2011年卓越联盟自主招生数学试题及答案.pdf

合集下载

2011北大自主招生数学详解版

2011北大自主招生数学详解版
(ⅰ)若 C 与 C1 , C2 都外切,则 CC1 r1 r , CC2 r2 r ,所以 CC1 CC2 r1 r2 ; 若 C 与 C1 , C2 都内切,则 CC1 r r1 , CC2 r r2 ,所以 CC2 CC1 r1 r2 ; 所以 CC2 CC1 r1 r2 C1C2 ,由双曲线的定义, C 的圆心的轨迹是以 C1 , C2 为焦点、实轴长为 (ⅱ)若 C 与 C1 内切, C2 外切,则 CC1 r r1 , CC2 r2 r , r1 r2 的双曲线; 所以 CC2 CC1 r1 r2 ;若 C 与 C1 外切, C2 内切,则 CC1 r r1 , CC2 r r2 , 所以 CC1 CC2 r1 r2 ;所以 CC2 CC1 r1 r2 C1C2 ,由双曲线的定义, C 的圆心的轨迹是以
值为何? 解 由 a7 a3 4d 可得公差 d 4 , 从而 a1 21 . 令 21 4( x 1) 0 得 x 6.25 , 故 {an } 从第 7 项开 始为正, 所以 {S n } 的最小项为 S6 66 . 4. 在 ABC 中, a b 2c ,求证: C 60 . 证 根据正弦定理有 sin A sin B 2sin C , 从而有
2011 年北约等十三校联考自主招生数学试卷 厦门一中徐小平
1. 已知平行四边形的其中两条边长为 3 和 5,一条对角线长为 6,求另一条对角线长. 解一 (引理) 平行四边形的对角线平方和等于四边的平方和. 另一对角线长为
2(32 52 ) 62 4 2 . C B 解二 如图, 设 AB 3 , AD 5 , BD 6 , 则据余弦定理有 2 2 2 2 AB AD cos A AB AD BD 2 , 于是 AC 2 DC 2 AD 2 2 DC AD cos CDA D A 32 52 2 AB AD cos A 32 , 从而 AC 4 2 . 2 2 2. 求过抛物线 y 2 x 2 x 1 和 y 5 x 2 x 3 的交点的直线方程. 解 由上述两方程消去二次项可得 6 x 7 y 1 0 , 此即为过两抛物线交点的直线方程. 3. 在等差数列 {an } 中, a3 13, a7 3 ,数列 {an } 的前 n 项和为 S n ,求数列 {S n } 的最小项,并指出其

2011年清华自主招生数学试题和答案解析

2011年清华自主招生数学试题和答案解析

2011年高水平大学自主招生选拔学业能力测试数学注意事项:1. 答卷前,考试务必将自己的姓名、准考证号填写在答题卡上。

2. 将答案写在答题卡上,写在本试卷上无效。

3. 考试结束后,将本试卷和答题卡一并交回。

一、选择题:本大题共10小题,每小题3分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)设复数z 满足|z|<1且15|z+|2z=,则|z |=( ) A 45 B 34 C 23 D 12解析:设|z |a bi =+代入15|z+|2z =整理得22221174a b a b ++=+,又|z |<1,所以2214a b +=,|z |=12=(2)在正四棱锥P-ABCD 中,M 、N 分别为PA 、PB 的中点,且侧面与底面所成二面角的正切.则异面直线DM 与AN 所成角的余弦值为( ) A13 B 16 C 18 D 112解析:设2AB =,容易算出2PB =,以底面中心为原点建立空间坐标系,1111(1,1,0),(1,1,0),(,,(,,222222D A M N ------,由1cos 6|DM AN ||DM ||AN |θ⋅==⋅uuu u r uuu ruuuu r uuu r (3)过点(1,1)-的直线l 与曲线3221y x x x =--+相切,且(1,1)-不是切点,则直线l 的斜率是( )A 2B 1C 1-D 2-解析:32221(),()322y x x x f x f x x x '=--+==--,设切点(),()t f t ,()()()y f t f t x t '-=-,把(1,1)-代入且1t ≠-得到1t =,所以2k =-(4)若23A B π+=,则22cos cos A B +的最小值和最大值分别为( )A.312-, B.1322,C.11D.112, 解析:2222211cos cos cos cos ()1cos(2)323A B A A A ππ+=+-=++,选B (5)如图,1O e 和2O e 外切于点C ,1O e ,2O e 又都和O e 内切,切点分别为,A B . 设AOB ACB αβ∠=∠=,,则( ) A cos sin02αβ+= B sin cos02αβ-=C sin 2sin 0βα+=D sin 2sin 0βα-= 解析:连接12O O 过点C ,设12CAO CBO ∠=∠∠=∠,,12O C O C 、,则+1+2=+21+22=βαπ∠∠∠∠,即2=βαπ-,只有D 是错的。

自主招生数学试题及答案

自主招生数学试题及答案

自主招生数学试题及答案一、选择题(每题5分,共20分)1. 已知函数\( f(x) = x^2 - 4x + 4 \),求\( f(x) \)的最小值。

A. 0B. 1C. 2D. 42. 若\( \sin(2\theta) = 2\sin(\theta)\cos(\theta) \),求\( \theta \)的值。

A. \( \frac{\pi}{4} \)B. \( \frac{\pi}{2} \)C. \( \frac{3\pi}{4} \)D. \( \pi \)3. 已知等差数列\( \{a_n\} \)的首项为3,公差为2,求第10项的值。

A. 23B. 25C. 27D. 294. 一个圆的半径为5,求圆的面积。

A. 25πB. 50πC. 75πD. 100π二、填空题(每题5分,共20分)5. 若\( a \)和\( b \)是方程\( x^2 + 4x + 4 = 0 \)的两个根,则\( a + b \)的值为______。

6. 已知\( \cos(\alpha) = \frac{3}{5} \),\( \alpha \)在第一象限,求\( \sin(\alpha) \)的值。

7. 若一个等比数列的首项为2,公比为3,求该数列的第5项。

8. 一个长方体的长、宽、高分别是\( a \)、\( b \)、\( c \),求长方体的体积。

三、解答题(每题30分,共60分)9. 已知函数\( g(x) = \ln(x) + 2x - 6 \),求\( g(x) \)的导数。

10. 一个工厂生产某种产品,每件产品的成本为\( C(x) = 50 + 20x \),销售价格为\( P(x) = 120 - 0.5x \),其中\( x \)表示生产数量。

求工厂的盈亏平衡点。

答案:一、选择题1. B. 1(因为\( f(x) = (x-2)^2 \),当\( x = 2 \)时,\( f(x) \)取得最小值1)2. A. \( \frac{\pi}{4} \)(根据二倍角公式)3. A. 23(第10项为\( a_{10} = 3 + 9 \times 2 = 23 \))4. B. 50π(圆的面积公式为\( A = \pi r^2 \))二、填空题5. -4(根据韦达定理)6. \( \frac{4}{5} \)(根据勾股定理)7. 162(第5项为\( a_5 = 2 \times 3^4 = 162 \))8. \( abc \)(长方体体积公式)三、解答题9. \( g'(x) = \frac{1}{x} + 2 \)(对\( g(x) \)求导)10. 盈亏平衡点为\( x = 40 \)。

2011年综合性大学(北约)自主选拔录取联合考试数学试题及答案

2011年综合性大学(北约)自主选拔录取联合考试数学试题及答案

2011年综合性大学(北约)自主选拔录取联合考试数学试题请注意:文科考生做1至5题,理科考生做3至7题,每题20分,共100分.1.已知平行四边形的其中两条边长为3和5,一条对角线长为6,求另一条对角线的长.2.求过抛物线2221y x x =--和2523y x x =-++的交点的直线方程.3.在等差数列{}n a 中,3713,3,a a =-=数列{}n a 的前n 项和为n S ,求数列{}n S 的最小项,并指出其值为何.4.在ABC ∆中,2a b c +≥,求证:60C ∠≤ .5.是否存在四个正实数,使得它们的两两乘积为2,3,5,6,10,16?6.1C 和2C 是平面上两个不重合的固定圆,C 是平面上的一个动圆,C 与12,C C 都相切,则C 的圆心的轨迹是何种曲线?说明理由.7.求()|1||21||20111|f x x x x =-+-++- 的最小值.参考答案1.x =【解】设另一条对角线的长度为x .由22222(35)6,x +=+解得x =. 2.【解】联立两方程,消去2,x 得6710x y +-=.此方程即为所求. 3.最小值为-66.【解法1】425,n a n =-由10,,0.n n a a +≤⎧⎨≥⎩即4250,.4(1)250.n n -≤⎧⎨+-≥⎩解得212544n ≤≤. 因为*,n N ∈所以当6n =时,n S 最小,最小值为66-. 【解法2】因为22235292232(),48n S n n n =-=--因为*,n N ∈所以当6n =时,n S 最小,最小值为66-. 4.由正弦定理sin sin sin a b c ABC==知,2sin sin 2sin 2sincos 2sin 22A B A B a b c A B C C +-+≥⇔+≥⇔≥又因为sin sin()cos ,sin 2sincos 222222A B C C C C C +π=-==,所以,cos cos 2sin cos2222CA B C C-≥,又因为022C π<<时,cos02C >所以11sin cos2222C A B-≤≤(当A B =时取等号),而022C π<<所以30,2C ≤即60C ≤.5.【解】假设存在满足条件的四个正实数,,,a b c d ,不妨,a b c d <<<则有,.ab ac ad bc bd cd <<<< (1)若ad bc <,则有2,3,5,6,10,16ab ac ad bc bd cd ====== 所以,23,b c a a==.由6bc =得1,2,3,5a b c d ====.所以15,cd =与16cd =矛盾.(2)若,ad bc >则有2,3,5,6,10,16.ab ac bc ad bd cd ====== 所以236,,b c d a a a===.由5bc =,得265a =,由16cd =,得298a =,矛盾.综上所述,假设不存立,所以不存在四个正实数,它们两两乘积分别为2,3,5,6,10,16. 6.【解】设圆心12,C C 的半径分别为12,r r ; (1)若12r r =.①若两圆相离,则C 的圆心轨迹为线段12C C 的垂直平分线;②若两圆相切,则C 的圆心轨迹为线段12C C 的垂直平分线(即两圆的内分切线)和直线12C C ,去掉切点;③若两圆相交,则C 的圆心轨迹为线段12C C 的垂直平分线和以12,C C 为焦点,长轴长为12r r +的椭圆,去掉交点. (2)若12r r ≠①若两圆外离,则C 的圆心轨迹为以12,C C 为焦点,长轴长为12||r r -的双曲线的一支(小圆圆心在开口内);②若两圆外切,则C 的圆心轨迹为以12,C C 为焦点,长轴长为12||r r -的双曲线的一支(小圆圆心在开口内)和直线12C C ,去掉切点;③若两圆相交,则C 的圆心轨迹为以12,C C 为焦点,长轴长为12||r r -的双曲线的一支(小圆圆心在开口内)和以12,C C 为焦点,长轴长为12r r +的椭圆,去掉交点.④若两圆内切,则C 的圆心轨迹为以12,C C 为焦点,长轴长为12r r +的椭圆和直线12C C ,去掉切点; ⑤若两圆内含,则C 的圆心轨迹为以12,C C 为焦点,长轴长为12r r +的椭圆. 依据椭圆、双曲线的定义即可证明,这儿不再赘述. 7.491832711【解】首先设1212,()||||||.n n a a a f x x a x a x a ≤≤≤=-+-++-则由绝对值几何意义知,n 为奇数时,当12n x a +=时,()f x 有最小值;当n 为偶数时,当x 取[,1]22n n aa+上任何值时,()f x 有最小值.回到原题, 20111111111()|1|||||||||||||||2233320112011f x x x x x x x x x =-+-+-+-+-+-++-++-个以上和式共有2012201112201120230662⨯+++== 个点.设12345620230661111,,,,,232011a a a a a a a =======所以20230661011533.2=下面求10115331011534,a a 的值.设10115331,a t =则121011533,12(1)1011533,t t +++≥+++-< 可得1422t =,且1011533101153411422a a ==.故11422x =时,()f x 最小.111111491()112114221423120111832142214221422142214221422711f =-+-⨯++-⨯+⨯-+⨯-=。

自主招生数学试题及答案

自主招生数学试题及答案

自主招生数学试题及答案一、选择题(每题5分,共20分)1. 已知函数\( f(x) = x^2 - 4x + 4 \),求\( f(x) \)的最小值。

A. 0B. 1C. 2D. 42. 若\( \sin(2\theta) = 2\sin(\theta)\cos(\theta) \),求\( \theta \)的值。

A. \( \frac{\pi}{4} \)B. \( \frac{\pi}{2} \)C. \( \frac{3\pi}{4} \)D. \( \pi \)3. 已知等差数列\( \{a_n\} \)的首项为3,公差为2,求第10项的值。

A. 23B. 25C. 27D. 294. 一个圆的半径为5,求圆的面积。

A. 25πB. 50πC. 75πD. 100π二、填空题(每题5分,共20分)5. 若\( a \)和\( b \)是方程\( x^2 + 4x + 4 = 0 \)的两个根,则\( a + b \)的值为______。

6. 已知\( \cos(\alpha) = \frac{3}{5} \),\( \alpha \)在第一象限,求\( \sin(\alpha) \)的值。

7. 若一个等比数列的首项为2,公比为3,求该数列的第5项。

8. 一个长方体的长、宽、高分别是\( a \)、\( b \)、\( c \),求长方体的体积。

三、解答题(每题30分,共60分)9. 已知函数\( g(x) = \ln(x) + 2x - 6 \),求\( g(x) \)的导数。

10. 一个工厂生产某种产品,每件产品的成本为\( C(x) = 50 + 20x \),销售价格为\( P(x) = 120 - 0.5x \),其中\( x \)表示生产数量。

求工厂的盈亏平衡点。

答案:一、选择题1. B. 1(因为\( f(x) = (x-2)^2 \),当\( x = 2 \)时,\( f(x) \)取得最小值1)2. A. \( \frac{\pi}{4} \)(根据二倍角公式)3. A. 23(第10项为\( a_{10} = 3 + 9 \times 2 = 23 \))4. B. 50π(圆的面积公式为\( A = \pi r^2 \))二、填空题5. -4(根据韦达定理)6. \( \frac{4}{5} \)(根据勾股定理)7. 162(第5项为\( a_5 = 2 \times 3^4 = 162 \))8. \( abc \)(长方体体积公式)三、解答题9. \( g'(x) = \frac{1}{x} + 2 \)(对\( g(x) \)求导)10. 盈亏平衡点为\( x = 40 \)。

2011华约自主招生数学题及解答

2011华约自主招生数学题及解答

AB CO D E 2011华约自主招生数学题及解答∎1:设复数z 满足|z|<1,且|z ̅+1z |=52,则|z|=( ) A.54 B.34 C.23 D.12 解:|zz+1z |=52,||z|2+1|=52|z|,2|z|2−5|z |+2=0,(|z|−2)(2|z|−1)=0,∴|z|=12。

选D∎2:一个正四棱锥P-ABCD ,侧面与底面所成二面角的正切为√2,M 、N 分别为PA 、PB 的中点,则异面直线DM 与AN 夹角θ的余弦值为( )A.13B.16C.18D.112 解:建坐标系,设A(1,−1,0),B(1,1,0),C(−1,1,0),D(−1,−1,0),则P(0,0,√2),M(12,−12,√22), N(12,12,√22),DM ⃑⃑⃑⃑⃑⃑ =(32,12,√22),AN ⃑⃑⃑⃑⃑ =(−12,32,√22),∴cos θ=12√3√3=16。

选B∎3:过点(−1,1)的直线ℓ与曲线,y=x 3−x 2−2x +1相切,且(−1,1)不是切点,则直线ℓ的斜率是( )A.2B.1C.−1D.−2解:设切点(x 0,x 03−x 02−2x 0+1),y ′=3x 02−2x 0−2,所以x 03−x 02−2x 0x 0+1=3x 02−2x 0−2,可得x 0=1,所以k=−1. 选C ∎4:若A+B=2π3,则cos 2A +cos 2B 的最小值和最大值分别为( )A.1−√32, 32B.12,32 C.1−√32, 1+√32D.12,1+√22解:cos 2A +cos 2B =1+cos2A2+1+cos2B2=1+12(cos2A +cos2B)=1+cos(A+B)cos(A −B)=1−12cos (A −B),当A −B=0时,1−12cos (A −B)=12,当A −B=π时,1−12cos (A −B)=32。

2011全国重点高中自主招生考试数学试卷大全

2011全国重点高中自主招生考试数学试卷大全

2011年浙江省象山中学提前招生数学试题一、选择题(本题共6小题,每小题5分,共30分)1.一个布袋中装有10个相同的球,其中9个红球,1个黄球,从中任意摸取一个,那么( ) (A)一定摸到红球 (B)一定摸到黄球(C)不可能摸到黄球 (D)很有可能摸到红球2.为解决四个村庄用电问题,政府投资在已建电厂与这四个村庄之间架设输电线路.现已知这四个村庄及电厂之间的距离如图所示(距离单位:公里),则能把电力输送到这四个村庄的输电线路的最短总长度应该是( ).(A)19.5 (B)20.5 (C)21.5 (D)25.53.若等腰△ABC 的三边长都是方程x 2-6x+8=0的根,则△ABC 的周长是( ) (A)10或8 (B)1O (C)12或6 (D)6或10或124.A 、B 、C 、D 四人参加某一期的体育彩票兑奖活动,现已知:如果A 中奖,那么B 也中奖: 如果B 中奖,那么C 中奖或A 不中奖:如果D 不中奖,那么A 中奖,C 不中奖: 如果D 中奖,那么A 也中奖 则这四个人中,中奖的人数是( ) (A)1 (B)2 (C)3 (D)45.已知三条抛物线y 1=x 2-x+m ,y 2=x 2+2mx+4,y 3=mx 2+mx+m-1中至少有一条与x 轴相交,则实数m 的取值范围是( )(A)4/3<m<2 (B)m≤3/4且m≠0 (C)m≥2 (D)m≤3/4且m≠0或m≥26.如图,在正ABC 中,D 为AC 上一点,E 为AB 上一点,BD 、CE 交于P ,若四边形ADPE 与△BPC 面积相等,则∠BPE 的度数为( ) (A)60° (B)45° (C)7 5° (D)50° 二、填空题(本题共6小题,每小题5分,共30分)7.在△ABC 中,∠C=90°,若∠B=2∠A ,则tanB= . 8.已知|x|=4,|y|=1/2,且xy<0,则x/y 的值等于 。

2011年卓越联盟自主招生数学试题及答案.pdf

2011年卓越联盟自主招生数学试题及答案.pdf

2011年同济等九校(卓越联盟)自主招生数学试题(1)向量a ,b 均为非零向量,(a -2b )⊥a ,(b -2a )⊥b ,则a ,b 的夹角为(A )6π(B )3π(C )23π (D )56π (2)已知sin2(α+γ)=n sin2β,则tan()tan()αβγαβγ++-+22等于 (A )11n n -+ (B )1n n + (C )1n n - (D )11n n +- (3)在正方体ABCD —A 1B 1C 1D 1中,E 为棱AA 1的中点,F 是棱A 1B 1上的点,且A 1F :FB 1=1:3,则异面直线EF 与BC 1所成角的正弦值为 (A )153 (B )155 (C )53 (D )55(4)i 为虚数单位,设复数z 满足|z |=1,则2221z z z i-+-+的最大值为 (A )2-1 (B )2-2 (C )2+1 (D )2+2(5)已知抛物线的顶点在原点,焦点在x 轴上,△ABC 三个顶点都在抛物线上,且△ABC 的重心为抛物线的焦点,若BC 边所在直线的方程为4x +y -20=0,则抛物线方程为(A )y 2=16x (B )y 2=8x (C )y 2=-16x (D )y 2=-8x(6)在三棱锥ABC —A 1B 1C 1中,底面边长与侧棱长均等于2,且E 为CC 1的中点,则点C 1到平面AB 1E 的距离为(A )3 (B )2 (C )32 (D )22(7)若关于x 的方程||4x x +=kx 2有四个不同的实数解,则k 的取值范围为( ) (A )(0,1) (B )(14,1) (C )(14,+∞) (D )(1,+∞) (8)如图,△ABC 内接于⊙O ,过BC 中点D 作平行于AC 的直线l ,l 交AB 于E ,交⊙O 于G 、F ,交⊙O 在A 点的切线于P ,若PE =3,ED =2,EF =3,则PA 的长为(A )5 (B )6(C )7(D )22 (9)数列{a n }共有11项,a 1=0,a 11=4,且|a k +1-a k |=1,k =1,2,…,10.满足这种条件的不同数列的个数为( )(A )100 (B )120 (C )140 (D )160(10)设σ是坐标平面按顺时针方向绕原点做角度为27π的旋转,τ表示坐标平面关于y 轴的镜面反射.用τσ表示变换的复合,先做τ,再做σ,用σk 表示连续k 次的变换,则στσ2τσ3τσ4是( ) (A )σ4 (B )σ5 (C )σ2τ(D )τσ2 (11)设数列{a n }满足a 1=a ,a 2=b ,2a n +2=a n +1+a n .(Ⅰ)设b n=a n+1-a n,证明:若a≠b,则{b n}是等比数列;(a1+a2+…+a n)=4,求a,b的值.(Ⅱ)若limn1)考察数列定义2)a1+a2+a3+...+a n=a n-a n-1+2(a n-1-a n-2)+3(a n-2-a n-3)+...+(n-1)(a2-a1)+na1=b n+2b n-1+3b n-3+...+b1+na(错位相减,可得a,b的值)(12)在△ABC中,AB=2AC,AD是A的角平分线,且AD=kAC.(Ⅰ)求k的取值范围;(Ⅱ)若S△ABC=1,问k为何值时,BC最短?(13)已知椭圆的两个焦点为F1(-1,0),F2(1,0),且椭圆与直线y=x-3相切.(Ⅰ)求椭圆的方程;(Ⅱ)过F1作两条互相垂直的直线l1,l2,与椭圆分别交于P,Q及M,N,求四边形PMQN面积的最大值与最小值.(14)一袋中有a个白球和b个黑球.从中任取一球,如果取出白球,则把它放回袋中;如果取出黑球,则该黑球不再放回,另补一个白球放到袋中.在重复n次这样的操作后,记袋中白球的个数为X n.(Ⅰ)求EX1;(Ⅱ)设P(X n=a+k)=p k,求P(X n+1=a+k),k=0,1,…,b;(Ⅲ)证明:EX n+1=(1-1a b+)EX n+1.(15)(Ⅰ)设f(x)=x ln x,求f′(x);(Ⅱ)设0<a<b,求常数C,使得1|ln|bax C dxb a--⎰取得最小值;(Ⅲ)记(Ⅱ)中的最小值为m a,b,证明:m a,b<ln2.。

2011各地自主招生考试数学试卷集

2011各地自主招生考试数学试卷集

2011年漳州一中高中自主招生考试数 学 试 卷(满分:150分;考试时间:120分钟)亲爱的同学:欢迎你参加本次考试!请细心审题,用心思考,耐心解答.祝你成功! 答题时请注意:请将答案或解答过程写在答题卷的相应位置上,写在试卷上不得分.一、选择题(本大题共有10小题,每小题4分,共40分.每小题都有A 、B 、C 、D 四个选项,其中有且只有一个选项是正确的,请将正确答案的代号填写在答题卷中相应的表格内,答对得4分,答错、不答或答案超过一个的得零分)1.下列运算正确的是…………………………………………………………( ) A. B. C. D.2.如图,点在数轴上表示的实数为,则等于…………………( )A. B. C. D.3.甲、乙两名运动员在次的百米跑练习中,平均成绩分别为秒,秒,方差分别为S ,S ,那么在这次百米跑练习中,甲、乙两名运动员成绩较为稳定的是……………………………( )A.甲运动员B.乙运动员C.甲、乙两人一样稳定D.无法确定4.如图,、、、是直线上顺次四点,、分别是、的中点,且cm ,cm ,则的长等于……………………( )A.cmB.cmC.cmD.cm5.已知等腰三角形的一个外角等于,则这个三角形的三个内角的度数分别是……………………………………………………………………………( ) A.、、 B.、、 C.、、 D.、、或、、 6.如图,点在函数的图象上,过点 A 作垂直轴,垂足为,过点作垂直轴,垂足为,则矩形的面积是……( ) A. B.C. D.不能确定7.用大小和形状完全相同的小正方体木块搭成 一个几何体,使得它的正视图和俯视图如图所示,则搭成这样的一个几何体至少需要小正方体木块的个数为………………( ) A.个 B.个C.个D.个8.用半径为、圆心角为的扇形做成一个圆锥的侧面, 则这个圆锥的底面半径是……………………………………………………………………( ) A.cm B.cm C.cm D.cm 9.若为整数,则能使也为整数的的个数有……………………( ) A.1个 B.2个 C.3个 D.4个 10.已知为实数,则代数式的最小值为………………( ). A –1 0 1 2 3 . . . .. (第2题图) A M B C NDl. . . . . . (第4题图)(正视图) (俯视图) (第7题图)12.分解因式:.13.把个边长为的正方形排成如右图所示的 图形,则这个图形的周长是 . 14.如图,正方形的边长为cm ,正方形 的边长为cm .如果正方形绕点旋转,那么 、两点之间的最小距离为cm .15.若规定:①表示大于的最小整数,例如:,;②表示不大于的最大整数,例如:,.则使等式成立的整数... 16.如图,、分别是的点,与相交于点,与相交于 点,若△APD ,△BQC , 则阴影部分的面积为 .三、解答题(本大题共有7小题,共86分.其中第17题8分,第18、19题各10分,第20题12分,第21题14分,第22、23题各16分.请将解答过程写在答题卷的相应位置上) 17.计算:.18.先化简,再求值:÷ ,其中.19.将背面相同,正面分别标有数字、、、的四张卡片洗匀后,背面朝上放在桌面上. (1)从中随机抽取一张卡片,求该卡片正面上的数字是偶数的概率; (2)先从中随机抽取一张卡片(不放回...),将该卡片正面上的数字作为十位上的数字;再随机抽取一张,将该卡片正面上的数字作为个位上的数字,则组成的两位数恰好是4的倍数的概率是多少?请用树状图或列表法加以说明.20.为配合我市“创卫”工作,某中学选派部分学生到若干处公共场所参加义务劳动.若每处安排人,则还剩人;若每处安排人,则有一处的人数不足人,但不少于人.求这所学校选派学生的人数和学生所参加义务劳动的公共场所个数. EABCDG F(第14题图)(第16题图)21.如图,四边形是正方形,点是的中点,是边上不同于点、的点,若,求证:.22.如图,抛物线的顶点坐标是,且经过点.(1)求该抛物线的解析式;(2)设该抛物线与轴相交于点,与轴相交于、两点(点在点的左边),试求点、、的坐标;(3)设点是轴上的任意一点,分别连结、.试判断:与的大小关系,并说明理由.(第21题图)N(第22题图)23.如图,是⊙O 的直径,过点作⊙O 的切线,点在右半圆上移动点与点、不重合),过点作⊥,垂足为;点在射线 上移动(点在点的右边),且在移动过程中保持∥. (1)若、的延长线相交于点,判断是否存在点,使得点恰好在⊙O 上? 若存在,求出的大小;若不存在,请说明理由;(2)连结交于点,设,试问:的值是否随点的移动而变化?证明你的结论.2011年浙江省象山中学提前招生数学试题一、选择题(每小题5分,共30分)1、若匀速行驶的汽车速度提高40%,则行车时间可节省( )%(精确至1%) A 、6 0 B 、40 C 、 29 D 、252、如图,一个正方形被5条平行于一组对边的直线和3条平行于另一组对边的直线分成24个(形状不一定相同的)长方形,如果这24个长方形的周长的和为24,则原正方形的面积为( ). A 、1 B 、9/4 C 、4 D 、36/253、已知:,x 2+3x 为( )A 、1B 、-3和1C 、3D 、-1或34、四边形ABCD 的对角线AC 、BD 交于点O ,且S △AOB =4,S △COD =9,则四边形A B CD 面积有( ) A 、最小值12 B 、最大值12 C 、.最小值25 D 、最大值255、二个天平的盘中,形状相同的物体质尊相等,如图(1)图(2)所示的两个天平处于平街状态,要使第三个天平也保持平衡,则需在它的右盘中放置( )A 、 3个球B 、4个球C 、5个球D 、6个球 5、9人分24张票,每人至少1张,则( )A 、至少有3人票数相等B 、至少有4人票数无异C 、不会有5人票数一致D 、不会有6人票数同样 二、填空(:每小题5分,共30分、}1、姚明在一次“N BA”常规赛中,22投144中得28分,除了3个3分球全中外,他还投中了一个两分球和个罚球。

高中自主招生数学试题

高中自主招生数学试题

12011年高中自主招生考试试题数 学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷4至10页.共120分.考试时间90分钟.请将选择题的答案填到Ⅱ卷上方的对应表格中.第Ⅰ卷(选择题 共42分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用2B 铅笔涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案.不能答在试卷上.3.考试结束,答题卡和卷Ⅱ一并交回.一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给的4个选项中,只有一项是符合题目要求的.1x 的取值范围是 A .3x > B .3x ≥C .3x ≤D .3x ≠2.据估算,中国汽车行业每年消耗的汽油总量大约为6000万吨,每日消耗约164400000千克,保留三位有效数字,将164 400 000千克这个数用科学记数法可表示为 A .81.6410⨯千克 B .816.410⨯千克 C .81.64410⨯千克 D .71.6410⨯千克 3.下列运算中,正确的是A .235a a a += B .222(2)2ab a b =C .236a a a ⋅=D .2222a a a +=4.如图,AB ∥CD ,BE 交CD 于点F ,∠B=45°,∠E =21°则∠D 为 A. 21° B. 24° C. 45° D. 66° 5.二元一次方程组2,0.x y x y +=⎧⎨-=⎩的解是A .0,2.x y =⎧⎨=⎩ B .2,0.x y =⎧⎨=⎩ C .1,1.x y =⎧⎨=⎩ D .1,1.x y =-⎧⎨=-⎩26.如果线段上一点P 把线段分割为两条线段P A ,PB ,当2PA PB AB =⋅,即0.618PA AB ≈时,则称点P 是线段AB 的黄金分割点,现已知AB =10,点P 是线段AB 的黄金分割点,如图,那么线段PB 的长约为 A .6.18B .0.382C .0.618D .3.827.若两圆半径分别为R ,r ,其圆心距为d ,且2222R Rr r d ++=,则两圆的位置关系是 A .外切 B .内切 C .外离 D .内含8.下图是由大小一样的小正方块摆成的立体图形的三视图,摆成它共用小正方块数 A .5 B .8 C .7 D .69.在一周内,体育老师对九年级男生进行了5次一千米跑测试,若想了解他们的成绩是否稳定,老师需知道每个人5次测试成绩的A .平均数B .中位数C .方差D .众数 10.如图路灯距地面8米,身高1.6米的小明从距离 灯的底部(点O )20米的点A 处沿AO 所在的直线行 走14米到点B 时,人影子的长度 A .减小3.5米 B .减小1.5米 C .增大3.5米 D .增大1.5米11. 现有A ,B 两枚均匀的小正方体,正方体的每个面上分别标有数字1,2,3,4,5,6.小红掷A 正方体得到向上的数字为x ,小明掷B 正方体得到向上的数字为y ,用x ,y 来确定点P (x ,y ),那么她们各掷一次所确定的点P 落在已知抛物线24y x x =-+上的概率为 A .16 B .19 C .112 D .1183B(第12题图)12.如图,正五边形FGHMN 是由正五边形ABCDE 经过位似变换得到的,若AB :FG =2:3,则下列结论正确的是 A .2DE =3MN , B .3DE =2MN , C .3∠ A =2∠ F D .2∠ A = 3∠ F13.函数2y ax b y ax bx c =+=++和在同一直角坐标系内的图象大致是14.如图,四边形ABCD 是边长为1 的正方形,四边形EFGH 是边长为2的正方形,点D 与点F 重合,点B ,D (F ),H 在同一条直线上,将正方形ABCD 沿F →H 方向平移至点B 与点H 重合时停止,设点D 、F 之间的距离为x ,正方形ABCD 与正方形EFGH 重叠部分的面积为y ,则能大致反映y 与 x 之间函数关系的图象是452011年高中自主招生考试试题数 学第Ⅱ卷(非选择题 共78分)注意事项:1.第Ⅱ卷共8页,用蓝黑钢笔或圆珠笔直接答在试卷上.二、填空题:(本大题共5个小题.每小题3分,共15分)把答案填在题中横线上.15.因式分解:3a a -=.16.已知二次函数2y x mx n =-++的部分图象如图所示,则关于x 的一元二次方程20x mx n -++=的解为 .17.规定[]x 表示不超过x 的最大整数,如[]2.62=,[]3,144-=-,若[]3x =,则x的取值范围是.18.如图,有一块边长为4的正方形塑料摸板ABCD ,将一块足够大的直角三角板的直角顶点落在A 点,两条直角边分别与CD 交于点F ,与CB 延长线交于点E .则四边形AECF 的面积是 .市(区):_____ 学校:_____ 姓名:_____ 班级:____ 准考证号:_____619.如图,已知双曲线(0)ky k x=<经过Rt ∆OAB 斜边OA 的中点D ,且与直角边AB 相交于点C .若点A 的坐标为(6-,4),则△AOC 的面积为_____________.三、开动脑筋,你一定能做对!(本大题共3小题,共20分) 20.(本小题满分6分)解分式方程: 423-x -2-x x=2121.(本小题满分7分)为响应某市组织的“爱心在校园”活动,学校对本校倡导的自愿捐款活动进行抽样调查,得到了一组学生捐款情况的数据.下图是根据这组数据绘制的统计图,图中从左到右各长方形的高度之比为3︰4︰5︰8︰6,又知此次调查中捐款25元和30元的学生一共42人.请你根据上述信息解答下列问题: (1)他们一共调查了多少人?(2)这组数据的众数、中位数各是多少?(3)若该校共有1300名学生,估计全校捐款不少于25元的学生约有多少人?/元(第21题图)22.(本小题满分7分)在一次研究性学习活动中,李平同学看到了工人师傅在木板上画一个直角三角形,方法是(如图所示):画线段AB,分别以点A、B为圆心,以大于12AB的长为半径画弧,两弧相交于点C,连结AC;再以点C为圆心,以AC长为半径画弧,交AC的延长线于D,连结DB.则△ABD就是直角三角形.(1)请你说明其中的道理;(2)请利用上述方法作一个直角三角形,使其一个锐角为30°(不写作法,保留作图痕迹).DCBA78四、认真思考,你一定能成功!(本大题共2小题,共19分) 23.(本小题满分9分)如图,已知⊙O 的直径AB 垂直弦CD 于E ,连接AD ,BD ,OC ,OD ,且OD =5. (1)若3sin 5BAD ∠=,求CD 的长; (2)若:4:1ADO EDO ∠∠=,求阴影部分的面积.(结果保留π)24.(本小题满分10分)A,B两城相距600千米,甲、乙两车同时从A城出发驶向B城,甲车到达B城后立即返回.如图是它们离A城的距离y(千米)与行驶时间x(小时)之间的函数图象.(1)求甲车行驶过程中y与x之间的函数解析式,并写出自变量x的取值范围;(2)当它们行驶了7个小时时,两车相遇,求乙车速度.910五、相信自己,加油啊!(本大题共2小题,共24分) 25. (本小题满分11分)已知Rt ABC △中,90AC BC C D ==︒,∠,为AB 边的中点,90EDF ∠=°,EDF ∠绕D 点旋转,它的两边分别交AC 、CB (或它们的延长线)于E 、F .(1)当EDF ∠绕D 点旋转到DE AC ⊥于E 时(如图1),D EF S ∆,CEF S ∆,ABCS ∆有怎样的数量关系?(2)当EDF ∠绕D 点旋转到DE AC 和不垂直时,在图2和图3这两种情况下, 图1结论是否成立?若成立,请给予证明;若不成立,DEF S ∆,CEF S ∆,ABC S ∆又有怎样的数量关系?请写出你的猜想,不需证明.AE CF BD图1图3ADFECBADBCE 图2F1126.(本小题满分13分)已知:如图一次函数y =12x +1的图象与x 轴交于点A ,与y 轴交于点B ;二次函数212y x bx c =++的图象与一次函数112y x =+的图象交于B 、C 两点,与x 轴交于D 、E 两点且D 点坐标为(1,0)(1)求二次函数的解析式;(2)求四边形BDEC 的面积S ;(3)在x 轴上是否存在点P ,使得△PBC 是以P 为直角顶点的直角三角形?若存在,求出所有的点P ,若不存在,请说明理由.第26题图12。

2011年华约自主招生数学试题(精校word版,有参考答案)

2011年华约自主招生数学试题(精校word版,有参考答案)

2011年“华约”自主招生数学试题一、选择题1.设复数z满足|z|<1且15||2zz+=则|z| =()A.45B.34C.23D.12【答案】D【解析】由15||2zz+=得25||1||2z z+=,已经转化为一个实数的方程.解得|z| =2(舍去),12.2.在正四棱锥P-ABCD中,M、N分别为P A、PB.则异面直线DM与AN所成角的余弦为()A.13B.16C.18D.112【答案】D【解析】本题有许多条件,可以用“求解法”,即假设题中的一部分要素为已知,利用这些条件来确定其余的要素.本题中可假设底面边长为已知(不妨设为2),利用侧面与底面所成二面角可确定其他要素,如正四棱锥的高等.然后我们用两种方法,一种是建立坐标系,另一种是平移其中一条线段与另一条在一起.解法一:如图1,设底面边长为2.如图建立坐标系,则A(1,-1,0),B(1,1,0),C(-1,1,0),D(-1,-1,0),P(0,0),则1111(,(,2222M N-,312132(,,),(,,)222222DM AN =-=-.设所成的角为θ,则1cos 6DM AN DM ANθ==.3.已知1223+--=x x x y ,过点(-1, 1)的直线l 与该函数图象相切,且(-1, 1)不是切点,则直线l 的斜率为 ( ) A .2B .1C .-1D .-2【答案】C【解析】显然(-1, 1)在1223+--=x x x y 的图象上.设切点为)12,(020300+--x x x x , 2232--='x x y ,所以223020--=x x k .另一方面,)1(1)12(002030---+--=x x x x k )2(00-=x x 223020--=x x .所以x 0=1,所以1-=k .选C . 4.若222cos cos 3A B A B π+=+,则的最小值和最大值分别为 ( ) A .321-,32B .12 ,32C .321-,321+D .12 ,221+【答案】B【解析】首先尽可能化简结论中的表达式22cos cos A B +,沿着两个方向:①降次:把三角函数的平方去掉;②去角:原来含两个角,去掉一个. 解:221cos 21cos 21cos cos 1(cos 2cos 2)222A B A B A B +++=+=++ 11cos()cos()1cos()2A B A B A B =++-=--,可见答案是B【答案】B【解析】题目中的条件是通过三个圆来给出的,有点眼花缭乱.我们来转化一下,就可以去掉三个圆,已知条件变为:ΔO O 1 O 2边O 1 O 2上一点C ,OO 1、OO 2延长线上分别一点A 、B ,使得O 1A =O 1C ,O 2B =O 2C . 解法一:连接12O O ,C 在12O O 上,则1221OO O OO O πα∠+∠=-,111212O AC O CA OO O ∠=∠=∠,222112O BC O CB OO O ∠=∠=∠,故1212211()22O CA O CB OO O OO O πα-∠+∠=∠+∠=, 12()2O CA O CB παβπ+=-∠+∠=,sin cos 2αβ=. 解法二:对于选择填空题,可以用特例法,即可以添加条件或取一些特殊值,在本题中假设两个小圆的半径相等,则12212OO O OO O πα-∠=∠=,1212124O CA O CB OO O πα-∠=∠=∠=,12()2O CA O CB παβπ+=-∠+∠=,sin cos2αβ=.6.已知异面直线a ,b 成60°角.A 为空间一点则过A 与a ,b 都成45°角的平面 ( ) A .有且只有一个B .有且只有两个C .有且只有三个D .有且只有四个【答案】D【解析】已知平面过A ,再知道它的方向,就可以确定该平面了.因为涉及到平面的方向,我们考虑它的法线,并且假设a ,b 为相交直线也没关系.于是原题简化为:已知两条相交直线a ,b 成60°角,求空间中过交点与a ,b 都成45°角的直线.答案是4个. 7.已知向量3131(0,1),(,),(,),(1,1)2222a b c xa yb zc ==--=-++=则222x y z ++的最小值为( ) A .1B .43C .32D .2【答案】B【解析】由(1,1)xa yb zc ++=得1)111222y z y z y z y z x x ⎧⎧+=-=⎪⎪⎪⎪⎨⎨+⎪⎪--=-=⎪⎪⎩⎩, 由于222222()()2y z y z x y z x ++-++=+,可以用换元法的思想,看成关于x ,y + z ,y -z三个变量,变形2(1)y z y z x ⎧-=⎪⎨⎪+=-⎩,代入222222()()2y z y z x y z x ++-++=+222228242(1)343()3333x x x x x =+-+=-+=-+,答案B 8.AB 为过抛物线y 2=4x 焦点F 的弦,O 为坐标原点,且135OFA ∠=,C 为抛物线准线与x 轴的交点,则ACB ∠的正切值为 ( ) A.B.5C.3D.3【答案】A【解析】解法一:焦点F (1,0),C (-1,0),AB 方程y = x – 1,与抛物线方程y 2 = 4x联立,解得A B (3+2+ (3-2- ,,于是22CA CB k k ==,tan 1CA CB CA CBk k ACB k k -∠==+ A 解法二:如图,利用抛物线的定义,将原题转化为:在直角梯形ABCD 中,∠BAD = 45°,EF ∥DA ,EF = 2,AF = AD ,BF = BC ,求∠AEB .tan tan 2DE GF AEF EAD AD AF ∠=∠===.类似的,有tan tan BEF EBC ∠=∠=2AEB AEF BEF AEF ∠=∠+∠=∠,tan tan 2AEB AEF ∠=∠= A【答案】DA .存在某种分法,所分出的三角形都不是锐角三角形B .存在某种分法,所分出的三角形恰有两个锐角三角形C .存在某种分法,所分出的三角形至少有3个锐角三角形D .任何一种分法所分出的三角形都恰有1个锐角三角形 【答案】D【解析】我们先证明所分出的三角形中至多只有一个锐角三角形.如图,假设ΔABC 是锐角三角形,我们证明另一个三角形ΔDEF (不妨设在AC 的另一边)的(其中的边EF 有可能与AC 重合)的∠D 一定是钝角.事实上,∠D ≥ ∠ADC ,而四边形ABCD 是圆内接四边形,所以∠ADC = 180°-∠B ,所以∠D 为钝角.这样就排除了B ,C .下面证明所分出的三角形中至少有一个锐角三角形.假设ΔABC 中∠B 是钝角,在AC 的另一侧一定还有其他顶点,我们就找在AC 的另一侧的相邻(指有FEDBCA DBCA公共边AC ) ΔACD ,则∠D = 180°-∠B 是锐角,这时如果或是钝角,我们用同样的方法继续找下去,则最后可以找到一个锐角三角形.所以答案是D . 二、解答题解:(I )tan tan tan tan()tan tan 1A BC A B A B +=-+=-,整理得tan tan tan tan tan tan A B C A B C =++(II )由已知3tan tan tan tan A C A B C =++,与(I )比较知tan 33B B π=,=.又11222sin 2sin 2sin 23sin 3A C B π+===,sin 2sin 2sin 2sin 23A C A C +=sin()cos()cos 2()cos 2()3A C A C A C A C +-=--+而3sin()sin 2A C B +==,1cos 2()cos 22A C B +==-,代入得2cos 2()13cos()A C A C -+=-,24cos ()3cos()10A C A C ----=,1cos()14A C -=-,,6cos 12A C -=,12.已知圆柱形水杯质量为a 克,其重心在圆柱轴的中点处(杯底厚度及重量忽略不计,且水杯直立放置).质量为b 克的水恰好装满水杯,装满水后的水杯的重心还有圆柱轴的中点处. (I )若b = 3a ,求装入半杯水的水杯的重心到水杯底面的距离与水杯高的比值; (II )水杯内装多少克水可以使装入水后的水杯的重心最低?为什么? 解:不妨设水杯高为1.(I )这时,水杯质量:水的质量=2 :3.水杯的重心位置(我们用位置指到水杯底面的距离)为12,水的重心位置为14,所以装入半杯水的水杯的重心位置为11237242320+=+(II)当装入水后的水杯的重心最低时,重心恰好位于水面上.设装x克水.这时,水杯质量:水的质量=a:x.水杯的重心位置为12,水的重心位置为2xb,水面位置为xb,于是122xa x xba x b+=+,解得x a=-13.已知函数21()(1)1()2xf x f fax b===+2,,3.令111()2n nx x f x+==,.(I)求数列{}nx的通项公式;(II )证明12112nx x xe+>.解:由12(1)1()1()21xf f a b f xx=====+2,得,3(I)方法一:先求出123412482359x x x x====,,,,猜想11221nn nx--=+.用数学归纳法证明.当n = 1显然成立;假设n = k成立,即11221kk kx--=+,则122()121kkk k kkxx f xx+===++,得证.方法二:121+=+nnn xxx取倒数后整理得)11(21111-=-+nnxx,所以)11()21(1111-=--xxnn所以12111+=-nx(II)方法一:证明12112nex x x+>.事实上,12111112(1)(1)(1)242nnx x x+=+++.我们注意到2212(1)12(1)nna a a a+<++<+,,,(贝努利(Bernoulli)不等式的一般形式:nxx n+≥+1)1(,x),1(+∞-∈)于是122121212111112(1)2(1)2(1)2222n n nn n nnex x x-+++-+<+=+<+<方法二:原不等式en<+++⇔)211()211)(211(21)]211()211)(211ln[(2<+++⇔n1)211ln()211ln()211ln(2<++++++⇔n构造函数)0()1ln()(>-+=x xx x g01111)(<+-=-+='xxx x g ,所以0)0()(=<g x g 所以)0()1ln(><+x x x令n x 21=则n n 21)211ln(<+ 1211212121)211ln()211ln()211ln(22<-=+++<++++++n n n14.已知双曲线221222:1(0,0),,x y C a b F F a b -=>>分别为C 的左右焦点.P 为C右支上一点,且使21212=,3F PF F PF π∠∆又的面积为.(I )求C 的离心率e ;(II )设A 为C 的左顶点,Q 为第一象限内C 上的任意一点,问是否存在常数λ(λ>0),使得22QF A QAF λ∠=∠恒成立.若存在,求出λ的值;若不存在,请说明理由.解:(I )如图,利用双曲线的定义,将原题转化为:在ΔP F 1 F 2中,21212=3F PF F PF π∠∆,的面积为,E 为PF 1上一点,PE = PF 2,E F 1 =2a ,F 1 F 2 = 2c ,求ca.设PE =PF 2=EF 2=x ,F F 2x ,1221211(222F PF S PF FF x a ∆==+=, 224120x ax a +-=,2x a =.ΔE F 1F 2为等腰三角形,1223EF F π∠=,于是2c =,ce a==. (II ) 21=λ此解法可能有误15.将一枚均匀的硬币连续抛掷n 次,以p n 表示未出现连续3次正面的概率. (I )求p 1,p 2,p 3,p 4;(II )探究数列{ p n }的递推公式,并给出证明;(III )讨论数列{ p n }的单调性及其极限,并阐述该极限的概率意义.解析:(I )显然p 1=p 2=1,878113=-=p ;又投掷四次连续出现三次正面向上的情况只有:正正正正或正正正反或反正正正,故161316314=-=p .(II )共分三种情况:①如果第n 次出现反面,那么前n 次不出现连续三次正面的概率121-⨯n P ;②如果第n 次出现正面,第n -1次出现反面,那么前n 次不出现连续三次正面和前n -2次不出现连续三次正面是相同的,所以这个时候不出现连续三次正面的概率是241-⨯n P ;③如果第n 次出现正面,第n -1次出现正面,第n -2次出现反面,那么前n 次不出现连续三次正面和前n -3次不出现连续三次正面是相同的,所以这个时候不出现连续三次正面的概率是381-⨯n P .综上,=n P +⨯-121n P +⨯-241n P 381-⨯n P .(4≥n ),④ (III )由(II )知=-1n P +⨯-221n P +⨯-341n P 481-⨯n P ,(5≥n )⑤,④-12×⑤,有=n P --1n P 4161-⨯n P (5≥n ) 所以5≥n 时,p n 的单调递减,又易见p 1=p 2>p 3>p 4>….3≥n 时,p n 的单调递减,且显然有下界0,所以p n 的极限存在.对=n P --1n P 4161-⨯n P 两边同时取极限可得0lim =-∞→n n p .其统计意义:当投掷的次数足够多时,不出现连续三次正面向上的次数非常少,两者比值趋近于零.。

2011北约自主招生数学题及解答

2011北约自主招生数学题及解答

2011北约自主招生数学题及解答∎1、已知平行四边形的其中两条边长分别是3和5,一条对角线长是6,求另一条对角线的长。

解:由对角线的平方和等于四边的平方和:所以36+x2=2(9+25),x2=32,∴x=42。

∎2求过抛物线y=2x2-2x-1,y=-5x2+2x+3交点的直线方程。

解:y=2x2-2x-1y=-5x2+2x+3,5y=10x2-10x-52y=-10x2+4x+6,7y=-6x+1,∴6x+7y-1=0为所求。

∎3、等差数列a1,a2,⋯满足a3=-13,a7=3,这个数列的前n项和为Sn,数列S1,S2,⋯中哪一项最小,并求出这个最小值。

解:d=a7-a37-3=164=4,∴a1=-21,Sn=2n2-23n,当n=234,即n=6时Sn最小,最小为-66。

∎4、∆ABC的三边a,b,c满足a+b≥2c,A,B,C为∆ABC的内角,求证:C≤60°。

解:ab≤(a+b2)2,cosC=a2+b2-c22ab=(a+b)2-2ab-c22ab≥(a+b)2-c2(a+b)22-1=1-2c2(a+b)2≥1-2c24c2=1 2,所以C≤60°。

∎ 5、是否存在四个正实数,它们的两两乘积分别是2,3,5,6,10,16?解:设存在四个正实数分别为a<b<c<d,依题意:ab=2,ac=3,ad=5,bc=6,bd=10,cd=16,∴a2bc=6,∴a=1,b=2,c=3,d=5,而cd=15≠16,故不存在。

或解:∵abcd=32,而(abcd)3=1800×16,不满足,故不存在。

∎6、C1和C2是平面上两个不重合的固定圆,C是该平面上的一个动圆,C和C1,C2都相切,则C的圆心的轨迹是何种曲线?说明理由。

解:设两定圆⊙C1,⊙C2的半径分别为r1,r2,动圆C的半径为R。

⑴当r1=r2①⊙C1与⊙C2相交时a).⊙C与它两都外切,轨迹是线段C1C2的垂直平分线去掉两圆的公共弦;b).⊙C与它两都内切,轨迹是线段C1C2的垂直平分线;c).⊙C与两圆一个内切,一个外切时,|CC1|=r1-R,|CC2|=r2+R,|CC1|+|CC2|=r1+r2,轨迹是以C1、C2为焦点的椭圆。

卓越联盟自主招生数学模拟试题及参考答案(3)

卓越联盟自主招生数学模拟试题及参考答案(3)

绝密★启用前清北学长精心打造——卓越联盟自主招生数学模拟试题(三)考试范围:xxx ;考试时间:100分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________注意事项:1.答题前填写好自己的姓名、班级、考号等信息.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题(5*6=30分)1.已知函数()()432,,,f x x a x b x c x d a b c d =++++为实常数的图象经过三点12,2A ⎛⎫ ⎪⎝⎭,13,3B ⎛⎫ ⎪⎝⎭,14,4C ⎛⎫ ⎪⎝⎭,则()()15f f +的值等于( ) A .0 B .1C .265D .252.函数f 定义在正整数有序对的集合上,并满足(,),(,)(,),f x x x f x y f y x ==()(,)(,)x y f x y yf x x y +=+,则(14,52)f 的值为( )A .364B .182C .91D .无法计算3.二次函数c bx ax y ++=2的图象的一部分如图,则a 的取 值范围是 ( )A .01<≤-aB .1->aC .01<<-aD .1-≤a4.关于x 、y 的方程20071111=++xy y x 的正整数解(x ,y )的个数为( )A .16B .24C .32D .48第II 卷(非选择题)二、填空题(6*6=36分)5.定义: 区间[](),c d c d <的长度为d c -. 已知函数3log y x =的定义域为[],a b , 值域为[]0,2,则区间[],a b 长度的最大值与最小值的差等于________.6. 平面上给定ΔA 1A 2A 3及点p 0,定义A s =A s-3,s ≥4,构造点列p 0,p 1,p 2,…,使得p k+1为绕中心A k+1顺时针旋转1200时p k 所到达的位置,k=0,1,2,…,若p 1986=p 0.则ΔA 1A 2A 3为 三角形。

2011年黄冈中学自主招生考试数学试卷

2011年黄冈中学自主招生考试数学试卷

2011年黄冈中学自主招生考试数学试卷命题:李明利一、填空题(4085=⨯分)1、方程组⎪⎩⎪⎨⎧=+=-++2621133y x y x 的解是2、若对任意实数x 不等式b ax >都成立,那么a 、b 的取值范围为3、设21≤≤-x ,则2212++--x x x 的最大值与最小值之差为 4、两个反比例函数x y 3=,xy 6=在第一象限内的图象点1P 、2P 、3P 、…、2007P 在反比例函数xy 6=上,它们的横坐标分别为1x 、2x 、3x 、…、2007x ,纵坐标分别是1、3、5…共2007个连续奇数,过1P 、2P 、3P 、…、2007P 分别作y 轴的平行线,与xy 3=的图象交点依次为)','(111y x Q 、)','(222y x Q 、…、),('2007'20072007y x Q ,则=20072007Q P5、如右图,圆锥的母线长是3,底面半径是1,A 是底面圆周上一点,从A 点出发绕侧面一周,再回到A 点的最短的路线长是6、有一张矩形纸片ABCD ,9=AD ,12=AB ,将纸片折叠使A 、C 两点重合,那么折痕长是7、已知3、a 、4、b 、5这五个数据,其中a 、b 是方程0232=+-x x 的两个根,则这五个数据的标准差是8、若抛物线1422++-=p px x y 中不管p 取何值时都通过定点,则定点坐标为二、选择题(4085=⨯分)9、如图,ABC ∆中,D 、E 是BC 边上的点,1:2:3::=EC DE BD ,M 在AC 边上,2:1:=MA CM ,BM 交AD 、AE 于H 、G ,则GM HG BH ::等于 ( )A 、1:2:3B 、1:3:5C 、5:12:25D 、10:24:5110、若一直角三角形的斜边长为c ,内切圆半径是r ,则内切圆的面积与三角形面积之比是( )A 、r c r 2+πB 、r c r +πC 、r c r +2πD 、22rc r +π 11、抛物线2ax y =与直线1=x ,2=x ,1=y ,2=y 围成的正方形有公共点,则实数a 的取值范围是( )A 、141≤≤a B 、221≤≤a C 、121≤≤a D 、241≤≤a 12、有铅笔、练习本、圆珠笔三种学习用品,若购铅笔3支,练习本7本,圆珠笔1支共需15.3元;若购铅笔4支,练习本10本,圆珠笔1支共需2.4元,那么,购铅笔、练习本、圆珠笔各1件共需 ( )A 、2.1元B 、05.1元C 、95.0元D 、9.0元13、设关于x 的方程09)2(2=+++a x a ax ,有两个不相等的实数根1x 、2x ,且1x <<12x ,那么实数a 的取值范围是 ( )A 、112-<aB 、5272<<-aC 、52>aD 、0112<<-a 14、如图,正方形ABCD 的边1=AB ,和都是以1为半径的圆弧,则无阴影部分的两部分的面积之差是 ( )A 、12-π B 、41π- C 、13-π D 、61π- 15、已知锐角三角形的边长是2、3、x ,那么第三边x 的取值范围是 ( )A 、51<<xB 、135<<xC 、513<<xD 、155<<x16、某工厂第二季度的产值比第一季度的产值增长了%x ,第三季度的产值又比第二季度的产值增长了%x ,则第三季度的产值比第一季度增长了 ( )A 、%2xB 、%21x +C 、%%)1(x x •+D 、%%)2(x x •+三、解答题17、(15分)设m 是不小于1-的实数,关于x 的方程033)2(222=+-+-+m m x m x 有两个不相等的实数根1x 、2x ,(1)若21x 622=+x ,求m r 值;(2)求22212111x mx x mx -+-的最大值。

2011年华约自招——数学

2011年华约自招——数学

13.已知函数 f x 2x 、、 f 1 1
ax b
f
1 2
2 3
.令
x1
1、 2
xn1 f xn .
1 数列xn的通项公式;
2
证明
x1 x2
xn1
1 2e

14.已知双曲线 C :
x2 a2
y2 b2
1a
0、、、b
0
F1
F2 分别为 C 的左右焦点. P 为 C 右
支上一点,且使 F1PF2
1 p1 、、、 p2 p3 p4 ;
2 探究数列pn的递推公式,并给出证明;
讨论数列 pn 的单调性及其极限,并阐述该极限的概率意义.
D.任何一种分法所分出的三角形都恰有 1 个锐角三角形
二、解答题
11.已知 △ABC 不是直角三角形. 1 证明: tan A tan B tan C tan A tan B tan C ;
2 若 3 tan C 1 tan B tan C 、 且 sin 2A、、、sin 2B tan A
b
3 2
x2 y2 z2 的最小值为(
A.1
B. 4 3
1 2
c
3 2

C. 3 2
1 2
xa yb zc 1
1则
D. 2
8. AB 为过抛物线 y2 4x 焦点 F 的弦, O 为坐标原点,且 OFA 135、
物线准线与 x 轴的交点,则 ACB 的正切值为(

A. 2 2
角的正切为 2 .则异面直线 DM 与 AN 所成角的余弦为( )
A. 1 3
B. 1 6
C. 1 8
D. 1 12

2011北约自主招生文科数学试题

2011北约自主招生文科数学试题

2011北约自主招生文科数学试题(回忆)1、(三函\解几)已知平行四边形的两边长分别为3和5,一条对角线长为6,求另一条对角线长。

2、(解几\方程)求过抛物线Y=2X^2-2X-1与Y=-5X^2+2X+3的交点的直线方程。

3、(数列)在等差数列{an(n下标)}中,a3=-13,a7=3,Sn(n下标)为其前n项和。

问数列{Sn(n下标)}的哪一项最小?并求出最小项值。

4、(三函\不等式)在三角形ABC中,若a+b》=(大于等于)2c,证明:C《=(小于等于)60度。

5、(数论)是否存在四个正实数,使得两两之积分别为2、3、5、6、10、16?参考思路:1、可以用余弦定理:先利用已知三边求出平行四边形一角的余弦值,则另一角的余弦值可知(互为相反数),再求未知对角线;也可以利用解几中的重要结论:平行四边形的两对角线平方和等于四边平方和(不过要先建立坐标系证明该结论)。

2、最容易想到的方法自然是联立两抛物线方程,解出交点坐标,用两点式或点斜式表示……好吧,我承认这样做有点难算,不过其实也不算太难啦(最后化简结果似乎是不含根式的)。

当然,也可以先设直线方程Y=kX+b,与两抛物线分别联立,再对比所得交点的系数,从而得解(我的一位同学就是这样做的)。

3、常规题。

先求公差,再求通项,再求前n项和,最后利用二次函数的性质解之(注意n为正整数),或利用an《=0且a(n+1)>=0解之(n和n+1下标)。

4、可以考虑反证法;不然就用余弦定理表示出cosC,把式子分子中的a、b利用原题中的不等式换成c,再用基本不等式,中间经过若干步转换,最后化简为cosC》=0.5,于是得证。

5、尚未解出。

数论问题对高中文科生来说还是难了一点……以上是在下的思路,错漏在所难免,让各位高手见笑了。

如果有更好的解法欢迎指教。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2011年同济等九校(卓越联盟)自主招生数学试题
(1)向量a ,b 均为非零向量,(a -2b )⊥a ,(b -2a )⊥b ,则a ,b 的夹角为
(A )
6
π
(B )
3
π
(C )
23
π (D )
56
π
(2)已知sin2(α+γ)=n sin2β,则
tan()tan()
αβγαβγ++-+22等于 (A )
11
n n -+
(B )
1
n n +
(C )
1
n n - (D )
11
n n +-
(3)在正方体ABCD —A 1B 1C 1D 1中,E 为棱AA 1的中点,F 是棱A 1B 1上的点,且A 1F :FB 1=1:3,则异面直线EF 与BC 1所成角的正弦值为
(A )
153
(B )
155
(C )
53
(D )
55
(4)i 为虚数单位,设复数z 满足|z |=1,则
2
221z z z i
-+-+的最大值为
(A )2-1
(B )2-2
(C )2+1 (D )2+2
(5)已知抛物线的顶点在原点,焦点在x 轴上,△ABC 三个顶点都在抛物线上,且△ABC
的重心为抛物线的焦点,若BC 边所在直线的方程为4x +y -20=0,则抛物线方程为
(A )y 2=16x (B )y 2=8x
(C )y 2=-16x (D )y 2=-8x
(6)在三棱锥ABC —A 1B 1C 1中,底面边长与侧棱长均等于2,且E 为CC 1的中点,则点C 1到平面AB 1E 的距离为
(A )3
(B )2
(C )
32
(D )
22
(7)若关于x 的方程
||4
x x +=kx 2有四个不同的实数解,则k 的取值范围为( ) (A )(0,1)
(B )(
14
,1)
(C )(
14
,+∞) (D )(1,+∞)
(8)如图,△ABC 内接于⊙O ,过BC 中点D 作平行于AC 的直线l ,l 交AB 于E ,交⊙O 于G 、F ,交⊙O 在A 点的切线于P ,若PE =3,ED =2,
EF =3,则PA 的长为
(A )5
(B )6 (C )7
(D )22
(9)数列{a n}共有11项,a1=0,a11=4,且|a k+1-a k|=1,k=1,2,…,10.满足这种条件的不同数列的个数为( )
(A)100(B)120(C)140(D)160
(10)设σ是坐标平面按顺时针方向绕原点做角度为2
7
π
的旋转,τ表示坐标平面关于y轴
的镜面反射.用τσ表示变换的复合,先做τ,再做σ,用σk表示连续k次的变换,则στσ2τσ3τσ4是( )
(A)σ4 (B)σ5 (C)σ2τ(D)τσ2
(11)设数列{a n}满足a1=a,a2=b,2a n+2=a n+1+a n.
(Ⅰ)设b n=a n+1-a n,证明:若a≠b,则{b n}是等比数列;
(Ⅱ)若lim
n→∞
(a1+a2+…+a n)=4,求a,b的值.
1)考察数列定义
2)a1+a2+a3+...+a n=a n-a n-1+2(a n-1-a n-2)+3(a n-2-a n-3)+...+(n-1)(a2-a1)+na1
=b n+2b n-1+3b n-3+...+b1+na(错位相减,可得a,b的值)
(12)在△ABC中,AB=2AC,AD是A的角平分线,且AD=kAC.
(Ⅰ)求k的取值范围;
(Ⅱ)若S△ABC=1,问k为何值时,BC最短?
(13)已知椭圆的两个焦点为F1(-1,0),F2(1,0),且椭圆与直线y=x-3相切.
(Ⅰ)求椭圆的方程;
(Ⅱ)过F1作两条互相垂直的直线l1,l2,与椭圆分别交于P,Q及M,N,求四边形PMQN面积的最大值与最小值.
(14)一袋中有a个白球和b个黑球.从中任取一球,如果取出白球,则把它放回袋中;如果取出黑球,则该黑球不再放回,另补一个白球放到袋中.在重复n次这样的操作后,记袋中白球的个数为X n.
(Ⅰ)求EX1;
(Ⅱ)设P(X n=a+k)=p k,求P(X n+1=a+k),k=0,1,…,b;
(Ⅲ)证明:EX n+1=(1-
1
a b
)EX n+1.
(15)(Ⅰ)设f(x)=x ln x,求f′(x);
(Ⅱ)设0<a<b,求常数C,使得
1
|ln|
b
a
x C dx
b a
-
-
⎰取得最小值;
(Ⅲ)记(Ⅱ)中的最小值为m a,b,证明:m a,b<ln2.。

相关文档
最新文档