高中数学竞赛讲义(平几)

合集下载

2023年数学名师叶中豪整理高中数学竞赛平面几何讲义完整版

2023年数学名师叶中豪整理高中数学竞赛平面几何讲义完整版

高中平面几何叶中豪学习要点几何问题的转化圆幂与根轴P’tolemy定理及应用几何变换及相似理论位似及其应用完全四边形与Miquel点垂足三角形与等角共轭反演与配极, 调和四边形射影几何复数法及重心坐标方法例题和习题1. 四边形ABCD中, AB=BC, DE⊥AB, CD⊥BC, EF⊥BC, 且。

求证:2EF=DE+DC。

(10081902.gsp)2. 已知相交两圆O和O'交于A.B两点, 且O'恰在圆O上, P为圆O的AO'B弧段上任意一点。

∠APB的平分线交圆O'于Q点。

求证: PQ2=PA×PB。

(10092401-1.gsp)3. 设三角形ABC的Fermat点为R, 连结AR, BR, CR, 三角形ABR, BCR, ACR的九点圆心分别为D, E, F, 则三角形DEF为正三角形。

(10082602.gsp)4. 在△ABC中, 已知∠A的内角平分线和外角平分线分别交外接圆于D.E, 点A关于D.E的对称点分别为F、G, △ADG和△AEF的外接圆交于A和另一点P。

求证: AP//BC。

(10092102.gsp)5. 圆O1和圆O2相交于A.B两点, P是直线AB上一点, 过P作两圆作切线, 分别切圆O1和圆O2于点C.D, 又两圆的一条外公切线分别切圆O1和圆O2于点E, F。

求证: AB.CE、DF共点。

(10092201.gsp)6. 四边形ABCD中, M是AB边中点, 且MC=MD, 过C.D分别作BC.AD的垂线, 两条垂线交于P点, 再作PQ⊥AB于Q。

求证: ∠PQC=∠PQD。

(10081601-26.gsp)7. 已知RT△ABD∽RT△ADC, M是BC中点, AD与BC交于E, 自C作AM垂线交AD于F。

求证: DE=EF。

(10083001.gsp)8. 在△ABC中, AB=AC, D为BC边的中点, E是△ABC外一点, 满足CE⊥AB,BE=BD。

高中数学竞赛讲义(全套)

高中数学竞赛讲义(全套)

高中数学竞赛资料一、高中数学竞赛大纲全国高中数学联赛全国高中数学联赛(一试)所涉及的知识范围不超出教育部2000年《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。

全国高中数学联赛加试全国高中数学联赛加试(二试)与国际数学奥林匹克接轨,在知识方面有所扩展;适当增加一些教学大纲之外的内容,所增加的内容是:1.平面几何几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。

三角形中的几个特殊点:旁心、费马点,欧拉线。

几何不等式。

几何极值问题。

几何中的变换:对称、平移、旋转。

圆的幂和根轴。

面积方法,复数方法,向量方法,解析几何方法。

2.代数周期函数,带绝对值的函数。

三角公式,三角恒等式,三角方程,三角不等式,反三角函数。

递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。

第二数学归纳法。

平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。

复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。

多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*。

n次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。

函数迭代,简单的函数方程*3. 初等数论同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*。

4.组合问题圆排列,有重复元素的排列与组合,组合恒等式。

组合计数,组合几何。

抽屉原理。

容斥原理。

极端原理。

图论问题。

集合的划分。

覆盖。

平面凸集、凸包及应用*。

注:有*号的内容加试中暂不考,但在冬令营中可能考。

二、初中数学竞赛大纲1、数整数及进位制表示法,整除性及其判定;素数和合数,最大公约数与最小公倍数;奇数和偶数,奇偶性分析;带余除法和利用余数分类;完全平方数;因数分解的表示法,约数个数的计算;有理数的概念及表示法,无理数,实数,有理数和实数四则运算的封闭性。

新高二数学联赛班暑假第1讲平几变换(一)

新高二数学联赛班暑假第1讲平几变换(一)

第 1 讲平几变换(一)几何变换事实上已经属于高等几何的范围,波及到现代的数学工具和思想.用变换的思想来观察平几问题,能够让从前显得神奇莫测的“增添协助线”变得理所自然,并且会获得好多更深刻的结论,这自然对我们证明问题帮助极大.本讲和下一讲我们将一同来研究一些常用的几何变换,除了上述的三种变换,还有位似变换,反演变换(* ),配极变换(** )以及上述常用变换复合而成的复合变换,比如位似旋转变换等等. 后边两种变换中,反演变换只会在冬令营及其以上赛事顶用到,而配极变换一般来说只有国家队级别才会波及到. 因此,暑期班中我们不会波及到后二者. 有兴趣的同学能够自行阅读有关参照书 .学习几何变换以后,我们会从一个崭新的角度来剖析问题,比如两个同向相像三角形,在变换的角度下我们以为是此中一个三角形绕平面某点作位似旋转变换而获得另一三角形 . 同时,某种特定的几何变换可能还会有许多优秀的性质,比如保角性,特定线保持平行等等 . 这些性质对我们证题的帮助很大 .关于增添协助线,大家学完后会发现,基本上绝大多数协助线的增添从实质而言就是结构某种特定的几何变换,进而实现条件的齐集.高中数学联赛课程暑期班·第1讲·学生版11.1 平移经典精讲【例 1】设P是平行四边形ABCD 内部一点,且 APB CPD 180 ,求证: CBPPDC .D CPA B【例 2】设P是平行四边形ABCD 的内部一点,若ABP 2 ADP ,DCP 2 DAP ,求证: AB BP CP .D CPA B【例 3】设D、E是ABC 的边 BC 上两点,且 BD EC ,BAD EAC ,求证:ABC 是一个等腰三角形.AB D E C【例 4】在ABC 中, B 内的旁切圆与为 BC 和 DE 的中点,求证:直线CA 相切于MN 均分D , C 内的旁切圆与ABC 的周长,且与AB相切于 E,MA 的均分线平行.和 N分别GAFE1.2 对称高中数学联赛课程暑期班·第1讲·学生版3经典精讲【例 5】设N为BAC 的均分线上的一点,点P 和点 O 分别在直线 AB 和 AN 上,此中ANP APO 90 ,点Q在线段 NP 上,过点Q任作向来线分别交AB 、 AC 于点 E 、 F ,求证:OQE 90 当且仅当 QE QF .AFP QNOEB C 【例6】在ABC 中, AD 为 A 的均分线, CE 为 AB 边上的高,已知CDA 45 ,求BED 的度数.【例 7】设四边形ABCD内接于圆,另一圆的圆心在AB 上,且与四边形的其他三边相切.求证: AD BC AB .CDA O B【例 8】证明蝴蝶定理:设一圆的圆心O 在已知直线 l 上的射影为M ,过 M 任作圆的两条割线AB 、CD 交圆于 A 、 B 、 C 、 D ,再设直线AD 、 C 分别与直线 l 交于 P 、Q,则PM MQ .A Cl P MQODBP M Q lACODB【例 9】( IM042-1 )ABC 为锐角三角形,外心为o证明:CAB COP 90 .O,P 在BC上, AP是高,若BCA ABC30o,AOBPC【例 10】 ( 选讲 )在ABC中, AB AC, A20 ,点 D 、E 分别在腰 AB 、 AC 上,且CBE 60 ,DCB 50 ,求DEB .AED高中数学联赛课程暑期班·第 1 讲·学生版5B C1.3 旋转经典精讲【例 11】ABC 是一个正三角形,与BC 平行的一条直线分别交边AB 、 AC 于 D 和 E , M 是线段 BE 的中点, O 是ADE 的外心,求CMO 的各角.AOEDMB C【例 12】设E、F分别为正方形ABCD的边BC、CD上的点,AE、AF分别与对角线BD交于 P、Q 两点,且 BE DF EF ,求证:五边形PECFQ 内接于圆.(第29 届IMO加拿大国家队培训)A DQFPB E C【例 13】在ABC 中, AB AC,P是ABC 的内部一点,求证:APBCPA的充足必需条件是PB PC .APB C实战操练【操练 1】在梯形ABCD中,AD∥BC,E、F是底边BC上两点,且BE FC , BAE FDC ,求证: AB CD .A DBEC F高中数学联赛课程暑期班·第 1 讲·学生版7【操练 2】设线段AB与CD相等,且其交角为60 ,求证:【操练 3】在ABC 中, C 2 B , D 是三角形内一点,且求证:BAC 3BAD .AC BD≥ AB.AD60°CBDB DC , AD AC,ADB C【操练 4】在ABC 中, AC BC , M 是它的外接圆上包括点?C 的弧BA的中点, AC 上的点 X 使得MX AC ,求证: AX XC CB .AX MCB。

高中数学竞赛讲义(免费).

高中数学竞赛讲义(免费).

高中数学竞赛资料一、高中数学竞赛大纲全国高中数学联赛全国高中数学联赛(一试)所涉及的知识范围不超出教育部2000年《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。

全国高中数学联赛加试全国高中数学联赛加试(二试)与国际数学奥林匹克接轨,在知识方面有所扩展;适当增加一些教学大纲之外的内容,所增加的内容是:1.平面几何几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。

三角形中的几个特殊点:旁心、费马点,欧拉线。

几何不等式。

几何极值问题。

几何中的变换:对称、平移、旋转。

圆的幂和根轴。

面积方法,复数方法,向量方法,解析几何方法。

2.代数周期函数,带绝对值的函数。

三角公式,三角恒等式,三角方程,三角不等式,反三角函数。

递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。

第二数学归纳法。

平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。

复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。

多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*。

n 次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。

函数迭代,简单的函数方程*3. 初等数论同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*。

4.组合问题圆排列,有重复元素的排列与组合,组合恒等式。

组合计数,组合几何。

抽屉原理。

容斥原理。

极端原理。

图论问题。

集合的划分。

覆盖。

平面凸集、凸包及应用*。

注:有*号的内容加试中暂不考,但在冬令营中可能考。

三、高中数学竞赛基础知识第一章 集合与简易逻辑一、基础知识定义1 一般地,一组确定的、互异的、无序的对象的全体构成集合,简称集,用大写字母来表示;集合中的各个对象称为元素,用小写字母来表示,元素x 在集合A 中,称x 属于A ,记为A x ∈,否则称x 不属于A ,记作A x ∉。

高中数学竞赛讲义(全套)

高中数学竞赛讲义(全套)

高中数学竞赛资料一、高中数学竞赛大纲全国高中数学联赛全国高中数学联赛(一试)所涉及的知识范围不超出教育部2000年《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。

全国高中数学联赛加试全国高中数学联赛加试(二试)与国际数学奥林匹克接轨,在知识方面有所扩展;适当增加一些教学大纲之外的内容,所增加的内容是:1.平面几何几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。

三角形中的几个特殊点:旁心、费马点,欧拉线。

几何不等式。

几何极值问题。

几何中的变换:对称、平移、旋转。

圆的幂和根轴。

面积方法,复数方法,向量方法,解析几何方法。

2.代数周期函数,带绝对值的函数。

三角公式,三角恒等式,三角方程,三角不等式,反三角函数。

递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。

第二数学归纳法。

平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。

复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。

多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*。

n次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。

函数迭代,简单的函数方程*3.初等数论同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*。

4.组合问题圆排列,有重复元素的排列与组合,组合恒等式。

组合计数,组合几何。

抽屉原理。

容斥原理。

极端原理。

图论问题。

集合的划分。

覆盖。

平面凸集、凸包及应用*。

注:有*号的内容加试中暂不考,但在冬令营中可能考。

二、初中数学竞赛大纲1、数整数及进位制表示法,整除性及其判定;素数和合数,最大公约数与最小公倍数;奇数和偶数,奇偶性分析;带余除法和利用余数分类;完全平方数;因数分解的表示法,约数个数的计算;有理数的概念及表示法,无理数,实数,有理数和实数四则运算的封闭性。

高中数学竞赛讲义(全套)

高中数学竞赛讲义(全套)

高中数学竞赛资料一、高中数学竞赛大纲全国高中数学联赛全国高中数学联赛(一试)所涉及的知识范围不超出教育部2000年《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。

全国高中数学联赛加试全国高中数学联赛加试(二试)与国际数学奥林匹克接轨,在知识方面有所扩展;适当增加一些教学大纲之外的内容,所增加的内容是:1.平面几何几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。

三角形中的几个特殊点:旁心、费马点,欧拉线。

几何不等式。

几何极值问题。

几何中的变换:对称、平移、旋转。

圆的幂和根轴。

面积方法,复数方法,向量方法,解析几何方法。

2.代数周期函数,带绝对值的函数。

三角公式,三角恒等式,三角方程,三角不等式,反三角函数。

递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。

第二数学归纳法。

平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。

复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。

多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*。

n次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。

函数迭代,简单的函数方程*3.初等数论同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*。

4.组合问题圆排列,有重复元素的排列与组合,组合恒等式。

组合计数,组合几何。

抽屉原理。

容斥原理。

极端原理。

图论问题。

集合的划分。

覆盖。

平面凸集、凸包及应用*。

注:有*号的内容加试中暂不考,但在冬令营中可能考。

二、初中数学竞赛大纲1、数整数及进位制表示法,整除性及其判定;素数和合数,最大公约数与最小公倍数;奇数和偶数,奇偶性分析;带余除法和利用余数分类;完全平方数;因数分解的表示法,约数个数的计算;有理数的概念及表示法,无理数,实数,有理数和实数四则运算的封闭性。

高中数学竞赛平面几何讲座(非常详细)之欧阳育创编

高中数学竞赛平面几何讲座(非常详细)之欧阳育创编

第一讲注意添加平行线证题在同一平面内,不相交的两条直线叫平行线.平行线是初中平面几何最基本的,也是非常重要的图形.在证明某些平面几何问题时,若能依据证题的需要,添加恰当的平行线,则能使证明顺畅、简洁.添加平行线证题,一般有如下四种情况.1、为了改变角的位置大家知道,两条平行直线被第三条直线所截,同位角相等,内错角相等,同旁内角互补.利用这些性质,常可通过添加平行线,将某些角的位置改变,以满足求解的需要.例1、设P、Q为线段BC上两点,且BP=CQ,A为BC外一动点(如图1).当点A运动到使∠BAP=∠CAQ时,△ABC是什么三角形?试证明你的结论.答:当点A运动到使∠BAP=∠CAQ时,△ABC为等腰三角形.证明:如图1,分别过点P、B作AC、AQ的平行线得交点D.连结DA.在△DBP=∠AQC中,显然∠DBP=∠AQC,∠DPB=∠C.由BP=CQ,可知△DBP≌△AQC.有DP=AC,∠BDP =∠QAC.ADB P Q C图1于是,DA∥BP,∠BAP=∠BDP.则A 、D 、B 、P 四点共圆,且四边形ADBP 为等腰梯形.故AB =DP.所以AB =AC.这里,通过作平行线,将∠QAC“平推”到∠BDP 的位置.由于A 、D 、B 、P 四点共圆,使证明很顺畅.例2、如图2,四边形ABCD 为平行四边形,∠BAF=∠BCE.求证:∠EBA=∠ADE.证明:如图2,分别过点A 、B 作ED 、EC 的平行线,得交点P,连PE. 由ABCD,易知△PBA≌△ECD.有PA =ED,PB =EC. 显然,四边形PBCE 、PADE 均为平行四边形.有∠BCE=∠BPE,∠APE=∠ADE.由∠BAF=∠BCE,可知∠BAF=∠BPE.有P 、B 、A 、E 四点共圆.于是,∠EBA =∠APE.所以,∠EBA=∠ADE.这里,通过添加平行线,使已知与未知中的四个角通过P 、B 、A 、E 四点共圆,紧密联系起来.∠APE 成为∠EBA 与∠ADE 相等的媒介,证法很巧妙.2、欲“送”线段到当处利用“平行线间距离相等”、“夹在平行线间的平行线段相等”这两条,常可通过添加平行线,将某些线段“送”到恰当位置,以证题.例3、在△ABC 中,BD 、CE 为角平分线,P 为ED 上任意一点.过P 分别作AC 、AB 、BC 的垂线,M 、N 、Q 为垂足.求证:PM +PN =PQ.证明:如图3,过点P 作AB 的平行线交BD 于F,过点F 作BC 的平行线分别交PQ 、AC 于K 、G,连PG. ∥=P E D G A B F C 图2A N E B Q K G CD M F P 图3由BD 平行∠ABC,可知点F 到AB 、BC两边距离相等.有KQ =PN. 显然,PD EP =FD EF =GD CG ,可知PG∥EC.由CE 平分∠BCA,知GP 平分∠FGA.有PK =PM.于是,PM +PN =PK +KQ =PQ.这里,通过添加平行线,将PQ“掐开”成两段,证得PM =PK,就有PM +PN =PQ.证法非常简捷.3 、为了线段比的转化由于“平行于三角形一边的直线截其它两边,所得对应线段成比例”,在一些问题中,可以通过添加平行线,实现某些线段比的良性转化.这在平面几何证题中是会经常遇到的.例4设M1、M2是△ABC 的BC 边上的点,且BM1=CM2.任作一直线分别交AB 、AC 、AM1、AM2于P 、Q 、N1、N2.试证:AP AB +AQ AC =11AN AM +22AN AM . 证明:如图4,若PQ∥BC,易证结论成立. 若PQ 与BC 不平行,设PQ 交直线BC 于D.过点A 作PQ 的平行线交直线BC 于E.由BM1=CM2,可知BE +CE =M1E +M2E,易知 AP AB =DE BE ,AQ AC =DE CE ,11AN AM =DE E M 1,22AN AM =DEE M 2. 则APAB +AQ AC =DE CE BE +=DE E M E M 21+=11AN AM +22AN AM . 所以,AP AB +AQ AC =11AN AM +22AN AM . 这里,仅仅添加了一条平行线,将求证式中的四个线段比“通分”,使公分母为DE,于是问题迎刃而解.A P E M 2M 1B Q N 1N 2图4例5、AD 是△ABC 的高线,K 为AD 上一点,BK 交AC 于E,CK 交AB 于F.求证:∠FDA=∠EDA.证明:如图5,过点A 作BC 的平行线,分别交直线DE 、DF 、BE 、CF 于Q 、P 、N 、M.显然,AN BD =KA KD =AMDC .有BD·AM=DC·AN. (1) 由BD AP =FB AF =BCAM ,有AP =BC AM BD ·. (2) 由DC AQ =EC AE =BC AN ,有AQ =BC AN DC ·. (3)对比(1)、(2)、(3)有AP =AQ.显然AD 为PQ 的中垂线,故AD 平分∠PDQ.所以,∠FDA=∠EDA.这里,原题并未涉及线段比,添加BC 的平行线,就有大量的比例式产生,恰当地运用这些比例式,就使AP 与AQ 的相等关系显现出来.4、为了线段相等的传递当题目给出或求证某点为线段中点时,应注意到平行线等分线段定理,用平行线将线段相等的关系传递开去.例6在△ABC 中,AD 是BC 边上的中线,点M 在AB 边上,点N 在AC 边上,并且∠MDN=90°.如果BM2+CN2=DM2+DN2,求证:AD2=41(AB2+AC2). 证明:如图6,过点B 作AC 的平行线交ND 延长线于E.连ME.由BD =DC,可知ED =DN.有△BED≌△CND. 于是,BE =NC.显然,MD 为EN 的中垂线.有 EM =MN. 图5M P A Q N F B D C E K 图6A N CD E B M由BM2+BE2=BM2+NC2=MD2+DN2=MN2=EM2,可知△BEM 为直角三角形,∠MBE=90°.有∠ABC+∠ACB=∠ABC+∠EBC=90°.于是,∠BAC =90°.所以,AD2=221⎪⎭⎫ ⎝⎛BC =41(AB2+AC2). 这里,添加AC 的平行线,将BC 的以D 为中点的性质传递给EN,使解题找到出路.例7、如图7,AB 为半圆直径,D 为AB 上一点,分别在半圆上取点E 、F,使EA =DA,FB =DB.过D 作AB 的垂线,交半圆于C.求证:CD 平分EF.证明:如图7,分别过点E 、F 作AB 的垂线,G 、H 为垂足,连FA 、EB.易知DB2=FB2=AB·HB,AD2=AE2=AG·AB.二式相减,得DB2-AD2=AB·(HB-AG),或 (DB -AD)·AB=AB·(HB-AG).于是,DB -AD =HB -AG,或DB -HB =AD -AG. 就是DH =GD.显然,EG∥CD∥FH.故CD 平分EF. 这里,为证明CD 平分EF,想到可先证CD 平分GH.为此添加CD 的两条平行线EG 、FH,从而得到G 、H 两点.证明很精彩.经过一点的若干直线称为一组直线束.一组直线束在一条直线上截得的线段相等,在该直线的平行直线上截得的线段也相等.如图8,三直线AB 、AN 、AC 构成一组直线束,DE 是与BC 平行的直线.于是,有BN DM =AN AM =NC ME ,即BN DM =NC ME 或ME DM =NCBN . 此式表明,DM =ME 的充要条件是BN =NC.A G D O HB FC E 图7图8AD B NC E M利用平行线的这一性质,解决某些线段相等的问题会很漂亮.例8如图9,ABCD 为四边形,两组对边延长后得交点E 、F,对角线BD∥EF,AC 的延长线交EF 于G.求证:EG =GF.证明:如图9,过C 作EF 的平行线分别交AE 、AF 于M 、N.由BD∥EF, 可知MN∥BD.易知 S△BEF=S△DEF.有S△BEC=S△ⅡKG- *5ⅡDFC.可得MC =CN.所以,EG =GF.例9如图10,⊙O 是△ABC 的边BC 外的旁切圆,D 、E 、F 分别为⊙O 与BC 、CA 、AB的切点.若OD 与EF 相交于K,求证:AK 平分BC.证明:如图10,过点K 作BC 的行平线分别交直线AB 、AC 于Q 、P 两点,连OP 、OQ 、OE 、OF.由OD⊥BC,可知OK⊥PQ. 由OF⊥AB,可知O 、K 、F 、Q 四点共圆,有∠FOQ=∠FKQ.由OE⊥AC,可知O 、K 、P 、E 四点共圆.有∠EOP=∠EKP.显然,∠FKQ=∠EKP,可知∠FOQ=∠EOP.由OF =OE,可知Rt△OFQ≌Rt△OEP.则OQ =OP.于是,OK 为PQ 的中垂线,故 QK =KP.所以,AK 平分BC.综上,我们介绍了平行线在平面几何问题中的应用.同学们在实践中应注意适时添加平行线,让平行线在平面几何证题中发挥应有的作用. 图9A B M E F N D C GO 图10练习题1. 四边形ABCD 中,AB =CD,M 、N 分别为AD 、BC 的中点,延长BA 交直线NM 于E,延长CD 交直线NM 于F.求证:∠BEN=∠CFN.(提示:设P 为AC 的中点,易证PM =PN.)2. 设P 为△ABC 边BC 上一点,且PC =2PB.已知∠ABC=45°,∠APC=60°.求∠ACB.(提示:过点C 作PA 的平行线交BA 延长线于点D.易证△ACD∽△PBA.答:75°)3. 六边形ABCDEF 的各角相等,FA =AB =BC,∠EBD =60°,S△EBD=60cm2.求六边形ABCDEF 的面积. (提示:设EF 、DC 分别交直线AB 于P 、Q,过点E 作DC 的平行线交AB 于点M.所求面积与EMQD 面积相等.答:120cm2)4. AD 为Rt△ABC 的斜边BC 上的高,P 是AD 的中点,连BP 并延长交AC 于E.已知AC:AB =k.求AE:EC. (提示:过点A 作BC 的平行线交BE 延长线于点F.设BC =1,有AD =k,DC =k2.答:211k) 5. AB 为半圆直径,C 为半圆上一点,CD⊥AB 于D,E 为DB 上一点,过D 作CE 的垂线交CB 于F.求证:DE AD =FB CF .(提示:过点F 作AB 的平行线交CE 于点H.H 为△CDF 的垂心.)6. 在△ABC 中,∠A:∠B:∠C=4:2:1,∠A、∠B、∠C 的对边分别为a 、b 、c.求证:a 1+b 1=c1.(提示:在BC 上取一点D,使AD =AB.分别过点B 、C 作AD 的平行线交直线CA 、BA 于点E 、F.)7. △ABC的内切圆分别切BC、CA、AB于点D、E、F,过点F作BC的平行线分别交直线DA、DE于点H、G.求证:FH=HG.(提示:过点A作BC的平行线分别交直线DE、DF 于点M、N.)8. AD为⊙O的直径,PD为⊙O的切线,PCB为⊙O 的割线,PO分别交AB、AC于点M、N.求证:OM=ON.(提示:过点C作PM的平行线分别交AB、AD于点E、F.过O作BP的垂线,G为垂足.AB∥GF.)第二讲巧添辅助妙解竞赛题在某些数学竞赛问题中,巧妙添置辅助圆常可以沟通直线形和圆的内在联系,通过圆的有关性质找到解题途径.下面举例说明添置辅助圆解初中数学竞赛题的若干思路.1、挖掘隐含的辅助圆解题有些问题的题设或图形本身隐含着“点共圆”,此时若能把握问题提供的信息,恰当补出辅助圆,并合理挖掘图形隐含的性质,就会使题设和结论的逻辑关系明朗化.1.1 作出三角形的外接圆例1 如图1,在△ABC中,AB=AC,D是底边BC上一点,E是线段AD上一点且∠BED=2∠CED=∠A.求证:BD=2CD.分析:关键是寻求∠BED=2∠CED与结论的联系.容易想到作∠BED的平分线,但因BE≠ED,故不能直接证出BD=2CD.若延长AD交△ABC的外接圆于F,则可得EB=EF,从而获取.ABGCDFE图1证明:如图1,延长AD 与△ABC 的外接圆相交于点F,连结CF 与BF,则∠BFA=∠BCA=∠ABC=∠AFC,即∠BFD=∠CFD.故BF:CF =BD:DC.又∠BE F =∠BAC,∠BFE=∠BCA,从而∠FBE=∠ABC=∠ACB=∠BFE.故EB =EF. 作∠BEF 的平分线交BF 于G,则BG =GF.因∠GEF=21∠BEF=∠CEF,∠GFE=∠CFE,故△FEG≌△FEC.从而GF =FC.于是,BF =2CF.故BD =2CD.1.2 利用四点共圆例2 凸四边形ABCD 中,∠ABC=60°,∠BAD=∠BCD=90°,AB =2,CD =1,对角线AC 、BD 交于点O,如图2.则sin∠AOB=____.分析:由∠BAD=∠BCD=90°可知A 、B 、C 、D 四点共圆,欲求sin∠AOB,联想到托勒密定理,只须求出BC 、AD 即可.解:因∠BAD=∠BCD=90°,故A 、B 、C 、D 四点共圆.延长BA 、CD 交于P,则∠ADP=∠ABC=60°. 设AD =x,有AP =3x,DP =2x.由割线定理得(2+3x)3x =2x(1+2x).解得AD =x =23-2,BC =21BP =4-3. 由托勒密定理有 BD·CA=(4-3)(23-2)+2×1=103-12.A B C D P O 图2又SABCD =S△ABD+S△BCD=233. 故sin∠AOB=263615 . 例3 已知:如图3,AB =BC =CA =AD,AH⊥CD 于H,CP⊥BC,CP 交AH于P.求证:△ABC 的面积S =43AP·BD. 分析:因S△ABC=43BC2=43AC·BC,只须证AC·BC=AP·BD,转化为证△APC∽△BCD.这由A 、B 、C 、Q 四点共圆易证(Q 为BD 与AH 交点).证明:记BD 与AH 交于点Q,则由AC =AD,AH⊥CD 得∠ACQ=∠ADQ.又AB =AD,故∠ADQ=∠ABQ.从而,∠ABQ=∠ACQ.可知A 、B 、C 、Q 四点共圆.∵∠APC=90°+∠PCH=∠BCD,∠CBQ=∠CAQ, ∴△APC∽△BCD.∴AC·BC=AP·BD.于是,S =43AC·BC=43AP·BD. 2 、构造相关的辅助圆解题有些问题貌似与圆无关,但问题的题设或结论或图形提供了某些与圆的性质相似的信息,此时可大胆联想构造出与题目相关的辅助圆,将原问题转化为与圆有关的问题加以解决.2.1 联想圆的定义构造辅助圆A 图3B P Q DH C例4 如图4,四边形ABCD 中,AB∥CD,AD=DC =DB =p,BC =q.求对角线AC 的长.分析:由“AD=DC =DB =p”可知A 、B 、C 在半径为p 的⊙D 上.利用圆的性质即可找到AC 与p 、q 的关系. 解:延长CD 交半径为p 的⊙D 于E 点,连结AE.显然A 、B 、C 在⊙D 上.∵AB∥CD,∴BC=AE. 从而,BC =AE =q.在△ACE 中,∠CAE=90°,CE=2p,AE =q,故AC =22AE CE -=224q p -.2.2 联想直径的性质构造辅助圆例5 已知抛物线y =-x2+2x +8与x 轴交于B 、C 两点,点D 平分BC.若在x 轴上侧的A 点为抛物线上的动点,且∠BAC 为锐角,则AD 的取值范围是____. 分析:由“∠BAC 为锐角”可知点A 在以定线段BC 为直径的圆外,又点A 在x 轴上侧,从而可确定动点的范围,进而确定AD 的取值范围.解:如图5,所给抛物线的顶点为A0(1,9),对称轴为=1,与x 轴交于两点B(-2,0)、C(4,0). 分别以BC 、DA 均交于两点P(1-22,1)、Q(1+22,1).可知,点A 在不含端点的抛物线PA0Q 内时,∠BAC<90°.且有3=DP =DQ <AD≤DA0=9,即AD 的取值范围是3<AD≤9. A E D C B图4图52.3 联想圆幂定理构造辅助圆例6AD 是Rt△ABC 斜边BC 上的高,∠B 的平行线交AD 于M,交AC 于N.求证:AB2-AN2=BM·BN. 分析:因AB2-AN2=(AB +AN)(AB -AN)=BM·BN,而由题设易知AM =AN,联想割线定理,构造辅助圆即可证得结论.证明:如图6,∵∠2+∠3=∠4+∠5=90°, 又∠3=∠4,∠1=∠5,∴∠1=∠2.从而,AM =AN. 以AM 长为半径作⊙A,交AB 于F,交BA 的延长线于E.则AE =AF =AN.由割线定理有BM·BN=BF·BE=(AB +AE)(AB -AF)=(AB +AN)(AB -AN)=AB2-AN2,即 AB2-AN2=BM·BN.例7 如图7,ABCD是⊙O 的内接四边形,延长AB 和DC 相交于E,延长AB 和DC 相交于E,延长AD 和BC 相交于F,EP 和FQ 分别切⊙O 于P 、Q.求证:EP2+FQ2=EF2.分析:因EP 和FQ 是⊙O 的切线,由结论联想到切割线定理,构造辅助圆使EP 、FQ 向EF 转化.证明:如图7,作△BCE 的外接圆交EF 于G,连结CG. 因∠FDC=∠ABC=∠CGE,故F 、D 、C 、G 四点共圆.由切割线定理,有EF2=(EG +GF)·EF =EG·EF+GF·EF=EC·ED+FC·FB=EC·ED+FC·FB=EP2+FQ2,即 EP2+FQ2=EF2.2.4 联想托勒密定理构造辅助圆 E A NC D BF M 12345图6例8 如图8,△ABC 与△A'B 'C '的三边分别为a 、b 、c 与a '、b '、c ',且∠B=∠B',∠A+∠A'=180°.试证:aa '=bb '+cc '.分析:因∠B=∠B',∠A+∠A'=180°,由结论联想到托勒密定理,构造圆内接四边形加以证明.证明:作△ABC 的外接圆,过C 作CD∥AB 交圆于D,连结AD 和BD,如图9所示.∵∠A+∠A'=180°=∠A+∠D,∠BCD=∠B=∠B',∴∠A'=∠D,∠B'=∠BCD.∴△A'B 'C '∽△DCB. 有DC B A ''=CB C B ''=DBC A '', 即 DC c '=a a '=DB b '. 故DC =''a ac ,DB =''a ab . 又AB∥DC,可知BD =AC =b,BC =AD =a.从而,由托勒密定理,得AD·BC=AB·DC+AC·BD,即 a2=c·''a ac +b·''a ab . 故aa '=bb '+cc '.练习题1. 作一个辅助圆证明:△ABC 中,若AD 平分∠A,则AC AB =DC BD . (提示:不妨设AB≥AC,作△ADC 的外接圆交AB 于E,证△ABC∽△DBE,从而AC AB =DE BD =DCBD .) 2. 已知凸五边形ABCDE 中,∠BAE=3a,BC =CD =DE,∠BCD =∠CDE=180°-2a.求证:∠BAC=∠CAD=∠DAE.(1)(2)图8A B C A'B'C'c a b a'c'b'A B CD a b b c 图9(提示:由已知证明∠BCE=∠BDE=180°-3a,从而A 、B 、C 、D 、E 共圆,得∠BAC=∠CAD=∠DAE.)3. 在△ABC 中AB =BC,∠ABC=20°,在AB 边上取一点M,使BM =AC.求∠AMC 的度数.(提示:以BC 为边在△ABC 外作正△KBC,连结KM,证B 、M 、C 共圆,从而∠BCM=21∠BKM=10°,得∠AMC=30°.)4.如图10,AC 是ABCD 较长的对角线,过C 作CF⊥AF,CE⊥AE.求证:AB·AE+AD·AF=AC2.(提示:分别以BC 和CD 为直径作圆交AC 于点G 、H.则CG =AH,由割线定理可证得结论.)5. 如图11.已知⊙O1和⊙O2相交于A 、B,直线 CD 过A 交⊙O1和⊙O2于C 、D,且AC =AD,EC 、ED 分别切两圆于C 、D.求证:AC2=AB·AE.(提示:作△BCD 的外接圆⊙O3,延长BA 交⊙O3于F,证E 在⊙O3上,得△ACE≌△ADF,从而AE =AF,由相交弦定理即得结论.)6.已知E 是△ABC 的外接圆之劣弧BC 的中点.求证:AB·AC=AE2-BE2.(提示:以BE 为半径作辅助圆⊙E,交AE 及其延长线于N 、M,由△ANC∽△ABM 证AB·AC=AN·AM.)7. 若正五边形ABCDE 的边长为a,对角线长为b,试证:a b -b a=1.(提示:证b2=a2+ab,联想托勒密定理作出五边形的外接圆即可证得.)FD AE C图10图11第三讲 点共线、线共点在本小节中包括点共线、线共点的一般证明方法及梅涅劳斯定理、塞瓦定理的应用。

高中数学竞赛平面几何讲义

高中数学竞赛平面几何讲义

高中平面几何(叶中豪话题几何问题的联系和转化解题和编题的一些规律调和点列,反演与配极,调和四边形完全四边形及其 Miquel 点例题和习题1. △ ABC 中, AB =AC , BD ⊥ AC 于 D , E 在 AC 延长线上,且 CE =CD , F 在CA 延长线上,且 AF = 12CD 。

求证:BE ⊥ BF 。

2. AB 为半圆直径, C 为半圆上一点,由 C 引 AB 的垂线, D 为垂足。

分别在半圆上截取 AE =AD , BF =BD 。

求证:CD 平分 EF 。

3. 已知半圆的直径 AB 的长为 2r ,半圆外的直线 l 与 BA 的延长线垂直,垂足为T ,AT =2a (2a <2r , 半圆上有相异两点 M 、 N , 它们与直线 l 的距离 MP 、 NQ 满足 MP AM=NQAN=1。

求证:AM +AN =AB 。

l PQ T4. 在△ ABC 的边 BC 的延长线上取一点 D ,使 CD =AC ,△ ACD 的外接圆与以BC边为直径的圆交于 C 、 G 两点,直线 BG 、 AC 交于 E ,直线 CG 、 AB 交于F 。

求证:D 、 E 、 F 三点共线。

B5. △ ABC 内心为 I ,内切圆切 AB 、 AC 边于 E 、 F ,延长 BI 、 CI 分别交直线EF 于 M 、N 。

求证:S 四边形 AMIN =S △ IBC 。

B6. AC 是与 BD 垂直于 E 的直径, G 是 BA 延长线上一点,过 B 作 BF ∥ DG 交DA 延长线于 F ,作 CH ⊥ GF 于 H 。

求证:B 、 E 、 F 、 H 四点共圆。

7. 如图,圆 O 1和圆 O 2相交于 E 、 F ,过 E 作割线 AB ,使 AE =EB ,过 F 作割线CD , 联 AD 、 BC ,并过 A 作 AD 的垂线、过 B 作 BC 的垂线,设两条垂线相交于 P 点。

高中数学竞赛讲义(全套)

高中数学竞赛讲义(全套)

高中数学竞赛资料一、高中数学竞赛大纲全国高中数学联赛全国高中数学联赛(一试)所涉及的知识范围不超出教育部2000年《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。

全国高中数学联赛加试全国高中数学联赛加试(二试)与国际数学奥林匹克接轨,在知识方面有所扩展;适当增加一些教学大纲之外的内容,所增加的内容是:1.平面几何几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。

三角形中的几个特殊点:旁心、费马点,欧拉线。

几何不等式。

几何极值问题。

几何中的变换:对称、平移、旋转。

圆的幂和根轴。

面积方法,复数方法,向量方法,解析几何方法。

2.代数周期函数,带绝对值的函数。

三角公式,三角恒等式,三角方程,三角不等式,反三角函数。

递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。

第二数学归纳法。

平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。

复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。

多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*。

n次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。

函数迭代,简单的函数方程*3.初等数论同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*。

4.组合问题圆排列,有重复元素的排列与组合,组合恒等式。

组合计数,组合几何。

抽屉原理。

容斥原理。

极端原理。

图论问题。

集合的划分。

覆盖。

平面凸集、凸包及应用*。

注:有*号的内容加试中暂不考,但在冬令营中可能考。

二、初中数学竞赛大纲1、数整数及进位制表示法,整除性及其判定;素数和合数,最大公约数与最小公倍数;奇数和偶数,奇偶性分析;带余除法和利用余数分类;完全平方数;因数分解的表示法,约数个数的计算;有理数的概念及表示法,无理数,实数,有理数和实数四则运算的封闭性。

高中数学联合竞赛二试讲义8.1 平几名定理、名题与竞赛题I

高中数学联合竞赛二试讲义8.1   平几名定理、名题与竞赛题I
证明:如图,由S⊿AOB=S⊿AOG+S⊿GOB得
(at1cosα+bt1sinα)=ab.
∴t1=.即=+;
同理得,=+;=+;=+.
再由S⊿GOF=S⊿GOI+S⊿IOF,又可得=+;
同理,得=+.
∴IO=OJ(-)sin=(-)sin.
以、的值代入左边得,(-)sin=(-)sinsin,同样得右边.可证.
定理1 (Ptolemy定理)圆内接四边形对角线之积等于两组对边乘积之和;(逆命题成立)
分析如图,即证AC·BD=AB·CD+AD·BC.
可设法把AC·BD拆成两部分,如把AC写成AE+EC,这样,AC·BD就拆成了两部分:AE·BD及EC·BD,于是只要证明AE·BD=AD·BC及EC·BD=AB·CD即可.
PM·PB=PN·PK=PO2-r2.⑴
由PMN=BKN=CAN,得P、M、N、C共圆,
故BM·BP=BN·BC=BO2-r2.⑵
⑴-⑵得,PM·PB-BM·BP=PO2-BO2,
即(PM-BM)(PM+BM)=PO2-BO2,就是
PM2-BM2=PO2-BO2,于是OM⊥PB.
定理3 (Ceva定理)设X、Y、Z分别为△ABC的边BC、CA、AB上的一点,则AX、BY、CZ所在直线交于一点的充要条件是
例1 (1987年第二十一届全苏)设A1A2A3…A7是圆内接正七边形,求证:
=+.
证明连A1A5,A3A5,并设A1A2=a,A1A3=b,A1A4=c.
本题即证=+.在圆内接四边形A1A3A4A5中,有
A3A4=A4A5=a,A1A3=A3A5=b,A1A4=A1A5=c.于是有ab+ac=bc,同除以abc,即得=+,故证.

【2-平几】5.几何调和【学生版】

【2-平几】5.几何调和【学生版】

自招竞赛秋季数学讲义
“几何调和”
学生姓名授课日期
教师姓名授课时长
包括调和点列、调和线束、完全四边形等。

这些内容不会在高考中涉及,在往年的自主招生中考得也比较少;但在数学竞赛中是平面几何最重要的部分之一。

一、调和点列
设A、B、C、D是同一直线上一次排列的四个点,若AB AD
BC DC
=,则称A、B、C、D为调
和点列,或称点B、D调和分割线段AC(易知这和“点A、C调和分割线段BD”是等价的)。

若从直线外一点P因射线P A、PB、PC、PD,则称他们为调和线束。

二、完全四边形
两两相交、且没有三线共点的四条直线(及它们的六个交点),称作完全四边形。

【试题来源】
【题目】A、C、B、D是直线上依次排列的四点,求证:下列两个都是“C、D调和分割线段AB”的充要条件:
(1)
112
AC AD AB
+=;
(2)2AB CD AD BC ⋅=⋅
【难度】1
【例2】
【试题来源】
【题目】P A 、PC 、PB 、PD 是调和线束,A 、C 、B 、D 共线,求证:A 、C 、B 、D 是调和点
列。

【难度】2
【例3】
【试题来源】 【题目】完全四边形ABCDEF 的对角线BF 、CE 交AD 于点M 、N ,求证:线段AD 被点M 、
N 调和分割。

(事实上,完全四边形的任何一条对角线被另外两条对角线调和分割)
A。

高中数学竞赛-平面几何讲义(很详细)

高中数学竞赛-平面几何讲义(很详细)

HBC
(5)H 关于三边的对称点在△ABC 的外接圆上,关于三边中
点的对称点在△ABC 的外接圆上
(6)三角形任一顶点到垂心的距离
A
等于外心到对边的距离的 2 倍。 (7)设△ABC 的垂心为 H,外接圆
F
B'
半径为 R,
OH E
则 HA HB HC 2R B | cos A | | cos B | | cosC |
A
M
N
B
EF
C
D
证明:设∠BAE=∠CAF= ,∠EAF=

S AMDN

1 2
AM

AD sin

1 2
AD
AN sin(

)
= 1 AD[AF cos( )sin AF cos sin( )
2
= 1 AD AF sin(2 ) AF AD BC
从而 AB A' F = AC A' E ,又∠AFE=∠AEF

S△ABA’=
1 2
sin
AFE

AB

A'
F
=
1 2
s
in
A
EF

A
C

A'
E
=S△ACA’
由此式可知直线 AA’必平分 BC 边,即 AA’必过△
ABC 的重心
同理 BB’,CC‘必过△ABC 的重心,故结论成立。
例 3.设△ABC 的三条高线为 AD,BE,CF,自 A, B,C 分别作 AK EF 于 K,BL DF 于 L, CN ED 于 N,证明:直线 AK,BL,CN 相 交于一点。

高中数学竞赛平面几何讲座(非常详细).

高中数学竞赛平面几何讲座(非常详细).

第一讲 注意添加平行线证题在同一平面内,不相交的两条直线叫平行线.平行线是初中平面几何最基本的,也是非常重要的图形.在证明某些平面几何问题时,若能依据证题的需要,添加恰当的平行线,则能使证明顺畅、简洁.添加平行线证题,一般有如下四种情况. 1、为了改变角的位置大家知道,两条平行直线被第三条直线所截,同位角相等,内错角相等,同旁内角互补.利用这些性质,常可通过添加平行线,将某些角的位置改变,以满足求解的需要.例1 、设P 、Q 为线段BC 上两点,且BP =CQ,A 为BC 外一动点(如图1).当点A 运动到使∠BAP =∠CAQ 时,△ABC 是什么三角形?试证明你的结论. 答: 当点A 运动到使∠BAP =∠CAQ 时,△ABC 为等腰三角形. 证明:如图1,分别过点P 、B 作AC 、AQ 的平行线得交点D .连结DA .在△DBP =∠AQC 中,显然∠DBP =∠AQC ,∠DPB =∠C . 由BP =CQ ,可知△DBP ≌△AQC .有DP =AC ,∠BDP =∠QAC .于是,DA ∥BP ,∠BAP =∠BDP .则A 、D 、B 、P 四点共圆,且四边形ADBP 为等腰梯形.故AB =DP .所以AB =AC .这里,通过作平行线,将∠QAC “平推”到∠BDP 的位置.由于A 、D 、B 、P 四点共圆,使证明很顺畅.例2、如图2,四边形ABCD 为平行四边形,∠BAF =∠BCE .求证:∠EBA =∠ADE . 证明:如图2,分别过点A 、B 作ED 、EC 的平行线,得交点P ,连PE .由AB CD ,易知△PBA ≌△ECD .有PA =ED ,PB =EC . 显然,四边形PBCE 、PADE 均为平行四边形.有∠BCE =∠BPE ,∠APE =∠ADE .由∠BAF =∠BCE ,可知∠BAF =∠BPE .有P 、B 、A 、E 四点共圆.于是,∠EBA =∠APE .所以,∠EBA =∠ADE .这里,通过添加平行线,使已知与未知中的四个角通过P 、B 、A 、E 四点共圆,紧密联系起来.∠APE 成为∠EBA 与∠ADE 相等的媒介,证法很巧妙.2、欲“送”线段到当处利用“平行线间距离相等”、“夹在平行线间的平行线段相等”这两条,常可通过添加平行线,将某些线段“送”到恰当位置,以证题.例3、在△ABC 中,BD 、CE 为角平分线,P 为ED 上任意一点.过P 分别作AC 、AB 、BC 的垂线,M 、N 、Q 为垂足.求证:PM +PN =PQ .证明:如图3,过点P 作AB 的平行线交BD 于F ,过点F 作BC 的 平行线分别交PQ 、AC 于K 、G ,连PG . 由BD 平行∠ABC ,可知点F 到AB 、BC∥=A D BP QC图1PE D G A B FC图2A N E BQ K G CD M FP 图3两边距离相等.有KQ =PN . 显然,PD EP =FD EF =GDCG,可知PG ∥EC . 由CE 平分∠BCA ,知GP 平分∠FGA .有PK =PM .于是,PM +PN =PK +KQ =PQ . 这里,通过添加平行线,将PQ “掐开”成两段,证得PM =PK ,就有PM +PN =PQ .证法非常简捷.3 、为了线段比的转化由于“平行于三角形一边的直线截其它两边,所得对应线段成比例”,在一些问题中,可以通过添加平行线,实现某些线段比的良性转化.这在平面几何证题中是会经常遇到的. 例4 设M 1、M 2是△ABC 的BC 边上的点,且BM 1=CM 2.任作一直线分别交AB 、AC 、AM 1、AM 2于P 、Q 、N 1、N 2.试证:AP AB+AQAC =11AN AM +22AN AM .证明:如图4,若PQ ∥BC ,易证结论成立. 若PQ 与BC 不平行, 设PQ 交直线BC 于D .过点A 作PQ 的平行线交直线BC 于E . 由BM 1=CM 2,可知BE +CE =M 1E +M 2E , 易知AP AB =DE BE ,AQ AC =DE CE ,11AN AM =DE E M 1,22AN AM =DE E M 2.则AP AB +AQ AC =DECEBE +=DE E M E M 21+=11AN AM +22AN AM .所以,APAB+AQ AC =11AN AM +22AN AM .这里,仅仅添加了一条平行线,将求证式中的四个线段比“通分”,使公分母为DE ,于是问题迎刃而解.例5、 AD 是△ABC 的高线,K 为AD 上一点,BK 交AC 于E ,CK 交AB 于F .求证:∠FDA =∠EDA .证明:如图5,过点A 作BC 的平行线,分别交直线DE 、DF 、 BE 、CF 于Q 、P 、N 、M .显然,AN BD =KA KD =AMDC .有BD ·AM =DC ·AN . (1)由BD AP =FB AF =BC AM ,有AP =BC AM BD ·. (2) 由DC AQ =EC AE =BC AN ,有AQ =BCAN DC ·. (3) 对比(1)、(2)、(3)有AP =AQ .显然AD 为PQ 的中垂线,故AD 平分∠PDQ .所以,∠FDA =∠EDA .这里,原题并未涉及线段比,添加BC 的平行线,就有大量的比例式产生,恰当地运用这些比例式,就使AP 与AQ 的相等关系显现出来. 4、为了线段相等的传递AP EDM 2M 1BQN 1N 2图4图5MP A Q NFB DC EK当题目给出或求证某点为线段中点时,应注意到平行线等分线段定理,用平行线将线段相等的关系传递开去.例6 在△ABC 中,AD 是BC 边上的中线,点M 在AB 边上,点N 在AC 边上,并且∠MDN =90°.如果BM 2+CN 2=DM 2+DN 2,求证:AD 2=41(AB 2+AC 2). 证明:如图6,过点B 作AC 的平行线交ND 延长线于E .连ME .由BD =DC ,可知ED =DN .有△BED ≌△CND . 于是,BE =NC . 显然,MD 为EN 的中垂线.有 EM =MN .由BM 2+BE 2=BM 2+NC 2=MD 2+DN 2=MN 2=EM 2,可知△BEM 为直角三角形,∠MBE =90°.有∠ABC +∠ACB =∠ABC +∠EBC =90°.于是,∠BAC =90°.所以,AD 2=221⎪⎭⎫ ⎝⎛BC =41(AB 2+AC 2).这里,添加AC 的平行线,将BC 的以D 为中点的性质传递给EN ,使解题找到出路. 例7、如图7,AB 为半圆直径,D 为AB 上一点,分别在半圆上取点E 、F ,使EA =DA ,FB =DB .过D 作AB 的垂线,交半圆于C .求证:CD 平分EF .证明:如图7,分别过点E 、F 作AB 的垂线,G 、H 为垂足,连FA 、EB . 易知DB 2=FB 2=AB ·HB ,AD 2=AE 2=AG ·AB . 二式相减,得DB 2-AD 2=AB ·(HB -AG ),或 (DB -AD )·AB =AB ·(HB -AG ). 于是,DB -AD =HB -AG ,或 DB -HB =AD -AG . 就是DH =GD .显然,EG ∥CD ∥FH .故CD 平分EF .这里,为证明CD 平分EF ,想到可先证CD 平分GH .为此添加CD 的两条平行线EG 、FH ,从而得到G 、H 两点.证明很精彩.经过一点的若干直线称为一组直线束.一组直线束在一条直线上截得的线段相等,在该直线的平行直线上截得的线段也相等.如图8,三直线AB 、AN 、AC 构成一组直线束,DE 是与BC 平行的直线.于是,有BN DM =AN AM =NC ME ,即 BN DM=NC ME 或ME DM =NC BN . 此式表明,DM =ME 的充要条件是 BN =NC .利用平行线的这一性质,解决某些线段相等的问题会很漂亮. 例8 如图9,ABCD 为四边形,两组对边延长后得交点E 、F ,对角线BD ∥EF ,AC 的延长线交EF 于G .求证:EG =GF .证明:如图9,过C 作EF 的平行线分别交AE 、AF 于M 、N .由BD ∥EF , 可知MN ∥BD .易知 S △BEF =S △DEF .有S △BEC =S △ⅡKG - *5ⅡDFC . 可得MC =CN . 所以,EG =GF .例9 如图10,⊙O 是△ABC 的边BC 外的旁切圆,D 、E 、F 分别为⊙O 与BC 、CA 、AB图6AN CDEB M AGD O HBFC E图7图8A DBN C EM图9ABM EF ND CG的切点.若OD 与EF 相交于K ,求证:AK 平分BC .证明:如图10,过点K 作BC 的行平线分别交直线AB 、AC 于Q 、P 两点,连OP 、OQ 、OE 、OF . 由OD ⊥BC ,可知OK ⊥PQ .由OF ⊥AB ,可知O 、K 、F 、Q 四点共圆,有∠FOQ =∠FKQ . 由OE ⊥AC ,可知O 、K 、P 、E 四点共圆.有∠EOP =∠EKP .显然,∠FKQ =∠EKP ,可知∠FOQ =∠EOP .由OF =OE,可知Rt △OFQ ≌Rt △OEP . 则OQ =OP .于是,OK 为PQ 的中垂线,故 QK =KP .所以,AK 平分BC .综上,我们介绍了平行线在平面几何问题中的应用.同学们在实践中应注意适时添加平行线,让平行线在平面几何证题中发挥应有的作用.练习题1. 四边形ABCD 中,AB =CD ,M 、N 分别为AD 、BC 的中点,延长BA 交直线NM 于E ,延长CD 交直线NM 于F .求证:∠BEN =∠CFN . (提示:设P 为AC 的中点,易证PM =PN .)2. 设P 为△ABC 边BC 上一点,且PC =2PB .已知∠ABC =45°,∠APC =60°.求∠ACB . (提示:过点C 作PA 的平行线交BA 延长线于点D .易证△ACD ∽△PBA .答:75°)3. 六边形ABCDEF 的各角相等,FA =AB =BC ,∠EBD =60°,S △EBD =60cm 2.求六边形ABCDEF 的面积.(提示:设EF 、DC 分别交直线AB 于P 、Q ,过点E 作DC 的平行线交AB 于点M .所求面积与EMQD 面积相等.答:120cm 2)4. AD 为Rt △ABC 的斜边BC 上的高,P 是AD 的中点,连BP 并延长交AC 于E .已知AC :AB =k .求AE :EC .(提示:过点A 作BC 的平行线交BE 延长线于点F .设BC =1,有AD =k ,DC =k 2.答:211k) 5. AB 为半圆直径,C 为半圆上一点,CD ⊥AB 于D ,E 为DB 上一点,过D 作CE 的垂线交CB 于F .求证:DE AD =FBCF.(提示:过点F 作AB 的平行线交CE 于点H .H 为△CDF 的垂心.)6. 在△ABC 中,∠A :∠B :∠C =4:2:1,∠A 、∠B 、∠C 的对边分别为a 、b 、c .求证:a1+b 1=c1.(提示:在BC 上取一点D ,使AD =AB .分别过点B 、C 作AD 的平行线交直线CA 、BA 于点E 、F .)7. △ABC 的内切圆分别切BC 、CA 、AB 于点D 、E 、F ,过点F 作BC 的平行线分别交直线DA 、DE 于点H 、G .求证:FH =HG.O图10(提示:过点A 作BC 的平行线分别交直线DE 、DF 于点M 、N .)8. AD 为⊙O 的直径,PD 为⊙O 的切线,PCB 为⊙O 的割线,PO 分别交AB 、AC 于点M 、N .求证:OM =ON .(提示:过点C 作PM 的平行线分别交AB 、AD 于点E 、F .过O 作BP 的垂线,G 为垂足.AB ∥GF .)第二讲 巧添辅助 妙解竞赛题在某些数学竞赛问题中,巧妙添置辅助圆常可以沟通直线形和圆的内在联系,通过圆的有关性质找到解题途径.下面举例说明添置辅助圆解初中数学竞赛题的若干思路. 1、挖掘隐含的辅助圆解题有些问题的题设或图形本身隐含着“点共圆”,此时若能把握问题提供的信息,恰当补出辅助圆,并合理挖掘图形隐含的性质,就会使题设和结论的逻辑关系明朗化. 1.1 作出三角形的外接圆 例1 如图1,在△ABC 中,AB =AC ,D 是底边BC 上一点,E 是线段AD 上一点且∠BED =2∠CED =∠A .求证:BD =2CD .分析:关键是寻求∠BED =2∠CED 与结论的联系.容易想到作∠BED 的平分线,但因BE ≠ED ,故不能直接证出BD =2CD .若延长AD 交△ABC 的外接圆于F ,则可得EB =EF ,从而获取.证明:如图1,延长AD 与△ABC 的外接圆相交于点F ,连结CF 与BF ,则∠BFA =∠BCA=∠ABC =∠AFC,即∠BFD =∠CFD .故BF :CF =BD :DC .又∠BEF =∠BAC ,∠BFE =∠BCA ,从而∠FBE =∠ABC =∠ACB =∠BFE . 故EB =EF . 作∠BEF 的平分线交BF 于G ,则BG =GF . 因∠GEF =21∠BEF =∠CEF ,∠GFE =∠CFE ,故△FEG ≌△FEC .从而GF =FC . 于是,BF =2CF .故BD =2CD . 1.2 利用四点共圆例2 凸四边形ABCD 中,∠ABC =60°,∠BAD =∠BCD =90°,AB =2,CD =1,对角线AC 、BD 交于点O ,如图2.则sin ∠AOB =____. 分析:由∠BAD =∠BCD =90°可知A 、B 、C 、D四点共圆,欲求sin ∠AOB ,联想到托勒密定理,只须求出BC 、AD 即可.解:因∠BAD =∠BCD =90°,故A 、B 、C 、D 四点共圆.延长BA 、CD 交于P ,则∠ADP =∠ABC =60°.设AD =x ,有AP =3x ,DP =2x .由割线定理得(2+3x )3x =2x (1+2x ).解得AD =x =23-2,BC =21BP =4-3. 由托勒密定理有 BD ·CA =(4-3)(23-2)+2×1=103-12.A BGCD FE图1ABCDPO 图2又S ABCD =S △ABD +S △BCD =233. 故sin ∠AOB =263615+. 例3 已知:如图3,AB =BC =CA =AD ,AH ⊥CD 于H ,CP ⊥BC ,CP 交AH 于P .求证:△ABC 的面积S =43AP ·BD .分析:因S △ABC =43BC 2=43AC ·BC ,只须证AC ·BC =AP ·BD ,转化为证△APC ∽△BCD .这由A 、B 、C 、Q 四点共圆易证(Q 为BD 与AH 交点).证明:记BD 与AH 交于点Q ,则由AC =AD ,AH ⊥CD 得∠ACQ =∠ADQ .又AB =AD ,故∠ADQ =∠ABQ .从而,∠ABQ =∠ACQ .可知A 、B 、C 、Q 四点共圆. ∵∠APC =90°+∠PCH =∠BCD ,∠CBQ =∠CAQ , ∴△APC ∽△BCD . ∴AC ·BC =AP ·BD .于是,S =43AC ·BC =43AP ·BD . 2 、构造相关的辅助圆解题有些问题貌似与圆无关,但问题的题设或结论或图形提供了某些与圆的性质相似的信息,此时可大胆联想构造出与题目相关的辅助圆,将原问题转化为与圆有关的问题加以解决. 2.1 联想圆的定义构造辅助圆例4 如图4,四边形ABCD 中,AB ∥CD ,AD =DC =DB =p ,BC =q .求对角线AC 的长. 分析:由“AD =DC =DB =p ”可知A 、B 、C 在半径为p 的⊙D 上.利 用圆的性质即可找到AC 与p 、q 的关系. 解:延长CD 交半径为p 的⊙D 于E 点,连结AE .显然A 、B 、C 在⊙D 上.∵AB ∥CD ,∴BC =AE .从而,BC =AE =q .在△ACE 中,∠CAE =90°,CE =2p ,AE =q ,故 AC =22AE CE -=224q p -. 2.2联想直径的性质构造辅助圆例5 已知抛物线y =-x 2+2x +8与x 轴交于B 、C 两点,点D 平分BC .若在x 轴上侧的A 点为抛物线上的动点,且∠BAC 为锐角,则AD 的取值范围是____.分析:由“∠BAC 为锐角”可知点A 在以定线段BC 为直径的圆外,又点A 在x 轴上侧,从而可确定动点A 的范围,进而确定AD 的取值范围.解:如图5,所给抛物线的顶点为A 0(1,9),对称轴为x =1,与x 轴交于两点B (-2,0)、C (4,0).分别以BC 、DA 为直径作⊙D 、⊙E ,则两圆与抛物线均交于两点P (1-22,1)、Q (1+22,1).可知,点A 在不含端点的抛物线PA 0Q 内时,∠BAC <90°.且有A图3BPQDHC A EDCB图4图53=DP =DQ <AD ≤DA 0=9,即AD 的取值范围是3<AD ≤9. 2.3 联想圆幂定理构造辅助圆例6 AD 是Rt △ABC 斜边BC 上的高,∠B 的平行线交AD 于M ,交AC 于N .求证:AB 2-AN 2=BM ·BN .分析:因AB 2-AN 2=(AB +AN )(AB -AN )=BM ·BN ,而由题设易知AM =AN ,联想割线定理,构造辅助圆即可证得结论.证明:如图6, ∵∠2+∠3=∠4+∠5=90°, 又∠3=∠4,∠1=∠5,∴∠1=∠2.从而,AM =AN . 以AM 长为半径作⊙A ,交AB 于F ,交BA 的延长线于E . 则AE =AF =AN . 由割线定理有BM ·BN =BF ·BE =(AB +AE )(AB -AF )=(AB +AN )(AB -AN )=AB 2-AN 2,即 AB 2-AN 2=BM ·BN .例7 如图7,ABCD 是⊙O 的内接四边形,延长AB 和DC 相交于E ,延长AB 和DC 相交于E ,延长AD 和BC 相交于F ,EP 和FQ 分别切⊙O 于P 、Q .求证:EP 2+FQ 2=EF 2. 分析:因EP 和FQ 是⊙O 的切线,由结论联想到切割线定理,构造辅助圆使EP 、FQ 向EF 转化.证明:如图7,作△BCE 的外接圆交EF 于G ,连结CG . 因∠FDC =∠ABC =∠CGE ,故F 、D 、C 、G 四点共圆. 由切割线定理,有EF 2=(EG +GF )·EF =EG ·EF +GF ·EF =EC ·ED +FC ·FB =EC ·ED +FC ·FB =EP 2+FQ 2, 即 EP 2+FQ 2=EF 2.2.4 联想托勒密定理构造辅助圆例8 如图8,△ABC 与△A 'B 'C '的三边分别为a 、b 、c 与a '、b '、c ',且∠B =∠B ',∠A +∠A '=180°.试证:aa '=bb '+cc '.分析:因∠B =∠B ',∠A +∠A '=180°,由结论联想到托勒密定理,构造圆内接四边形加以证明. 证明:作△ABC 的外接圆,过C 作CD ∥AB 交圆于D ,连结AD 和BD ,如图9所示.∵∠A +∠A '=180°=∠A +∠D , ∠BCD =∠B =∠B ', ∴∠A '=∠D ,∠B '=∠BCD .∴△A 'B 'C '∽△DCB . 有DC B A ''=CB C B ''=DBC A '', 即 DC c '=a a '=DB b '. 故DC =''a ac ,DB =''a ab .E A NCD B FM 12345图6(1)(2)图8ABCA'C'cb a'c'b'A BCDabb c图9又AB ∥DC ,可知BD =AC =b ,BC =AD =a .从而,由托勒密定理,得 AD ·BC =AB ·DC +AC ·BD ,即 a 2=c ·''a ac +b ·''a ab . 故aa '=bb '+cc '. 练习题1. 作一个辅助圆证明:△ABC 中,若AD 平分∠A ,则AC AB =DCBD. (提示:不妨设AB ≥AC ,作△ADC 的外接圆交AB 于E ,证△ABC ∽△DBE ,从而ACAB=DE BD =DCBD.) 2. 已知凸五边形ABCDE 中,∠BAE =3a ,BC =CD =DE ,∠BCD =∠CDE =180°-2a .求证:∠BAC =∠CAD =∠DAE .(提示:由已知证明∠BCE =∠BDE =180°-3a ,从而A 、B 、C 、D 、E 共圆,得∠BAC =∠CAD =∠DAE .)3. 在△ABC 中AB =BC ,∠ABC =20°,在AB 边上取一点M ,使BM =AC .求∠AMC 的度数.(提示:以BC 为边在△ABC 外作正△KBC ,连结KM ,证B 、M 、C 共圆,从而∠BCM =21∠BKM =10°,得∠AMC =30°.) 4.如图10,AC 是ABCD 较长的对角线,过C 作CF ⊥AF ,CE ⊥AE .求证:AB ·AE +AD ·AF =AC 2.(提示:分别以BC 和CD 为直径作圆交AC 于点G 、H .则CG =AH ,由割线定理可证得结论.)5. 如图11.已知⊙O 1和⊙O 2相交于A 、B ,直线CD 过A 交⊙O 1和⊙O 2于C 、D ,且AC =AD ,EC 、ED 分别切两圆于C 、D .求证:AC 2=AB ·AE .(提示:作△BCD 的外接圆⊙O 3,延长BA 交⊙O 3于F ,证E 在⊙O 3上,得△ACE ≌△ADF ,从而AE =AF ,由相交弦定理即得结论.)6.已知E 是△ABC 的外接圆之劣弧BC 的中点.求证:AB ·AC =AE 2-BE 2.(提示:以BE 为半径作辅助圆⊙E ,交AE 及其延长线于N 、M ,由△ANC ∽△ABM 证AB ·AC =AN ·AM .)7. 若正五边形ABCD E 的边长为a ,对角线长为b ,试证:a b -ba=1. (提示:证b 2=a 2+ab ,联想托勒密定理作出五边形的外接圆即可证得.)F DAEC图10图11第三讲 点共线、线共点在本小节中包括点共线、线共点的一般证明方法及梅涅劳斯定理、塞瓦定理的应用。

赣县中学北校区高二数学竞赛平几讲义(一)

赣县中学北校区高二数学竞赛平几讲义(一)

赣县中学北校区高二数学竞赛平几讲义(一)整理人:彭福星 2015-11-07 第一讲:平面几何——梅涅劳斯定理、塞瓦定理在中国数学奥林匹克(CMO)的六道试题中,以及国际数学奥林匹克(IMO )的六道试题中,都至少有一道平面几何试题的存在。

同样,在每年十月份进行的全国高中数学联赛加试的三道试题中,必有一道是平面几何题,占全国高中数学联赛总分300 分中的50 分,因此有人曾说:“得几何者,得一等奖”。

除了在初中的课本中已经介绍的重要定理之外,在数学竞赛中,平面几何问题还要用到许多著名的定理,现择其应用较广的几个介绍如下.(一)梅涅劳斯定理定理(简称梅氏定理)是由古希腊数学家梅涅劳斯首先证明的.三点,则:1=⋅⋅EA DC FB.1)不过顶点的直线与三角形3 边的关系有两种情况:①若直线与三角形的一边交于内点,则必与第二边交于内点,与第三边交于外点(延长线上的点);②直线与三角形的三边均交于外点,因而本定理的图形有两个.(2)定理的结构是:三角形三边上6条被截线段的比,首尾相连,组成一个比值为1 的等式. (3)这个定理反映了形与数的转化,是几何位置的定量描述:“三点共线”量化为比值等于“1”;反过来,若比值等于“1”成立时,可证“三点共线”(逆定理也成立).1A C C B =⋅⋅点分点到点到分点点分点到点到分点.(1)简易证法一:(平行线分线段成比例)过A 作BC AG //交DF 延长线于G ,∵BC AG //,∴BD AG FB AF =,AGCDEA CE =, ∴1=⋅⋅=⋅⋅CD BD AG CD BD AG CD BD EA CE FB AF ,∴1=⋅⋅EACEDC BD FB AF . (2)简易证法二:(垂线构造线段成比例)分别过A 、B 、C 作'AA 、'BB 、'CC 垂直已知直线,由直角三角形相似比,易知''BB AA FB AF=、''CC BB DC BD =、''AA CC EA CE =,∴1''''''=⋅⋅=⋅⋅AA CC CC BB BB AA EA CE DC BD FBAF. (3)其它证法:三角形面积比、正弦定理等方法涉及后面解三角形知识(置后). (常用于证明三点共线)如果有三点D 、E 、F 分别在三角形ABC 的三边或其延长线,且满足:1=⋅⋅EACEDC BD FB AF ,则三点D 、E 、F 在同一直线上. (2)角元形式的梅涅劳斯定理:如果一直线顺次与三角形ABC 的三边BC 、AC 、AB或其延长线交于D 、E 、F三点,则三点DEF共线等价于1sin sin sin sin =∠∠⋅∠⋅∠FCB ACFCBE BAD .例题1:已知过ABC ∆顶点C 的直线,与边AB 及中线AD 分别交于点F 和E ,求证:FBAFED AE 2=. 证明:直线CEF 截ABD ∆,由梅涅劳斯定理,得:1=⋅⋅EA DECD BC FB AF ,又CD BC 2=, ∴21=⋅EA DE FB AF ,则FBAFED AE 2=. [注]此例证法甚多,如“平行线”、“面积法”等.变式练习1:在△ABC 中,AG 是角平分线,D 是BC 中点,DG ⊥AG 交AB 于E,交AC延长线与F ,求证:BE=CF=)(21AC AB -.C例题2:已知过ABC ∆重心G 的直线分别交边AB 、AC 及CB 延长线于点E 、F 、D ,求证:1=+FACFEA BE . 证明:连接AG 并延长交BC 于M ,则CM BM =,∵DEG 截ABM ∆,∴由梅氏定理得,1=⋅⋅DBMD GM AG EA BE ; 同理:1=⋅⋅DC MDGM AG FA CF ∴MD DB AG GM EA BE ⋅=,MDDCAG GM FA CF ⋅=, ∴11221)(=⨯=+⋅=⋅+=+MD DC DB AG GM MD AG DC DB GM FA CF EA BE ,即1=+FACFEA BE . 变式练习2:(塞瓦(Ceva )定理)在△ABC 内任取一点O ,直线AO 、BO 、CO 分别交对边于D 、E 、F ,求证:1=⋅⋅EACEDC BD FB AF .例题1:若ABC ∆的A ∠的外角平分线交边BC 延长线于P ,B ∠的平分线交边AC 于Q ,C ∠的平分线交边AB 于R ,则P 、Q 、R 三点共线. 证明:由三角形内、外角平分线定理知:CA BA PC BP =,AB BC QA CQ =,CBCARB AR =, 则1=⋅⋅=⋅⋅ABBC CA BA CB CA QA CQ PC BP RB AR , 故P 、Q 、R 三点共线.变式练习1:(帕斯卡(Pascal )定理)圆内接六边形ABCDEF 的三双对边的延长线交于三点P 、Q 、R ,则这三点共线.(此线称为帕斯卡线)例题2:(莱莫恩(Lemoine )定理)过任意ABC ∆的三个顶点A 、B 、C 作它的外接圆的切线,分别和BC 、CA 、AB 的延长线交于点P 、Q 、R ,则P 、Q 、R 三点共线.证明:∵CR 是⊙O 的切线,∴RAC ∆∽RCB ∆,∴CBACRB RC RC RA ==, 则2)(CBAC RB RC RC RA RB RA =⋅=, 同理:2)(AC AB CP BP =,2)(BABC QA CQ = ∴1)()()(222=⋅⋅=⋅⋅ABBC CA BA CB CA QA CQ PC BP RB AR , 故P 、Q 、R 三点共线.变式练习2:(西姆松(Simson )定理)若从△ABC 的外接圆上一点P 作BC 、AB 、AC的垂线,垂足分别为D 、E 、F ,则D 、E 、F 三点共线.(此线常称为西姆松线)C精选例题例题1 在△ABC 中,AG 是角平分线,D 是BC 中点,DG ⊥AG 交AB 于E ,交AC 延长线与F ,求证:BE=CF=)(21AC AB -.例题2 △ABC 中,∠A 的外角平分线交BC 延长线于点D ,∠B 、∠C 的平分线交对边于E 、F ,求证:D 、E 、F 三点共线.例题3 梯形ABCD 中,AB ∥CD ,AC 、BD 交于点E ,BC 、AD 的延长线交于点F,EF 分别交AB 、CD 于N 、M,求证:AN=NB .例题4过△ABC 的重心G 的直线分别交AB 、AC 于点E 、F ,交CB于点D 。

【提优教程】江苏省高中数学竞赛 第76讲平几问题选讲教案

【提优教程】江苏省高中数学竞赛 第76讲平几问题选讲教案

第16讲 平几问题选讲平面几何在高中竞赛和国际竞赛中占有重要的地位,本讲将对平几中的一些典型问题的选讲,强化解平几问题的典型思想方法.A 类例题 例1 如图,已知正方形ABCD ,点E 、F 分别在BC 、CD 上,且BE +DF =EF ,试求∠EAF 的度数.(1989年全国冬令营)分析 注意到BE +DF =EF ,很容易想到“截长补短”的方法. 解 延长CB 到F',使得BF'= DF ,连结AF'显然∆AF'B ≌∆AFD .∴∠BAF'=∠DAF ,AF'=AF .又∵EF'=BE +BF'=BE +DF ,AE 为公共边, ∴∆AF'E ≌∆AFE . ∴∠EAF'=∠EAF .又∵∠FAF'=∠BAD =90º, ∴∠EAF =45º.说明 本题∆AF'B 可以看作是∆AFD 顺时针旋转90º得到的;本题也可以延长CD 或旋转∆ABE .例2 如图,A 、B 、C 、D 为直线上四点,且AB =CD ,点P 为一动点,若∠APB=∠CPD ,试求点P 的轨迹.(1989年全国初中数学联赛)FD A F D C分析 由于已知的两个条件AB =CD 和∠APB =∠CPD ,分散在两个三角形中,需要把它们集中,于是可以进行平移或添加辅助圆建立这两个已知条件间的联系. 证法一 分别过点A 、B 作PC 、PD 的平行线得交点Q .连结PQ .在△QAB 和△PCD 中,显然∠QAB =∠PCD ,∠QBA =∠PDC . 由AB =CD ,可知 △QAB ≌△PCD .有QA =PC ,QB =PD ,∠AQB =∠CPD . 于是,PQ ∥AB ,∠APB =∠AQB .则A 、B 、P 、Q 四点共圆,且四边形ABPQ 为等腰梯形.故AP =BQ .所以PA =PD .即点P 的轨迹是线段AD 的垂直平分线. 证法二 作△PBC 的外接圆交PA 、PD 分别为E 、F ,连结BE 、CF , ∵∠APB =∠CPD , ∴BE =CF ,∠ABE =∠EPC =∠BPF =∠DCF .又∵AB =CD ,∴△ABE ≌△DCF . ∴∠PAB =∠PDC . ∴PA =PD .即点P 的轨迹是线段AD 的垂直平分线.说明 同样地,也可以作△PAD 的外接圆,目的是建立条件AB =CD 和∠APB =∠CPD 之间的联系. 证法三 由三角形的面积公式易得PA ·PB =PC ·PD ,PA ·PC =PB ·PD ,两式相乘,化简得PA =PD .即点P 的轨迹是线段AD 的垂直平分线.证法四 由正弦定理得PA sin ∠PBA =AB sin ∠APB ,PD sin ∠PCD =CDsin ∠CPD ,从而PA sin ∠PBA =PD sin ∠PCD ,同理可得PA sin ∠PCB =PDsin ∠PBD,而sin ∠PBA =sin ∠PBD ,sin ∠PCD =sin ∠PCB ,化简得PA =PD . 即点P 的轨迹是线段AD 的垂直平分线.法.证明 如图,过点A 作BC 的平行线,分别交直线DE 、DF 、BE 、CF 于Q 、P 、N 、M .显然,AN BD =KA KD =AMDC. 有BD ·AM =DC ·AN . (1)由BD AP =FB AF =BC AM,有 AP =BC AM BD ·. (2)由DC AQ =EC AE =BC AN ,有AQ =BCAN DC ·. (3)对比(1)、(2)、(3)有 AP =AQ .显然AD 为PQ 的中垂线,故AD 平分∠PDQ . 所以,∠FDA =∠EDA .说明 这里,原题并未涉及线段比,添加BC 的平行线,就有大量的比例式产生,恰当地运用这些比例式,就使AP 与AQ 的相等关系显现出来.本题证明方法很多,例如可以过点E 、F 作BC 的垂线,也转化为线段的比来研究.情景再现1.点E 、F 分别是矩形ABCD 的边AB 、BC 的中点,连AF ,CE ,设AF ,CE 交于点G ,则ABCDAGCD S S 矩形四边形 等于( )A .56B .45C .34D .23(2002年全国初中数学竞赛试题) 2. 在△ABC 中,D 为AB 的中点,分别延长CA ,CB 到点E ,F ,使DE =DF ;过E ,F 分别作CA ,CB 的垂线,相交于P .设线段PA ,PB的中点分别为M ,N .求证:∠PAE =∠PBF .(2003年全国初中数学竞赛) 3.如图,四边形ABCD 为平行四边形, ∠BAF =∠BCE .求证:∠EBA =∠ADE .B FFEABC DEF GB 类例题例4 如图,AD 为△ABC 的中线,E 、F 分别在AB 、AC 上,且DE DF ,求证:BE +CF >EF .分析 由要证的结论,可联想到构造三角形,运用两边之和大于第三边解决问题.要构造三角形,就要移动一些线段,从而可以运用平移、旋转、作对称等方法,于是有如下证法.证法一 延长FD 到F',使得DF'=连结BF'、EF', 由D 为BC 的中点,显然△DBF'≌△于是BF'=CF ,又因为DE 垂直平分FF',所以EF =EF'.三角形BEF'中,BE +BF'>EF'.从而BE +CF >EF . 证法二 作点B 关于DE 的对称点B',连结EB'、DB'、FB'.则EB'=BE ,不难得到DB'=DB =DC ,∠B'DF =∠CDF .从而可知B 、C 关于DF 对称,于是B'F =CF ,在三角形B'EF 中,B'E +B'F >EF .从而BE +CF >EF .说明证法一也可以从中心对称角度来理解,F'和F 关于点D 对称.CCB例5 如图,△中,为外心,三条高、BE 、CF 交于点H ,直线DE 和AB 交于点M ,DF 和AC 交于点N . 求证:(1)OB ⊥DF ,OC ⊥DE .(2)OH ⊥MN .(2001年全国高中数学联赛)证法一 (1)显然B ,D ,H ,F 四点共圆,H ,E ,A ,F 四点共圆,∴∠BDF =∠BHF =180°-∠EHF =∠BAC .O ABC H FE DNM∠OBC =12 (180°-∠BOC )=90°-∠BAC .∴OB ⊥DF . 同理OC ⊥DE .(2)∵CF ⊥MA ,∴MC 2-MH 2=AC 2-AH 2……①∵BE ⊥NA ,∴NB 2-NH 2=AB 2-AH 2……②∵DA ⊥BC ,∴DB 2-CD 2=BA 2-AC 2……③∵OB ⊥DF ,∴BN 2-BD 2=ON 2-OD 2……④∵OC ⊥DE ,∴CM 2-CD 2=OM 2-OD 2……⑤①-②+③+④-⑤,得 NH 2-MH 2=ON 2-OM 2 OM 2-MH 2=ON 2-NH 2 所以OH ⊥MN .证法二 以BC 所在直线为x 轴,D 为原点建立直角坐标系, 设A (0,a ),B (b ,0),C (c ,0),则∴直线AC 的方程为,直线BE 的方程为由得E 点坐标为E() 同理可得F ()直线AC 的垂直平分线方程为直线BC 的垂直平分线方程为由得O ()∵∴OB ⊥D F同理可证OC ⊥DE . 在直线BE 的方程中令x =0得H (0,)∴直线DF 的方程为由得N ()同理可得M ()∴例6 锐角△ABC 中,AB >AC ,O 点是它的外心,射线AO 交BC 边于D 点.已知:cos B +cos C =1,求证:△ABD 与△ACD 的周长相等.证明 作OE ⊥AC 、OF ⊥AB ,E 、F 是垂足.由三角形外心性质知:∠AOE =∠B ,∠AOF =∠C .记BC =a 、CA =b 、AB =c .于是 OAEOAFAC AB CAD AD AC BAD AD AB S S DC BD ACD ABC∠∠⋅=∠⋅⋅∠⋅⋅==∆∆sin sin sin sin 2121 CBb c B C b c AOE AOF AC AB cos 1cos 1cos cos cos cos --⋅=⋅=∠∠⋅=由余弦定理得ba c ac b b a c a c b DC BD -++-=----=2222)()(;从而BD =)(21c b a -+. 此时,AB +BD =)(21c b a ++=AC +CD .得证.说明 本题用到了正余弦定理,以及三角形面积公式,同时运用了代数的方法证了几何题.情景再现4.△ABC 中,∠B =2∠C ,求证:2AB >AC .(2002年江苏省数学夏令营试题)5.已知同一平面的两个三角形A 1B 1C 1,A 2B 2C 2,并且A 1到B 2C 2的垂线,B 1到C 2A 2的垂线,C 1到A 2B 2的垂线交于同一点P .求证:A 2到B 1C 1的垂线,B 2到C 1A 1的垂线,C 2到A 1B 1的垂线也交于同一点.6.在△ABC 中,AD 是BC 边上的中线,点M 在AB 边上,点N在AC 边上,并且∠MDN =90°.如果BM 2+CN 2=DM 2+DN 2,求证:AD 2=41(AB 2+AC 2).C 类例题例7.如图,⊙O 是△ABC 的边BC 外的旁切圆,D 、E 、F 分别为⊙O 与BC 、CA 、AB 的切点.若OD 与EF 相交于K ,求证:AK 平分BC .证明 如图,过点K 作BC 的行平线分别交直线AB 、AC 于Q 、P 两点,连OP 、OQ 、OE 、OF .由OD ⊥BC ,可知OK ⊥PQ .由OF ⊥AB ,可知O 、K 、F 、Q 四点共圆,有∠FOQ =∠FKQ .由OE ⊥AC ,可知O 、K 、P 、E 四点共圆.有 ∠EOP =∠EKP .显然,∠FKQ =∠EKP ,可知 ∠FOQ =∠EOP . 由OF =OE ,可知 Rt △OFQ ≌Rt △OEP . 则OQ =OP .于是,OK 为PQ 的中垂线,故 QK =KP .BB 11O似.其逆亦真.证明 将△ABC 简记为△,由三中线AD ,BE ,CF 围成的三角形简记为△′.G 为重心,连DE 并延长到H ,使EH =DE ,连HC ,HF ,则△′就是△HCF .(1)a 2,b 2,c 2成等差数列⇒△∽△′.若△ABC 为正三角形,易证△∽△′.不妨设a ≥b ≥c ,有CF =2222221c b a -+, BE =2222221b ac -+, AD =2222221a cb -+. 将a 2+c 2=2b 2,分别代入以上三式,得 CF =a 23,BE =b 23,AD =c 23. ∴CF :BE :AD =a 23:b 23:c 23=a :b :c .故有△∽△′.(2)△∽△′⇒a 2,b 2,c 2成等差数列. 当△中a ≥b ≥c 时, △′中CF ≥BE ≥AD . ∵△∽△′, ∴∆∆S S '=(a CF )2.据“三角形的三条中线围成的新三角形面积等于原三角形面积的43”,有∆∆S S '=43. ∴22aCF =43⇒3a 2=4CF 2=2a 2+b 2-c2⇒a 2+c 2=2b 2.例9 四边形ABCD 内接于圆,△BCD ,△ACD ,△ABD ,△ABC 的内心依次记为I A ,I B ,I C ,I D .试证:I A I B I C I D 是矩形.(第一届数学奥林匹克国家集训选拔试题)HDCDI C I DAI I B证明 连接AI C ,AI D ,BI C ,BI D 和DI B .易得∠AI C B =90°+21∠ADB =90°+21 ∠ACB =∠AI D B ⇒A ,B ,I D ,I C 四点共圆.同理,A ,D ,I B ,I C 四点共圆.此时∠AI C I D =180°-∠ABI D =180°-21∠ABC , ∠AI C I B =180°-∠ADI B =180°-21∠ADC ,∴∠AI C I D +∠AI C I B=360°-21(∠ABC +∠ADC ) =360°-21×180°=270°.故∠I B I C I D =90°.同样可证I A I B I C I D 其它三个内角皆为90°.该四边形必为矩形. 说明 本题的其他证明可参见《中等数学》1992;4例10 设D 是ABC ∆的边BC 上的一点,点P 在线段AD 上,过点D 作一直线分别与线段AB 、PB 交于点M 、E ,与线段AC 、PC 的延长线交于点F 、N .如果DE=DF , 求证:DM=DN.(首届中国东南地区数学奥林匹克)证明对AMD ∆和直线BEP 用梅涅劳斯定理得:1(1)AP DE MB PD EM BA⋅⋅=, 对AFD ∆和直线NCP 用梅涅劳斯定理得:1(2)AC FN DPCF ND PA ⋅⋅=, 对AMF ∆和直线BDC 用梅涅劳斯定理得:1(3)AB MD FCBM DF CA⋅⋅= (1)(2)(3)式相乘得:1DE FN MDEM ND DF⋅⋅=,又DE=DF , 所以有DM DNDM DE DN DE=--,所以DM=DN.说明 本题是直线形,当然可以用解析法,请同学们试一试.情景再现7.设点D 为等腰ABC ∆的底边BC 上一点,F 为过A 、D 、C 三点的圆在ABC ∆内的弧上一点,过B 、D 、F 三点的圆与边AB 交于点E .求证:C D E F D F A E ⋅+⋅=⋅.(首届中国东南地区数学奥林匹克)8. 如图,O 、H 分别是锐角△ABC 的外心和垂心,D 是BC边的中点,由H 向∠A 及其外角平分线作垂线,垂足分别是E 是F .证明:D 、E 、F 三点共线.(2004年全国高中数学联赛四川省初赛)习题161.正方形ABCD 的中心为O ,面积为1989㎝2.P 为正方形内一点,且∠OPB =45°,PA :PB =5:14.则PB =__________.(1989年全国初中联赛)2.如图,在△ABC 中,AB =AC ,D 是底边BC 上一点,E 是线段AD 上一点且∠BED =2∠CED =∠A .求证:BD =2CD .3.如图,等腰三角形ABC 中,P 为底边BC 上任意点,过P 作两腰的平行线分别与AB ,AC 相交于Q ,R 两点,又P '的对称点,证明:P '在△ABC 的外接圆上.(2002年全国初中数学联合竞赛试卷)4.设点M 在正三角形三条高线上的射影分别是M 1,M 2,M 3(互不重合).求证:△M 1M 2M 3也是正三角形.5.在△ABC 中,BD 、CE 为角平分线,P 为ED 上任意一点.过P 分别作AC 、AB 、BC 的垂线,M 、N 、Q 为垂足.求证:PM +PN =PQ .6.在Rt △ABC 中,AD 为斜边BC 上的高,P 是AB 上的点,过A 点作PC 的垂线交过B 所作AB 的垂线于Q 点.求证:PD 丄QD.7.设M 1、M 2是△ABC 的BC 边上的点,且BM 1=CM 2.任作一直线分别交AB 、AC 、AM 1、AM 2于P 、Q 、N 1、N 2.试证:AP AB+AQ AC =11AN AM +22AN AM .8.AD ,BE ,CF 是锐角△ABC 的三条高.从A 引EF 的垂线l 1,从B 引FD 的垂线l 2,从C 引DE 的垂线l 3.求证:l 1,l 2,l 3三线共点. 9. AD 是Rt △ABC 斜边BC 上的高,∠B 的平分线交AD 于M ,交AC 于N .求证:AB 2-AN 2=BM ·BN .10.已知等腰△ABC 中,∠BAC =100°,延长线段AB 到D ,使得AD =BC ,连结CD ,试求∠BCD 的度数.B DCA A BD EAP B C P OABCD11.圆外一点P 作圆的两条切线和一条割线,切点为A ,B . 所作割线交圆于C ,D 两点,C 在P ,D 之间.在弦CD 上取一点Q ,使.DAQ PBC ∠=∠求证:.DBQ PAC ∠=∠12.已知两个半径不相等的圆O 1与圆O 2相交于M 、N 两点,且圆O 1、圆O 2分别与圆O 内切于S 、T 两点.求证:OM ⊥MN 的充分必要条件是S 、N 、T 三点共线. (1997年全国高中数学联赛)本节“情景再现”解答:1.解一:连结AC ,从而可得G 为△ABC 的重心,于是CG =2GE ,AEC AGC S S ∆∆=∴32. 显然ABCD 4121矩形S S S ABC AEC ==∆∆.ABCD 61矩形S S AGC =∴∆.从而ABCD ABCD 326121矩形矩形四边形)(S S S S S AGC ADC AGCD =+=+=∆∆. 即ABCD AGCD S S 矩形四边形 =23.因此选D .解二:连结AC 、BD ,AC 与BD 相交于点O .则△ABC 的面积被分为6等份.同理可把△ADC 的面积等分为6份.显然四边形AGCD 占有8份,即AB C DA G C DS S 矩形四边形 32128==.因此选D . 2. 解析 分别取PA 、PB 的中点M 、N ,连结EM 、DM 、MN 、DN 、NF ,在 Rt△AEP 中,EM =AM =MP ,又DM 为△ABP 的中位线,可得BP DM 21=.同理,FN =BN =NP ,且AP DN 21=,从而EM =DN ,DM =NF .又∵DE=DF ,∴△EMD ≌△DNF .∴∠EMD =∠DNF .又∵∠1=∠3=∠2,∴∠AME =∠BNF .从而可得∠PAE =∠PBF .O FEA B CDE F G BCDF G3.证明:如图,分别过点A 、B 作ED 、EC 的平行线,得交点P ,连PE .由AB // =CD ,易知△PBA ≌△ECD .有PA =ED ,PB =EC .显然,四边形PBCE 、PADE 均为平行四边形.有∠BCE =∠BPE ,∠APE =∠ADE .由∠BAF =∠BCE ,可知∠BAF =∠BPE .有P 、B 、A 、E 四点共圆.于是,∠EBA =∠APE .所以,∠EBA =∠ADE . 4.证明:延长CB 到D ,使BD =AB ,连结AD ,则AB +BD >AD ,即2AB >AD .∵AB =BD ,∴∠BAD =∠D .∴∠ABC =2∠D .而∠ABC =2∠C ,∴∠C =∠D .∴AC =AD .∴2AB >AC .5.解:设B 2到C 1A 1的垂线,C 2到A 1B 1的垂线相交于Q .则2222221221PB PA B C A C -=- (1)2222221221PC PB C A B A -=- (2) 2222221221PA PC A B C B -=- (3)2121212212QA QC A B C B -=- (4) 2121212212QB QA B C A C -=- (5)五式相加得2121221221QB QC A B A C -=-即2121212212QB QC B A C A -=- 从而A 2Q ⊥B 1C 1.6.证明:如图,过点B 作AC 的平行线交ND 延长线于E .连ME .由BD =DC ,可知ED =DN .有△BED ≌△CND .于是,BE =NC .显然,MD 为EN 的中垂线.有EM =MN .由BM 2+BE 2=BM 2+NC 2=MD 2+DN 2=MN 2=EM 2,可知△BEM 为直角三角形,∠MBE =90°.有∠ABC +∠ACB =∠ABC +∠EBC =90°.于是,∠BAC =90°.所以,AD 2=221⎪⎭⎫ ⎝⎛BC =41(AB 2+AC 2).7.证明:设AF 的延长线交△BDF 于K ,∵∠AEF =∠AKB ,∴∆AEF ≌∆AKB .因此,E K B K A E AA F AB A F A ==.于是要证(1), 只需证明:(2)CD BK DF AK BD AB ⋅+⋅=⋅又注意到KBD KFD C ∠=∠=∠.PE D GA B FCB B 11ACBDANCDEBM我们有1sin 2DCK S CD BK C ∆=⋅⋅∠,进一步有1sin 21sin 2ABD ADKS BD AB C S AK DF C ∆∆=⋅⋅∠=⋅⋅∠,因此要证(2),只需证明ABD DCK ADK S S S ∆∆∆=+(3)而(3)//(4)ABC AKC S S BK AC ∆∆⇔=⇔ 事实上由BKA FDB KAC ∠=∠=∠知(4)成立,得证. 8.证明:连结OA ,OD ,并延长OD 交△ABC的外接圆于M ,则OD ⊥BC ,BM ︿=MC ︿,∴A 、E 、M 三点共线.∵AE 、AF 分别是△ABC的∠A 及其外角平分线,∴AE ⊥AF .又∵HE ⊥AE ,HF ⊥AF ,∴四边形AEHF 为矩形.因此AH 与EF 互相平分,设其交点为G ,于是:AG =12 AH =12EF =EG .而OA =OM ,且OD ∥AH ,∴∠OAM =∠OMA =∠MAG =∠GEA .故EG ∥OA (1)OD ⊥BC ,∴OD =12∵O 、H 分别是△ABC 的外心和垂心,且AH =AG ,因此,若连结DG ,则四边形AODG为平行四边形从而DG ∥OA . (2)由(1)和(2)知,D 、E 、G 三点共线,但F 在EG 上,故D 、E 、F 三点共线. “习题16”解答:1.解:答案是PB =42㎝.连接OA ,OB.易知O ,P ,A ,B 四点共圆,有∠APB =∠AOB =90°.故PA 2+PB 2=AB 2=1989.由于PA :PB =5:14,可求PB. 2.证明:如图,延长AD 与△ABC 的外接圆相交于点F ,连结CF 与BF ,则∠BFA =∠BCA =∠ABC =∠AFC ,即∠BFD =∠CFD .故BF :CF =BD :DC .又∠BEF =∠BAC ,∠BFE =∠BCA ,从而∠FBE =∠ABC =∠ACB =∠BFE .故EB =EF .作∠BEF 的平分线交BF 于G ,则BG =GF .因∠GEF =21∠BEF =∠CEF ,∠GFE =∠CFE ,故△FEG≌△FEC .从而GF =FC .于是,BF =2CF .故BD =2CD .3.提示:连结BP '、P'R 、P'C 、P'P ,(1)证四边形APPQ 为平行四边形;(2)证点A 、R 、Q 、P'共圆;(3)证△BP'Q 和△P'RC 为等腰三角形;(4)证∠P'BA =∠ACP ',原题得证. 4.略.5.证明:如图,过点P 作AB 的平行线交BD 于F ,过点F 作BC 的平行线分别交PQ 、AC 于K 、G ,连PG .由BD 平行∠ABC ,可知点F 到AB 、BC 两边距离相等.有KQ =PN .显然,PD EP =FD EF =GDCG,可知PG ∥EC .由CE 平分∠BCA ,知GP 平分∠FGA .有PK =PM .于是,PM +PN =PK +KQ=PQ .6.提示:证B ,Q ,E ,P 和B ,D ,E ,P 分别共圆。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学竞赛讲义(十六)
──平面几何
一、常用定理(仅给出定理,证明请读者完成)
梅涅劳斯定理设分别是ΔABC的三边BC,CA,AB或其延长线上的点,若
三点共线,则
梅涅劳斯定理的逆定理条件同上,若则三点共线。

塞瓦定理设分别是ΔABC的三边BC,CA,AB或其延长线上的点,若
三线平行或共点,则
塞瓦定理的逆定理设分别是ΔABC的三边BC,CA,AB或其延长线上的点,若则三线共点或互相平行。

角元形式的塞瓦定理分别是ΔABC的三边BC,CA,AB所在直线上的点,则
平行或共点的充要条件是
广义托勒密定理设ABCD为任意凸四边形,则AB?CD+BC?AD≥AC?BD,当且仅当A,B,C,D四点共圆时取等号。

斯特瓦特定理设P为ΔABC的边BC上任意一点,P不同于B,C,则有
AP2=AB2?+AC2?-BP?PC.
西姆松定理过三角形外接圆上异于三角形顶点的任意一点作三边的垂线,则三垂足共线。

西姆松定理的逆定理若一点在三角形三边所在直线上的射影共线,则该点在三角形的外接圆上。

九点圆定理三角形三条高的垂足、三边的中点以及垂心与顶点的三条连线段的中点,这九点共圆。

蒙日定理三条根轴交于一点或互相平行。

(到两圆的幂(即切线长)相等的点构成集合为一条直线,这条直线称根轴)
欧拉定理ΔABC的外心O,垂心H,重心G三点共线,且
二、方法与例题
1.同一法。

即不直接去证明,而是作出满足条件的图形或点,然后证明它与已知图形或点重合。

例1 在ΔABC中,∠ABC=700,∠ACB=300,P,Q为ΔABC内部两点,∠QBC=∠QCB=100,∠PBQ=∠PCB=200,求证:A,P,Q三点共线。

[证明] 设直线CP交AQ于P1,直线BP交AQ于P2,因为∠ACP=∠PCQ=100,所以,①在ΔABP,ΔBPQ,ΔABC中由正弦定理有
,②,③④
由②,③,④得。

又因为P1,P2同在线段AQ上,所以P1,P2重合,又BP 与CP仅有一个交点,所以P1,P2即为P,所以A,P,Q共线。

2.面积法。

例2 见图16-1,◇ABCD中,E,F分别是CD,BC上的点,且BE=DF,BE交DF于P,求证:AP为∠BPD的平分线。

[证明] 设A点到BE,DF距离分别为h1,h2,则
又因为S◇ABCD=SΔADF,又BE=DF。

所以h1=h2,所以PA为∠BPD的平分线。

3.几何变换。

例3 (蝴蝶定理)见图16-2,AB是⊙O的一条弦,M为AB中点,CD,EF为过M的任意弦,CF,DE分别交AB于P,Q。

求证:PM=MQ。

[证明] 由题设OM AB。

不妨设。

作D关于直线OM的对称点。

连结,则要证PM=MQ,只需证
,又∠MDQ=∠PFM,所以只需证F,P,M,共圆。

因为∠=1800-=1800-∠=1800-∠。

(因为OM。

AB//)
所以F,P,M,四点共圆。

所以Δ≌ΔMDQ。

所以MP=MQ。

例 4 平面上每一点都以红、蓝两色之一染色,证明:存在这样的两个相似三角形,它们的相似比为1995,而且每个三角形三个顶点同色。

[证明] 在平面上作两个同心圆,半径分别为1和1995,因为小圆上每一点都染以红、蓝两色之一,所以小圆上必有五个点同色,设此五点为A,B,C,D,E,过这两点作半径并将半径延长分别交大圆于A1,B1,C1,D1,E1,由抽屉原理知这五点中必有三点同色,不妨设为A1,B1,C1,则ΔABC与ΔA1B1C1都是顶点同色的三角形,且相似比为1995。

4.三角法。

例5 设AD,BE与CF为ΔABC的内角平分线,D,E,F在ΔABC的边上,如果∠EDF=900,求∠BAC的所有可能的值。

[解] 见图16-3,记∠ADE=α,∠EDC=β,
由题设∠FDA=-α,∠BDF=-β,
由正弦定理:,
得,
又由角平分线定理有,又,所以,化简得,同理,即
所以,所以sinβcosα-cosβsinα=sin(β-α)=0.
又-π<β-α<π,所以β=α。

所以,所以A=π。

5.向量法。

例6 设P是ΔABC所在平面上的一点,G是ΔABC的重心,求证:PA+PB+PC>3PG.
[证明] 因为
,又G 为ΔABC重心,所以
(事实上设AG交BC于E,则,所以)所以,所以
又因为不全共线,上式“=”不能成立,所以PA+PB+PC>3PG。

6.解析法。

例7 H是ΔABC的垂心,P是任意一点,HL PA,交PA于L,交BC于X,HM PB,交PB于M,交CA于Y,HN PC交PC于N,交AB于Z,求证:X,Y,Z三点共线。

[解] 以H为原点,取不与条件中任何直线垂直的两条直线为x轴和y轴,建立直角坐标系,用(x k,y k)表示点k对应的坐标,则直线PA的斜率为,直线HL斜率为
,直线HL的方程为x(x P-x A)+y(y P-y A)=0.
又直线HA的斜率为,所以直线BC的斜率为,直线BC的方程为xx A+yy A=x A x B+y A y B,②又点C在直线BC上,所以x C x A+y C y A=x A x B+y A y B.
同理可得x B x C+y B y C=x A x B+y A y B=x A x C+y A y C.
又因为X是BC与HL的交点,所以点X坐标满足①式和②式,所以点X坐标满足xx P+yy P=x A x B+y A y B.④同理点Y坐标满足xx P+yy P=x B x C+y B y C.⑤点Z坐标满足xx P+yy P=x C x A+y C y A.
由③知④,⑤,⑥表示同一直线方程,故X,Y,Z三点共线。

7.四点共圆。

例8 见图16-5,直线l与⊙O相离,P为l上任意一点,PA,PB为圆的两条切线,A,B为切点,求证:直线AB过定点。

[证明] 过O作OC l于C,连结OA,OB,BC,OP,设OP交AB于M,则OP AB,又因为OA PA,OB PB,OC PC。

所以A,B,C都在以OP为直径的圆上,即O,A,P,C,B五点共圆。

AB与OC是此圆两条相交弦,设交点为Q,
又因为OP AB,OC CP,
所以P,M,Q,C四点共圆,所以OM?OP=OQ?OC。

由射影定理OA2=OM?OP,所以OA2=OQ?OC,所以OQ=(定值)。

所以Q为定点,即直线AB过定点。

三、习题精选
1.⊙O1和⊙O2分别是ΔABC的边AB,AC上的旁切圆,⊙O1与CB,CA的延长线切于E,
G,⊙O2与BC,BA的延长线切于F,H,直线EG与FH交于点P,求证:PA BC。

2.设⊙O的外切四边形ABCD的对角线AC,BD的中点分别为E,F,求证:E,O,F三点共线。

3.已知两小圆⊙O1与⊙O2相外切且都与大圆⊙O相内切,AB是⊙O1与⊙O2的一条外公切线,A,B在⊙O上,CD是⊙O1与⊙O2的内公切线,⊙O1与⊙O2相切于点P,且P,C在直线AB的同一侧,求证:P是ΔABC的内心。

4.ΔABC内有两点M,N,使得∠MAB=∠NAC且∠MBA=∠NBC,求证:
5.ΔABC中,O为外心,三条高AD,BE,CF相交于点H,直线ED和AB相交于点M,直线FD和AC相交于点N,求证:(1)OB DF,OC DE;(2)OH MN。

6.设点I,H分别是锐角ΔABC的内心和垂心,点B1,C1分别是边AC,AB的中点,已知射线B1I交边AB于点B2(B2≠B),射线C1I交AC的延长线于点C2,B2C2与BC相交于点K,A1为ΔBHC的外心。

试证:A,I,A1三点共线的充要条件是ΔBKB2和ΔCKC2的面积相等。

7.已知点A1,B1,C1,点A2,B2,C2,分别在直线l1,l2上,B2C1交B1C2于点M,C1A2交A1C2于点N,B1A2交B2A1于L。

求证:M,N,L三点共线。

8.ΔABC中,∠C=900,∠A=300,BC=1,求ΔABC的内接三角形(三个顶点分别在三条边上的三角形)的最长边的最小值。

9.ΔABC的垂心为H,外心为O,外接圆半径为R,顶点A,B,C关于对边BC,CA,AB 的对称点分别为,求证:三点共线的充要条件是OH=2R。

相关文档
最新文档