【分析】根据有理数的分类填空即可.解:分数集合:(②,④,⑤,⑧,…)负有理数集合:(①,④,⑥,⑩…),故答案为:②,④,⑤,⑧;①,④,⑥,⑩.【点评】本题考查了有理数的分类,解题的关键是正确掌握分类的标准以及注意0既不是正数也不是负数.四、解答题(21题12分,22题8分,23-25每题10分,26题12分,共62分)21.(12分)计算(1)(﹣18)+(+5)﹣(﹣7)﹣(+11)(2)(﹣)×(﹣1)÷(﹣2)(3)25×+(﹣25)×+25×(﹣)(4)﹣12﹣[1+(﹣12)÷6]×(﹣)3【分析】(1)先把减法转化加法,然后根据有理数的加法即可解答本题;(2)根据有理数的乘除法可以解答本题;(3)根据乘法分配律可以解答本题;(4)先算小括号里的,再算中括号里的,最后根据有理数的加减法即可解答本题.解:(1)(﹣18)+(+5)﹣(﹣7)﹣(+11)=(﹣18)+5+7+(﹣11)=﹣17;(2)(﹣)×(﹣1)÷(﹣2)=﹣=﹣;(3)25×+(﹣25)×+25×(﹣)=25×﹣25×+25×(﹣)=25×()=25×=;(4)﹣12﹣[1+(﹣12)÷6]×(﹣)3=﹣1﹣()×(﹣)=﹣1﹣(﹣)×(﹣)=﹣1﹣=﹣.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的运算顺序.22.(8分)某冰箱销售商,今年四月份销售冰箱(a﹣1)台,五月份销售冰箱比四月份的2倍少1台,六月份销售冰箱比前两个月的总和还多5台.(1)求五月份和六月份分别销售冰箱多少台?(2)六月份比五月份多销售冰箱多少台?【分析】(1)分别表示出五月份和六月份销售的台数即可;(2)用六月份减去五月份的销量即可求解.解:(1)五月份的销量为:2(a﹣1)﹣1=2a﹣3,六月份的销量为:(a﹣1)+(2a﹣3)+5=3a+1;(2)3a+1﹣(2a﹣3)=3a+1﹣2a+3=a+4.故六月份比五月份多销售冰箱(a+4)台.【点评】本题考查了整式的加减,解答本题的关键是掌握去括号法则和合并同类项法则.23.(10分)先化简再求值:5abc﹣2a2b﹣[3abc+2(ab2﹣a2b)],其中a=﹣,b=﹣1,c =3.【分析】先将原式化简,然后将a、b、c的值代入原式即可求出答案.解:原式=5abc﹣2a2b﹣[3abc+2ab2﹣2a2b]=5abc﹣2a2b﹣3abc﹣2ab2+2a2b=2abc﹣2ab2,当a=﹣,b=﹣1,c=3时,原式=2×()×(﹣1)×3﹣2×()×9=3+9=12.【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.24.(10分)已知|a﹣2|+(b+1)2=0,c与互为倒数,(d﹣1)的平方是25,求代数式a c﹣2c a的值.(要求写出过程)【分析】根据非负数的性质、倒数的定义和乘方分别得出a,b,c,d的值,再分别代入计算可得.解:∵|a﹣2|+(b+1)2=0,c与互为倒数,(d﹣1)的平方是25,∴a=2,b=﹣1,c=3,d=6或d=﹣4,当d=6时,a c﹣2c a=23+﹣2×32=8﹣6﹣18=﹣16;当d=﹣4时,a c﹣2c a=23+﹣2×32=8+4﹣18=﹣6;综上,代数式a c﹣2c a的值为﹣16或﹣6.【点评】本题主要考查代数式的求值,解题的关键是掌握非负数的性质、倒数的定义和乘方的运算法则.人教版七年级(上)期中模拟数学试卷(含答案)一、选择题(每小题3分,共30分)1.﹣3的倒数是()A.3B.C.﹣D.﹣32.我国首艘国产航母于2018年4月26日正式下水,排水量约为65000吨,将65000用科学记数法表示为()A.6.5×10﹣4B.6.5×104C.﹣6.5×104D.0.65×104 3.如图是用五个相同的立方块搭成的几何体,其主视图是()A.B.C.D.4.下列运算结果正确的是()A.5x﹣x=5B.2x2+2x3=4x5C.﹣n2﹣n2=﹣2n2D.a2b﹣ab2=05.下列不是三棱柱展开图的是()A.B.C.D.6.一根1米长的绳子,第一次剪去一半,第二次剪去剩下的一半,如此剪下去,第六次后剩下的绳子的长度为()米.A.B.C.D.7.下列说法:①0是绝对值最小的有理数;②相反数大于自身的数是负数;③数轴上原点两侧的数互为相反数;④两个数相互比较绝对值大的反而小.其中正确的是()A.①②B.①③C.①②③D.②③④8.已知x﹣2y=﹣3,则3(x﹣2y)2﹣5(x﹣2y)+6的值是()A.﹣6B.48C.﹣36D.189.如图,M,N,P,R分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1.数a对应的点在M与N之间,数b对应的点在P与R之间,|a|+|b|=3,则原点是()A.M或R B.N或P C.M或N D.P或R10.用不同的方法将长方体截去一个角,在剩下的各种几何体中,顶点最多的个数以及棱数最少的条数分别为()A.9个,12条B.9个,13条C.10个,12条D.10个,13条二、填空题(每小题3分,共30分)11.比较大小:﹣3﹣1(填“>”“<”或“=”).12.﹣的系数是,次数是.13.A地海拔高度是﹣30米,B地海拔高度是10米,C地海拔高度是﹣10米,A,B,C三地中地势最高的与地势最低的相差米.14.若代数式3a5b m+1与﹣2a n b2是同类项,那么m+n=.15.如图,正方形ABCD的边长为3cm,以直线AB为轴,将正方形旋转一周,所得几何体的左视图的面积是.16.若|m﹣2|+(n+1)2=0,则2m+n=.17.若a,b互为倒数,b,c互为相反数,m的绝对值为1,则+(b+c)m﹣m2的值为.18.已知a是两位数,b是一位数,把a直接写在b的前面,就成为一个三位数.这个三位数可表示成.19.若输入整数a,按照下列程序,计算将无限进行下去且不会输出,则a所有可能取到的值为.20.已知数a,b,c的大小关系如图所示:则下列各式:①b+a+(﹣c)>0;②(﹣a)﹣b+c>0;③;④bc﹣a>0;⑤|a﹣b|﹣|c+b|+|a﹣c|=﹣2b.其中正确的有(请填写编号).三、解答题(共40分)21.(16分)计算:(1)16﹣(﹣23)+(﹣49)(2)[﹣+(﹣1)﹣(﹣)]×24(3)26×(﹣3)2+175÷(﹣5)(4)﹣42﹣6×+2×(﹣1)3÷(﹣)22.(7分)(1)合并同类项:﹣3(2m2﹣mn)+4(m2+mn﹣1)(2)先化简,再求值:(5a2+2a+1)﹣4(3﹣8a+2a2)+(3a2﹣a),其中.23.(4分)若多项式2mx2﹣x2+5x+8﹣(7x2﹣3y+5x)的值与x无关,求m2﹣[2m2﹣(5m﹣4)+m]的值.24.(5分)某天市交警大队的一辆警车在东西街上巡视,警车从钟楼A处出发,规定向东方向为正,向西方向为负,钟楼处为0千米,当天行驶纪录如下:(单位:千米)+10,﹣9,+7,﹣15,+6,﹣5,+4,﹣2(1)最后警车是否回到钟楼A处?若没有,在钟楼A处何方,距钟楼A多远?(2)警车行驶1千米耗油0.2升,油箱有油10升,够不够?若不够,途中还需补充多少升油才刚好够用?25.(8分)已知数轴上两点A,B对应的数分别为﹣4,8.(1)如图1,如果点P和点Q分别从点A,B同时出发,沿数轴负方向运动,点P的运动速度为每秒2个单位,点Q的运动速度为每秒6个单位.①A,B两点之间的距离为.②当P,Q两点相遇时,点P在数轴上对应的数是.③求点P出发多少秒后,与点Q之间相距4个单位长度?(3)如图2,如果点P从点A出发沿数轴的正方向以每秒2个单位的速度运动,点Q从点B出发沿数轴的负方向以每秒6个单位的速度运动,点M从数轴原点O出发沿数轴的正方向以每秒1个单位的速度运动,若三个点同时出发,经过多少秒后有MP=MQ?参考答案一、选择题1.﹣3的倒数是()A.3B.C.﹣D.﹣3【分析】利用倒数的定义,直接得出结果.解:∵﹣3×(﹣)=1,∴﹣3的倒数是﹣.故选:C.【点评】主要考查倒数的定义,要求熟练掌握.需要注意的是负数的倒数还是负数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.我国首艘国产航母于2018年4月26日正式下水,排水量约为65000吨,将65000用科学记数法表示为()A.6.5×10﹣4B.6.5×104C.﹣6.5×104D.0.65×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.解:65000=6.5×104,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.如图是用五个相同的立方块搭成的几何体,其主视图是()A.B.C.D.【分析】根据三视图的知识求解.解:从正面看:上边一层最右边有1个正方形,下边一层有3个正方形.故选:D.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.4.下列运算结果正确的是()A.5x﹣x=5B.2x2+2x3=4x5C.﹣n2﹣n2=﹣2n2D.a2b﹣ab2=0【分析】根据合并同类项法则判断即可.解:A、5x﹣x=4x,错误;B、2x2与2x3不是同类项,不能合并,错误;C、﹣n2﹣n2=﹣2n2,正确;D、a2b与ab2不是同类项,不能合并,错误;故选:C.【点评】此题主要考查了合并同类项知识,正确掌握相关运算法则是解题关键.5.(3分)下列不是三棱柱展开图的是()A.B.C.D.【分析】根据三棱柱的两底展开是三角形,侧面展开是三个四边形,可得答案.解:A、B、D中间三个长方形能围成三棱柱的侧面,上、下两个三角形围成三棱柱的上、下两底面,故均能围成三棱柱,均是三棱柱的表面展开图.C围成三棱柱时,两个三角形重合为同一底面,而另一底面没有.故C不能围成三棱柱.故选:C.【点评】本题考查了几何体的展开图,注意两底面是对面,展开是两个全等的三角形,侧面展开是三个矩形.6.一根1米长的绳子,第一次剪去一半,第二次剪去剩下的一半,如此剪下去,第六次后剩下的绳子的长度为()米.A.B.C.D.【分析】根据乘方的意义和题意可知:第2次后剩下的绳子的长度为米,那么依此类推得到第六次后剩下的绳子的长度为米.解:∵1﹣=,∴第2次后剩下的绳子的长度为米;依此类推第六次后剩下的绳子的长度为米.故选:C.【点评】此题主要考查了乘方的意义.其中解题是正确理解题意是解题的关键,能够根据题意列出代数式是解题主要步骤.7.下列说法:①0是绝对值最小的有理数;②相反数大于自身的数是负数;③数轴上原点两侧的数互为相反数;④两个数相互比较绝对值大的反而小.其中正确的是()A.①②B.①③C.①②③D.②③④【分析】根据相反数和绝对值的概念进行判断.解:①正确;②若﹣a>a,则2a<0,即a是负数,故②正确;③数轴上原点两侧,且到原点距离相等的数互为相反数;故③错误;④两个负数相互比较,绝对值大的反而小;故④错误;所以正确的结论是①②.故选:A.【点评】理解相反数和绝对值的概念是解答此题的关键.相反数:符号不同,绝对值相等的两个数互为相反数;绝对值:数轴上,一个数到原点的距离叫做这个数的绝对值.8.已知x﹣2y=﹣3,则3(x﹣2y)2﹣5(x﹣2y)+6的值是()A.﹣6B.48C.﹣36D.18【分析】把已知等式代入原式计算即可求出值.解:∵x﹣2y=﹣3,∴原式=27+15+6=48,故选:B.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.9.如图,M,N,P,R分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1.数a对应的点在M与N之间,数b对应的点在P与R之间,|a|+|b|=3,则原点是()A.M或R B.N或P C.M或N D.P或R【分析】根据数轴判断出a、b两个数之间的距离小于3,然后根据绝对值的性质解答即可.解:∵MN=NP=PR=1,∴a、b两个数之间的距离小于3,∵|a|+|b|=3,∴原点不在a、b两个数之间,即原点不在N或P,∴原点是M或R.故选:A.【点评】本题考查了实数与数轴,准确识图,判断出a、b两个数之间的距离小于3是解题的关键.10.用不同的方法将长方体截去一个角,在剩下的各种几何体中,顶点最多的个数以及棱数最少的条数分别为()A.9个,12条B.9个,13条C.10个,12条D.10个,13条【分析】可考虑三个面切一个小角的情况.解:依题意,剩下的几何体可能有:7个顶点、12条棱、7个面;或8个顶点、13条棱、7个面;或9个顶点、14条棱、7个面;或10个顶点、15条棱、7个面.如图所示:因此顶点最多的个数是10,棱数最少的条数是12,故选:C.【点评】截面的形状既与被截的几何体有关,还与截面的角度和方向有关.对于这类题,最好是动手动脑相结合,亲自动手做一做,从中学会分析和归纳的思想方法.二、填空题(每小题3分,共30分)11.比较大小:﹣3<﹣1(填“>”“<”或“=”).【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.解:|﹣3|=3,|﹣1|=1,∵3>1,∴﹣3<﹣1.故答案为:<.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.12.﹣的系数是,次数是3.【分析】单项式的系数是指单项式中的数字因数,次数是指所有字母的指数和.解:根据单项式系数和次数的定义可知,﹣的系数是,次数是3.【点评】解答此题的关键是理解单项式的概念,比较简单.注意π属于数字因数.13.A地海拔高度是﹣30米,B地海拔高度是10米,C地海拔高度是﹣10米,A,B,C三地中地势最高的与地势最低的相差40米.【分析】地势最高的与地势最低的相差,即地势最高的海拔高度﹣地势最低的海拔高度.解:10﹣(﹣30)=10+30=40米.答:三地中地势最高的与地势最低的相差40米.【点评】注意A,B,C三地要通过比较,找到地势最高的B地与地势最低A.比较有理数的大小的方法:(1)负数<0<正数;(2)两个负数,绝对值大的反而小.14.若代数式3a5b m+1与﹣2a n b2是同类项,那么m+n=6.【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出n,m的值,再代入代数式计算即可.解:根据题意得:n=5,m+1=2,解得:m=1,则m+n=5+1=6.故答案是:6.【点评】本题考查了同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.15.如图,正方形ABCD的边长为3cm,以直线AB为轴,将正方形旋转一周,所得几何体的左视图的面积是18cm2.【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.解:正方形ABCD的边长为3cm,以直线AB为轴,将正方形旋转一周,所得几何体为半径为3圆柱体,该圆柱体的左视图为矩形;矩形的两边长分别为3cm和6cm,故矩形的面积为18cm2.故答案为:18cm2.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图,考查了学生细心观察能力和计算能力,属于基础题.16.若|m﹣2|+(n+1)2=0,则2m+n=3.【分析】根据非负数的性质列式求出m、n的值,然后代入代数式进行计算即可得解.解:根据题意得,m﹣2=0,n+1=0,解得m=2,n=﹣1,所以,2m+n=3.故答案为:3.【点评】本题考查了绝对值非负数,平方数非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.17.若a,b互为倒数,b,c互为相反数,m的绝对值为1,则+(b+c)m﹣m2的值为0或﹣2.【分析】a,b互为倒数,即ab=1;c,d互为相反数即c+d=0,m的绝对值为1,m为1或﹣1两种情况,把这些数据整体代入求得结果.解:当m=1时,原式=1+0﹣1=0;当m=﹣1时,原式=﹣1+0﹣1=﹣2.故答案为:0或﹣2.【点评】此题重在考查倒数、相反数、绝对值的意义以及有理数的混合运算等知识点.18.已知a是两位数,b是一位数,把a直接写在b的前面,就成为一个三位数.这个三位数可表示成10a+b.【分析】根据a表示两位数,b表示一位数,把a放在b的左边,相当于把a扩大10倍,从而列出代数式.解:∵a表示两位数,b表示一位数,∴把a放在b的左边组成一个三位数,那么这个三位数可表示为10a+b;故答案为:10a+b.【点评】本题考查了列代数式,正确理解把a放在b的左边组成一个三位数,其中a的变化情况是关键.19.若输入整数a,按照下列程序,计算将无限进行下去且不会输出,则a所有可能取到的值为0或±1.【分析】该题实际上是求a2≤1且a是整数时,a的值.解:依题意得:a2≤1且a是整数,解得a=0或a=±1.故答案是:0或±1.【点评】此题考查了代数式求值,弄清程序中的运算过程是解本题的关键.20.已知数a,b,c的大小关系如图所示:则下列各式:①b+a+(﹣c)>0;②(﹣a)﹣b+c>0;③;④bc﹣a>0;⑤|a﹣b|﹣|c+b|+|a﹣c|=﹣2b.其中正确的有②③⑤(请填写编号).【分析】有数轴判断abc的符号和它们绝对值的大小,再判断所给出的式子的符号,写出正确的答案.解:由数轴知b<0<a<c,|a|<|b|<|c|,①b+a+(﹣c)<0,故原式错误;②(﹣a)﹣b+c>0,故正确;③,故正确;④bc﹣a<0,故原式错误;⑤|a﹣b|﹣|c+b|+|a﹣c|=﹣2b,故正确;其中正确的有②③⑤.【点评】此题综合考查了数轴、绝对值的有关内容,用几何方法借助数轴来求解,。
2020-2021湖北省黄冈中学初一数学上期中试卷(带答案)
A.2017
B.2016
C.191
D.190
11.一家健身俱乐部收费标准为 180 元/次,若购买会员年卡,可享受如下优惠:
会员年卡类型
办卡费用(元)
每次收费(元)
A类
1500
100
B类
3000
60
C类
4000
40
例如,购买 A 类会员年卡,一年内健身 20 次,消费1500 100 20 3500 元,若一年内
3.下列各数中,比-4 小的数是( )
A. 2.5
B. 5
C.随时间而变化,1 个天文单位是地球与太阳之间的平均
距离,即 1.496 亿 km .用科学记数法表示 1.496 亿是( )
A.1.496 107
B.14.96 107
C. 0.1496108
D.1.496 108
②由乙单独维修;
③甲、乙合作同时维修,你认为哪种方案最省钱,为什么?
22.已知: 2A B 3a2 +2ab , A a2 2ab 3 . (1)求 B;(用含 a、b 的代数式表示) (2)比较 A 与 B 的大小.
23.一件商品按进价提高 40%后标价,然后打八折卖出,结果仍能获利 18 元,问这件商品 的进价是多少元? 24.把下列各数填在相应的集合里:
6.A
解析:A 【解析】 【分析】 根据小单位化大单位除以进率,可化成相同单位的角,根据有理数的大小比较,可得答 案. 【详解】 ∠1=18°18′=18.3°=∠3<∠2, 故选:A. 【点睛】 本题考查了度、分、秒的换算,利用小单位化大单位除以进率化成相同单位的角是解题的 关键.
7.D
解析:D 【解析】 【分析】 根据已知和与一个加数,则另一个加数=和-一个加数,然后计算即可. 【详解】 解:∵5y3-4y-6-(3y2-2y-5)= 5y3-4y-6-3y2+2y+5= 5y3-3y2-2y-1.
湖北省黄冈中学2015-2016学年七年级(上)期中数学试卷(解析版)
2015-2016学年湖北省黄冈中学七年级(上)期中数学试卷、选择题:(每题3分,共30 分)1. 0.2的相反数是()C .- 8 - 8=0D . - 5 - 2=- 33•若等式x=y 可以变形为一上,则有()a 3A . a > 0B . a v 0C . a 旳D . a 为任意有理数4.如果x=2是方程*x+a= - 1的解,那么a 的值是( )A . 0B . 2C . - 2D . - 6 5.下列变形中,不正确的是()A . a+ (b+c - d ) =a+b+c - dB . a -( b - c+d ) =a - b+c - d6 . 2010年5月1日至2010年10月31日期间在上海举行的世界博览会总投资约450亿元人民币,其中450亿”用科学记数法表示为()元.10989A . 4.5 XI0B . 4.5 XI0C . 4.5X10D . 0.45 X107.若-3x 2m y 3与2x 4y n 是同类项,那么m - n=( )A . 0B . 1C . - 1D . - 2&已知代数式x+2y 的值是3,则代数式2x+4y+1的值是( )A . 1B . 4C . 7D .不能确定9.在数轴上表示a , b 两个实数的点的位置如图所示,则化简|a+b|- |a - b|的结果为()■ ||丁30 ™A . 2aB . 2bC . 2a - 2bD . - 2b10 .若当x=3时,代数式ax 5+bx 3+cx - 10的值为3,则当x= - 3时,该多项式的值是 ( )A. - 3 B . - 7 C . - 13 D . - 23、填空题(每题 3分,共30 分)2•下列计算正确的是(32A . 2 =6B . - 4= — 16C . a - b -( c - d ) =a - b - c - dD . a+b - (- c - d ) =a+b+c+d11. __________________________________________________________________________ 在数轴上,若A点表示数-1,点B表示数2, A、B两点之间的距离为____________________________________12. 兰兰同学买了铅笔m支,每支0.8元,买了练习本n本每本2元,则她买铅笔和练习本一共花费了________________ 元.13. _________________________________________________________________ 一个多项式加上2x2- x+5等于4x2-6x-3,则这个多项式为_____________________________________________ .14. 用四舍五入法取近似数,__ 1.80499空(精确到百分位).15. a=3, |b|=10,且|b- a|=-( b - a),贝U a- b= _______________ .16. 若有一个新运算_________________________________________________ “”,规定a*b= - a+3b,则(-2) *3的值为 _________________________________________________________ .17. 若方程4x - 1=5与2 - 3 (a- x) =0的解互为倒数,则a的值为 __________________________218. 如果|y- 3|+ (2x - 4) =0,那么3x - y 的值为__________________ .19. 如图所示的方式搭正方形:搭___________ n个正方形需要小棒根.1.5 - 3 2 - 0.5 1 - 2 -2 -2.5回答下列问题:(1 )这8筐白菜中最接近标准重量的这筐白菜重 _________________________ 千克; (2) 与标准重量比较,8筐白菜总计超过或不足多(3) 若白菜每千克售价 2.6元,则出售这8筐白菜可卖多少元?24. 先化简,再求值:5 ( 3x 2y - xy 2)- (- 3x 2y+xy 2),其中 x — , y= - 1.225.整理一批图书,如果由一个人单独做要花 60小时.现先由一部分人用一小时整理,随 后增加15人和他们一起又做了两小时,恰好完成整理工作.假设每个人的工作效率相同, 那么先安排整理的人员有多少人?26. 轮船沿江从 A 港顺流行驶到B 港,比从B 港返回A 港少用2小时,若轮船在静水速度 为26千米/时,水流速度为2千米/时,求A 港和B 港相距多少千米.20.已知四个互不相等的整数 a, b , c , d 满足abcd=77,则a+b+c+d= ________________三、解答题21.计算或化简(1) (+12) + (- 23)-(- 33); (2) - 13-( 1-0.5)片羽-(-3) 2];2 2(3) 4x - 3x+8 - 2 (3x +4x - 5); (4) 2a 2-[g (ab - a 2) +8ab]-丄ab .22.解方程(1) 5x+3=1 - 2x ;(2) (3) (4)2x -( x+10) =5x+2 (x - 1); 32-i 23=至—2触3nr23.有8筐白菜,以每筐25千克为标准,超过的千克数记作正数,不足的千克数记作负数, 称后的记录如下:27.设九年级一班的学生人数为人(I )已知40V X V 54,若两个班都以班为单位购票请根据表中提供的信息,用含有x的式子填写下表:(H )若x50,两个班都以班为单位购票,共需1240元,求两个班各有多少学生?(川)在(n)的条件下,若两个班联合起来购票,作为一个团体购票,可省多少钱?2015-2016学年湖北省黄冈中学七年级(上)期中数学试卷参考答案与试题解析一、选择题:(每题3分,共30分)1. 0.2的相反数是()-C . - 5 D . 5相反数.根据相反数的意义在 0.2前面加上负号即可得出答案.解:由相反数的意义得: 0.2的相反数是:-0.2=- 5故选:B .【点评】此题主要考查的知识点是相反数的定义, 关键是在其前面加 •”得出这个数的相反数.2.下列计算正确的是( )32A . 2 =6B . - 4 =- 16C .- 8 - 8=0D . - 5 - 2=- 3【考点】 有理数的乘方;有理数的减法.【专题】计算题.【分析】根据有理数的加法、减法、乘方法则分别计算出结果,再进行比较. 【解答】解:A 、23=8书,错误;2B 、 - 4 = - 16,正确;C 、 - 8 - 8= - 16 用,错误;D 、 - 5- 2= - 7工-3,错误;故选B .【点评】本题主要考查学生的运算能力,掌握运算法则是关键.3.若等式x=y 可以变形为上一,则有( )a aA . a > 0B . a v 0C . a 旳D . a 为任意有理数【考点】等式的性质.【分析】根据等式的两边都乘或都除以同一个不为 0的整式,结果不变,可得答案【解答】解:x=y ,a 用,,a a故选:C .【点评】本题考查了等式的性质,注意等式的两边都乘或都除以同一个不为0的整式,结果【考点】【分【解答】不变.4. 如果x=2是方程丄x+a= - 1的解,那么a 的值是( )A . 0B . 2C .- 2D . - 6【考点】一元一次方程的解.【专题】计算题.【分析】此题可将x=2代入方程,然后得出关于a 的一元一次方程,解方程即可得出a 的值. 【解答】 解:将x=2代入方程丄x+a= - 1得1+a=- 1, 解得:a=- 2. 故选C .【点评】 此题考查的是一元一次方程的解法,方程两边可同时减去1,即可解出a 的值.5.下列变形中,不正确的是( )A 、 a+ (b+c - d ) =a+b+c - dB . a -( b - c+d ) =a - b+c - dC . a - b -( c - d ) =a - b - c - dD . a+b - (- c - d ) =a+b+c+d【考点】去括号与添括号. 【专题】计算题.【分析】根据去括号法则:如果括号外的因数是正数, 去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反判 断即可. 【解答】 解:A 、a+ (b+c - d ) =a+b+c - d ,故本选项正确;B 、 a -( b - c+d ) =a - b+c - d ,故本选项正确;C 、 a - b -( c - d ) =a - b - c+d ,故本选项错误;D 、 a+b - (- c - d ) =a+b+c+d ,故本选项正确; 故选C .【点评】 本题考查了去括号法则,解题时牢记法则是关键,特别要注意符号的变化.故选:A .【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a X 0n 的形式,其中1珥a|v 10, n 为整数,表示时关键要正确确定 a 的值以及n 的值.7.若-3x 2m y 3与2x 4y n 是同类项,那么m - n=()A . 0B . 1C .- 1D . - 2【考点】同类项. 【专题】计算题.【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,可得出 m 和n 的值,继而代入可得出答案.【解答】解:•/ - 3x 2m y 3与2x 4y n 是同类项, /• 2m=4 , n=3 , 解得:m=2, n=3,/• m - n= — 1.故选C .【点评】此题考查同类项的定义,属于基础题,解答本题的关键是掌握同类项:所含字母相 同,并且相同字母的指要看把原数变成a 时,小数点移动了多少位, 绝对值〉1时,n 是正数;当原数的绝对值v 【解答】 解:将450亿用科学记数法表示为:n 的绝对值与小数点移动的位数相同.当原数 1时,n 是负数. 4.5 X 010.数也相同,难度一般.&已知代数式x+2y的值是3,则代数式2x+4y+1的值是( )A . 1 B. 4 C. 7 D .不能确定【考点】代数式求值.【分析】把x+2y看作一个整体并把所求代数式整理成已知条件的形式,然后计算即可得解.【解答】解:••• x+2y=3 ,••• 2x+4y+1=2 (x+2y) +1 ,=2X3+1 ,=6+1 ,=7.故选C.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.9. 在数轴上表示a, b两个实数的点的位置如图所示,则化简|a+b|-|a- b|的结果为( )A . 2a B. 2b C. 2a- 2b D . - 2b【考点】整式的加减;数轴;绝对值.【分析】根据各点在数轴上的位置判断其符号及绝对值的大小,再去绝对值符号,合并同类项即可.【解答】解:•••由图可知,a v O v b, |a|> b,•a+b v 0, a- b v 0,•原式=-(a+b) + (a - b)=-a - b+a- b=-2b.故选D .【点评】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.5 310. 若当x=3时,代数式ax +bx +cx - 10的值为3,则当x= - 3时,该多项式的值是( ) A. - 3 B. - 7 C.- 13 D . - 23【考点】代数式求值.【分析】当x=3时,ax5+bx3+cx=13,当x= - 3时,ax5+bx3+cx= - 13,最后代入计算即可.【解答】解:•••当x=3时,代数式ax5+bx3+cx - 10=35 3•ax +bx +cx=13.••• 3与-3互为相反数,•••当x= - 3 时,ax5+bx3+cx= - 13.•••原式=-13- 10= - 23.故选:D.【点评】本题主要考查的是求代数式的值,依据相反数的性质求得ax5+bx3+cx= - 13是解题的关键.二、填空题(每题3分,共30分)11. 在数轴上,若A点表示数-1,点B表示数2, A、B两点之间的距离为 3 .【考点】数轴.【分析】用数轴上右边的点表示的数减去左边的点表示的数即可得到两点之间的距离.【解答】解:2-(- 1) =3.故答案为:3【点评】本题主要考查了数轴,熟知数轴上两点间的距离公式是解答此题的关键.12. 兰兰同学买了铅笔m支,每支0.8元,买了练习本n本每本2元,则她买铅笔和练习本一共花费了0.8m+2 n 元.【考点】列代数式.【分析】根据总花费=买铅笔用的钱+买练习本用的钱,列代数式.【解答】解:总花费=0.8m+2n .故答案为:0.8m+2n .【点评】本题考查了列代数式,解答本题的关键是读懂题意,找出合适的等量关系,列代数式.13. 一个多项式加上2x2- x+5等于4x2-6x- 3,则这个多项式为2x2- 5x - 8 .【考点】整式的加减.【分析】先根据题意列出整式相加减的式子,再去括号,合并同类项即可.【解答】解:原式=(4x2- 6x - 3) -( 2x2- x+5)2 2=4x - 6x - 3 - 2x +x - 52=2x - 5x - 8.故答案为:2x2- 5x - 8.【点评】本题考查的是整式的加减,熟知整式的加减实质上是合并同类项是解答此题的关键.14. 用四舍五入法取近似数, 1.80499〜1.80 (精确到百分位).【考点】近似数和有效数字.【分析】把千位上的数字进行四舍五入即可.【解答】解:1.80499H.80 (精确到百分位).故答案为1.80.【点评】本题考查了近似数和有效数字:经过四舍五入得到的数为近似数;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字. 近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.15. a=3, |b|=10,且|b- a|=-( b - a),贝U a- b= 13 .【考点】绝对值.【分析】利用绝对值的代数意义求出b的值,即可确定出a-b的值.【解答】解:••• a=3, |b|=10,且|b-a|=-( b - a),••• b= - 10,--a —b=3+10=13.故答案为:13.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.16. 若有一个新运算* ”,规定a*b= —a+3b,则(-2)*3的值为11 【考点】有理数的混合运算.【专题】计算题;新定义.【分析】原式利用已知的新定义计算即可得到结果.【解答】解:根据题中的新定义得:原式=2+9=11 ,故答案为:11.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.17. 若方程4x - 1=5与2 - 3 (a- x) =0的解互为倒数,则a的值为丄.—3 —【考点】一元一次方程的解.【分析】首先解第一个方程求得方程的解,则第二个方程的解即可求得,代入方程即可得到一个关于a的方程,求得a的值.【解答】解:解方程4x -仁5,解得:x—,2则方程2 - 3 (a - x) =0的解是x=-—,2把x=-上代入方程得2 - 3 (a+上)=0,2 2|4解得:a=■- *故答案是:£.3【点评】本题考查了一元一次方程的解法以及方程的解的定义,方程的解就是能使方程左右两边相等的未知数的值.19.如图所示的方式搭正方形:搭n个正方形需要小棒_3n+1 根.【考点】规律型:图形的变化类.【分析】通过观察易得搭一个正方形要火柴4根;搭两个正方形要火柴(4+3)根,即7根;搭三个正方形要火柴(4+3 >2 )根,即10根,由此得到搭n个正方形要火柴4+3 x (n - 1) 根.【解答】解:观察第一个图得,搭一个正方形要火柴4根;观察第二个图得,搭两个正方形要火柴( 4+3 )根,即7根;观察第三个图得,搭三个正方形要火柴( 4+3 X)根,即10根,所以搭n个正方形要火柴的根数=4+3 x (n - 1) =3n+1 (根).故答案为:3n+1.【点评】本题考查了规律型:图形的变化类:通过从一些特殊的图形变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.20. 已知四个互不相等的整数a, b, c, d满足abcd=77,则a+b+c+d= ±4 .【考点】有理数的乘法;有理数的加法.【分析】根据题意可得出这四个数的值,继而可以确定这四个数的和.【解答】解:77=7 X1=1X1 x X仁-1X| X(- 7) X仁-1 XX x(- 11).由题意知,a、b、c、d 的取值为-1, 1,- 7, 11 或-1, 1, 7,- 11.从而a+b+c+d= ±.故答案为:±4.【点评】本题考查有理数的乘法运算,关键在于根据题意判断四个数的值,注意读清题意, 题干已把这四个数限定在很小的范围.三、解答题21. 计算或化简(1)(+12) + (- 23)-(- 33);(2)- 13-( 1-0.5) XX2 -( - 3) 2];(3)4x2- 3x+8 - 2 (3X2+4X - 5);(4)2a2- [— (ab- a2) +8ab] -—ab.2 2【考点】有理数的混合运算;整式的加减.【专题】计算题;实数.【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果;(3)原式去括号合并即可得到结果;(4)原式去括号合并即可得到结果.【解答】解:(1)原式=12 - 23+33=22 ;(2)原式=-1 -二XX ( - 7) =- 1+丄匚;冈3 & 63 原式=4X2-3X+8 - 6X2-8X+10= - 2X2-11X+18;(4)原式=2a 2 - — ab+丄a 2 - 8ab — — ab=5a 2- 9ab .2 2 2 2【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22. 解方程;(2)去括号,得 2x - x - 10=5x+2x - 2. 移项得 2x - x - 5x - 2x= - 2+10 .合并同类项得-6x=8 . 化系数为1,得x=-(3 )去分母得 2 (2x+1)- 5x=6 去括号,得4x+2 - 5x=6. 移项得 4x - 5x=6 - 2. 合并同类项得-x=4 . 化系数为1,得x= - 4.(4)去分母得 3 (2 - x )- 18=2x -( 2x+3) 去括号,得 6 - 3x - 18=2x - 2x - 3 移项得 6 - 18+3=2x -2x+3x合并同类项得-9=3x 化系数为1,得x= - 3.【点评】本题考查解一元一次方程, 解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为 1.注意移项要变号.23. 有8筐白菜,以每筐25千克为标准,超过的千克数记作正数,不足的千克数记作负数, 称后的记录如下:15 - 3 2 - 0 5 1 - 2 -2 -2.5(1) (2) (3)5x+3=1 - 2x ;2x -( x+10) =5x+2 (x - 1); _5工=1 .3 (4)亠3= 2【考点】解- 【分析】(1) (2 )去括号、 (3 )去分母、 (4 )去分母、【解答】解: 合并同类项得2x+3 3 6兀一次方程.移项、合并同类项,系数化成 移项、合并同类项、系数化成 去括号、 去括号、1即可求解; 1即可求解;移项、合并同类项、系数化成 移项、合并同类项、系数化成1即可求解; 1即可求解.(1)移项得 5x+2x=1 - 3.7x= - 2, 化系数为1,得x=-回答下列问题:(1 )这8筐白菜中最接近标准重量的这筐白菜重 -0.5千克;(2) 与标准重量比较,8筐白菜总计超过或不足多—(3) 若白菜每千克售价 2.6元,则出售这8筐白菜可卖多少元? 【考点】 正数和负数.【分析】(1)根据绝对值的意义,绝对值越小越接近标准,可得答案; (2 )根据有理数的加法运算,可得答案; (3)根据单价乘以数量等于总价,可得答案.【解答】 解:(1) •/ |-3|> 2.5|>|-2|=|2|> |1.5|> |1|> 0.5|,•••- 0.5的最接近标准.故答案为:-0.5千克; (2) 由题意,得1.5+ (- 3) +2+ (- 0.5) +1+ (- 2) + (- 2) + (-2.5) =- 5.5 (千克).答:与标准重量比较,8筐白菜总计不足5.5千克; (3) 由题意,得(25 >8 - 5.5) >2.6=194.5 >2.6=505.7 (元). 答:出售这8筐白菜可卖505.7元.【点评】 本题考查了正数和负数,禾U 用了绝对值的意义,有理数的加法运算.24. 先化简,再求值:5 ( 3x 2y - xy 2)- (- 3x 2y+xy 2),其中 xj , y= - 1 .【考点】整式的加减一化简求值. 【专题】计算题;整式.【分析】原式去括号合并得到最简结果,把x 与y 的值代入计算即可求出值.【解答】解:原式=15x 2y - 5xy 2+3x 2y - xy 2=18x 2y - 6xy 2, 当 x=—, y= - 1 时,原式=-—! - 3= - 7.5.2 2【点评】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.25.整理一批图书,如果由一个人单独做要花 60小时.现先由一部分人用一小时整理,随后增加15人和他们一起又做了两小时,恰好完成整理工作.假设每个人的工作效率相同, 那么先安排整理的人员有多少人?【考点】一元一次方程的应用. 【专题】工程问题.【分析】等量关系为:所求人数 1小时的工作量+所有人2小时的工作量=1,把相关数值代 入即可求解.答:先安排整理的人员有 10人. 【点评】解决本题的关键是得到工作量 1的等量关系;易错点是得到相应的人数及对应的工作时间.【解答】解:设先安排整理的人员有 x 人, K 2 (好15)60解得:x=10. 依题意得: 60=1.26. 轮船沿江从A港顺流行驶到B港,比从B港返回A港少用2小时,若轮船在静水速度为26千米/时,水流速度为2千米/时,求A港和B港相距多少千米.【考点】一元一次方程的应用.【分析】根据逆流速度=静水速度-水流速度,顺流速度=静水速度+水流速度,表示出逆流速度与顺流速度,根据题意列出方程,求出方程的解即可得到结果.【解答】解:设A港与B港相距x km ,由题意得_^+2=丄一26+y 26-2解得:x=336.则A港与B港相距336 km .答:A港与B港相距336km .【点评】此题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.27.设九年级一班的学生人数为人(I )已知40V X V 54,若两个班都以班为单位购票请根据表中提供的信息,用含有x的式()若x50,两个班都以班为单位购票,共需1240元,求两个班各有多少学生?(川)在(n)的条件下,若两个班联合起来购票,作为一个团体购票,可省多少钱?【考点】一元一次方程的应用.【分析】(I )根据总价=单价>数量即可求解;(n )设一班有x人,则二班有人,根据两班分别购票的费用为1240元建立方程求出其解即可;(川)两班联合起来,超过了100人,每张票的价格为9元,然后计算1240 - 9X104=304即可.填表如下:【解答】解:(I )(n)当4強<50 时,13x+11=1240 , 解得x=48 .104 - x=104 - 48=56 ;当0V x V 4 时,13x+9=1240 ,解得x=76,不合题意舍去.答:九年级一班有48人,二班有56人;(川)1240- 9X104=304 (元).答:若两个班联合起来购票,作为一个团体购票,可省304 元钱.【点评】本题考查了一元一次方程的应用:首先审题找出题中的未知量和所有的已知量,接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.2016年1月27日6. 2010年5月1日至2010年10月31日期间在上海举行的世界博览会总投资约450亿元人民币,其中450亿”用科学记数法表示为( )元.10 9 8 9A . 4.5 XIOB . 4.5 XI09 C. 4.5X106 * 8 D . 0.45 X109【考点】科学记数法一表示较大的数.【分析】科学记数法的表示形式为a X0n的形式,其中1弓a|v 10, n为整数.确定n的值时,218. 如果|y- 3|+ (2x - 4) =0,那么3x - y 的值为3 .【考点】代数式求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】由非负数的性质可知y=3, x=2,最后代入计算即可.【解答】解:•/ |y - 3|+ (2x - 4) 2=0 ,• y=3 , x=2 .3x —y=3 >2 —3=6 —3=3 .故答案为:3.【点评】本题主要考查的是求代数式的值,依据非负数的性质求得y=3 , x=2是解题的关键.。
黄冈市七年级(上)期中数学试卷
【解析】解:因为2������2������������ +3������������������3 = 5������2������3, 所以������ = 3,������ = 2, 所以������������ = 32 = 9. 故答案为:9. 合并同类项,系数相加字母和字母的指数不变,由此可以求出 a、b,进而得出答案. 本题考查了合并同类项.解题的关键是掌握合并同类项的法则:把同类项的系数相加, 所得结果作为系数,字母和字母的指数不变.
+
1
2|
=
0.
24. 已知,关于 x、y 的多项式(2������2 +������������−������ + 6)−2(������������2−3������ + 5������−1) (1)若此多项式的值与字母 x 的取值无关,试求 a、b 的值; (2)在(1)的条件下,求多项式3(������2−2������������−������2)−4(������2−������������−������2)的值.
16. 下列图形都是由同样大小的五角星按一定的规律组成,其中第①个图形一共有 2 个 五角星,第②个图形一共有 8 个五角星,第③个图形一共有 18 个五角星,…,则 第⑥个图形中五角星的个数为______.
三、计算题(本大题共 3 小题,共 21.0 分) 17. 方程������ + 3 = 2������ + 2������与方程−������−������ = 5的解相同,求这个相同的解.
14. 已知方程������������−1 = ������ + 1的解为正整数,则������ = ______.
2023-2024学年湖北省黄冈市红安县七年级上学期期中数学试题
2023-2024学年湖北省黄冈市红安县七年级上学期期中数学试题1.中国是最早采用正负数表示相反意义的量的国家,如果将“收入60元”记作“元”,那么“支出40元”记作()A.元B.元C.元D.20元2.习近平总书记指出“善于学习,就是善于进步”.“国家中小学智慧云平台”上线的某天,全国大约有5450000人在平台上学习,将5450000这个数据用科学记数法表示为()A.B.C.D.3.若,则下列各式不一定成立的是()A.B.C.D.4.下列各数:,,,0,,(每两个2之间多一个6),其中有理数的个数是()A.3B.4C.5D.65.下列各组数中,相等的一组是()A.与B.与C.与D.与6.下列说法正确的是()A.的次数是5B.的系数是C.的一次项系数是3D.的最高次数是37.某商品原价a元,按下列两种方案调整价格,方案一:先涨价,再降价;方案二:先涨价,再降价.下列关于售价的说法正确的是()A.方案一售价更高B.方案二售价更高C.两种方案售价相同D.不确定8.下列说法:①若与是同类项,则,;②若,则;③若,则;④若,,,则,其中正确的个数是()A.1个B.2个C.3个D.4个9.若,且,则______.10.用四舍五入法将1.895取近似数,并精确到百分位,得到的数是________.11.若是关于x的一元一次方程,则k的值为______.12.若,则的值是______.13.我们规定新算“”:,例如:,那么______.14.观察下列各数:,,,,根据它们的排列规律写出第n个数为______.15.某同学计算一个多项式加上时,误认为减去此式,计算出的结果为,则正确结果是________.16.如图,两个大、小正方形的边长分别是和,用含的式子表示图中阴影部分的面积为________.17.计算:(1)(2)(3)18.(1)化简:;(2)先化简,再求值:,其中x、y满足19.某飞机在进行特技表演时,其中一架飞机起飞后的高度变化为:上升,下降,上升,下降.(1)飞机完成上述四个表演动作后,飞机离地面的高度为多少千米?(2)如果飞机平均上升1需要消耗燃油,平均下降1需要消耗燃油,那么这架飞机在这4个动作表演过程中,一共消耗了多少升燃油?20.已知互为相反数,互为倒数,的绝对值是3,是最大的负整数,求的值.21.有理数a、b、c在数轴上的位置如图,(1)用“>”或“<”填空:______0,______0,______0;(2)化简:.22.将连续奇数1,3,5,7,……排成如图所示的数表.(1)第7行的第3个数是______.(2)将十字框上下左右移动,可框住另外五个数,设中间数为a,请你用代数式表示其它四个数,并写出十字框的五个数之和.(3)设中间数为a,十字框中的五个数之和能等于2005吗?说明理由.23.某超市在春节期间对顾客实行优惠,规定如下:一次性购物优惠办法少于200元不予优惠低于500元但不低于200元九折优惠500元或超过500元其中500元部分给予九折优惠,超过500元部分给予八折优惠(1)王老师一次性购物600元,他实际付款元.(2)若顾客在该超市一次性购物x元,当x小于500元但不小于200时,他实际付款元,当x大于或等于500元时,他实际付款元.(用含x的代数式表示).(3)如果王老师两次购物货款合计820元,第一次购物的货款为a元(200<a<300),用含a的代数式表示:两次购物王老师实际付款多少元?24.如图,点A、B在数轴上表示的数分别是,12(两点间的距离用表示)(1)若C在之间且,C对应的数为______;(2)若D在数轴上对应的数为x,则的最小值为______.(3)若动点P从A点出发以1个单位秒的速度在数轴上向右运动,点Q从B点同时出发,以2个单位/秒在数轴上向左运动.经过多久P、Q的距离为3个单位长度?(4)若动点P、Q分别从A、B两点同时向右运动,与此同时动点M从原点O出发,也向右运动,P点的速度为1个单位秒,Q点的速度为2个单位/秒,M点的速度为1.5个单位秒,试探究在运动过程中的长度是否发生变化,若变化说明理由,若不变求出其值.。
2023-2024学年湖北省黄冈市七年级上学期期中数学试题
2023-2024学年湖北省黄冈市七年级上学期期中数学试题1.在实数﹣(﹣3),﹣2,0,|﹣4|中,()最小A.﹣(﹣3)B.﹣2C.0D.|﹣4|2.我国平均每平方千米的土地一年从太阳得到的能量,相当于燃烧130000000kg的煤所产生的能量.把130000000kg用科学记数法可表示为()A.kg B.kg C.kg D.kg3.a是一位数,b是三位数,如果把b放在a的右边,那么所得的四位数应表示为()A.B.C.D.4.下列说法中,一定正确的是()A.若,则B.若,则C.若,则D.若,则5.方程﹣3(★﹣9)=5x﹣1,★处被盖住了一个数字,已知方程的解是,那么★处的数字是()A.1B.2C.3D.46.某同学在计算时,误将“”看成“”结果是,则的正确结果是()A.4B.C.8D.7.完全相同的4个白色小长方形如图所示放置,形成了一个长、宽分别为的大长方形则图中阴影部分的周长是()A.B.C.D.8.俄乌战争期间,铁矿石的原材料大涨,钢材锻造厂决定对锻造钢单价进行提价(1)第一次提价30%,第二次提价10%;(2),第二次提价30%;(3)第一、二次提价均为20%,下列说法正确的是()A.方案(1)B.方案(2)C.方案(3)D.三种方案相同9.用代数式表示“a的3倍与b的和的平方”是__.10.若多项式是关于x的三次三项式,则m=_____.11.记数轴上表示数的点为,则数轴上到点的距离为的点表示的数是__________.12.绝对值大于2且小于5的所有整数的和是________.13.近似数1.04亿精确到_____位.14.已知,则________..15.学校安排学生住宿,若每室住8人,则有5人无法安排;若每室住10人,则空出5个床位.这个学校有学生宿舍______间.16.现有一列数,,…,,其中,,,且满足任意相邻三个数的和为同一常数,则的值为__________.17.计算或解方程:(1);(2)18+32÷(﹣2)3﹣(﹣4)2×5;(3);(4)7x+2(3x﹣3)=20.18.已知,,求代数式的值.19.已知有理数a、b满足ab<0,a+b>0且|a|<|b|,(1)填空:a0,b0(填“>”“<”或“=”);(2)在数轴上标出数a,﹣a,b,﹣b;(3)化简:|2a﹣b|﹣|2b﹣a|+|a+b|.20.已知a、b互为倒数,c、d互为相反数,在数轴上m对应的点到原点的距离是5,求(ab)4﹣3(c+d)﹣m的值.21.如图是黄冈市1S路公汽的部分站点示意图.某天,小王参加公交志愿者服务活动,从十字街站出发,如果规定向东方京城方向为正,小王当天的乘车站数按先后顺序依次记录如下(单位:站),+5,﹣3,+4,-5,﹣2,+1,-3,+4,+1.(1)请通过计算说明A站是哪一站?(写站名)(2)若相邻两站之间的平均距离约为0.8千米,求这次小王志愿服务期间乘公汽行进的总路程约是多少千米?22.已知A=5x2﹣mx+n,B=3x2﹣2x+1.(1)若m的倒数等于它本身,且m+n=0,求当x=1时,A-B的值;(2)若A﹣B的结果中不含一次项和常数项,求m2+n2﹣2mn的值.23.如图的数阵是由88个偶数组成:(1)甲同学这样圈出的四个数的和为432,你能求出这四个数吗?(2)乙同学想用这样的框圈出和为172的四个数,可能吗?(3)你能用这样的框圈出和为352的四个数吗?若能,请写出这四个数:若不能,请说明理由.24.如图:在数轴上点A表示数a,点B表示数b,点C表示数c,且多项式(a+3)x3+4x2+9x+2是关于x的二次多项式,一次项系数为c.(1)a=,b=,c=;(2)若将数轴折叠,使得点A与点C重合,则点B与点D重合,求点D对应的数;(3)若数轴上点P到点A的距离是点P到点C的距离的2倍,求点P对应的数;(4)若点A、点B和点C分别以每秒2个单位长度、1个单位长度和4个单位长度的速度在数轴上同时同左运动时,小明同学发现:的值是个定值,求此时m的值.。
湖北省黄冈市 七年级(上)期中数学试卷
七年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.下表是某水库一周内水位高低的变化情况(用正数记水位比前一日上升数,用负数记下降数).那么本周星期几水位最低()星期二星期四星期六星期五2.若单项式-2a m b3与45a5b2-n是同类项,则m-n=()A. 2B. 4C. 6D. 83.下列各式中正确的是()A. +5−(−6)=11B. −7−|−7|=0C. −5+(+3)=2D. (−2)+(−5)=74.下列结论成立的是()A. 若|a|=a,则a>0B. 若|a|=|b|,则a=±bC. 若|a|>a,则a≤0D. 若|a|>|b|,则a>b.5.计算:1+(-2)+(+3)+(-4)+(+5)+(-6)+…+(+99)+(-100)+(+101)的结果是()A. 0B. −1C. −50D. 516.在数学课上,老师让甲、乙、丙、丁,四位同学分别做了一道有理数运算题,你认为做对的同学是()甲:9-32÷8=0÷8=0乙:24-(4×32)=24-4×6=0丙:(36-12)÷32=36×23-12×23=16丁:(-3)2÷13×3=9÷1=9A. 甲B. 乙C. 丙D. 丁7.已知一个多项式与3x2+9x的和等于5x2+4x-1,则这个多项式是()A. 8x2+13x−1B. −2x2+5x+1C. 8x2−5x+1D. 2x2−5x−18.已知a-b=3,c+d=2,则(a+c)-(b-d)的值为()A. 1B. −1C. 5D. −59.下列运算中,正确的是()A. 3a+2b=5abB. 2a3+3a2=5a5C. −3ba2+3a2b=0D. 5a2−4a2=110.如图,两个面积分别为17,10的图形叠放在一起,两个阴影部分的面积分别为a,b(a<b),则b-a的值为()A. 5B. 6C. 7D. 8二、填空题(本大题共8小题,共24.0分)11.计算:若规定新运算:a*b=2a-b,则(-2)*4=______.12.在2018年帮助居民累计节约用水305000吨,将数字305000用科学记数法表示为______.13.-235的倒数是______,绝对值是______,相反数是______.14.若2xy2n与3x3m y2是同类项,则(m-n)2值是______.15.某同学在做计算2A+B时,误将“2A+B”看成了“2A-B”,求得的结果是9x2-2x+7,已知B=x2+3x+2,则2A+B的正确答案为______.16.多项式12xm−1-3x+7是关于x的四次三项式,则m的值是______.17.整式(a+1)x2-3x-(a-1)是关于x的一次式,那么a=______.18.计算:-99956÷16=______.三、计算题(本大题共5小题,共47.0分)19.计算题(1)25.7+(-7.3)+(-13.7)+7.3(2)(-12−59+712)÷(-136)(3)-14-(1-0.5)×13×[1-(-2)2](4)-22÷49×(-23)3+1−0.8-5×(1−22)20.先化简,再求值:(1)3(x2-2xy)-[3x2-2y+2(xy+y)],其中x=14,y=-3(2)12x-2(x-13y2)+(-32x+13y2),其中x=-1,y=2321.水果店以每箱60元新进一批苹果共400箱,为计算总重量,从中任选30箱苹果称重,发现每箱苹果重量都在10千克左右,现以10千克为标准,超过10千克的数记为正数,不足10千克的数记为负数,将称重记录如下:(1)求30箱苹果的总重量(2)若每千克苹果的售价为10元,则卖完这批苹果共获利多少元22.如图所示,a、b是有理数,请化简式子|a|-|b|+|a+b|+|b-a|.23.(1)已知A=x2-2x,B=-x+1,C=x2-x+1,求A+B-2C的值.(2)已知x2+xy=-2,xy+y2=5,分别求出x2-y2和2x2+3xy+y2的值.四、解答题(本大题共3小题,共19.0分)24.化简:(1)(2a-b)-(2b-3a)-2(a-2b)(2)2x2-[7x-(4x-3)-x2]25.2018年9月第22号台风“山竹”给某地造成严重影响.蓝天救援队驾着冲锋舟沿一条东西方向的河流营救灾民,早晨从A地出发,晚上最后到达B地,约定向东为正方向,当天航行次记录如下(单位:千米):18,-8,15,-7,11,-6,10,-5问:(1)B地在A地的东面,还是西面?与A地相距多少千米?(2)若冲锋舟每千米耗油0.5升,油箱容量为30升,求途中至少需要补充多少升油?26.已知|m|=3,|n|=2,求m2+mn+n2的值.答案和解析1.【答案】C【解析】解:由于用正数记水位比前一日上升数,用负数记下降数,由图表可知,周一水位比上周末上升0.12米,从周二开始水位下降,一直降到周六,所以星期六水位最低.故选:C.用正数记水位比前一日上升数,用负数记下降数.由图表可知从周二开始水位下降,一直降到周六,所以星期六水位最低.此题主要考查正负数在实际生活中的应用,所以学生在学这一部分内容时一定要联系实际,不能死学.2.【答案】C【解析】解:由单项式-2a m b3与a5b2-n是同类项,得m=5,2-n=3,所以n=-1.所以m-n=5-(-1)=6.故选:C.根据同类项是字母相同且相同字母的指数也相同,可得答案.本题考查了同类项,利用相同且相同字母的指数也相同得出方程是解题关键.3.【答案】A【解析】解:A、+5-(-6)=+5+6=11,正确;B、-7-|-7|=-7-7=-14,错误;C、-5+(+3)=-2,错误;D、(-2)+(-5)=-7,错误;故选:A.根据有理数的加减运算法则计算可得.本题主要考查有理数的加减运算,解题的关键是掌握有理数的加减运算法则和绝对值的定义.4.【答案】B【解析】解:A.若|a|=a,则a为正数或0,故结论不成立;B.若|a|=|b|,则a与b互为相反数或相等,故结论成立;C.若|a|>a,则a为正数,故结论不成立;D.若|a|>|b|,若a,b均为负数,则a<b,故结论不成立;故选:B.若|a|=a,则a为正数或0;若|a|=|b|,则a与b互为相反数或相等;若|a|>a,则a 为正数;若|a|>|b|,若a,b均为正数,则a>b;若a,b均为负数,则a<b;若a,b为一正一负或有一个为0,则根据a,b的大小,其结果也不同.本题考查的知识点有:正、负数的意义、绝对值的意义,有理数的大小比较等.5.【答案】D【解析】解:原式=[1+(-2)]+[(+3)+(-4)]+…+[(+99)+(-100)]+(+101)=-50+(101)=51.故选:D.依据加法的结合律进行计算即可.本题主要考查的是有理数的加法,应用加法的运算律进行简便计算是解题的关键.6.【答案】C【解析】解:甲:9-32÷8=9-9÷8=7,原来没有做对;乙:24-(4×32)=24-4×9=-12,原来没有做对;丙:(36-12)÷=36×-12×=16,做对了;丁:(-3)2÷×3=9÷×3=81,原来没有做对.故选:C.先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.7.【答案】D【解析】解:根据题意得:(5x2+4x-1)-(3x2+9x)=5x2+4x-1-3x2-9x=2x2-5x-1.故选:D.根据和减去一个加数等于另一个加数,计算即可得到结果.此题考查了整式的加减,熟练掌握运算法则是解本题的关键.8.【答案】C【解析】解:∵a-b=3,c+d=2,∴原式=a+c-b+d=(a-b)+(c+d)=3+2=5.故选:C.原式去括号整理后,将已知等式代入计算即可求出值.此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.9.【答案】C【解析】解:A、3a和2b不是同类项,不能合并,故此选项计算错误;B、2a3和3a2不是同类项,不能合并,故此选项计算错误;C、-3ba2+3a2b=0计算正确,故此选项正确;D、5a2-4a2=a2,故原题计算错误;故选:C.根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变进行计算即可.此题主要考查了合并同类项,关键是掌握合并同类项法则.10.【答案】C【解析】解:设重叠部分面积为c,b-a=(b+c)-(a+c)=17-10=7.故选:C.设重叠部分面积为c,(b-a)可理解为(b+c)-(a+c),即两个多边形面积的差.本题考查了等积变换,将阴影部分的面积之差转换成整个图形的面积之差是解题的关键.11.【答案】-8【解析】解:根据题中的新定义得:原式=-4-4=-8,故答案为:-8原式利用题中的新定义计算即可求出值.此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.12.【答案】3.05×105【解析】解:305000=3.05×105,故答案为:3.05×105.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.【答案】-513235235【解析】解:-2=-的倒数是:-,绝对值是:2,相反数是2.故答案为:-;2;2.直接利用倒数以及相反数和绝对值的定义分别分析得出答案.此题主要考查了倒数以及相反数和绝对值的定义,正确把握相关定义是解题关键.14.【答案】49【解析】解:∵2xy2n与3x3m y2是同类项,∴3m=1,2n=2,∴m=,n=1,∴(m-n)2=(-1)2=,故答案为.根据同类项的定义即可得出m,n的值,再代入计算即可.本题考查了同类项,掌握同类项的定义是解题的关键.15.【答案】11x2+4x+11【解析】解:根据题意得:2A+B=9x2-2x+7+2(x2+3x+2)=9x2-2x+7+2x2+6x+4=11x2+4x+11,故答案为:11x2+4x+11根据题意列出关系式,去括号合并即可得到结果.此题考查了整式的加减,熟练掌握运算法则是解本题的关键.16.【答案】5【解析】解:∵多项式-3x+7是关于x的四次三项式,∴m-1=4,解得m=5,故答案为:5.根据多项式中次数最高的项的次数叫做多项式的次数进行分析即可.此题主要考查了多项式,关键是掌握多项式的次数的计算方法.17.【答案】-1【解析】解:∵整式(a+1)x2-3x-(a-1)是关于x的一次式,∴a+1=0,解得:a=-1.故答案为:-1.直接利用多项式的定义得出a+1的值.此题主要考查了多项式,正确得出a+1的值是解题关键.18.【答案】-5999【解析】解:-999=(-1000)÷=(-1000)×6=×6-1000×6=1-6000=-5999,故答案为:-5999.将原式变形为(-1000)÷,把除法转化为乘法,再利用乘法分配律计算可得.本题主要考查有理数的除法,解题的关键是根据算式特点选择合适的方法简便计算及有理数的乘除运算法则.19.【答案】解:(1)25.7+(-7.3)+(-13.7)+7.3=[25.7+(-13.7)]+[(-7.3)+7.3]=12+0=12;(2)(-12−59+712)÷(-136)=(-12−59+712)×(-36)=18+20+(-21)=17;(3)-14-(1-0.5)×13×[1-(-2)2]=-1-12×13×[1−4]=-1-16×(−3)=-1+12=−12;(4)-22÷49×(-23)3+1−0.8-5×(1−22)=-4×94×(−827)−54−5×(−14)=83−54+54=83.【解析】(1)根据有理数的加减法可以解答本题;(2)先把除法转化为乘法,然后根据乘法分配律即可解答本题;(3)根据有理数的乘法和加减法可以解答本题;(4)根据有理数的乘除法和加减法可以解答本题.本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.20.【答案】解:(1)原式=3x2-6xy-(3x2-2y+2xy+2y)=3x2-6xy-3x2+2y-2xy-2y=-8xy,当x=14,y=-3时,原式=-8×14×(-3)=6;(2)原式=12x-2x+23y2-32x+13y2=-3x+y2,当x=-1,y=23时,原式=-3×(-1)+49=319.【解析】(1)原式去括号合并得到最简结果,把x与y的值代入计算即可求出值;(2)原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.21.【答案】解:(1)根据题意可知:5×(-0.2)+8×(-0.1)+2×0+6×0.1+8×0.2+1×0.5=0.9 ∴30箱苹果的总重量为:30×10+0.9=300.9千克(2)由(1)可知:每一箱的重量为:300.930=10.03千克,∴400箱的苹果总重量为:10.03×400=4012千克,∴卖完这批苹果共获利4012×10-60×400=16120元【解析】(1)根据有理数的加法运算以及正负数的意义即可求出答案.、(2)计算出每一箱的平均重量,然后求出总收入和总支出即可.本题考查正数与负数,解题的关键是正确理解正数与负数的意义以及熟练运用有理数的加法,本题属于基础题型.22.【答案】解:∵由数轴上a、b两点的位置可知,-1<a<0,b>1,∴a+b>0,b-a>0,∴原式=-a-b+a+b+b-a=b-a.【解析】先根据a、b两点在数轴上的位置判断出其取值范围,再根据绝对值的性质进行解答即可.本题考查的是绝对值的性质及数轴的特点,能根据a、b两点在数轴上的位置判断出其取值范围是解答此题的关键.23.【答案】解:(1)∵A=x2-2x,B=-x+1,C=x2-x+1,∴A+B-2C=x2-2x-x+1-2(x2-x+1)=x2-2x-x+1-2x2+2x-2=-x2-x-1;(2)∵x2+xy=-2,xy+y2=5,∴x2-y2=(x2+xy)-(xy+y2)=-2-5=-7;2x2+3xy+y2=2(x2+xy)+(xy+y2)=2×(-2)+5=-4+5=1.【解析】(1)将A,B及C代入所求式子中计算即可求出值.(2)将x2-y2变形得到(x2+xy)-(xy+y2),再整体代入计算即可求解;将2x2+3xy+y2变形得到2(x2+xy)+(xy+y2),再整体代入计算即可求解.此题考查了整式的加减,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.24.【答案】解:(1)原式=2a-b-2b+3a-2a+4b=3a+b(2)原式=2x2-[7x-4x+3-x2]=2x2-[3x+3-x2]=2x2-3x-3+x2=3x2-3x-3【解析】根据整式的运算法则即可求出答案.本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.25.【答案】解:(1)(+18)+(-8)+15+(-7)+11+(-6)+10+(-5)=28.答:B地在A地的东面,与A地相距28千米;(2)总路程=18+8+15+7+11+6+10+5=80(千米)80×0.5-30=10(升).答:途中至少需要补充10升油.【解析】(1)将题目中的数据相加,看最终的结果,即可得到B地在A地的那个方向,与A地的距离是多少;(2)将题目中的数据都取绝对值然后相加与0.5相乘再与30作差即可解答本题.本题考查正数和负数,解题的关键是明确正数和负数在题目中表示的实际含义,找出所求问题需要的条件.26.【答案】解:∵|m|=3,|n|=2,∴m=±3,n=±2,当mn同号时,m2+mn+n2=9+6+4=19,当mn异号时,m2+mn+n2=9-6+4=7.【解析】根据|m|=3,|n|=2,可以求得m、n的值,从而可以求得所求式子的值.本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.。
湖北省黄冈市 七年级(上)期中数学试卷-(含答案)
七年级(上)期中数学试卷一、选择题(本大题共7小题,共21.0分)1.下列去括号正确的是()A. B.C. D.2.下列说法不正确的是()A. 0既不是正数,也不是负数B. 1是绝对值最小的数C. 一个有理数不是整数就是分数D. 0的绝对值是03.下列各对数中,互为相反数的是()A. 与B. 与C. 与D. 与4.若一个代数式减去x2-y2后得x2+y2,则这个代数式是()A. B. C. D.5.下列各对单项式是同类项的是()A. 与B. 与yC. 3与3aD. 与6.x是一个两位数,y是一个三位数,把x放在y的左边构成一个五位数,则这个五位数的表达式是()A. xyB.C.D.7.把-(-1),-,-|-|,0用“>”连起来的式子正确的是()A. B.C. D.二、填空题(本大题共7小题,共21.0分)8.-3的相反数是______ ,-4的绝对值是______ ,-0.2的倒数是______ .9.比-3小0.8的数是______ ,(-)2×(-4)= ______ ,575000精确到万位应记为______ .10.单项式-的系数是______ .11.数轴上A点表示的数是1.5,则数轴上与A点相距3个单位长度的B点表示的数是______ .12.已知单项式3x3y n与-4x m y2是同类项,则m-n2= ______ .13.已知|a|=3,|b|=2,且ab<0,则a-b= ______ .14.正整数按如图所示的规律排列.则第10行,第11列的数字是______ .三、计算题(本大题共3小题,共18.0分)15.化简求值:5(3a2b-ab2)-(ab2+3a2b),其中|a-1|+(b+2)2=0.16.若a、b互为倒数,c、d互为相反数,|m|=3.求(ab)2015-3(c+d)2016+2m的值.17.世博会某国国家馆模型的平面图如图所示,其外框是一个大正方形,中间四个大小相同的小正方形(阴影部分)是支撑展馆的核心筒,标记了字母的五个大小相同的正方形是展厅,剩余的四个大小相同的休息厅,已知核心筒的正方形边长比展厅的正方形边长的一半多1米.(1)若设展厅的正方形边长为x米,用含x的代数式表示核心筒的正方形边长为______ 米.(2)若设核心筒的正方形边长为y米,求该模型的平面图外框大正方形的周长.(用含y的代数式表示)(3)若设核心筒的正方形边长为y米,用含y的代数式表示每个休息厅的图形周长为______ 米.四、解答题(本大题共7小题,共60.0分)18.计算下列各题①(-3)×5+(-2)×(-3)②6×26×(-)÷(-)③(-+-)×(-48)④-52-[(-2)3+(1-0.8×)÷(-2)].19.化简题①(6m2-4m-3)+(2m2-4m+1)②(6a2-2ab)-2(3a2+4ab-b2).20.由于看错了运算符号,“小马虎”把一个整式减去多项式2a-3b时误认为加上这个多项式.结果得出答案是a+2b.求:(1)原多项式为多少?(2)原题的正确答案应是多少?21.有理数a、b、c在数轴上的位置如图所示,化简|a+c|+|b+c|-|b-a|.22.某食堂购进30袋大米,每袋以50千克为标准,超过的记为正,不足的记为负,称重记录如表.()这袋大米的总重量比标准总重量是多还是少?相差多少?(2)大米单价是每千克5.5元,食堂购进大米总共花多少钱?23.英国股民吉姆上星期买进某公司月股票1000股,每股30元,表为本周内每日该股的涨跌情况(星期六、日股市休市)(单位:元):()星期二收盘时,每股是多少元?(2)本周内每股最高价多少元?最低价是多少元?(3)已知吉姆买进股票时付了0.15%的手续费,卖出时还需付成交额0.15%的手续费和0.1%的交易税,如果吉姆在星期五收盘前将全部股票卖出,他的收益情况如何?24.如图的数阵由奇数按规律排列而成,用一个十字框架每次框出5个数.(1)若将十字形框架中心位置的数记为a,则框架中的上、下、左、右四个数依次是______ 、______ 、______ 、______ .(2)经过计算说明这5个数的和可以是3000吗?可以是425吗?(3)这五个数的和可以是1844325吗?为什么?答案和解析1.【答案】C【解析】解:A、原式=-3x+3,故本选项错误;B、原式=-a+b-c,故本选项错误;C、原式=-x+6=6-x,故本选项正确;D、原式=-x+y-z,故本选项错误;故选:C.根据去括号的方法进行解答.本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“-”,去括号后,括号里的各项都改变符号.顺序为先大后小.2.【答案】B【解析】解:0既不是正数,也不是负数,A正确;绝对值最小的数是0,B错误;整数和分数统称为有理数,C正确;0的绝对值是0,D正确.故选:B.先根据:0既不是正数,也不是负数;整数和分数统称为有理数;0的绝对值是0;判断出A、C、D正确;再根据绝对值最小的数是0,得出B错误.本题主要考查正数的绝对值是正数,负数的绝对值是正数,0的绝对值是0,熟练掌握绝对值的性质是解题的关键.3.【答案】A【解析】解:A、-(-3)=3,-|-3|=-3,两者互为相反数,故本选项正确;B、|+3|=3,|-3|=3,两者不是相反数,故本选项错误;C、-(-3)=3,|-3|=3,两者不是相反数,故本选项错误;D、-(+3)=-3,+(-3)=-3,两者不是相反数,故本选项错误;故选A.互为相反数的两数之和为零,结合选项进行判断即可.此题考查了相反数及绝对值的知识,将各选项的数化简,根据相反数的定义进行判断是关键.4.【答案】A【解析】解:根据题意得:(x2-y2)+(x2+y2)=x2-y2+x2+y2=2x2.故选A.根据被减数=减数+差列出关系式,去括号合并即可得到结果.此题考查了整式的加减,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.5.【答案】A【解析】解:A、符合同类项的定义,是同类项;B、所含字母不相同,不是同类项;C、所含字母不相同,不是同类项;D、相同字母的指数不相同,不是同类项.故选A.本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,几个常数项也是同类项.同类项与字母的顺序无关,与系数无关.同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,还应注意同类项定义中隐含的两个“无关”:①与字母的顺序无关;②与系数无关.6.【答案】D【解析】解:根据题意得,这个五位数的表达式是1000x+y.故选:D.x是一个两位数,y是一个三位数,把x放在y的左边构成一个五位数,可以看做x位于千位上,y位于个位上,所以这个五位数的表达式是1000x+y.此题考查列代数式,注意数位对应的计数单位是解决问题的关键.7.【答案】D【解析】解:-(-1)=1,-|-|=-,-(-1)>0>->-|-|,故选:D.根据正数大于负数和0,0大于负数,两个负数,绝对值大的反而小,即可解答.本题考查了有理数的大小比较,解决本题的关键是熟记正数大于负数和0,0大于负数,两个负数,绝对值大的反而小.8.【答案】3;4;-5【解析】解:-3的相反数是3,-4的绝对值是4,-0.2的倒数是-5,故答案为:3;4;-5.根据相反数、绝对值、倒数,即可解答.本题考查了相反数、绝对值、倒数,解决本题的关键是熟记相反数、绝对值、倒数.9.【答案】-3.8;-1;5.8×105【解析】解:比-3小0.8的数是-3.8,(-)2×(-4)=×(-4)=-1,575000精确到万位应记5.8×105.故答案为-3.8,-1,5.8×105.利用有理数的减法计算比-3小0.8的数,利用乘方的意义和有理数乘法计算(-)2×(-4);先用科学记数法表示575000,任何精确到万位.本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.10.【答案】-【解析】解:∵单项式-的数字因数是-,∴此单项式的系数是:.故答案为:-.根据单项式系数的定义进行解答即可.本题考查的是单项式,熟知单项式中的数字因数叫做单项式的系数是解答此题的关键.11.【答案】4.5或-1.5【解析】解:∵1.5+3=4.5,1.5-3=-1.5,∴数轴上与A点相距3个单位长度的B点表示的数为4.5或-1.5.故答案为4.5或-1.5.用1.5分别加上3或减去3即可得到数轴上与A点相距3个单位长度的B点表示的数.本题考查了数轴:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数.(一般取右方向为正方向,数轴上的点对应任意实数,包括无理数);一般来说,当数轴方向朝右时,右边的数总比左边的数大.12.【答案】-1【解析】解:由题意,得m=3,n=2.m-n2=3-22=-1,故答案为:-1.根据同类项的定义:所含字母相同,并且相同字母的指数也相同,结合选项进行判断.本题考查了同类项的定义,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.13.【答案】5或-5【解析】解:∵|a|=3,|b|=2,∴a=±3,b=±2;∵ab<0,∴当a=3时b=-2;当a=-3时b=2,∴a-b=3-(-2)=5或a-b=-3-2=-5.故填5或-5.先根据绝对值的定义,求出a、b的值,然后根据ab<0确定a、b的值,最后代入a-b中求值即可.解答此题时,要注意ab<0的真正含义,并充分利用题目中的条件,是正确解答题目的关键.14.【答案】110【解析】解:由1行1列的数字是12-0=12-(1-1)=1,2行2列的数字是22-1=22-(2-1)=3,32-2=32-(3-1)=7,…n行n列的数字是n2-(n-1)=n2-n+1,所以第11行11列的数字是112-11+1=111,因此第10行,第11列的数字是110.首先观察出1行1列数的特点为12-0,2行2列数的特点为22-1,3行3列数的特点为32-2,…n行n列数的特点为(n2-n+1),且每一行的第一个数字逆箭头方向顺次减少1,由此进一步解决问题.解答这类题目除了注意数字特点,还要注意“形“的结合.15.【答案】解:原式=15a2b-5ab2-ab2-3a2b=12a2b-6ab2,∵|a-1|+(b+2)2=0,∴a=1,b=-2,则原式=-24-24=-48.【解析】原式去括号合并得到最简结果,利用非负数的性质求出a与b的值,代入计算即可求出值.此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.16.【答案】解:∵a、b互为倒数,c、d互为相反数,|m|=3,∴ab=1,c+d=0,m=±3,∴原式=12015-3×(0)2016+2m=1+2m,当m=3时,原式=1+2×3=7;当m=-3时,原式=1+2×(-3)=-5,∴(ab)2015-3(c+d)2016+2m的值为7或-5.【解析】根据倒数、相反数得定义得到ab=1,c+d=0,则原式=12015-3×(0)2016+2m=1+2m,再根据绝对值的得m=±3,然后把m=3或m=-3分别代入计算即可.本题考查了代数式求值:用数值代替代数式里的字母,计算后所得的结果叫做代数式的值.求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.17.【答案】(x+1);(14y-8)【解析】解:(1)根据题意得:(x+1)米;(2)外框正方形的边长为3(2y-2)+2y=6y-6+2y=(8y-6)米,则外框正方形的周长为4(8y-6)=(32y-24)米;(3)根据题意得:每一个休息厅的周长为3(2y-2)+4y-2+4y=(14y-8)米.故答案为:(1)(x+1);(3)(14y-8)(1)根据核心筒的正方形边长比展厅的正方形边长的一半多1米,表示出核心筒正方形的边长即可;(2)根据核心筒正方形的边长表示出外框正方形的边长,即可表示出外框正方形的周长;(3)由核心筒正方形的边长表示出展厅正方形的边长,进而表示出一个休息厅的周长即可.此题考查了整式的加减,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.18.【答案】解:①原式=-15+6=-9;②原式=6×26××=24;③原式=-(×48-×48+×48-×48)=-(44-56+36-26)=2;④原式=-25-[-8-(1-×)×]=-25-[-8-×]=-25+8+=.【解析】①先乘法,再加减;②确定整个算式的符号为“+”,将除法转化为乘法,约分;③利用乘法的分配律计算;④将小数化为分数,先乘方,再乘除,去括号后,进行加减运算即可.本题考查的是有理数的运算能力.注意:(1)要正确掌握运算顺序,在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序;(2)去括号法则:--得+,-+得-,++得+,+-得-.(3)整式中如果有多重括号应按照先去小括号,再去中括号,最后大括号的顺序进行.19.【答案】解:①原式=6m2-4m-3+2m2-4m+1=8m2-8m-2;②原式=6a2-2ab)-6a2-8ab+b2=【解析】根据整式运算的法则即可求出答案.本题考查整式加减,属于基础题型.20.【答案】解:设该多项式为A,∴A+(2a-3b)=a+2b,∴A=a+2b-2a+3b=-a+5b;(2)(-a+5b)-(2a-3b)=-a+5b-2a+3b=-3a+8b【解析】设该多项式为A,根据题意列出等式即可求出A;本题考查整式加减,注意加减是互逆运算.21.【答案】解:原式=-a-c-b-c-b+a=-2b-2c.【解析】根据数轴先得出a<b<0<c,且|a|>|b|>|c|,再化简即可.本题考查了整式的加减以及数轴、绝对值,掌握绝对值的性质是解题的关键.22.【答案】解:(1)解:-2×5-1×10+0×3+1×1+2×5+3×6=9千克,即这30袋大米的总重量比标准总重量多,这30袋大米共多出9千克;(2)∵这30袋大米的总质量是:50×30+9=1509千克,大米单价是每千克5.5元,∴总费用=1509×5.5=8299.5元.【解析】此题考查有理数的加减运算问题,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量,依据这一点可以简化数的求和计算.(1)求出偏差的和,依据和的正负即可判断,以每袋50千克为标准,计算出总质量,再加上偏差即可解决;(2)根据30袋大米的总重量乘上单价,即可得到总费用.23.【答案】解:(1)星期二的价格是30+3+4.5=37.5 元,∴星期二收盘时,每股37.5 元;(2)周一30+3=33元,周二33+4.5=37.5元,周三37.5-2=35.5元,周四35.5-2.5=33元,周五33-5=28元,∴周内每股最高价的37.5元,最低价是28元;(3)收益=28×1000-28×1000×(0.15%+0.1%)-30×1000×(1+0.15%)=-2115元.∴他的收益是-2115元.【解析】(1)根据有理数的加法,可得答案;(2)根据有理数的加法,可得每天的价格,根据有理数的大小比较,可得答案;(3)根据交易额减去成本减去手续费,可得答案.本题考查了正数和负数,利用有理数的加法是解题关键,注意收益是成交额减去成本再减去手续费.24.【答案】a-16;a+16;a-2;a+2【解析】解:(1)根据图中数据可知,中间数a左右相邻的两个数相差2,上下相邻的两个数相差16,即a-16;a+16;a-2;a+2,故答案为a-16;a+16;a-2;a+2;(2)根据题意得:a-16+a+16+a-2+a+2=3000,即5a=3000,解得:a=600,不是奇数,∴这5个数的和不会是3000;若5a=425,则a=85,∵第n行的第一个数为1+16(n-1)=16n-15,最后一个数为15+16(n-1)=16n-1,∴当16n-15=85时,n=6.25,不是整数;当16n-1=85时,n=5.375,不是整数;∴85不是第一个又不是最后一个,∴这5个数的和可以是425;(3)根据题意得:5a=1844325,解得:a=368865,∵当16n-15=368865时,n=23055,是整数,即368865是第23055行第1个数,故这五个数的和不可能是1844325.(1)根据中间数a左右相邻的两个数相差2,上下相邻的两个数相差16,进而填空;(2)根据和为3000、425列出方程求得a的值,根据数列为奇数且第n行的第一个数为16n-15和最后一个数为16n-1检验是否符合题意.(3)与(2)同理可得.本题考查一元一次方程的应用,关键是看到表格中中间位置的数和四周数的关系,最后可列出方程求解.。
人教版初中数学七年级上册期中试题(湖北省黄冈市
2017-2018学年湖北省黄冈市蕲春县七年级(上)期中数学试卷一、选择题(每题3分,共27分.)1.(3分)下列各数:﹣1,,4.112,0,,3.14,其中有理数有()A.6个B.5个C.4个D.3个2.(3分)用“<”将﹣π、﹣3.14、﹣3连接起来,正确的是()A.﹣π<﹣3.14<﹣3B.﹣π<﹣3<﹣3.14C.﹣3<﹣π<﹣3.14D.﹣3.14<﹣3<﹣π3.(3分)冥王星围绕太阳公转的轨道半径长度约为5 900 000 000千米,这个数用科学记数法表示是()A.5.9×1010千米B.5.9×109千米C.59×108千米D.0.59×1010千米4.(3分)如果代数式与代数式是同类项,则a、b分别是()A.a=3,b=﹣2B.a=﹣3,b=2C.a=3,b=﹣2D.a=3,b=2 5.(3分)已知方程x2k﹣1+k=0是关于x的一元一次方程,则k等于()A.﹣1B.1C.D.6.(3分)x表示一个两位数,y也表示一个两位数,小明把x放在y的右边组成了一个四位数,则这个四位数用代数式表示为()A.yx B.xy C.100x+y D.100y+x7.(3分)已知2a+b+3c=22,2a+3b+c=14,则a+b+c的值为()A.6B.7C.8D.9二、填空题(每题3分,共24分)8.(3分)计算:|﹣3|=.9.(3分)若|a|=3,|b|=6,且ab>0,则的值是.10.(3分)一个由四舍五入得到的近似数是8.7万,它精确到位.11.(3分)距离原点3个单位长度的数是.12.(3分)如果x=是关于x的方程4x+m=3的解,那么m的值是.13.(3分)定义一种新运算:,则:2△1=.14.(3分)若mn=m+3,则2mn+3m﹣5mn+10=.15.(3分)当(a﹣)2+2有最小值时,2a﹣3=.三、解答题.16.(16分)计算(1)(﹣3)2×2+(﹣2)3÷4(2)(3)(4)27÷[(﹣2)2+(﹣4)﹣(﹣1)]17.(8分)解方程(1)3x+6x=﹣7﹣2(2)5x+3=6x+218.(8分)(1)若|a|=﹣a,则a0;(2)有理数a、b在数轴上的位置如图所示,请化简|a|+|b|+|a﹣b|.19.(8分)已知a、b互为相反数,c、d互为倒数,m的绝对值是3,n是最大的负整数,求:+n(a+b+cd)20.(8分)化简求值:(1)已知x=﹣2,y=﹣1,求5xy2﹣{2x2y﹣[3xy2﹣(4xy2﹣2x2y)]}的值,(2)关于x,y的多项式6mx2+4nxy+2x+2xy﹣x2+y+4不含二次项,求6m﹣2n+2的值.21.(6分)已知(m+2)2+|n+1|=0,求式子5m2n3+4(m﹣n)的值.22.(9分)如图,一个长方形运动场被分隔成A、B、A、B、C共5个区,A区是边长为am 的正方形,C区是边长为bm的正方形.(1)列式表示每个B区长方形场地的周长,并将式子化简;(2)列式表示整个长方形运动场的周长,并将式子化简;(3)如果a=20,b=10,求整个长方形运动场的面积.23.(12分)如图,已知数轴上点A表示的数为6,B是数轴上一点,且AB=10.动点P 从点O出发,以每秒6个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数;当t=3时,OP=(2)动点R从点B出发,以每秒8个单位长度的速度沿数轴向右匀速运动,若点P,R同时出发,问点R运动多少秒时追上点P?(3)动点R从点B出发,以每秒8个单位长度的速度沿数轴向右匀速运动,若点P,R同时出发,问点R运动多少秒时PR相距2个单位长度?2017-2018学年湖北省黄冈市蕲春县七年级(上)期中数学试卷参考答案与试题解析一、选择题(每题3分,共27分.)1.(3分)下列各数:﹣1,,4.112,0,,3.14,其中有理数有()A.6个B.5个C.4个D.3个【分析】根据有理数分为整数和分数,进而可得答案.【解答】解:在所列的6个数中,有理数的是﹣1,4.112,0,,3.14这5个,故选:B.【点评】此题主要考查了有理数,关键是掌握有理数的分类.2.(3分)用“<”将﹣π、﹣3.14、﹣3连接起来,正确的是()A.﹣π<﹣3.14<﹣3B.﹣π<﹣3<﹣3.14C.﹣3<﹣π<﹣3.14D.﹣3.14<﹣3<﹣π【分析】两个负数,绝对值大的其值反而小,依此即可求解.【解答】解:用“<”将﹣π、﹣3.14、﹣3连接起来为:﹣π<﹣3.14<﹣3.故选:A.【点评】考查了有理数大小比较,有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.3.(3分)冥王星围绕太阳公转的轨道半径长度约为5 900 000 000千米,这个数用科学记数法表示是()A.5.9×1010千米B.5.9×109千米C.59×108千米D.0.59×1010千米【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于5 900 000 000有10位,所以可以确定n=10﹣1=9.【解答】解:5 900 000 000=5.9×109.故选:B.【点评】此题考查科学记数法表示较大的数的方法,准确确定n值是关键.4.(3分)如果代数式与代数式是同类项,则a、b分别是()A.a=3,b=﹣2B.a=﹣3,b=2C.a=3,b=﹣2D.a=3,b=2【分析】根据同类项的概念即可求出答案.【解答】解:由题意可知:a=3,b+3=1,即a=3,b=﹣2,故选:A.【点评】本题考查同类项,解题的关键是正确理解同类项的概念,本题属于基础题型.5.(3分)已知方程x2k﹣1+k=0是关于x的一元一次方程,则k等于()A.﹣1B.1C.D.【分析】根据一元一次方程的定义,x的次数为1,得到关于k的一元一次方程,解之即可.【解答】解:根据题意得:2k﹣1=1,解得:k=1,故选:B.【点评】本题考查了一元一次方程的定义,正确掌握一元一次方程的定义是解题的关键.6.(3分)x表示一个两位数,y也表示一个两位数,小明把x放在y的右边组成了一个四位数,则这个四位数用代数式表示为()A.yx B.xy C.100x+y D.100y+x【分析】根据题意可以用相应的代数式表示这个四位数,本题得以解决.【解答】解:由题意可得,这个四位数用代数式表示为:100y+x,故选:D.【点评】本题考查列代数式,解题的关键是明确题意,列出相应的代数式.7.(3分)已知2a+b+3c=22,2a+3b+c=14,则a+b+c的值为()A.6B.7C.8D.9【分析】观察两个等式,a的系数和与b的系数和及c的系数和都相等,只需将两式相加,就可解决问题.【解答】解:∵2a+b+3c=22,2a+3b+c=14,∴2a+b+3c+2a+3b+c=4a+4b+4c=22+14=36,∴a+b+c=9.故选:D.【点评】本题考查了整式的加法运算,在解决问题的过程中运用了整体思想,比较巧妙.当然也可以把c看成一个常数,通过解方程组,将a、b用c的代数式表示,然后代入a+b+c,从而解决问题.二、填空题(每题3分,共24分)8.(3分)计算:|﹣3|=3.【分析】根据负数的绝对值等于这个数的相反数,即可得出答案.【解答】解:|﹣3|=3.故答案为:3.【点评】此题主要考查了绝对值的性质,正确记忆绝对值的性质是解决问题的关键.9.(3分)若|a|=3,|b|=6,且ab>0,则的值是.【分析】根据绝对值的性质求出a、b,再根据有理数的乘法判断出a、b的对应情况,然后相除即可得解.【解答】解:∵|a|=3,|b|=6,∴a=±3,b=±6,又∵ab>0,∴a=3,b=6或a=﹣3,b=﹣6,当a=3,b=6时,==;当x=﹣3,b=﹣6时,==;综上,的值是,故答案为:.【点评】本题考查了有理数的除法,绝对值的性质和有理数的乘法,熟记运算法则是解题的关键.10.(3分)一个由四舍五入得到的近似数是8.7万,它精确到千位.【分析】先把8.7万进行还原,看7所在的位置,即可得出答案.【解答】解:近似数8.7万,它精确到千位;故答案为:千.【点评】本题考查近似数和有效数字,解答本题的关键是明确近似数和有效数字的定义.11.(3分)距离原点3个单位长度的数是±3.【分析】根据绝对值的意义:一个数的绝对值,即数轴上表示这个数的点到原点的距离.【解答】解:根据绝对值的意义得:数轴上距离原点3个单位长度的点所表示的有理数,即绝对值是3的数,是±3.故答案为:±3.【点评】本题主要考查了绝对值的几何意义和数轴,掌握绝对值的性质是解答此题的关键.12.(3分)如果x=是关于x的方程4x+m=3的解,那么m的值是1.【分析】把x=代入方程,即可求出m.【解答】解:把x=代入方程4x+m=3得:4×+m=3,解得:m=1,故答案为:1.【点评】本题考查了一元一次方程的解,能得出关于m的一元一次方程是解此题的关键.13.(3分)定义一种新运算:,则:2△1=.【分析】根据,可以求得所求式子的值.【解答】解:∵,∴2△1==,故答案为:.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.14.(3分)若mn=m+3,则2mn+3m﹣5mn+10=1.【分析】原式合并后,将已知等式代入计算即可求出值.【解答】解:原式=﹣3mn+3m+10,把mn=m+3代入得:原式=﹣3m﹣9+3m+10=1,故答案为:1【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.15.(3分)当(a﹣)2+2有最小值时,2a﹣3=﹣2.【分析】本题可根据(a﹣)2≥0得出(a﹣)2+2≥2,因此可知当a=时原式取到最小值.再把a的值代入2a﹣3中即可解出本题.【解答】解:∵(a﹣)2+2有最小值,∴(a﹣)2最小,∴当a=时原式取到最小值,当a=时,2a﹣3=1﹣3=﹣2.故答案为:﹣2.【点评】本题主要考查了平方数非负数的性质,利用非负数求最大值、最小值是常用的方法之一.三、解答题.16.(16分)计算(1)(﹣3)2×2+(﹣2)3÷4(2)(3)(4)27÷[(﹣2)2+(﹣4)﹣(﹣1)]【分析】(1)根据有理数的乘除法和加法可以解答本题;(2)先把除法转化为乘法,然后根据乘法分配律即可解答本题;(3)根据有理数的乘法和加减法可以解答本题;(4)根据有理数的除法和加减法可以解答本题.【解答】解:(1)(﹣3)2×2+(﹣2)3÷4=9×2+(﹣8)÷4=18+(﹣2)=16;(2)==(﹣9)+1+(﹣4)=﹣12;(3)=﹣1﹣=﹣1﹣=﹣1+=;(4)27÷[(﹣2)2+(﹣4)﹣(﹣1)]=27÷[4+(﹣4)+1]=27÷1=27.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.17.(8分)解方程(1)3x+6x=﹣7﹣2(2)5x+3=6x+2【分析】(1)合并,将未知数系数化为1,即可求出解;(2)移项合并,将未知数系数化为1,即可求出解.【解答】解:(1)3x+6x=﹣7﹣29x=﹣9,x=﹣1;(2)5x+3=6x+2,5x﹣6x=2﹣3,﹣x=﹣1,x=1.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1求出解.18.(8分)(1)若|a|=﹣a,则a≤0;(2)有理数a、b在数轴上的位置如图所示,请化简|a|+|b|+|a﹣b|.【分析】(1)可根据非正数的绝对值是它的相反数直接得结论,亦可通过绝对值的非负性,利用不等式性质得结论;(2)先根据点在数轴上的位置,确定它们的正负,再利用绝对值的意义进行化简.【解答】解:(1)因为|a|≥0,|a|=﹣a,∴﹣a≥0,∴a≤0(2)由数轴上点的位置知a<﹣1<0<b<1,所以a<0.b>0,a﹣b<0,∴原式=(﹣a)+b﹣(a﹣b)=﹣a+b﹣a+b=﹣2a+2b.【点评】本题考查了绝对值的非负性和绝对值的化简.解决本题的关键是从数轴上得到解决问题需要的信息.19.(8分)已知a、b互为相反数,c、d互为倒数,m的绝对值是3,n是最大的负整数,求:+n(a+b+cd)【分析】根据a、b互为相反数,c、d互为倒数,m的绝对值是3,n是最大的负整数,可以求得所求式子的值.【解答】解:∵a、b互为相反数,c、d互为倒数,m的绝对值是3,n是最大的负整数,∴a+b=0,cd=1,m=±3,n=﹣1,当m=3时,原式=×(0+1)=1,当m=﹣3时,原式==﹣5.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.20.(8分)化简求值:(1)已知x=﹣2,y=﹣1,求5xy2﹣{2x2y﹣[3xy2﹣(4xy2﹣2x2y)]}的值,(2)关于x,y的多项式6mx2+4nxy+2x+2xy﹣x2+y+4不含二次项,求6m﹣2n+2的值.【分析】(1)原式去括号合并得到最简结果,把x与y的值代入计算即可求出值;(2)原式合并后,根据结果不含二次项,求出m与n的值,代入原式计算即可得到结果.【解答】解:(1)原式=5xy2﹣2x2y+3xy2﹣4xy2+2x2y=4xy2,当x=﹣2,y=﹣1时,原式=﹣8;(2)原式=(6m﹣1)x2+(4n+2)xy+2x+y+4,由结果不含二次项,得到6m﹣1=0,4n+2=0,解得:m=,n=﹣,则原式=1+1+2=4.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.21.(6分)已知(m+2)2+|n+1|=0,求式子5m2n3+4(m﹣n)的值.【分析】直接利用偶次方的性质以及绝对值的性质得出m,n的值,进而得出答案.【解答】解:∵(m+2)2+|n+1|=0,∴m+2=0,n+1=0,∴m=﹣2,n=﹣1,∴原式=5×(﹣2)3×(﹣1)3+4×[﹣2﹣(﹣1)]=﹣20﹣4=﹣24.【点评】此题主要考查了非负数的性质,正确得出m,n的值是解题关键.22.(9分)如图,一个长方形运动场被分隔成A、B、A、B、C共5个区,A区是边长为am 的正方形,C区是边长为bm的正方形.(1)列式表示每个B区长方形场地的周长,并将式子化简;(2)列式表示整个长方形运动场的周长,并将式子化简;(3)如果a=20,b=10,求整个长方形运动场的面积.【分析】(1)根据题意可知B的区是长为(a+b)m,宽为(a﹣b)m的长方形,利用周长公式即可求出答案.(2)整个长方形的长为(2a+b)m,宽为(2a﹣b)m,利用周长公式求出答案即可.(3)将a与b的值代入即长与宽中,利用面积公式即可求出答案.【解答】解:(1)2[(a+b)+(a﹣b)]=2(a+b+a﹣b)=4a(m);(2)2[(a+a+b)+(a+a﹣b)]=2(a+a+b+a+a﹣b)=8a(m);(3)当a=20,b=10时,长=2a+b=50(m),宽=2a﹣b=30(m),所以面积=50×30=1500(m2).【点评】本题考查代数式求值,涉及长方形面积公式,周长公式,属于基础题型.23.(12分)如图,已知数轴上点A表示的数为6,B是数轴上一点,且AB=10.动点P从点O出发,以每秒6个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数﹣4;当t=3时,OP=18(2)动点R从点B出发,以每秒8个单位长度的速度沿数轴向右匀速运动,若点P,R同时出发,问点R运动多少秒时追上点P?(3)动点R从点B出发,以每秒8个单位长度的速度沿数轴向右匀速运动,若点P,R同时出发,问点R运动多少秒时PR相距2个单位长度?【分析】(1)利用A点位置结合AB=10,求出即可,再利用动点P从点O出发,其速度为每秒6个单位长度,得出OP的长;(2)利用BC﹣OC=OB,进而求出即可;(3)利用一种情况是当点R在点P的左侧时,另一种情况是当点R在点P的右侧时,分别得出即可.【解答】解:(1)∵数轴上点A表示的数为6,B是数轴上一点,且AB=10,∴BO=4,∴数轴上点B表示的数为:﹣4,∵动点P从点O出发,以每秒6个单位长度的速度沿数轴向右匀速运动,∴当t=3时,OP=18;故答案为:﹣4,18;(2)如图1,设点R运动x秒时,在点C处追上点P,则OC=6x,BC=8x,∵BC﹣OC=OB,∴8x﹣6x=4,解得:x=2,∴点R运动2秒时,在点C处追上点P.(3)设点R运动x秒时,PR=2.分两种情况:如图2,一种情况是当点R在点P的左侧时,8x=4+6x﹣2,即x=1;如图3,另一种情况是当点R在点P的右侧时,8x=4+6x+2,即x=3.综上所述R运动1秒或3秒时PR相距2个单位.【点评】此题主要考查了一元一次方程的应用,根据题意结合图形得出等式是解题关键.。
湖北省黄冈中学七年级数学上学期期中试题(含解析) 新
湖北省黄冈中学2015-2016学年七年级数学上学期期中试题一、选择题:(每题3分,共30分)1.0.2的相反数是()A.B. C.﹣5 D.52.下列计算正确的是()A.23=6 B.﹣42=﹣16 C.﹣8﹣8=0 D.﹣5﹣2=﹣33.若等式x=y可以变形为,则有()A.a>0 B.a<0C.a≠0 D.a为任意有理数4.如果x=2是方程x+a=﹣1的解,那么a的值是()A.0 B.2 C.﹣2 D.﹣65.下列变形中,不正确的是()A.a+(b+c﹣d)=a+b+c﹣d B.a﹣(b﹣c+d)=a﹣b+c﹣dC.a﹣b﹣(c﹣d)=a﹣b﹣c﹣d D.a+b﹣(﹣c﹣d)=a+b+c+d6.2010年5月1日至2010年10月31日期间在上海举行的世界博览会总投资约450亿元人民币,其中“450亿”用科学记数法表示为()元.A.4.5×1010 B.4.5×109C.4.5×108D.0.45×1097.若﹣3x2m y3与2x4y n是同类项,那么m﹣n=()A.0 B.1 C.﹣1 D.﹣28.已知代数式x+2y的值是3,则代数式2x+4y+1的值是()A.1 B.4 C.7 D.不能确定9.在数轴上表示a,b两个实数的点的位置如图所示,则化简|a+b|﹣|a﹣b|的结果为()A.2a B.2b C.2a﹣2b D.﹣2b10.若当x=3时,代数式ax5+bx3+cx﹣10的值为3,则当x=﹣3时,该多项式的值是()A.﹣3 B.﹣7 C.﹣13 D.﹣23二、填空题(每题3分,共30分)11.在数轴上,若A点表示数﹣1,点B表示数2,A、B两点之间的距离为.12.兰兰同学买了铅笔m支,每支0.8元,买了练习本n本每本2元,则她买铅笔和练习本一共花费了元.13.一个多项式加上2x2﹣x+5等于4x2﹣6x﹣3,则这个多项式为.14.用四舍五入法取近似数,1.80499≈(精确到百分位).15.a=3,|b|=10,且|b﹣a|=﹣(b﹣a),则a﹣b= .16.若有一个新运算“*”,规定a*b=﹣a+3b,则(﹣2)*3的值为.17.若方程4x﹣1=5与2﹣3(a﹣x)=0的解互为倒数,则a的值为.18.如果|y﹣3|+(2x﹣4)2=0,那么3x﹣y的值为.19.如图所示的方式搭正方形:搭n个正方形需要小棒根.20.已知四个互不相等的整数a,b,c,d满足abcd=77,则a+b+c+d= .三、解答题21.计算或化简(1)(+12)+(﹣23)﹣(﹣33);(2)﹣13﹣(1﹣0.5)××[2﹣(﹣3)2];(3)4x2﹣3x+8﹣2(3x2+4x﹣5);(4)2a2﹣[(ab﹣a2)+8ab]﹣ab.22.解方程(1)5x+3=1﹣2x;(2)2x﹣(x+10)=5x+2(x﹣1);(3)﹣=1;(4)﹣3=﹣.23.有8筐白菜,以每筐25千克为标准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:回答下列问题:(1)这8筐白菜中最接近标准重量的这筐白菜重千克;(2)与标准重量比较,8筐白菜总计超过或不足多少千克?(3)若白菜每千克售价2.6元,则出售这8筐白菜可卖多少元?24.先化简,再求值:5(3x2y﹣xy2)﹣(﹣3x2y+xy2),其中x=,y=﹣1.25.整理一批图书,如果由一个人单独做要花60小时.现先由一部分人用一小时整理,随后增加15人和他们一起又做了两小时,恰好完成整理工作.假设每个人的工作效率相同,那么先安排整理的人员有多少人?26.轮船沿江从A港顺流行驶到B港,比从B港返回A港少用2小时,若轮船在静水速度为26千米/时,水流速度为2千米/时,求A港和B港相距多少千米.购票张数1~50张51~100张100张以上每张票的价格13元11元9元设九年级一班的学生人数为x人(Ⅰ)已知40<x<54,若两个班都以班为单位购票请根据表中提供的信息,用含有x的式x=46 40<x≤5050<x≤54九年级一班购票费/元13×46九年级二班购票费/元11×(Ⅲ)在(Ⅱ)的条件下,若两个班联合起来购票,作为一个团体购票,可省多少钱?2015-2016学年湖北省黄冈中学七年级(上)期中数学试卷参考答案与试题解析一、选择题:(每题3分,共30分)1.0.2的相反数是()A.B. C.﹣5 D.5【考点】相反数.【分析】根据相反数的意义在0.2前面加上负号即可得出答案.【解答】解:由相反数的意义得:0.2的相反数是:﹣0.2=﹣,故选:B.【点评】此题主要考查的知识点是相反数的定义,关键是在其前面加“﹣”得出这个数的相反数.2.下列计算正确的是()A.23=6 B.﹣42=﹣16 C.﹣8﹣8=0 D.﹣5﹣2=﹣3【考点】有理数的乘方;有理数的减法.【专题】计算题.【分析】根据有理数的加法、减法、乘方法则分别计算出结果,再进行比较.【解答】解:A、23=8≠6,错误;B、﹣42=﹣16,正确;C、﹣8﹣8=﹣16≠0,错误;D、﹣5﹣2=﹣7≠﹣3,错误;故选B.【点评】本题主要考查学生的运算能力,掌握运算法则是关键.3.若等式x=y可以变形为,则有()A.a>0 B.a<0C.a≠0 D.a为任意有理数【考点】等式的性质.【分析】根据等式的两边都乘或都除以同一个不为0的整式,结果不变,可得答案【解答】解:x=y,a≠0,,故选:C.【点评】本题考查了等式的性质,注意等式的两边都乘或都除以同一个不为0的整式,结果不变.4.如果x=2是方程x+a=﹣1的解,那么a的值是()A.0 B.2 C.﹣2 D.﹣6【考点】一元一次方程的解.【专题】计算题.【分析】此题可将x=2代入方程,然后得出关于a的一元一次方程,解方程即可得出a的值.【解答】解:将x=2代入方程x+a=﹣1得1+a=﹣1,解得:a=﹣2.故选C.【点评】此题考查的是一元一次方程的解法,方程两边可同时减去1,即可解出a的值.5.下列变形中,不正确的是()A.a+(b+c﹣d)=a+b+c﹣d B.a﹣(b﹣c+d)=a﹣b+c﹣dC.a﹣b﹣(c﹣d)=a﹣b﹣c﹣d D.a+b﹣(﹣c﹣d)=a+b+c+d【考点】去括号与添括号.【专题】计算题.【分析】根据去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反判断即可.【解答】解:A、a+(b+c﹣d)=a+b+c﹣d,故本选项正确;B、a﹣(b﹣c+d)=a﹣b+c﹣d,故本选项正确;C、a﹣b﹣(c﹣d)=a﹣b﹣c+d,故本选项错误;D、a+b﹣(﹣c﹣d)=a+b+c+d,故本选项正确;故选C.【点评】本题考查了去括号法则,解题时牢记法则是关键,特别要注意符号的变化.6.2010年5月1日至2010年10月31日期间在上海举行的世界博览会总投资约450亿元人民币,其中“450亿”用科学记数法表示为()元.A.4.5×1010 B.4.5×109C.4.5×108D.0.45×109【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将450亿用科学记数法表示为:4.5×1010.故选:A.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.若﹣3x2m y3与2x4y n是同类项,那么m﹣n=()A.0 B.1 C.﹣1 D.﹣2【考点】同类项.【专题】计算题.【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,可得出m和n的值,继而代入可得出答案.【解答】解:∵﹣3x2m y3与2x4y n是同类项,∴2m=4,n=3,解得:m=2,n=3,∴m﹣n=﹣1.故选C.【点评】此题考查同类项的定义,属于基础题,解答本题的关键是掌握同类项:所含字母相同,并且相同字母的指数也相同,难度一般.8.已知代数式x+2y的值是3,则代数式2x+4y+1的值是()A.1 B.4 C.7 D.不能确定【考点】代数式求值.【分析】把x+2y看作一个整体并把所求代数式整理成已知条件的形式,然后计算即可得解.【解答】解:∵x+2y=3,∴2x+4y+1=2(x+2y)+1,=2×3+1,=6+1,=7.故选C.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.9.在数轴上表示a,b两个实数的点的位置如图所示,则化简|a+b|﹣|a﹣b|的结果为()A.2a B.2b C.2a﹣2b D.﹣2b【考点】整式的加减;数轴;绝对值.【分析】根据各点在数轴上的位置判断其符号及绝对值的大小,再去绝对值符号,合并同类项即可.【解答】解:∵由图可知,a<0<b,|a|>b,∴a+b<0,a﹣b<0,∴原式=﹣(a+b)+(a﹣b)=﹣a﹣b+a﹣b=﹣2b.故选D.【点评】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.10.若当x=3时,代数式ax5+bx3+cx﹣10的值为3,则当x=﹣3时,该多项式的值是()A.﹣3 B.﹣7 C.﹣13 D.﹣23【考点】代数式求值.【分析】当x=3时,ax5+bx3+cx=13,当x=﹣3时,ax5+bx3+cx=﹣13,最后代入计算即可.【解答】解:∵当x=3时,代数式ax5+bx3+cx﹣10=3∴ax5+bx3+cx=13.∵3与﹣3互为相反数,∴当x=﹣3时,ax5+bx3+cx=﹣13.∴原式=﹣13﹣10=﹣23.故选:D.【点评】本题主要考查的是求代数式的值,依据相反数的性质求得ax5+bx3+cx=﹣13是解题的关键.二、填空题(每题3分,共30分)11.在数轴上,若A点表示数﹣1,点B表示数2,A、B两点之间的距离为 3 .【考点】数轴.【分析】用数轴上右边的点表示的数减去左边的点表示的数即可得到两点之间的距离.【解答】解:2﹣(﹣1)=3.故答案为:3【点评】本题主要考查了数轴,熟知数轴上两点间的距离公式是解答此题的关键.12.兰兰同学买了铅笔m支,每支0.8元,买了练习本n本每本2元,则她买铅笔和练习本一共花费了0.8m+2n 元.【考点】列代数式.【分析】根据总花费=买铅笔用的钱+买练习本用的钱,列代数式.【解答】解:总花费=0.8m+2n.故答案为:0.8m+2n.【点评】本题考查了列代数式,解答本题的关键是读懂题意,找出合适的等量关系,列代数式.13.一个多项式加上2x2﹣x+5等于4x2﹣6x﹣3,则这个多项式为2x2﹣5x﹣8 .【考点】整式的加减.【分析】先根据题意列出整式相加减的式子,再去括号,合并同类项即可.【解答】解:原式=(4x2﹣6x﹣3)﹣(2x2﹣x+5)=4x2﹣6x﹣3﹣2x2+x﹣5=2x2﹣5x﹣8.故答案为:2x2﹣5x﹣8.【点评】本题考查的是整式的加减,熟知整式的加减实质上是合并同类项是解答此题的关键.14.用四舍五入法取近似数,1.80499≈ 1.80 (精确到百分位).【考点】近似数和有效数字.【分析】把千位上的数字进行四舍五入即可.【解答】解:1.80499≈1.80(精确到百分位).故答案为1.80.【点评】本题考查了近似数和有效数字:经过四舍五入得到的数为近似数;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.15.a=3,|b|=10,且|b﹣a|=﹣(b﹣a),则a﹣b= 13 .【考点】绝对值.【分析】利用绝对值的代数意义求出b的值,即可确定出a﹣b的值.【解答】解:∵a=3,|b|=10,且|b﹣a|=﹣(b﹣a),∴b=﹣10,∴a﹣b=3+10=13.故答案为:13.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.16.若有一个新运算“*”,规定a*b=﹣a+3b,则(﹣2)*3的值为11 .【考点】有理数的混合运算.【专题】计算题;新定义.【分析】原式利用已知的新定义计算即可得到结果.【解答】解:根据题中的新定义得:原式=2+9=11,故答案为:11.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.17.若方程4x﹣1=5与2﹣3(a﹣x)=0的解互为倒数,则a的值为.【考点】一元一次方程的解.【分析】首先解第一个方程求得方程的解,则第二个方程的解即可求得,代入方程即可得到一个关于a的方程,求得a的值.【解答】解:解方程4x﹣1=5,解得:x=,则方程2﹣3(a﹣x)=0的解是x=﹣,把x=﹣代入方程得2﹣3(a+)=0,解得:a=.故答案是:.【点评】本题考查了一元一次方程的解法以及方程的解的定义,方程的解就是能使方程左右两边相等的未知数的值.18.如果|y﹣3|+(2x﹣4)2=0,那么3x﹣y的值为 3 .【考点】代数式求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】由非负数的性质可知y=3,x=2,最后代入计算即可.【解答】解:∵|y﹣3|+(2x﹣4)2=0,∴y=3,x=2.∴3x﹣y=3×2﹣3=6﹣3=3.故答案为:3.【点评】本题主要考查的是求代数式的值,依据非负数的性质求得y=3,x=2是解题的关键.19.如图所示的方式搭正方形:搭n个正方形需要小棒3n+1 根.【考点】规律型:图形的变化类.【分析】通过观察易得搭一个正方形要火柴4根;搭两个正方形要火柴(4+3)根,即7根;搭三个正方形要火柴(4+3×2)根,即10根,由此得到搭n个正方形要火柴4+3×(n﹣1)根.【解答】解:观察第一个图得,搭一个正方形要火柴4根;观察第二个图得,搭两个正方形要火柴(4+3)根,即7根;观察第三个图得,搭三个正方形要火柴(4+3×2)根,即10根,…,所以搭n个正方形要火柴的根数=4+3×(n﹣1)=3n+1(根).故答案为:3n+1.【点评】本题考查了规律型:图形的变化类:通过从一些特殊的图形变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.20.已知四个互不相等的整数a,b,c,d满足abcd=77,则a+b+c+d= ±4.【考点】有理数的乘法;有理数的加法.【分析】根据题意可得出这四个数的值,继而可以确定这四个数的和.【解答】解:77=7×11=1×1×7×11=﹣1×1×(﹣7)×11=﹣1×1×7×(﹣11).由题意知,a、b、c、d的取值为﹣1,1,﹣7,11或﹣1,1,7,﹣11.从而a+b+c+d=±4.故答案为:±4.【点评】本题考查有理数的乘法运算,关键在于根据题意判断四个数的值,注意读清题意,题干已把这四个数限定在很小的范围.三、解答题21.计算或化简(1)(+12)+(﹣23)﹣(﹣33);(2)﹣13﹣(1﹣0.5)××[2﹣(﹣3)2];(3)4x2﹣3x+8﹣2(3x2+4x﹣5);(4)2a2﹣[(ab﹣a2)+8ab]﹣ab.【考点】有理数的混合运算;整式的加减.【专题】计算题;实数.【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果;(3)原式去括号合并即可得到结果;(4)原式去括号合并即可得到结果.【解答】解:(1)原式=12﹣23+33=22;(2)原式=﹣1﹣××(﹣7)=﹣1+=;(3)原式=4x2﹣3x+8﹣6x2﹣8x+10=﹣2x2﹣11x+18;(4)原式=2a2﹣ab+a2﹣8ab﹣ab=a2﹣9ab.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22.解方程(1)5x+3=1﹣2x;(2)2x﹣(x+10)=5x+2(x﹣1);(3)﹣=1;(4)﹣3=﹣.【考点】解一元一次方程.【分析】(1)移项、合并同类项,系数化成1即可求解;(2)去括号、移项、合并同类项、系数化成1即可求解;(3)去分母、去括号、移项、合并同类项、系数化成1即可求解;(4)去分母、去括号、移项、合并同类项、系数化成1即可求解.【解答】解:(1)移项得5x+2x=1﹣3.合并同类项得7x=﹣2,化系数为1,得x=﹣;(2)去括号,得2x﹣x﹣10=5x+2x﹣2.移项得2x﹣x﹣5x﹣2x=﹣2+10.合并同类项得﹣6x=8.化系数为1,得x=﹣;(3)去分母得2(2x+1)﹣5x=6去括号,得4x+2﹣5x=6.移项得4x﹣5x=6﹣2.合并同类项得﹣x=4.化系数为1,得x=﹣4.(4)去分母得3(2﹣x)﹣18=2x﹣(2x+3)去括号,得6﹣3x﹣18=2x﹣2x﹣3移项得6﹣18+3=2x﹣2x+3x合并同类项得﹣9=3x化系数为1,得x=﹣3.【点评】本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.23.有8筐白菜,以每筐25千克为标准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:回答下列问题:(1)这8筐白菜中最接近标准重量的这筐白菜重﹣0.5 千克;(2)与标准重量比较,8筐白菜总计超过或不足多少千克?(3)若白菜每千克售价2.6元,则出售这8筐白菜可卖多少元?【考点】正数和负数.【分析】(1)根据绝对值的意义,绝对值越小越接近标准,可得答案;(2)根据有理数的加法运算,可得答案;(3)根据单价乘以数量等于总价,可得答案.【解答】解:(1)∵|﹣3|>|﹣2.5|>|﹣2|=|2|>|1.5|>|1|>|﹣0.5|,∴﹣0.5的最接近标准.故答案为:﹣0.5千克;(2)由题意,得1.5+(﹣3)+2+(﹣0.5)+1+(﹣2)+(﹣2)+(﹣2.5)=﹣5.5(千克).答:与标准重量比较,8筐白菜总计不足5.5千克;(3)由题意,得(25×8﹣5.5)×2.6=194.5×2.6=505.7(元).答:出售这8筐白菜可卖505.7元.【点评】本题考查了正数和负数,利用了绝对值的意义,有理数的加法运算.24.先化简,再求值:5(3x2y﹣xy2)﹣(﹣3x2y+xy2),其中x=,y=﹣1.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=15x2y﹣5xy2+3x2y﹣xy2=18x2y﹣6xy2,当x=,y=﹣1时,原式=﹣﹣3=﹣7.5.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.25.整理一批图书,如果由一个人单独做要花60小时.现先由一部分人用一小时整理,随后增加15人和他们一起又做了两小时,恰好完成整理工作.假设每个人的工作效率相同,那么先安排整理的人员有多少人?【考点】一元一次方程的应用.【专题】工程问题.【分析】等量关系为:所求人数1小时的工作量+所有人2小时的工作量=1,把相关数值代入即可求解.【解答】解:设先安排整理的人员有x人,依题意得:.解得:x=10.答:先安排整理的人员有10人.【点评】解决本题的关键是得到工作量1的等量关系;易错点是得到相应的人数及对应的工作时间.26.轮船沿江从A港顺流行驶到B港,比从B港返回A港少用2小时,若轮船在静水速度为26千米/时,水流速度为2千米/时,求A港和B港相距多少千米.【考点】一元一次方程的应用.【分析】根据逆流速度=静水速度﹣水流速度,顺流速度=静水速度+水流速度,表示出逆流速度与顺流速度,根据题意列出方程,求出方程的解即可得到结果.【解答】解:设A港与B港相距x km,由题意得+2=解得:x=336.则A港与B港相距336 km.答:A港与B港相距336km.【点评】此题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.购票张数1~50张51~100张100张以上每张票的价格13元11元9元(Ⅰ)已知40<x<54,若两个班都以班为单位购票请根据表中提供的信息,用含有x的式x=46 40<x≤5050<x≤54九年级一班购票费/元13×4613x 11x九年级二班购票费/元11×11 11(Ⅲ)在(Ⅱ)的条件下,若两个班联合起来购票,作为一个团体购票,可省多少钱?【考点】一元一次方程的应用.【分析】(Ⅰ)根据总价=单价×数量即可求解;(Ⅱ)设一班有x人,则二班有人,根据两班分别购票的费用为1240元建立方程求出其解即可;(Ⅲ)两班联合起来,超过了100人,每张票的价格为9元,然后计算1240﹣9×104=304即可.x=46 40<x≤5050<x≤54九年级一班购票费/元13×4613x 11x九年级二班购票费/元11×11 11(Ⅱ)当4≤x<50时,13x+11=1240,解得x=48.104﹣x=104﹣48=56;当0<x<4时,13x+9=1240,解得x=76,不合题意舍去.答:九年级一班有48人,二班有56人;(Ⅲ)1240﹣9×104=304(元).答:若两个班联合起来购票,作为一个团体购票,可省304元钱.【点评】本题考查了一元一次方程的应用:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.。
湖北省黄冈市七年级上学期数学期中试卷
湖北省黄冈市七年级上学期数学期中试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)下列说法正确的是()A . |﹣2|=﹣2B . 0的倒数是0C . 4的平方根是2D . ﹣3的相反数是3【考点】2. (2分) (2020·瑶海模拟) 下列计算正确的是()A . 2×32=36B . (﹣2a2b3)3 =﹣6a6b9C . ﹣5a5b3c÷15a4b=﹣3ab2cD . (a﹣2b)2 =a2﹣4ab+4b2【考点】3. (2分)若代数式5x2-4x+6的值为26,则x2−x+6的值为()A . 6B . 10C . 14D . 30【考点】4. (2分)据科学家估计,地球的年龄大约是46亿年,46亿这个数用科学记数法表示为()A . 4.6×108B . 46×108C . 4.6×109D . 0.46×1010【考点】5. (2分) (2016七上·长春期中) 下列各组数中,具有相反意义的量是()A . 身高180cm和身高90cmB . 向东走5公里和向南走5公里C . 收入300元和支出300元D . 使用汽油10公斤和浪费酒精10公斤【考点】6. (2分) (2019七上·大连期末) 如图,有理数在数轴上的对应点分别是,若互为相反数,则()A . 小于0B . 等于0C . 大于0D . 不确定【考点】7. (2分)(2020·丰润模拟) 定义新运算:,例如:,,则的图像是()A .B .C .D .【考点】8. (2分) (2020七上·渑池期末) 下列各组式子中,不是同类项的是()A . 与B . 与C . 与D . 与【考点】9. (2分)(2018·龙岩模拟) 下列计算正确的是().A .B .C .D .【考点】10. (2分)若a>b,则下列不等式变形正确的是()A . a+5<b+5B . >C . ﹣4a>﹣4bD . 3a﹣2<3b﹣2【考点】二、填空题 (共5题;共5分)11. (1分)(2020·福建) 2020年6月9日,我国全海深自主遥控潜水器“海斗一号”在马里亚纳海沟刷新了我国潜水器下潜深度的纪录,最大下潜深度达10907米.假设以马里亚纳海沟所在海域的海平面为基准,记为0米,高于马里亚纳海沟所在海域的海平面100米的某地的高度记为米,根据题意,“海斗一号”下潜至最大深度10907米处,该处的高度可记为________米.【考点】12. (1分)(x+y)2可以解释为________。
2021-2022学年湖北省黄冈市麻城市七年级(上)期中数学试卷(附答案详解)
2021-2022学年湖北省黄冈市麻城市七年级(上)期中数学试卷1.两千多年前,中国人就开始使用负数,如果收入100元记作+100元,那么支出60元应记作()A. −60元B. 40元C. +40元D. +60元2.某天杭州最高气温为8℃,最大温差11℃,那么该天最低气温是()A. 19℃B. −3℃C. 3℃D. −19℃3.已知单项式5x2y a−2的次数是3,则a的值是()A. 3B. 4C. 5D. 64.在−2,−3,0,2四个数中,最小的一个是()A. −2B. −3C. 0D. 25.地球距太阳约有120000000千米,数120000000用科学记数法表示为()A. 0.12×109B. 1.2×108C. 12×107D. 1.2×1096.当x=1时,多项式ax3+bx−2的值为2,则当x=−1时,该多项式的值是()A. −6B. −2C. 0D. 27.随着北京公交车票价调整,乘客在乘车时可以通过新版公交站牌计算乘车费用,新版站牌每一个站名上方都有一个相应的数字,将上下车站站名称对应数字相减取绝对值就是乘车路程,再按照其所在计价区段,参考票制规则计算票价,具体来说:另外,一卡通刷卡实行8折优惠,小明用一卡通乘车上车时站名上对应的数字是5,下车时站名上对应的数字是20,那么小明乘车的费用是()A. 1.6元B. 2元C. 2.4元D. 3.2元8.按如图所示的运算程序,两次分别输入4和2,则两次输出的结果的和为()A. 6B. 34C. 94D. 929. −2021的倒数是______.10. 多项式3x 2y +2xy 的次数为______.11. 某地区一天早上8时的气温是−6℃,上午10时气温上升了2℃,13时气温又上升了5℃,则13时的气温是______℃.12. 已知2a −5b =3,则2+4a −10b =______.13. 数轴上A ,B 两点的距离是5.若点A 表示的数为1,则点B 表示的数为______. 14. 在数1,−2,−3,5中,任取两个数相乘,其中最大的积是______. 15. 已知,x −3=2021,则(x −3)2−2021(x −3)+1的值为______.16. 若a 、b 互为相反数,c 、d 互为倒数,且m 的绝对值是1,则(a +b)−cd +2021m 2的值是______. 17. 计算题:(1)13+(−7)−(−9)+5×(−2); (2)(−478)−(−512)+(−414)−318; (3)(1−34+16−58)÷(−124);(4)2×(−137)−234×13+(−137)×5+14×(−13).18. 我们定义一种新运算:x ⊗y =xy +x −y .(1)求2⊗(−4)的值;(2)求(−1)⊗[4⊗(−2)]的值.19. 小明用三天看完一本书,第一天看了全书的25,第二天看了剩下的13,则第三天小明看了全书的几分之几?20. 先化简,在求值:5(a 2−4ab)−2(a 2−8ab +1),其中a =23,b =−6.21. 已知|a|=5,|b|=2.(1)若ab <0,求a −b 的值;(2)若|a +b|=−(a +b),求a −b 的值.22.今年的“十⋅一”黄金周是7天的长假,徐州市吕梁风景区在7天假期中每天旅游人数变化如表(正号表示人数比前一天多,负号表示比前一天少)若9月30日的游客人数为0.1万人,问:(1)10月4日的旅客人数为______万人;(2)七天中旅客人数最多的一天比最少的一天多______万人?(3)如果每万人带来的经济收入为50万元,则黄金周七天的旅游总收入为多少万元?23.一位同学做一道题:已知两个多项式A、B,计算A−3B他误将“A−3B”看成“3A−B”,求得的结果为x2−14xy−4y2,其中B=2x2+2xy+y2,(1)请你计算出多项式A.(2)若x=−3,y=2,计算A−3B的正确结果.24.我省教育厅发布文件,规定从2019年开始,体育成绩将按一定的原始分计入中考总分.某校为适应新的中考要求,决定为体育组添置一批体育器材.学校准备订购一批篮球和跳绳,经过市场调查后发现篮球每个定价120元,跳绳每条定价20元.某体育用品商店提供A、B两种优惠方案:A方案:买一个篮球送一条跳绳;B方案:篮球和跳绳都按定价的90%付款.已知要购买篮球50个,跳绳x条(x>50).(1)若按A方案购买,一共需付款______ 元;(用含x的代数式表示)若按B方案购买,一共需付款______ 元.(用含x的代数式表示)(2)当x=100时,请通过计算说明此时用哪种方案购买较为合算?(3)当x=100时,你能给出一种更为省钱的购买方案吗?请写出你的购买方案,并计算需付款多少元?答案和解析1.【答案】A【解析】解:根据题意,如果收入100元记作+100元,那么支出60元应记作−60元.故选:A.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.本题考查了正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.2.【答案】B【解析】解:由题意得,8−11=−3(℃).故选:B.利用最高气温减去最大温差即可得到结果.本题考查了有理数的减法,读懂题目列是计算是解题的关键.3.【答案】A【解析】解:因为单项式5x2y a−2的次数是3,所以2+a−2=3,所以a=3.故选:A.直接利用单项式的次数的定义得出答案.此题主要考查了单项式,正确掌握单项式的次数的确定方法是解题的关键.4.【答案】B【解析】解:根据有理数的大小关系,−3<−2<0<2.∴在−2,−3,0,2四个数中,最小的一个是−3.故选:B.根据有理数的大小关系解决此题.本题主要考查有理数的大小比较,熟练掌握有理数的大小关系是解决本题的关键.5.【答案】B【解析】解:120000000=1.2×108.故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.【答案】A【解析】解:∵当x=1时,多项式ax3+bx−2的值为2,∴a+b−2=2,∴a+b=4,∴当x=−1时,ax3+bx−2=−a−b−2=−(a+b)−2=−4−2=−6,故选:A.由已知条件可得a+b=4,当x=−1时,ax3+bx−2==−a−b−2,适当变形,整体代入即可求出结果.本题考查了代数式求值,会把多项式适当变形,化成条件的形式是解决问题的关键.7.【答案】C【解析】解:小明乘车|20−5|=15(站),对应的票价为3元,3×80%=2.4(元),故选:C.先计算出小明乘车是15站,对照表格,对应的票价是3元,根据一卡通刷卡实行8折优惠,即可计算出费用.本题考查了有理数的减法,绝对值,根据题意求出小明乘车路程,对照表格,得出对应的票价,这是解题的关键.8.【答案】D【解析】解:当输入4时,x2−3x=42−3×4=4>0,∴输出4;当输入2时,x2−3x=22−3×2=−2<0,∴输出12;∴两次输出结果的和4+12=92;故选:D.分别把4和2代入,计算x2−3x,再判断其符号,即可得输出结果,从而可得答案.本题考查求代数式的值,分别代入计算x2−3x的值是解题的关键.9.【答案】−12021【解析】解:−2021的倒数是−12021.故答案为:−12021.根据乘积是1的两个数互为倒数判断即可.此题主要考查了倒数,正确掌握相关定义是解题的关键.10.【答案】3【解析】解:∵多项式3x2y+2xy的最高次项为3x2y,其次数是3,∴多项式3x2y+2xy的次数是3.故答案为:3.多项式中次数最高的项的次数叫做多项式的次数,据此可得答案.此题主要考查了多项式,解题的关键是掌握多项式次数的计算方法.11.【答案】1【解析】解:根据题意得,−6+2+5=1(℃).故答案为:1.根据题意列式计算即可.本题考查了有理数的加法,掌握有理数的加法法则,列式是解题关键.12.【答案】8【解析】解:∵2a−5b=3,∴2+4a−10b=2+2(2a−5b)=2+2×3=8,故答案为:8.先变形得出2+4a−10b=2+2(2a−5b),再代入求出答案即可.本题考查了求代数式的值,掌握整体代入法是解此题的关键.13.【答案】−4或6【解析】解:如图.由图可知,到点A距离为5的点表示的数为−4或6.故答案为:−4或6.根据数轴上的点表示的数解决此题.本题主要考查数轴上的点表示的数,熟练掌握数轴上的点表示的数是解决本题的关键.14.【答案】6【解析】解:1×(−2)=−2,1×(−3)=−3,1×5=5,−2×(−3)=6,−2×5=−10,−3×5=−15.∵−15<−10<−3<−1<5<6,∴在数1,−2,−3,5中,任取两个数相乘,其中最大的积是6.故答案为:6.根据有理数的乘法法则、有理数的大小关系解决此题.本题主要考查有理数的乘法、有理数的大小比较,熟练掌握有理数的乘法法则、有理数的大小关系是解决本题的关键.15.【答案】1【解析】解:∵x−3=2021,∴(x−3)2−2021(x−3)+1=20212−2021×2021+1=1,故答案为:1.将x−3=2021代入计算即可得答案.本题考查代数式求值,解题的关键是整体代入及掌握乘方的意义.16.【答案】2020【解析】解:∵a、b互为相反数,c、d互为倒数,且m的绝对值是1,∴a+b=0,cd=1,m=1或−1,则原式=0−1+2021×1=−1+2021=2020.故答案为:2020.利用相反数,倒数,以及绝对值的性质求出a+b,cd,m的值,代入原式计算即可求出值.此题考查了有理数的混合运算,相反数、倒数,以及绝对值,熟练掌握各自的性质是解本题的关键.17.【答案】解:(1)原式=13+(−7)+9+(−10)=(13+9)+[(−7)+(−10)]=22+(−17)=5;(2)原式=(−478)+512+(−414)+(−318)=[(−478)+(−318)]+[512+(−414)] =(−8)+114=−634;(3)原式=(1−34+16−58)×(−24)=1×(−24)−34×(−24)+16×(−24)−58×(−24) =−24+18−4+15=(−24−4)+(18+15)=(−28)+33=5;(4)原式=−137×(2+5)−13×(234+14)=−107×7−13×3=−10−39=−49.【解析】(1)原式先计算乘法,再计算加减即可求出值;(2)原式利用减法法则变形,结合后相加即可求出值;(3)原式利用除法法则变形,再利用乘法分配律计算即可求出值;(4)原式逆用乘法分配律计算即可求出值.此题考查了有理数的混合运算,熟练掌握运算法则及乘法分配律是解本题的关键.18.【答案】解:(1)2⊗(−4)=2×(−4)+2−(−4)=−8+2+4=−2;(2)4⊗(−2)=4×(−2)+4−(−2)=−8+4+2=−2;(−1)⊗[4⊗(−2)]=(−1)⊗(−2)=(−1)×(−2)+(−1)−(−2)=2−1+2=3.【解析】(1)根据x⊗y=xy+x−y,用2与−4的积加上2减去−4,求出2⊗(−4)的值是多少即可;(2)根据x⊗y=xy+x−y,先求出4⊗(−2)的值是多少,进而求出(−1)⊗[4⊗(−2)]的值是多少即可.此题主要考查了定义新运算,以及有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.19.【答案】解:1−25−(1−25)×13=1−25−35×13=1−25−15=25,答:第三天小明看了全书的25.【解析】根据三天所看百分比之和为1列式求解可得;本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则.20.【答案】解:原式=5a2−20ab−2a2+16ab−2=3a2−4ab−2当a=23,b=−6时,原式=3×49−4×23×(−6)−2=43+16−2=463.【解析】有括号先去括号,然后合并同类项,进行化简后,再代入求值即可.本题考查整式的加减运算,解题的关键是熟练运用整式的加减的法则,属于基础题型.21.【答案】解:∵|a|=5,|b|=2.∴a=±5,b=±2,(1)∵ab<0,∴a=5,b=−2或a=−5,b=2,当a=5,b=−2时,a−b=5−(−2)=7,当a=−5,b=2时,a−b=−5−2=−7;综上所述,a−b的值为7或−7;(2)∵|a+b|=−(a+b),∴a+b<0,∴a=−5,b=2或a=−5,b=−2,当a=−5,b=2时,a−b=−5−2=−7,当a=−5,b=−2时,a−b=−5−(−2)=−3;综上所述,a−b的值为−7或−3;【解析】(1)由ab<0得a、b异号,故a=5,b=−2或a=−5,b=2,即可求出答案;(2)由|a+b|=−(a+b)得a+b<0,故a=−5,b=2或a=−5,b=−2,代入a−b 即可得到答案.本题考查绝对值及代数式求值,解题的关键是分论讨论,分别求出a、b的值.22.【答案】0.4 1.1【解析】解:(1)根据题意列得:0.1+(+1.1−0.6+0.2−0.4)=0.4;故答案是:0.4;(2)10月1日有游客:0.1+1.1=1.2(万),10月2日有游客:1.2−0.6=0.6(万),10月3日有游客:0.6+0.2=0.8(万),10月4日有游客:0.8−0.4=0.4(万),10月5日有游客:0.4−0.2=0.2(万),10月6日有游客:0.2+0.4=0.6(万),10月7日有游客:0.6−0.5=0.1(万);7天中旅客最多的是1日为1.2万人,最少的是7日为0.1万人,则七天中旅客人数最多的一天比最少的一天多1.2−0.1=1.1(万人);故答案为:1.1;(3)黄金周七天游客:1.2+0.6+0.8+0.4+0.2+0.6+0.1=3.9(万人),3.9×50=195(万元),答:黄金周七天的旅游总收入约为195万元.(1)根据题意依次把9月30日,10月1到4号这五天的值相加列得算式,计算即可得到结果;(2)根据表格得出1日到7日每天的人数,找出旅客人数最多的与最少的,相减计算即可得到结果;(3)把(2)中1日到7日每天的人数,相加后再乘以50即可得到结果.此题考查了有理数的混合运算的应用,弄清题意是解本题的关键.23.【答案】解:(1)由题意:3A−B=x2−14xy−4y2,∴3A=x2−14xy−4y2+B,=x2−14xy−4y2+2x2+2xy+y2=3x2−12xy−3y2,(3x2−12xy−3y2)=x2−4xy−y2,∴A=13即多项式A为x2−4xy−y2;(2)A−3B=x2−4xy−y2−3(2x2+2xy+y2)=x2−4xy−y2−6x2−6xy−3y2=−5x2−10xy−4y2,当x=−3,y=2时,原式=−5×(−3)2−10×(−3)×2−4×22=−5×9+60−4×4=−45+60−16=−1.即A−3B的正确结果为−1.【解析】(1)根据3A−B=x2−14xy−4y2,先求出3A,然后再求多项式A;(2)先化简A−3B,然后代入求值.本题考查整式的加减混合运算,掌握运算顺序和计算法则是解题关键.24.【答案】(5000+20x)(5400+18x)【解析】解:(1)A方案购买可列式:50×120+(x−50)×20=5000+20x(元);按B方案购买可列式:(50×120+20x)×0.9=5400+18x(元);故答案为:(5000+20x),(5400+18x);(2)当x=100时,A方案购买需付款:5000+20x=5000+20×100=7000(元);按B方案购买需付款:5400+18x=5400+18×100=7200(元);∵7000<7200,∴当x=100时,应选择A方案购买合算;(3)由(2)可知,当x=100时,A方案付款7000元,B方案付款7200元,按A方案购买50个篮球配送50个跳绳,按B方案购买50个跳绳合计需付款:120×50+20×50×90%=6900,∵6900<7000<7200,∴省钱的购买方案是:按A方案买50个篮球,剩下的50条跳绳按B方案购买,付款6900元.(1)由题意按A方案购买可列式:50×120+(x−50)×20=5000+20x,在按B方案购买可列式:(50×120+20x)×0.9=5400+18x;(2)将x=100分别代入A方案,B方案即可以比较(3)由于A方案是买一个篮球送跳绳,B方案是篮球和跳绳都按定价的90%付款,所以可以按A方案买50个篮球,剩下的50条跳绳按B方案购买即可.此题考查的是列代数式并求值,也可作为一元一次方程来考查,因此做此类题需要掌握解应用题的能力.。
湖北省黄冈中学2021 2021学年七年级(上)期中数学模拟试题(解析版)
湖北省黄冈中学2021 2021学年七年级(上)期中数学模拟试题(解析版)湖北省黄冈中学2021-2021学年七年级(上)期中数学模拟试题(解析版)湖北黄冈中学2022-2022学年七年级(上)期中数学模拟试卷一、多项选择题(共7个子题,满分21分)1.下列各数中,其相反数等于本身的是()a.1b.0c.1d.2021【答案】b【解析】【分析】根据相反数字的含义,只有符号不同的数字才是相反的数字【点睛】本题考查了相反数的意义.注意掌握只有符号不同的数为相反数,0的相反数是0.2.根据探测,白天太阳垂直照射的月球表面温度高达127℃,而夜间温度可降至-183℃。
根据以上数据,月球昼夜温差为()a.56℃-B.-56℃-c.310℃-D.-310℃[答]c[分析]试题解析:127-(-183)=127+183=310℃,故选c.3、第十九次大众大会指出,过去五年,中国经济建设取得了巨大成就,经济保持中高速增长,位居世界主要国家之首。
国内生产总值从54万亿元增加到80万亿元,居世界第二位。
80万亿元用科学符号表示为8000亿元()a.8×1014元b.0.8×1014元c.80×1012元d.8×1013元【答案】d【解析】800000000元=8×1013元,选择D点睛:本题考查了正整数指数科学计数法,对于一个绝对值较大的数,用科学记数法写成它的形式中,n是比原整数位数少1的数.4.以下陈述是正确的()。
A.积分是多项式B.它是单项式c.x4+2x3是二次D.[答案]B[分析]本题考查的是单项式、多项式的定义单项式指的是一个只有数字和字母乘积的公式,包括一个数字(或字母)。
几个单项式的和是一个多项式,多项式中最高阶项的次数就是多项式的次数。
a.整式包含多项式和单项式,故本选项错误;b.是单项式,正确;c.d.故选b。
5.如果一个数字的绝对值是5,那么这个数字是()5D 0或5A 5b。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
黄冈中学2006年秋季七年级数学期中考试试题
(分数:120分时间:120分钟)
命题:李琳胡晓英校对:方诚余燕
一、填空题(每小题3分,共30分)
11.下列各数中:
5
3
-,
.
3.3
-,0, 3.14
-,4
+,1
-,
22
7
.整数有a个,负数有
b个,则a+b等于()
A.5 B.6 C.7 D.8
12.把数轴上表示4的点沿数轴移动5个单位后所得的点所表示的数为( ) A.9 B.-1 C.9或-1 D.-9或1
13.有理数a b 、在数轴上的位置如图所示,下列各式错误的是( )
A .(1)(1)a b -->0
B .ab <1
C .a b +<2
D .(1)(1)a b ++>4 14.下列等式变形,正确的是( )
2
(1)225332(3)5轾-??+犏臌
; (2)241310.25()(12 3.75)24283
-?++-?.
22.解方程:(每小题4分,共8分)
(1)3(1)2(2)23x x x +--=+; (2)21
534
x x ---=.
试化简:a b c b c a +--+-.
27.(6分)如图摆放在地上的正方体的大小均相等,现在把露在外面的表面涂成红色,
从上向下数,每层正方体被涂成红色的面数分别为: 第一层:侧面个数+上面个数=1×4+1=5; 第二层:侧面个数+上面个数=2×4+3=11;
第三层:侧面个数+上面个数=3×4+5=17;
第四层:侧面个数+上面个数=4×4+7=23;
……
根据上述的计算方法,总结规律,并完成下列问题: (1)求第6层有多少个面被涂成了红色?
(2)求第n 层有多少个面被涂成了红色?(用含n 的式子表示)
(3)若第m 层有89个面被涂成红色,请你判断这是第几层?并说明理由。
28.(12分)罗田县是有名的“板栗之乡”,在板栗丰收的季节,某食品加工厂收购了15吨
板栗,若在市场上销售,每吨利润为500元;若将板栗进行粗加工,每天可以加工2吨,每吨利润为1000元;若进行精加工,每天可以加工1吨,每吨利润为1400元。
由于受条件限制,在同一天中只能采用一种方式加工,并必须在12天内全部加工完毕。
为此该厂设计了三种加工方案: 方案一:将板栗全部进行粗加工;
方案二:尽可能多的对板栗进行精加工,其余的在市场上直接销售;
方案三:部分板栗进行精加工,其余的板栗进行粗加工,并恰好用12天完成。
你认为选择哪种方案获利最多?为多少?试说明理由.
第一层 第二层
第三层
答案:
1、3;
2
3
-;8 2、-3,-150,-3
3、2.16×105
4、2
5、-4
6、1 24
7、-1或-5 8、-5
()(
42834
=
11
1616
-÷+(33+56-90)
=-1+(-1)=-2;
22、(1)3x+3-2x+4=2x+3,
3x-2x-2x=3-3-4,
∴-x=-4,
∴x=4.
(2)4(2-x)-3(x-1)=6,
8-4x-3x+3=60,
∴-7x=60-8-3,
∴x=-7.
又c<b,∴c-b<0.
又c<a,∴c-a<0,
∴原式=(a+b)-(b-c)+(a-c)
=a+b-b+c+a-c
=2a.
27、(1)第6层:侧面个数+上面个数=6×4+11=24+11=35,
故第6层有35个面被涂成了红色.
(2)第n层:被涂成了红色的面的个数为:
4n+(2n-1)=(6n-1)(个).
(3)依题意可得:6m-1=89,∴6m=90
∴m=15,故这是第15层.
28、按方案一销售,利润为:15×1000=15000(元);。