2014年中考数学二轮复习精品资料(动点型问题)

合集下载

2014年中考数学分类汇编

2014年中考数学分类汇编

2014年中考数学分类汇编——运动变化类的压轴题一、单动点问题【题1】(2014年江苏徐州第28题)如图,矩形ABCD的边AB=3cm,AD=4cm,点E 从点A出发,沿射线AD移动,以CE为直径作圆O,点F为圆O与射线BD的公共点,连接EF、CF,过点E作EG⊥EF,EG与圆O相交于点G,连接CG.(1)试说明四边形EFCG是矩形;(2)当圆O与射线BD相切时,点E停止移动,在点E移动的过程中,①矩形EFCG的面积是否存在最大值或最小值?若存在,求出这个最大值或最小值;若不存在,说明理由;②求点G移动路线的长.【题2】(2014•湖州第24题)已知在平面直角坐标系xOy中,O是坐标原点,以P(1,1)为圆心的⊙P与x轴,y轴分别相切于点M和点N,点F从点M出发,沿x轴正方向以每秒1个单位长度的速度运动,连接PF,过点PE⊥PF交y轴于点E,设点F运动的时间是t秒(t>0)(1)若点E在y轴的负半轴上(如图所示),求证:PE=PF;(2)在点F运动过程中,设OE=a,OF=b,试用含a的代数式表示b;(3)作点F关于点M的对称点F′,经过M、E和F′三点的抛物线的对称轴交x轴于点Q,连接QE.在点F运动过程中,是否存在某一时刻,使得以点Q、O、E为顶点的三角形与以点P、M、F为顶点的三角形相似?若存在,请直接写出t的值;若不存在,请说明理由.【题3】(2014年四川省绵阳市第24题)如图1,矩形ABCD中,AB=4,AD=3,把矩形沿直线AC折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△DEC≌△EDA;(2)求DF的值;(3)如图2,若P为线段EC上一动点,过点P作△AEC的内接矩形,使其定点Q落在线段AE上,定点M、N落在线段AC上,当线段PE的长为何值时,矩形PQMN的面积最大?并求出其最大值.【题4】(2014年浙江绍兴第25题)如图,在平面直角坐标系中,直线l平行x轴,交y 轴于点A,第一象限内的点B在l上,连结OB,动点P满足∠APQ=90°,PQ交x轴于点C.(1)当动点P与点B重合时,若点B的坐标是(2,1),求PA的长.(2)当动点P在线段OB的延长线上时,若点A的纵坐标与点B的横坐标相等,求PA:PC的值.(3)当动点P在直线OB上时,点D是直线OB与直线CA的交点,点E是直线CP与y 轴的交点,若∠ACE=∠AEC,PD=2OD,求PA:PC的值.【题5】(2014•无锡第28题)如图1,已知点A(2,0),B(0,4),∠AOB的平分线交AB于C,一动点P从O点出发,以每秒2个单位长度的速度,沿y轴向点B作匀速运动,过点P且平行于AB的直线交x轴于Q,作P、Q关于直线OC的对称点M、N.设P运动的时间为t(0<t<2)秒.(1)求C点的坐标,并直接写出点M、N的坐标(用含t的代数式表示);(2)设△MNC与△OAB重叠部分的面积为S.①试求S关于t的函数关系式;②在图2的直角坐标系中,画出S关于t的函数图象,并回答:S是否有最大值?若有,写出S的最大值;若没有,请说明理由.【题6】(2014•杭州第22题)菱形ABCD的对角线AC,BD相交于点O,AC=4,BD=4,动点P在线段BD上从点B向点D运动,PF⊥AB于点F,四边形PFBG关于BD对称,四边形QEDH与四边形PEBG关于AC对称.设菱形ABCD被这两个四边形盖住部分的面积为S1,未被盖住部分的面积为S2,BP=x.(1)用含x的代数式分别表示S1,S2;(2)若S1=S2,求x的值.【题7】(2014.福州第21题)如图1,点O在线段AB上,AO=2,OB=1,OC为射线,且∠BOC=60°. 动点P以每秒2个单位长度的速度从点O出发,沿射线OC做匀速运动. 设运动时间为t秒.(1)当1t2=时,则OP= ▲ ,ABPS∆=▲ ;(2)当△ABP是直角三角形时,求t的值;(3)如图2,当AP=AB时,过点A作AQ∥BP,并使得∠QOP=∠B,求证:AP BP3⋅=.【题8】(2014•成都第28题)如图,已知抛物线y=(x+2)(x﹣4)(k为常数,且k >0)与x轴从左至右依次交于A,B两点,与x轴交于点C,经过点B的直线y=﹣x+b 与抛物线的另一交点为D.(1)若点D的横坐标为﹣5,求抛物线的函数表达式;(2)若在第一象限内的抛物线上有点P,使得以A,B,P为顶点的三角形与△ABC相似,求k的值;(3)在(1)的条件下,设F为线段BD上一点(不含端点),连接AF,一动点M从点A出发,沿线段AF以每秒1个单位的速度运动到F,再沿线段FD以每秒2个单位的速度运动到D后停止,当点F的坐标是多少时,点M在整个运动过程中用时最少?【题9】(2014•黄冈第25题)已知:如图,在四边形OABC中,AB∥OC,BC⊥x轴于点C,A(1,﹣1),B(3,﹣1),动点P从点O出发,沿着x轴正方向以每秒2个单位长度的速度移动.过点P作PQ垂直于直线OA,垂足为点Q,设点P移动的时间t秒(0<t <2),△OPQ与四边形OABC重叠部分的面积为S.(1)求经过O、A、B三点的抛物线的解析式,并确定顶点M的坐标;(2)用含t的代数式表示点P、点Q的坐标;(3)如果将△OPQ绕着点P按逆时针方向旋转90°,是否存在t,使得△OPQ的顶点O或顶点Q在抛物线上?若存在,请求出t的值;若不存在,请说明理由;(4)求出S与t的函数关系式.二、双动点问题【题1】(2014年山东烟台第25题)在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动.(1)如图①,当点E自D向C,点F自C向B移动时,连接AE和DF交于点P,请你写出AE与DF的位置关系,并说明理由;(2)如图②,当E,F分别移动到边DC,CB的延长线上时,连接AE和DF,(1)中的结论还成立吗?(请你直接回答“是”或“否”,不需证明)(3)如图③,当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,(1)中的结论还成立吗?请说明理由;(4)如图④,当E,F分别在边DC,CB上移动时,连接AE和DF交于点P,由于点E,F 的移动,使得点P也随之运动,请你画出点P运动路径的草图.若AD=2,试求出线段CP 的最小值.【题2】(2014•温州第24题)如图,在平面直角坐标系中,点A,B的坐标分别为(﹣3,0),(0,6).动点P从点O出发,沿x轴正方向以每秒1个单位的速度运动,同时动点C 从B出发,沿射线BO方向以每秒2个单位的速度运动,以CP,CO为邻边构造▱PCOD,在线段OP延长线上取点E,使PE=AO,设点P运动的时间为t秒.(1)当点C运动到线段OB的中点时,求t的值及点E的坐标.(2)当点C在线段OB上时,求证:四边形ADEC为平行四边形.(3)在线段PE上取点F,使PF=1,过点F作MN⊥PE,截取FM=2,FN=1,且点M,N 分别在一,四象限,在运动过程中▱PCOD的面积为S.①当点M,N中有一点落在四边形ADEC的边上时,求出所有满足条件的t的值;②若点M,N中恰好只有一个点落在四边形ADEC的内部(不包括边界)时,直接写出S的取值范围.【题3】(2014年湖北随州第25题)平面直角坐标系中,四边形ABCD是菱形,点C 的坐标为(﹣3,4),点A在x轴的正半轴上,O为坐标原点,连接OB,抛物线y=ax2+bx+c 经过C、O、A三点.(1)直接写出这条抛物线的解析式;(2)如图1,对于所求抛物线对称轴上的一点E,设△EBO的面积为S1,菱形ABCD的面积为S2,当S1≤S2时,求点E的纵坐标n的取值范围;(3)如图2,D(0,﹣)为y轴上一点,连接AD,动点P从点O出发,以个单位/秒的速度沿OB方向运动,1秒后,动点Q从O出发,以2个单位/秒的速度沿折线O﹣A ﹣B方向运动,设点P运动时间为t秒(0<t<6),是否存在实数t,使得以P、Q、B为顶点的三角形与△ADO相似?若存在,求出相应的t值;若不存在,请说明理由.【题4】(2014•武汉第24题)如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.(1)若△BPQ与△ABC相似,求t的值;(2)连接AQ,CP,若AQ⊥CP,求t的值;(3)试证明:PQ的中点在△ABC的一条中位线上.【题5】(2014•扬州第28题)已知矩形ABCD 的一条边AD=8,将矩形ABCD 折叠,使得顶点B 落在CD 边上的P 点处.(1)如图1,已知折痕与边BC 交于点O ,连结AP 、OP 、OA .①求证:△OCP ∽△PDA ;②若△OCP 与△PDA 的面积比为1:4,求边AB 的长;(2)若图1中的点P 恰好是CD 边的中点,求∠OAB 的度数;(3)如图2,,擦去折痕AO 、线段OP ,连结BP .动点M 在线段AP 上(点M 与点P 、A 不重合),动点N 在线段AB 的延长线上,且BN=PM ,连结MN 交PB 于点F ,作ME ⊥BP 于点E .试问当点M 、N 在移动过程中,线段EF 的长度是否发生变化?若变化,说明理由;若不变,求出线段EF 的长度.【题6】(2014昆明第23题)如图,在平面直角坐标系中,抛物线)0(32≠-+=a bx ax y 与x 轴交于点A (2-,0)、B (4,0)两点,与y 轴交于点C. (1)求抛物线的解析式;(2)点P 从A 点出发,在线段AB 上以每秒3个单位长度的速度向B 点运动,同时点Q 从B 点出发,在线段BC 上以每秒1个单位长度向C 点运动.其中一个点到达终点时,另一个点也停止运动.当△PBQ 存在时,求运动多少秒使△PBQ 的面积最大,最多面积是多少?(3)当△PBQ 的面积最大时,在BC 下方的抛物线上存在点K ,使2:5S P B QC B K =△△:S ,求K 点坐标.【题7】(2014年四川巴中第31题)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx ﹣4与x轴交于点A(﹣2,0)和点B,与y轴交于点C,直线x=1是该抛物线的对称轴.(1)求抛物线的解析式;(2)若两动点M,H分别从点A,B以每秒1个单位长度的速度沿x轴同时出发相向而行,当点M到达原点时,点H立刻掉头并以每秒个单位长度的速度向点B方向移动,当点M到达抛物线的对称轴时,两点停止运动,经过点M的直线l⊥x轴,交AC或BC于点P,设点M的运动时间为t秒(t>0).求点M的运动时间t与△APH的面积S的函数关系式,并求出S的最大值.。

2014年中考数学压轴题动点问题(学生)

2014年中考数学压轴题动点问题(学生)

2014年中考数学压轴题动点问题(学生)1. (2014上海市14分)如图,在半径为2的扇形AOB中,∠AOB=90°,点C是弧AB上的一个动点(不与点A、B重合)OD⊥BC,OE⊥AC,垂足分别为D、E.(1)当BC=1时,求线段OD的长;(2)在△DOE中是否存在长度保持不变的边?如果存在,请指出并求其长度,如果不存在,请说明理由;(3)设BD=x,△DOE的面积为y,求y关于x的函数关系式,并写出它的定义域.2. (2014福建南平14分)如图,在△ABC中,点D、E分别在边BC、AC上,连接AD、DE,且∠1=∠B=∠C.(1)由题设条件,请写出三个正确结论:(要求不再添加其他字母和辅助线,找结论过程中添加的字母和辅助线不能出现在结论中,不必证明)答:结论一:;结论二:;结论三:.(2)若∠B=45°,BC=2,当点D在BC上运动时(点D不与B、C重合),①求CE的最大值;②若△ADE是等腰三角形,求此时BD的长.(注意:在第(2)的求解过程中,若有运用(1)中得出的结论,须加以证明)3. (2014甘肃兰州12分)如图,Rt△ABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,A、B两点的坐标分别为(-3,0)、(0,4),抛物线y=23x2+bx+c经过点B,且顶点在直线x=52上.(1)求抛物线对应的函数关系式;(2)若把△ABO沿x轴向右平移得到△DCE,点A、B、O的对应点分别是D、C、E,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由;(3)在(2)的条件下,连接BD,已知对称轴上存在一点P使得△PBD 的周长最小,求出P点的坐标;(4)在(2)、(3)的条件下,若点M是线段OB上的一个动点(点M与点O、B不重合),过点M作∥BD交x轴于点N,连接PM、PN,设OM的长为t,△PMN的面积为S,求S和t的函数关系式,并写出自变量t的取值范围,S是否存在最大值?若存在,求出最大值和此时M 点的坐标;若不存在,说明理由.4. (2014广东省9分)如图,抛物线213y=x x 922--与x 轴交于A 、B 两点,与y 轴交于点C ,连接BC 、AC .(1)求AB 和OC 的长;(2)点E 从点A 出发,沿x 轴向点B 运动(点E 与点A 、B 不重合),过点E 作直线l 平行BC ,交AC 于点D .设AE 的长为m ,△ADE 的面积为s ,求s 关于m 的函数关系式,并写出自变量m 的取值范围;(3)在(2)的条件下,连接CE ,求△CDE 面积的最大值;此时,求出以点E 为圆心,与BC 相切的圆的面积(结果保留π).5. (2014贵州毕节16分)如图,直线l 1经过点A (-1,0),直线l 2经过点B(3,0), l 1、l 2均为与y 轴交于点C(0,,抛物线2y=a x+bx+c(a 0)≠经过A 、B 、C 三点。

中考动点问题

中考动点问题

2014年中考数学二轮复习精品资料动点型问题一、中考专题诠释所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.“动点型问题”题型繁多、题意创新,考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等,是近几年中考题的热点和难点。

二、解题策略和解法精讲解决动点问题的关键是“动中求静”.从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。

在动点的运动过程中观察图形的变化情况,理解图形在不同位置的情况,做好计算推理的过程。

在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。

三、中考考点精讲考点一:建立动点问题的函数解析式(或函数图像)函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.例1 (2013•兰州)如图,动点P从点A出发,沿线段AB运动至点B后,立即按原路返回,点P在运动过程中速度不变,则以点B为圆心,线段BP长为半径的圆的面积S与点P 的运动时间t的函数图象大致为()A.B.C.D.思路分析:分析动点P的运动过程,采用定量分析手段,求出S与t的函数关系式,根据关系式可以得出结论.解:不妨设线段AB长度为1个单位,点P的运动速度为1个单位,则:(1)当点P在A→B段运动时,PB=1-t,S=π(1-t)2(0≤t<1);(2)当点P在B→A段运动时,PB=t-1,S=π(t-1)2(1≤t≤2).综上,整个运动过程中,S与t的函数关系式为:S=π(t-1)2(0≤t≤2),这是一个二次函数,其图象为开口向上的一段抛物线.结合题中各选项,只有B符合要求.故选B.点评:本题结合动点问题考查了二次函数的图象.解题过程中求出了函数关系式,这是定量的分析方法,适用于本题,如果仅仅用定性分析方法则难以作出正确选择.对应训练 1.(2013•白银)如图,⊙O 的圆心在定角∠α(0°<α<180°)的角平分线上运动,且⊙O 与∠α的两边相切,图中阴影部分的面积S 关于⊙O 的半径r (r >0)变化的函数图象大致是( )A .B .C .D .1.C考点二:动态几何型题目点动、线动、形动构成的问题称之为动态几何问题. 它主要以几何图形为载体,运动变化为主线,集多个知识点为一体,集多种解题思想于一题. 这类题综合性强,能力要求高,它能全面的考查学生的实践操作能力,空间想象能力以及分析问题和解决问题的能力.动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。

2014中考数学二次函数与四边形的动点问题(含答案)

2014中考数学二次函数与四边形的动点问题(含答案)

72x =B(0,4)A(6,0)EFxyO二次函数与四边形一.二次函数与四边形的形状例1.(浙江义乌市) 如图,抛物线223y x x =--与x 轴交A 、B 两点(A 点在B 点左侧),直线l 与抛物线交于A 、C 两点,其中C 点的横坐标为2.(1)求A 、B 两点的坐标及直线AC 的函数表达式; (2)P 是线段AC 上的一个动点,过P 点作y 轴的平 行线交抛物线于E 点,求线段PE 长度的最大值;(3)点G 是抛物线上的动点,在x 轴上是否存在点F ,使A 、C 、F 、G 这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F 点坐标;如果不存在,请说明理由.例1.解:(1)令y=0,解得11x =-或23x =∴A (-1,0)B (3,0);将C 点的横坐标x=2代入223y x x =--得y=-3,∴C (2,-3)∴直线AC 的函数解析式是y=-x-1 (2)设P 点的横坐标为x (-1≤x ≤2)则P 、E 的坐标分别为:P (x ,-x-1), E (2(,23)x x x --∵P 点在E 点的上方,PE=22(1)(23)2x x x x x -----=-++ ∴当12x =时,PE 的最大值=94(3)存在4个这样的点F ,分别是1234(1,0),(3,0),(470),(47,0)F F F F -+-, 练习 1.解:(1)由抛物线的对称轴是72x =,可设解析式为27()2y a x k =-+.把A 、B 两点坐标代入上式,得227(6)0,27(0) 4.2a k a k ⎧-+=⎪⎪⎨⎪-+=⎪⎩ 解之,得225,.36a k ==- 故抛物线解析式为22725()326y x =--,顶点为725(,).26- (2)∵点(,)E x y 在抛物线上,位于第四象限,且坐标适合22725()326y x =--, ∴y<0,即 -y>0,-y 表示点E 到OA 的距离.∵OA 是OEAF 的对角线, ∴2172264()2522OAE S S OA y y ==⨯⨯⋅=-=--+ . 因为抛物线与x 轴的两个交点是(1,0)的(6,0),所以,自变量x 的 取值范围是1<x <6. ①根据题意,当S = 24时,即274()25242x --+=.A72x =B(0,4) A(6,0)E FxyO化简,得271().24x -=解之,得123, 4.x x == 故所求的点E 有两个,分别为E 1(3,-4),E 2(4,-4). 点E 1(3,-4)满足OE = AE ,所以OEAF 是菱形; 点E 2(4,-4)不满足OE = AE ,所以OEAF 不是菱形. ② 当OA ⊥EF ,且OA = EF 时,OEAF 是正方形,此时点E 的 坐标只能是(3,-3).而坐标为(3,-3)的点不在抛物线上,故不存在这样的点E ,使OEAF 为正方形.练习1.(河南省实验区) 23.如图,对称轴为直线72x =的抛物线经过点A (6,0)和B (0,4). (1)求抛物线解析式及顶点坐标;(2)设点E (x ,y )是抛物线上一动点,且位于第四象限,四边形OEAF是以OA 为对角线的平行四边形.求平行四边形OEAF 的面积S 与x 之间的函数关系式,并写出自变量x 的取值范围;①当平行四边形OEAF 的面积为24时,请判断平行四边形OEAF 是否为菱形?②是否存在点E ,使平行四边形OEAF 为正方形?若存在,求出点E的坐标;若不存在,请说明理由.练习 2.(四川省德阳市)25.如图,已知与x 轴交于点(10)A ,和(50)B ,的抛物线1l 的顶点为(34)C ,,抛物线2l 与1l 关于x 轴对称,顶点为C '.(1)求抛物线2l 的函数关系式;5- 4- 3- 2- 1- 1 234554321 A EBC '1- O2l1lxy(2)已知原点O ,定点(04)D ,,2l 上的点P 与1l 上的点P '始终关于x 轴对称,则当点P 运动到何处时,以点D O P P ',,,为顶点的四边形是平行四边形?(3)在2l 上是否存在点M ,使ABM △是以AB 为斜边且一个角为30的直角三角形?若存,求出点M 的坐标;若不存在,说明理由.练习3.(山西卷)如图,已知抛物线1C 与坐标轴的交点依次是(40)A -,,(20)B -,,(08)E ,. (1)求抛物线1C关于原点对称的抛物线2C 的解析式; (2)设抛物线1C 的顶点为M ,抛物线2C 与x 轴分别交于C D ,两点(点C 在点D 的左侧),顶点为N ,四边形MDNA 的面积为S .若点A ,点D 同时以每秒1个单位的速度沿水平方向分别向右、向左运动;与此同时,点M ,点N 同时以每秒2个单位的速度沿坚直方向分别向下、向上运动,直到点A 与点D 重合为止.求出四边形MDNA 的面积S 与运动时间t 之间的关系式,并写出自变量t 的取值范围;(3)当t 为何值时,四边形MDNA 的面积S 有最大值,并求出此最大值;(4)在运动过程中,四边形MDNA 能否形成矩形?若能,求出此时t 的值;若不能,请说明理由.二.二次函数与四边形的面积例1.(资阳市)25.如图10,已知抛物线P :y=ax 2+bx+c(a ≠0) 与x 轴交于A 、B 两点(点A 在x 轴的正半轴上),与y 轴交于点C ,矩形DEFG 的一条边DE 在线段AB 上,顶点F 、G 分别在线段BC 、AC 上,抛物线P 上部分点的横坐标对应的纵坐标如下:x…-3-212…5-4-3-2-1- 1 2 3 455 4 3 2 1 A EBC '1- O 2l 1lx yy …-52-4-520 …(1) 求A 、B 、C 三点的坐标;(2) 若点D 的坐标为(m ,0),矩形DEFG 的面积为S ,求S 与m 的函数关系,并指出m 的取值范围;(3) 当矩形DEFG 的面积S 取最大值时,连接DF 并延长至点M ,使FM=k ·DF ,若点M 不在抛物线P 上,求k 的取值范围.练习1.(辽宁省十二市2007年第26题).如图,平面直角坐标系中有一直角梯形OMNH ,点H 的坐标为(-8,0),点N 的坐标为(-6,-4).(1)画出直角梯形OMNH 绕点O 旋转180°的图形OABC ,并写出顶点A ,B ,C 的坐标(点M 的对应点为A , 点N 的对应点为B , 点H 的对应点为C );(2)求出过A ,B ,C 三点的抛物线的表达式;(3)截取CE =OF =AG =m ,且E ,F ,G 分别在线段CO ,OA ,AB 上,求四边形BEFG 的面积S 与m 之间的函数关系式,并写出自变量m 的取值范围;面积S 是否存在最小值?若存在,请求出这个最小值;若不存在,请说明理由;(4)在(3)的情况下,四边形BEFG 是否存在邻边相等的情况,若存在,请直接写出此时m 的值,并指出相等的邻边;若不存在,说明理由.练习3.(吉林课改卷)如图,正方形ABCD 的边长为2cm ,在对称中心O 处有一钉子.动点P ,Q 同时从点A 出发,点P 沿A B C →→方向以每秒2cm 的速度运动,到点C 停止,点Q 沿A D→方向以每秒1cm 的速度运动,到点D 停止.P ,Q 两点用一条可伸缩的细橡皮筋联结,设x 秒后橡图10皮筋扫过的面积为2cm y .(1)当01x ≤≤时,求y 与x 之间的函数关系式; (2)当橡皮筋刚好触及钉子时,求x 值;(3)当12x ≤≤时,求y 与x 之间的函数关系式,并写出橡皮筋从触及钉子到运动停止时POQ ∠的变化范围;(4)当02x ≤≤时,请在给出的直角坐标系中画出y 与x 之间的函数图象.练习4.(四川资阳卷)如图,已知抛物线l 1:y =x 2-4的图象与x 轴相交于A 、C 两点,B 是抛物线l 1上的动点(B 不与A 、C 重合),抛物线l 2与l 1关于x 轴对称,以AC 为对角线的平行四边形ABCD 的第四个顶点为D .(1) 求l 2的解析式;(2) 求证:点D 一定在l 2上;(3) □ABCD 能否为矩形?如果能为矩形,求这些矩形公共部分的面积(若只有一个矩形符合条件,则求此矩形的面积);如果不能为矩形,请说明理由. 注:计算结果不取近似值.三.二次函数与四边形的动态探究例1.(荆门市)28. 如图1,在平面直角坐标系中,有一张矩形纸片OABC ,已知O (0,0),A (4,0),C (0,3),点P 是OA 边上的动点(与点O 、A 不重合).现将△PAB 沿PB 翻折,得到△PDB ;再在OC 边上选取适当的点E ,将△POE 沿PE 翻折,得到△PFE ,并使直线PD 、PF 重合.(1)设P (x ,0),E (0,y ),求y 关于x 的函数关系式,并求y 的最大值;(2)如图2,若翻折后点D 落在BC 边上,求过点P 、B 、E 的抛物线的函数关系式;B C PO D QA BPCO DQ A y321O12 x(3)在(2)的情况下,在该抛物线上是否存在点Q ,使△PEQ 是以PE 为直角边的直角三角形?若不存在,说明理由;若存在,求出点Q 的坐标.例2.(2010年沈阳市第26题)、已知抛物线y =ax2+bx +c 与x 轴交于A 、B 两点,与y 轴交于点C ,其中点B 在x 轴的正半轴上,点C 在y 轴的正半轴上,线段OB 、OC 的长(OB <OC )是方程x 2-10x +16=0的两个根,且抛物线的对称轴是直线x =-2.(1)求A 、B 、C 三点的坐标; (2)求此抛物线的表达式;(3)连接AC 、BC ,若点E 是线段AB 上的一个动点(与点A 、点B 不重合),过点E 作EF ∥AC 交BC 于点F ,连接CE ,设AE 的长为m ,△CEF 的面积为S ,求S 与m 之间的函数关系式,并写出自变量m 的取值范围;(4)在(3)的基础上试说明S 是否存在最大值,若存在,请求出S的最大值,并求出此时点E 的坐标,判断此时△BCE 的形状;若不存在,请说明理由.例3..(湖南省郴州) 27.如图,矩形ABCD 中,AB =3,BC =4,将矩形ABCD 沿对角线A 平移,平移后的矩形为EFGH (A 、E 、C 、G 始终在同一条直线上),当点E 与C 重时停止移动.平移中EF 与BC 交于点N ,GH 与BC 的延长线交于点M ,EH 与DC 交于点P ,FG 与DC 的延长线交于点Q .设S 表示矩形PCMH 的面积,S '表示矩形NFQC 的面积.(1) S 与S '相等吗?请说明理由.(2)设AE =x ,写出S 和x 之间的函数关系式,并求出x 取何值时S 有最大值,最大值是多少?图 2OC A Bxy DPE F 图 1FE P D y xBA C O(3)如图11,连结BE ,当AE 为何值时,ABE 是等腰三角形.练习1.(07年河池市)如图12, 四边形OABC 为直角梯形,A (4,0),B (3,4),C (0,4). 点M 从O 出发以每秒2个单位长度的速度向A 运动;点N 从B 同时出发,以每秒1个单位长度的速度向C 运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N 作NP 垂直x 轴于点P ,连结AC 交NP 于Q ,连结MQ .(1)点 (填M 或N )能到达终点;(2)求△AQM 的面积S 与运动时间t 的函数关系式,并写出自 变量t 的取值范围,当t 为何值时,S 的值最大;(3)是否存在点M ,使得△AQM 为直角三角形?若存在,求出点M 的坐标, 若不存在,说明理由.练习2..(江西省) 25.实验与探究(1)在图1,2,3中,给出平行四边形ABCD 的顶点A B D ,,的坐标(如图所示),写出图1,2,3中的顶点C 的坐标,它们分别是(52),, , ; x NM QP H G FE D C B A 图11 Q P N M H GF E D C B A 图10图12yxPQBCNMOA(2)在图4中,给出平行四边形ABCD 的顶点A B D ,,的坐标(如图所示),求出顶点C 的坐标(C 点坐标用含a b c d e f ,,,,,的代数式表示);归纳与发现(3)通过对图1,2,3,4的观察和顶点C 的坐标的探究,你会发现:无论平行四边形ABCD 处于直角坐标系中哪个位置,当其顶点坐标为()()()()A a b B c d C m n D e f ,,,,,,,(如图4)时,则四个顶点的横坐标a c m e ,,,之间的等量关系为 ;纵坐标b d n f ,,,之间的等量关系为 (不必证明);运用与推广(4)在同一直角坐标系中有抛物线2(53)y x c x c =---和三个点15192222G c c S c c ⎛⎫⎛⎫-⎪ ⎪⎝⎭⎝⎭,,,,(20)H c ,(其中0c >).问当c 为何值时,该抛物线上存在点P ,使得以G S H P ,,,为顶点的四边形是平行四边形?并求出所有符合条件的P 点坐标.答案:一.二次函数与四边形的形状例1.解:(1)令y=0,解得11x =-或23x =∴A (-1,0)B (3,0);yC()A(40)D ,(12)B ,O x图1yC()A(0)D e ,()B c d ,O x图2yC()A a b , ()D e b ,()B c d ,Ox图3y C()A a b ,()D e f ,()B c d ,Ox图472x =B(0,4)A(6,0)EFxyO将C 点的横坐标x=2代入223y x x =--得y=-3,∴C (2,-3)∴直线AC 的函数解析式是y=-x-1 (2)设P 点的横坐标为x (-1≤x ≤2)则P 、E 的坐标分别为:P (x ,-x-1), E (2(,23)x x x --∵P 点在E 点的上方,PE=22(1)(23)2x x x x x -----=-++ ∴当12x =时,PE 的最大值=94(3)存在4个这样的点F ,分别是1234(1,0),(3,0),(470),(47,0)F F F F -+-, 练习 1.解:(1)由抛物线的对称轴是72x =,可设解析式为27()2y a x k =-+.把A 、B 两点坐标代入上式,得227(6)0,27(0) 4.2a k a k ⎧-+=⎪⎪⎨⎪-+=⎪⎩ 解之,得225,.36a k ==- 故抛物线解析式为22725()326y x =--,顶点为725(,).26- (2)∵点(,)E x y 在抛物线上,位于第四象限,且坐标适合22725()326y x =--, ∴y<0,即 -y>0,-y 表示点E 到OA 的距离.∵OA 是OEAF 的对角线, ∴2172264()2522OAE S S OA y y ==⨯⨯⋅=-=--+ . 因为抛物线与x 轴的两个交点是(1,0)的(6,0),所以,自变量x 的 取值范围是1<x <6. ③根据题意,当S = 24时,即274()25242x --+=.化简,得271().24x -=解之,得123, 4.x x == 故所求的点E 有两个,分别为E 1(3,-4),E 2(4,-4). 点E 1(3,-4)满足OE = AE ,所以OEAF 是菱形; 点E 2(4,-4)不满足OE = AE ,所以OEAF 不是菱形. ④ 当OA ⊥EF ,且OA = EF 时,OEAF 是正方形,此时点E 的 坐标只能是(3,-3).而坐标为(3,-3)的点不在抛物线上,故不存在这样的点E , 使OEAF 为正方形.练习2.解:(1)由题意知点C '的坐标为(34)-,.设2l 的函数关系式为2(3)4y a x =--.又 点(10)A ,在抛物线2(3)4y a x =--上,2(13)40a ∴--=,解得1a =. ∴抛物线2l 的函数关系式为2(3)4y x =--(或265y x x =-+). 4-3-2- 1-1 2 3 4554 3 2 1 AEBC '1- O 2lxy5-4-3-2-1-12 3D554 32 1 ACEMBC '1-O2l 1l xy(2)P 与P '始终关于x 轴对称, PP '∴与y 轴平行.设点P 的横坐标为m ,则其纵坐标为265m m -+,4OD = ,22654m m ∴-+=,即2652m m -+=±.当2652m m -+=时,解得36m =±.当2652m m -+=-时,解得32m =±.∴当点P 运动到(362)-,或(362)+,或(322)--,或(322)+-,时,P P OD '∥,以点D O P P ',,,为顶点的四边形是平行四边形. (3)满足条件的点M 不存在.理由如下:若存在满足条件的点M 在2l 上,则90AMB ∠= ,30BAM ∠= (或30ABM ∠= ), 114222BM AB ∴==⨯=.过点M 作ME AB ⊥于点E ,可得30BME BAM ∠=∠=.112122EB BM ∴==⨯=,3EM =,4OE =. ∴点M 的坐标为(43)-,.但是,当4x =时,246451624533y =-⨯+=-+=-≠-.∴不存在这样的点M 构成满足条件的直角三角形.练习3. [解] (1)点(40)A -,,点(20)B -,,点(08)E ,关于原点的对称点分别为(40)D ,,(20)C ,,(08)F -,. 设抛物线2C 的解析式是2(0)y ax bx c a =++≠,则16404208a b c a b c c ++=⎧⎪++=⎨⎪=-⎩,,.解得168a b c =-⎧⎪=⎨⎪=-⎩,,.所以所求抛物线的解析式是268y x x =-+-.(2)由(1)可计算得点(31)(31)M N --,,,. 过点N 作NH AD ⊥,垂足为H .当运动到时刻t 时,282AD OD t ==-,12NH t =+.根据中心对称的性质OA OD OM ON ==,,所以四边形MDNA 是平行四边形.所以2AD NS S =△.所以,四边形MDNA 的面积2(82)(12)4148S t t t t =-+=-++. 因为运动至点A 与点D 重合为止,据题意可知04t <≤.所以,所求关系式是24148S t t =-++,t 的取值范围是04t <≤.(3)781444S t ⎛⎫=--+ ⎪⎝⎭,(04t <≤). 所以74t =时,S 有最大值814. 提示:也可用顶点坐标公式来求.(4)在运动过程中四边形MDNA 能形成矩形. 由(2)知四边形MDNA 是平行四边形,对角线是AD MN ,,所以当AD MN =时四边形MDNA 是矩形.所以OD ON =.所以2222OD ON OH NH ==+.所以22420t t +-=.解之得126262t t =-=--,(舍). 所以在运动过程中四边形MDNA 可以形成矩形,此时62t =-.[点评]本题以二次函数为背景,结合动态问题、存在性问题、最值问题,是一道较传统的压轴题,能力要求较高。

2014年中考数学二轮精品复习试卷(三角形)含答案解析

2014年中考数学二轮精品复习试卷(三角形)含答案解析

2014年中考数学二轮精品复习试卷:三角形1、(2013年四川南充3分)下列图形中,∠2>∠1的是【】A.B.C.则D.2、如图,在△ABC中,∠B=∠C,AB=5,则AC的长为【】A.2 B.3 C.4 D.53、下列每组数分别表示三根木棒的长度,将它们首尾连接后,能摆成三角形的一组是A.1,2,6 B.2,2,4 C.1,2,3 D.2,3,44、四边形的内角和的度数为A.180°B.270°C.360°D.540°5、下列各组线段的长为边,能组成三角形的是A.2cm,3cm,4cm B.2cm,3cm,5cmC.2cm,5cm,10cm D.8cm,4cm,4cm6、如图,含30°角的直角三角尺DEF放置在△ABC上,30°角的顶点D在边AB上,DE⊥AB.若∠B为锐角,BC∥DF,则∠B的大小为A.30° B.45° C.60°D.75°7、等腰三角形的一个角是80°,则它顶角的度数是A.80°B.80°或20°C.80°或50°D.20°8、在△ABC中,∠BAC=90°,AB=3,AC=4.AD平分∠BAC交BC于D,则BD的长为A.B.C.D.9、(2013年四川资阳3分)一个正多边形的每个外角都等于36°,那么它是【】A.正六边形B.正八边形C.正十边形D.正十二边形10、(2013年四川南充3分)如图,△ABC中,AB=AC,∠B=70°,则∠A的度数是【】A.70°B.55°C.50°D.40°11、(2013年广东梅州3分)若一个多边形的内角和小于其外角和,则这个多边形的边数是【】A.3 B.4 C.5 D.612、已知△ABC的各边长度分别为3cm,4cm,5cm,则连结各边中点的三角形的周长为A.2cm B.7cm C.5cm D.6cm13、如图,在△ABC中,点D,E分别是AB,AC的中点,∠A=50°,∠ADE=60°,则∠C 的度数为A.50°B.60°C.70°D.80°14、如图,△ABC的周长为26,点D,E都在边BC上,∠ABC的平分线垂直于AE,垂足为Q,∠ACB的平分线垂直于AD,垂足为P,若BC=10,则PQ的长为A.B.C.3 D.415、如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为A.20 B.18 C.14 D.1316、如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E 以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t <6),连接DE,当△BDE是直角三角形时,t的值为A.2 B.2.5或3.5 C.3.5或4.5 D.2或3.5或4.517、如图所示,点E是矩形ABCD的边AD延长线上的一点,且AD=DE,连结BE交CD 于点O,连结AO,下列结论不正确的是【】A.△AOB≌△BOC B.△BOC≌△EOD C.△AOD≌△EOD D.△AOD≌△BOC18、如图,已知直线a∥b,且a与b之间的距离为4,点A到直线a的距离为2,点B到直线b的距离为3,AB=.试在直线a上找一点M,在直线b上找一点N,满足MN⊥a 且AM+MN+NB的长度和最短,则此时AM+NB=A.6 B.8 C.10 D.1219、(2013年四川资阳3分)如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是【】A.48 B.60 C.76 D.8020、(2013年四川攀枝花3分)如图,在△ABC中,∠CAB=75°,在同一平面内,将△ABC 绕点A旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′=【】A.30°B.35°C.40°D.50°二、填空题()21、一个六边形的内角和是 .22、如图,某山坡的坡面AB=200米,坡角∠BAC=30°,则该山坡的高BC的长为米。

(完整word版)2014年中考数学二轮复习精品资料(归纳猜想型问题),推荐文档

(完整word版)2014年中考数学二轮复习精品资料(归纳猜想型问题),推荐文档

2014年中考数学二轮复习精品资料归纳猜想型问题一、中考专题诠释归纳猜想型问题在中考中越来越被命题者所注重。

这类题要求根据题目中的图形或者数字,分析归纳,直观地发现共同特征,或者发展变化的趋势,据此去预测估计它的规律或者其他相关结论,使带有猜想性质的推断尽可能与现实情况相吻合,必要时可以进行验证或者证明,依此体现出猜想的实际意义。

二、解题策略和解法精讲归纳猜想型问题对考生的观察分析能力要求较高,经常以填空等形式出现,解题时要善于从所提供的数字或图形信息中,寻找其共同之处,这个存在于个例中的共性,就是规律。

其中蕴含着“特殊——一般——特殊”的常用模式,体现了总结归纳的数学思想,这也正是人类认识新生事物的一般过程。

相对而言,猜想结论型问题的难度较大些,具体题目往往是直观猜想与科学论证、具体应用的结合,解题的方法也更为灵活多样:计算、验证、类比、比较、测量、绘图、移动等等,都能用到。

由于猜想本身就是一种重要的数学方法,也是人们探索发现新知的重要手段,非常有利于培养创造性思维能力,所以备受命题专家的青睐,逐步成为中考的持续热点。

三、中考考点精讲考点一:猜想数式规律通常给定一些数字、代数式、等式或者不等式,然后猜想其中蕴含的规律。

一般解法是先写出数式的基本结构,然后通过横比(比较同一等式中不同部分的数量关系)或纵比(比较不同等式间相同位置的数量关系)找出各部分的特征,改写成要求的格式。

例1 (2013•巴中)观察下面的单项式:a,-2a2,4a3,-8a4,…根据你发现的规律,第8个式子是.思路分析:根据单项式可知n为双数时a的前面要加上负号,而a的系数为2(n-1),a的指数为n.解:第八项为-27a8=-128a8.点评:本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.对应训练1.(2013•株洲)一组数据为:x,-2x2,4x3,-8x4,…观察其规律,推断第n个数据应为.1.(-2)n-1x n考点二:猜想图形规律根据一组相关图形的变化规律,从中总结通过图形的变化所反映的规律。

2014年学业水平考试数学专题复习(压轴)

2014年学业水平考试数学专题复习(压轴)

2014年中考数学压轴题专题复习1.1 因动点产生的相似三角形问题例1 2013年上海市中考第24题如图1,在平面直角坐标系xOy 中,顶点为M 的抛物线y =ax 2+bx (a >0)经过点A 和x 轴正半轴上的点B ,AO =BO =2,∠AOB =120°.(1)求这条抛物线的表达式;(2)连结OM ,求∠AOM 的大小;(3)如果点C 在x 轴上,且△ABC 与△AOM 相似,求点C 的坐标.图1满分解答(1)如图2,过点A 作AH ⊥y 轴,垂足为H .在Rt △AOH 中,AO =2,∠AOH =30°,所以AH =1,OH A (1-.因为抛物线与x 轴交于O 、B (2,0)两点,设y =ax (x -2),代入点A (1-,可得a = 图2所以抛物线的表达式为2(2)y x x x x =-=.(2)由221)3333y x x x =-=--得抛物线的顶点M 的坐标为(1,.所以tan BOM ∠=.所以∠BOM =30°.所以∠AOM =150°.(3)由A (1-、B (2,0)、M (1,,得tan ABO ∠=AB =OM =所以∠ABO =30°,OA OM = 因此当点C 在点B 右侧时,∠ABC =∠AOM =150°.△ABC 与△AOM 相似,存在两种情况:①如图3,当BA OABC OM ==时,2BC ===.此时C (4,0).②如图4,当BC OA BA OM ==时,6BC ===.此时C (8,0).图3 图4考点伸展在本题情境下,如果△ABC 与△BOM 相似,求点C 的坐标.如图5,因为△BOM 是30°底角的等腰三角形,∠ABO =30°,因此△ABC 也是底角为30°的等腰三角形,AB =AC ,根据对称性,点C 的坐标为(-4,0).图5例2 2013年苏州市中考第29题如图1,已知抛物线211(1)444b y x b x =-++(b 是实数且b >2)与x 轴的正半轴分别交于点A 、B (点A 位于点B 是左侧),与y 轴的正半轴交于点C .(1)点B 的坐标为______,点C 的坐标为__________(用含b 的代数式表示);(2)请你探索在第一象限内是否存在点P ,使得四边形PCOB 的面积等于2b ,且△PBC是以点P 为直角顶点的等腰直角三角形?如果存在,求出点P 的坐标;如果不存在,请说明理由;(3)请你进一步探索在第一象限内是否存在点Q ,使得△QCO 、△QOA 和△QAB 中的任意两个三角形均相似(全等可看作相似的特殊情况)?如果存在,求出点Q 的坐标;如果不存在,请说明理由.图1思路点拨1.第(2)题中,等腰直角三角形PBC 暗示了点P 到两坐标轴的距离相等.2.联结OP ,把四边形PCOB 重新分割为两个等高的三角形,底边可以用含b 的式子表示.3.第(3)题要探究三个三角形两两相似,第一直觉这三个三角形是直角三角形,点Q 最大的可能在经过点A 与x 轴垂直的直线上.满分解答(1)B 的坐标为(b , 0),点C 的坐标为(0,4b ). (2)如图2,过点P 作PD ⊥x 轴,PE ⊥y 轴,垂足分别为D 、E ,那么△PDB ≌△PEC . 因此PD =PE .设点P 的坐标为(x, x).如图3,联结OP .所以S 四边形PCOB =S △PCO +S △PBO =1152428b x b x bx ⨯⋅+⨯⋅==2b . 解得165x =.所以点P 的坐标为(1616,55).图2 图3(3)由2111(1)(1)()4444b y x b x x x b =-++=--,得A (1, 0),OA =1. ①如图4,以OA 、OC 为邻边构造矩形OAQC ,那么△OQC ≌△QOA . 当BA QA QA OA=,即2QA BA OA =⋅时,△BQA ∽△QOA .所以2()14b b =-.解得8b =±Q 为(1,2.②如图5,以OC为直径的圆与直线x=1交于点Q,那么∠OQC=90°。

2014年数学中考二轮专题复习课件:方案设计型问题

2014年数学中考二轮专题复习课件:方案设计型问题

(3)∵ x= 15> 10, ∴①选择在 A 超市购买, yA=27× 15+ 270= 675(元); ②可先在 B 超市购买 10 副羽毛球拍,送 20 个羽毛球, 然后在 A 超市购买剩下的羽毛球 10× 15-20= 130(个 ),则 共需费用: 10× 30+130× 3× 0.9= 651(元 ). ∵ 651<675, ∴最省钱的购买方案是:先在 B 超市购买 10 副羽毛球 拍,然后在 A 超市购买 130 个羽毛球.
D)
解:设购买甲种笔记本 x 本,乙种笔记本 y 本,则 7x+5y≤ 50,且 x≥3,y≥3.根据题意有如下方案:①
x= 3, y= 3,用去 36 元;② x= 3, y= 4,用去 41 元;
③ x= 3,y=5,用去 46 元;④x=4,y=3,用去 43 元; ⑤ x= 4, y=4, 用去 48 元; ⑥ x= 5, y=3, 用去 50 元. 所 以共 6 种方案.故选 D.
∴“益安”车队载重量为 8 吨的卡车有 5 辆, 10 吨的卡车有 7 辆.
(2)设载重量为 8 吨的卡车增加了 z 辆,则载重量 为 10 吨的卡车增加了(6- z)辆,由题意,得 5 8(5+ z)+ 10(7+ 6- z)>165,解得 z< . 2 ∵ z≥ 0 且为整数,∴ z= 0,1,2. ∴ 6- z= 6,5,4.
2014年人教新课标版中考二轮复习
方案设计型问题
考点梳理
方案与设计问题是指解决问题的方案决策问题,同一个问
题往往有多种不同的解决方案,但其中最科学、最合理的方案
常常仅有一种.随着课程改革的全面展开和逐步深化,有利于
考查学生创新意识和实践能力的方案设计问题已经成为中考命
题的一大热点.

2014年中考数学第二轮专题复习--动态问题-2.doc

2014年中考数学第二轮专题复习--动态问题-2.doc

2014年中考数学第二轮专题复习--动态问题巩固练习答案1.(4+2)解析:根据图②判断出AB 、BC 的长度,过点B 作BE ⊥AD 于点E ,然后求出梯形ABCD 的高BE ,再根据t=2时△PAD 的面积求出AD 的长度,过点C 作CF ⊥AD 于点F ,然后求出DF 的长度,利用勾股定理列式求出CD 的长度,然后求出AB 、BC 、CD 的和,再根据时间=路程÷速度计算即可得解.解:由图②可知,t 在2到4秒时,△PAD 的面积不发生变化,∴在AB 上运动的时间是2秒,在BC 上运动的时间是4﹣2=2秒,∵动点P 的运动速度是1cm/s ,∴AB=2cm ,BC=2cm ,过点B 作BE ⊥AD 于点E ,过点C 作CF ⊥AD 于点F ,则四边形BCFE 是矩形,∴BE=CF ,BC=EF=2cm ,∵∠A=60°,∴BE=ABsin60°=2×=,AE=ABcos60°=2×=1,∴×AD ×BE=3,即×AD ×=3,解得AD=6cm , ∴DF=AD ﹣AE ﹣EF=6﹣1﹣2=3,在Rt △CDF 中,CD===2,所以,动点P 运动的总路程为AB+BC+CD=2+2+2=4+2,∵动点P 的运动速度是1cm/s , ∴点P 从开始移动到停止移动一共用了(4+2)÷1=4+2(秒). 故答案为:(4+2).2. C3. B4. B5. A6. A7.解:(1) 2;9、(2) 当5≤x ≤9时y = S 梯形ABCQ –S △ABP –S △PCQ =21(5+x -4)×421-×5(x -5)21-(9-x )(x -4) 2657212+-=x x2657212+-=x x y当9<x ≤13时y =21(x -9+4)(14-x ) 35219212-+-=x x 35219212-+-=x x y当13<x ≤14时 CP(Q )y =21×8(14-x )=-4x +56 即y =-4x +56 (3) 当动点P 在线段BC 上运动时, ∵154=y S 梯形ABCD 154=×21 (4+8)×5 = 8即x ²-14x +49 = 0解得x 1 = x 2 = 7∴当x =7时,154=y S 梯形ABCD (4) 9101961921=x8.解析(1) 如图第22题-1所示,平移对角线DB,交AB 的延长线于P.则四边形BPCD 是平行四边形,BD =PC,BP =DC因为等腰梯形ABCD,AB ∥CD,所以AC =BD. 所以AC =PC.又高CE==所以AE =EP=所以∠AHB =90°AC =4;第22题图-1⑵直线移动有两种情况:302x <<及322x ≤≤,需要分类讨论.①当302x <<时, 有2214S AG S AF ⎛⎫== ⎪⎝⎭.∴213S S ≠②当322x ≤≤时,先用含有x 的代数式分别表示1S ,2S ,然后由213S S =列出方程,解之可得x 的值;(3) 分情况讨论:①当302x <<时, 214S m S ==.②当322x ≤≤时,由21S mS =,得()222188223x S m S x --===2123643x ⎛⎫--+ ⎪⎝⎭.然后讨论这个函数的最值,确定m 的变化范围.解:(1) 90°,4;(2)直线移动有两种情况:302x <<及322x ≤≤. ①当302x <<时,∵MN ∥BD,∴△AMN ∽△ARQ,△ANF ∽△AQG. 2214S AG S AF ⎛⎫== ⎪⎝⎭.∴213S S ≠ ②当322x ≤≤时, 如图第22题-2所示,第22题图-2CG =4-2x,CH =1,14122BCD S ∆=⨯⨯=. ()22422821CRQ x S x ∆-⎛⎫=⨯=- ⎪⎝⎭ 2123S x =,()22882S x =-- 由213S S =,得方程()22288233x x --=⨯,解得165x =(舍去),22x =. ∴x =2.(3) 当302x <<时,m =4 当322x ≤≤时, 由21S mS =,得()2288223x m x --==2364812x x -+-=2123643x ⎛⎫--+ ⎪⎝⎭. M 是1x 的二次函数, 当322x ≤≤时, 即当11223x ≤≤时, M 随1x 的增大而增大. 当32x =时,最大值m =4. 当x =2时,最小值m =3. ∴3≤m ≤4.点评:本题是一道几何代数综合压轴题,重点考查等腰梯形, 相似三角形的性质,二次函数的增减性和最值及分类讨论,由特殊到一般的数学思想等的综合应用.解题时,(1)小题,通过平移对角线,将等腰梯形转化为等腰三角形,从而使问题得以简化,是我们解决梯形问题常用的方法.9.解:(1)∵AM AN AB AC=,∠A =∠A . ∴ △AMN ∽ △ABC .(2)在Rt △ABC 中,BC =10. 由(1)知 △AMN ∽ △ABC .∴ 48M N A M x B C A B == ,∴ 5M N x =, ∴⊙O 的半径r =52x可求得圆心O 到直线BC 的距离d =4812105x - ∵⊙O 与直线BC 相切 ∴4812105x -=52x . 解得x =4849当x =4849时,⊙O 与直线BC 相切 (3)当P 点落在直线BC 上时,则点M 为AB 的中点. 故以下分两种情况讨论:①当0<x ≤1时,2Δ6P M N y S x ==. ∴ 当x =1时,2616.y =⨯=最大② 当1<x <2时, 设MP 交BC 于E ,NP 交BC 于F MB =8-4x ,MP =MA =4x∴PE =4x -(8-4x )=8x -8 M N P P E F y S S ∆∆=-22288664x x x x -⎛⎫=-= ⎪⎝⎭ 241883x ⎛⎫--+ ⎪⎝⎭ ∴ 当43x =时,8y =最大. 综上所述,当43x =时,y 值最大,最大值是8。

初中数学中考复习动态型问题(动点动线动面)专项练习及答案解析(50道)

初中数学中考复习动态型问题(动点动线动面)专项练习及答案解析(50道)

初中数学中考复习动态型问题(动点动线动面)专项练习及答案解析(50道)一、选择题1、如图,在△ABC中,∠B=90°,tan∠C=,AB=6cm.动点P从点A开始沿边AB向点B 以1cm/s的速度移动,动点Q从点B开始沿边BC向点C以2cm/s的速度移动.若P,Q两点分别从A,B两点同时出发,在运动过程中,△PBQ的最大面积是()A.18cm2B.12cm2C.9cm2D.3cm22、如图,已知矩形ABCD中,R、P分别是DC、BC上的点,E、F分别是AP、RP的中点,当P在BC上从B向C移动而R不动时,那么下列结论成立的是()A.线段EF的长逐渐增大B.线段EF的长逐渐减小C.线段EF的长不改变D.线段EF的长不能确定3、如图,矩形ABCD中,AB=3,BC=4,动点P从A点出发,按A→B→C的方向在AB和BC 上移动,记PA=x,点D到直线PA的距离为y,则y关于x的函数图象大致是()A.B.C. D.4、数轴上一动点A向左移动3个单位长度到达点B,再向右移动4个单位长度到达点C,若点C表示的数为1,则点A表示的数为()A.7 B.1 C.0 D.﹣15、如图,正方形ABCD边长为4个单位,两动点P、Q分别从点A、B处,以1单位/s、2单位/s的速度逆时针沿边移动.记移动的时间为x(s),△PBQ面积为y(平方单位),当点Q移动一周又回到点B终止,则y与x的函数关系图象为()A. B.C. D.6、如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止.设小三角形移动的距离为x,两个三角形重叠面积为y,则y关于x的函数图象是()A.B.C.D.7、如图,一张半径为1的圆形纸片在边长为a(a≥3)的正方形内任意移动,则该正方形内,这张圆形纸片“不能接触到的部分”的面积是()A.a2﹣πB.(4﹣π)a2C.πD.4﹣π8、如图所示,直线CD与以线段AB为直径的圆相切于点D并交BA的延长线于点C,且AB=2,AD=1,P点在切线CD的延长线上移动时,则△PBD的外接圆的半径的最小值为()A.1 B.C.D.9、如图,等边△ABC的边长为2cm,点P从点A出发,以1cm/s的速度向点C移动(到达点C后停止运动),同时点Q从点A出发,以1cm/s的速度沿AB﹣BC的方向向点C移动(到达点C后停止),若△APQ的面积为S(cm2),则下列最能反映S(cm2)与移动时间t (s)之间函数关系的大致图象是图2()A.B.C.D.10、如图,矩形ABCD中,AB=3,BC=4,点P从A点出发,按A→B→C的方向在AB和BC上移动.记PA=x,点D到直线PA的距离为y,则y关于x的函数大致图象是()A.B.C.D.11、如图,已知矩形ABCD中,R、P分别是DC、BC上的点,E、F分别是AP、RP的中点,当P在BC上从B向C移动而R不动时,那么下列结论成立的是()A.线段EF的长逐渐增大B.线段EF的长逐渐减小C.线段EF的长不改变D.线段EF的长不能确定12、如图,矩形ABCD中,AB=3,BC=4,点P从A点出发,按A→B→C的方向在AB和BC上移动.记PA=x,点D到直线PA的距离为y,则y关于x的函数大致图象是()A.B.C.D.13、如图,△ABC是等腰直角三角形,∠A=90°,BC=4,点P是△ABC边上一动点,沿B→A→C的路径移动,过点P作PD⊥BC于点D,设BD=x,△BDP的面积为y,则下列能大致反映y与x函数关系的图象是()A.B.C.D.14、已知如图,等腰三角形ABC的直角边长为a,正方形MNPQ的边为b (a<b),C、M、A、N在同一条直线上,开始时点A与点M重合,让△ABC向右移动,最后点C与点N重合.设三角形与正方形的重合面积为y,点A移动的距离为x,则y关于x的大致图象是()二、填空题15、如图,△ABC是边长6的等边三角形,动点P、Q同时从A、B两点出发,分别在AB、BC边上均速移动,它们的速度分别为V p=2cm/s, V Q=1cm/s,当点P到达点B时, P、Q两点停止运动,设点P的运动时间为ts,则当t=___ s时,△PBQ为直角三角形.16、如图,AO OM,OA=4,点B为射线OM上的一个动点,分别以OB,AB为直角边,B为直角顶点,在OM两侧作等腰Rt△OBF.等腰Rt△ABE,连接EF交OM于P点,当点B在射线OM上移动时,则PB的长度为_________.17、如图,在菱形ABCD中,AB=4cm,∠ADC=120°,点E、F同时由A、C两点出发,分别沿AB、CB方向向点B匀速移动(到点B为止),点E的速度为1cm/s,点F的速度为2cm/s,经过t秒△DEF为等边三角形,则t的值为.18、动手操作:在矩形纸片ABCD中,AB=3,AD=5.如图所示,折叠纸片,使点A落在BC 边上的A′处,折痕为PQ,当点A′在BC边上移动时,折痕的端点P、Q也随之移动.若限定点P、Q分别在AB、AD边上移动,则点A′在BC边上可移动的最大距离为.19、如图,在△ABC中,∠B=90°,AB=12mm,BC=24mm,动点P从点A开始沿边AB向B以2mm/s的速度移动(不与点B重合),动点Q从点B开始沿边BC向C以4mm/s的速度移动(不与点C重合).如果P、Q分别从A、B同时出发,那么经过秒,四边形APQC的面积最小.20、如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动1个单位,依次得到点(0,1),(1,1),(1,0),(1,-1),(2,-1),(2,0),…,则点的坐标是.21、如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm,动点M、N从点C同时出发,均以每秒1cm的速度分别沿CA、CB向终点A、B移动,同时动点P从点B出发,以每秒2cm的速度沿BA向终点A移动,连接PM,PN,MN,设移动时间为t(单位:秒,0<t<2.5).(1)当时间为t秒时,点P到BC的距离为cm.(2)当t为何值时,以A,P,M为顶点的三角形与△ABC相似?(3)是否存在某一时刻t,使四边形APNC的面积S有最小值?若存在,求S的最小值;若不存在,请说明理由.22、如图,将边长为12的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△A′B′C′,当两个三角形重叠部分的面积为32时,它移动的距离AA′等于.23、如图,直线AB、CD相交于点O,∠AOC=30°,⊙P的半径为1cm,且OP=4cm,如果⊙P 以1cm/s的速度沿由A向B的方向移动,那么秒后⊙P与直线CD相切.三、解答题24、如图,矩形ABCD中,AB=6cm,BC=12cm,点P从A开始沿AB边向点B以1厘米/秒的速度移动,点Q从点B开始沿BC边向点C以2厘米/秒的速度移动。

2014年数学中考二轮专题复习课件:动态型问题

2014年数学中考二轮专题复习课件:动态型问题
Biblioteka ∵∠ACE=3×24=72°,
∴∠AOE=2∠ACE=144°.
∴点E 在量角器上对应的读数是 144°.
答案:144°
考点三、面动型问题 例3、(2013 · 潍坊)如图 ,将一个边长为 2 的正 方形 ABCD 和一个长为 2、宽为 1 的长方形 CEFD 拼在一起, 构成一个大的长方形 ABEF.现将小长方形 CEFD 绕点 C 按顺时

2 3 = 2 k +b , P 、 M 的 直线 解 析 式为 y = kx + b , ∴ 3 解得 k2t+ b= 0, 3 k= , 3( 1-t) 3 2 3t 即直线 PM: y= x- , 3 ( 1 -t ) 3 ( 1 -t ) - 2 3t b= , 3 ( 1 - t )
∴BE=CE=CE′=4. ∵AB⊥BC,CD⊥BC,
∴CF∥AB,△CE′F∽△BE′A.
CE′ CF 4 CF ∴ = ,即 = ,解得 CF=2. BE′ AB 8+4 6
∴DF=CD-CF=6-2=4.
答案:D
考点二、线动型问题 例 2:(2013 年甘肃兰州)如图 ,量角器的直径与直角
三角板 ABC 的斜边 AB 重合,其中量角器 0 刻度线的端点 N 与
即 3(1- t)y=x-2t.又 0≤ t≤2 时, Q(3- t, 3),代入 上式,得: 3(1- t)× 3= 3-t-2t,恒成立,即 0≤ t≤2 时,
P、M、Q 总在一条直线上,即 M 在直线 PQ 上;2<t≤3 时,OQ
4- t 3( 4- t) = 4- t,∠QOP= 60°,∴Q( , ),代入上式, 2 2 3( 4- t) 4- t 4 得: × 3(1- t)= - 2t,解得:t= 2 或 t= , 2 2 3 均不合题意,应舍去. ∴综合所述,可知:过 A、B、C 三点的抛物线的对称轴、直 线 OB 和 PQ 能够交于一点,此时 0≤ t≤2.

2014年数学中考二轮专题复习课件:操作探究型问题

2014年数学中考二轮专题复习课件:操作探究型问题

3、图形分割型动手操作题 图形分割型动手操作题就是按照要求把一个图形 先分割成若干块,然后再把它们拼合成一个符合条件 的图形. 4、作图型动手操作题 作图型动手操作题就是通过平移、对称、旋转或 位似等变换作出已知图形的变换图形.
题型分类 深度剖析
考点一 变换作图 例 1 、图①、图②是两张形状、大小完全相同的方
A. 12
B.24
C. 12 3
D. 16 3
解: 在矩形 ABCD 中, AD∥ BCB′=∠ EFB= 60° .根据翻折变换 的性质∠ FEA′=∠ AEF= 120°,∴∠A′EB′=∠FEA ′-∠ FEB′= 120°- 60°= 60°.在 Rt△A′EB′ 中,A′B′=EA′·tan∠ A′ EB′= 2× tan 60°=2 × 3= 2 3,∴AB= A′ B′= 2 3,因此,矩形 ABCD 的面积= AD· AB= (AE+ ED)· AB= (2+ 6)×2 3= 16 3. 故选 D.
2014年人教新课标版中考二轮复习
操作探究型问题
考点梳理
近年来,中考数学试题加强了对动手操作能力的 考查,这类试题能够有效地考查实践能力、创新意识 和直觉思维能力.解决这类问题需要通过观察、操作、 比较、猜想、分析、综合、抽象和概括等实践活动和 思维过程,灵活运用所学知识和生活经验,探索和发 现结论,从而解决问题.
格纸,方格纸中的每个小正方形的边长均为 1,点 A 和点
B 在小正方形的顶点上.
(1)在图①中画出△ ABC(点 C 在小正方形的顶点 上 ),使△ABC 为直角三角形 (画一个即可 ); (2)在图②中画出△ ABD(点 D 在小正方形的顶点 上 ),使△ABD 为等腰三角形 (画一个即可 ).

2014年中考数学试题分类汇编解析动态问题

2014年中考数学试题分类汇编解析动态问题

动态问题一、选择题1. (2014?山东潍坊,第8题3分)如图,已知矩形ABCD的长AB为5,宽BC为4. E是BC边上的一个动点,AE丄上EF,EF交CD于点F.设BE=x,FC=y,则点E从点B运动到点C时,能表示y关于x的函数关系的大致图象是()考点:动点问题的函数图象.分析:易证△ ABEECF,根据相似比得出函数表达式,在判断图像解答:因为△ ABEECF,贝U BE: CF=AB: EC,即卩x:y=5: (4 —x)y,1 4整理,得y= — -- (x —2)2+—,5 54很明显函数图象是开口向下、顶点坐标是(2, )的抛物线•对应A选项.5 故选:A.点评:此题考查了动点问题的函数图象,关键列出动点的函数关系,再判断选项.2. (2014?山东烟台,第12题3分)如图,点P是?ABCD边上一动点,沿B的路径移动,设P点()经过的路径长为x, △ BAP的面积是y,则下列能大致反映y 与x的函数关系的图象是考点:平行四边形的性质,函数图象.分析:分三段来考虑点P沿A T D运动,△ BAP的面积逐渐变大;点P沿D T C移动,△ BAP 的面积不变;点P沿C T B的路径移动,△ BAP的面积逐渐减小,据此选择即可. 解答:点P沿A T D运动,△ BAP的面积逐渐变大;点P沿D T C移动,△ BAP的面积不变;点P沿C T B的路径移动,△ BAP的面积逐渐减小.故选:A.AC B 16OB4 8点评:本题考查了动点问题的函数图象•本题以动态的形式考查了分类讨论的思想,函数的知识和等腰直角三角形,具有很强的综合性.考点:动点问题的函数图象.分析:根据三角形的面积即可求出 S 与t 的函数关系式,根据函数关系式选择图象. 解答:解:①当0W 詔 时,S=MM =t 2,即卩s=t 2该函数图象是开口向上的抛物线的一部分. 故B 、C 错误;2 2②当 4V t 宅时,S=16—X ( t - 4) X ( t - 4) =t 2,即卩 S=- t 2+4t+8 • 该函数图象是开口向下的抛物线的一部分.故A 错误. 故选:D .、填空题1. (2014?江苏徐州,第18题3分)如图①,在正方形ABCD 中,点P 沿边DA 从点D 开 始向点A 以1cm/s 的速度移动;同时,点 Q 沿边AB 、BC 从点A 开始向点C 以2cm/s 的速 度移动.当点P 移动到点A 时,P 、Q 同时停止移动.设点 P 出发xs 时,△ PAQ 的面积为 ycm 2, y 与x 的函数图象如图 ②,则线段EF 所在的直线对应的函数关系式为y= - 3x+18点评:本题主要考查了动点问题的函数图象.注意分段考虑.3. (2014?甘肃兰州,第15题4分)如图,在平面直角坐标系中,四边形 OBCD 是边长为4 的正方形,平行于对角线 BD 的直线I 从O 出发,沿x 轴正方向以每秒1个单位长度的速度 运动,运动到直线l 与正方形没有交点为止.设直线 I 扫过正方形 OBCD 的面积为S ,直线l 运动的时间为t (秒),下列能反映S 与t 之间函数关系的图象是()8D考点:动点问题的函数图象.分析:根据从图②可以看出当Q点到B点时的面积为9,求出正方形的边长,再利用三角形的面积公式得出EF所在的直线对应的函数关系式.解答:解:•••点P沿边DA从点D开始向点A以1cm/s的速度移动;点Q沿边AB、BC 从点A 开始向点C以2cm/s的速度移动.•••当P点到AD的中点时,Q到B点,从图②可以看出当Q点到B点时的面积为9,• 9= X (AD ) ?AB ,•/ AD=AB ,• AD=6,即正方形的边长为6,当Q点在BC上时,AP=6 - x, △ APQ的高为AB ,• y= (6 - x) >6,1 卩y= - 3x+18 .故答案为:y= - 3x+18 .点评:本题主要考查了动点函数的图象,解决本题的关键是求出正方形的边长.三、解答题21. (2014?四川巴中,第31题12分)如图,在平面直角坐标系xOy中,抛物线y=ax +bx- 4 与x轴交于点A (- 2, 0)和点B,与y轴交于点C,直线x=1是该抛物线的对称轴.(1)求抛物线的解析式;(2)若两动点M, H分别从点A, B以每秒1个单位长度的速度沿x轴同时出发相向而行,当点M到达原点时,点H 立刻掉头并以每秒个单位长度的速度向点B方向移动,当点M到达抛物线的对称轴时,两点停止运动,经过点M的直线I丄x轴,交AC或BC于点P,设点M的运动时间为t秒(t> 0).求点M的运动时间t与厶APH的面积S的函数关系式,并求出S 的最大值.考点:二次函数综合题.分析:(1)根据抛物线y=ax2+bx-4与x轴交于点A (- 2, 0),直线x=1是该抛物线的2b- 4=0对称轴,得到方程组* b ,解方程组即可求出抛物线的解析式;I g(2)由于点M到达抛物线的对称轴时需要3秒,所以t<3,又当点M到达原点时需要2秒,且此时点H立刻掉头,所以可分两种情况进行讨论:①当O V t<2时,由△ AMPAOC,得出比例式,求出PM , AH,根据三角形的面积公式求出即可;②当2V t<3时,过点P作PM丄x轴于M , PF丄y轴于点F,表示出三角形APH的面积,利用配方法求出最值即可. 解答:(1 )•••抛物线y=ax2+bx- 4与x轴交于点A (- 2, 0),直线x=1是该抛物线的对称轴,,解得: •••抛物线的解析式是: y=x - x- 4,b=- 1(2)分两种情况:①当O V t<2时,• PM // OC ,•△ AMPAOC,•<',即f= ,• PM=2t.OC AO 4解方程x2- x- 4=0 ,得x i= - 2, x2=4,• A (- 2, 0), • B (4, 0) , • AB =4 -(- 2) =6 .•/ AH=AB- BH=6 - t ,• S=PM?AH = X2t (6 - t) = - t2+6t= -(t - 3) 2+9 ,当t=2时S的最大值为8;②当2V t<3时,过点P作PM丄x轴于M ,作PF丄y轴于点F ,则厶COB s^ CFP ,又• CO=OB,••• FP=FC=t-2, PM=4—( t - 2) =6 - t, AH=4+ (t—2) =t+1 ,••• S=PM?AH= ( 6- t) (t+1) = - t2+4t+3= -( t-) 2+二’ 3,当t=时,S最大值为3综上所述,点M的运动时间t与厶APQ面积S的函数关系式是点评:本题是二次函数的综合题型,其中涉及到运用待定系数法求二次函数的解析式,三角形的面积,二次函数的最值等知识,综合性较强,难度适中•运用数形结合、分类讨论及方程思想是解题的关键.2. (2014?湖南怀化,第24题,10分)如图1,在平面直角坐标系中,AB=OB=8 , / ABO=90°, / yOC=45,射线OC以每秒2个单位长度的速度向右平行移动,当射线OC经过点B时停止运动,设平行移动x秒后,射线OC扫过Rt△ ABO的面积为y.(1)求y与x之间的函数关系式;(2)当x=3秒时,射线OC平行移动到OC',与OA相交于G,如图2,求经过G, O, B 三点的抛物线的解析式;(3)现有一动点P在(2)中的抛物线上,试问点P在运动过程中,是否存在三角形POB 的面积S=8的情况?若存在,求出点P的坐标,若不存在,请说明理由.考点:一二次函数综合题专题:压轴题.分析:(1)判断出△ ABO是等腰直角三角形,根据等腰直角三角形的性质可得/ AOB=45 °25然后求出AO丄CO,再根据平移的性质可得AO丄CO',从而判断出△ OO'G是等腰直角三角形,然后根据等腰直角三角形的性质列式整理即可得解;(2)求出OO',再根据等腰直角三角形的性质求出点G的坐标,然后设抛物线解析式2为y=ax +bx,再把点B、G的坐标代入,利用待定系数法求二次函数解析式解答;(3)设点P到x轴的距离为h,利用三角形的面积公式求出h,再分点P在x轴上方和下方两种情况,利用抛物线解析式求解即可.解答:解:(1)T AB=OB,/ ABO=90 °•••△ ABO是等腰直角三角形,•••/ AOB=45 °•••/ yOC=45 °•••/ AOC= (90°- 45° +45 °90 °• AO 丄CO,••• C'O是CO平移得到,• AO 丄C'O',•••△ OO G是等腰直角三角形,•••射线OC的速度是每秒2个单位长度,• OO =2x,2 2• y= x (2x)=2x ;(2 )当x=3 秒时,OO =2 X3=6,•/ X5=3,•点G的坐标为(3,3),设抛物线解析式为y=ax2+bx,则fSa+3b=3 ,(64a+8b=0解得,,•抛物线的解析式为y= - x2+x ;(3)设点P到x轴的距离为h,则S^ pOB=X8h=8,解得h=2,2当点P在x轴上方时,-x +x=2,整理得,x2- 8x+10=0,解得x i=4 - ”;f x2=4+S 7,此时,点P的坐标为(4-麻,2)或(4^6,2);2当点P在x轴下方时,-x +x= - 2,2整理得,x - 8x - 10=0,解得X1=4 —心二:,X2=4+《〔:[,_此时,点P的坐标为(4-旅,-2)或(4+伍,-2),综上所述,点P的坐标为(4 -二,2)或(4+ 7, 2)或(4- 亍,-2)或(4+亍, -2)时,△POB的面积S=8.点评:本题是二次函数综合题型,主要利用了等腰直角三角形的判定与性质,待定系数法求二次函数解析式,三角形的面积,二次函数图象上点的坐标特征,(3)要注意分情况讨论.3. (2014?湖南张家界,第25题,12分)如图,在平面直角坐标系中,O为坐标原点,抛物嗣24线y=ax2+bx+c (a^0 过0、B、C 三点,B、C 坐标分别为(10, 0)和(5 5 ),以OB为直径的O A经过C点,直线I垂直x轴于B点.(1)求直线BC的解析式;(2)求抛物线解析式及顶点坐标;(3)点M是O A上一动点(不同于O, B),过点M作O A的切线,交y轴于点E,交直线I于点F,设线段ME长为m, MF长为n,请猜想m?n的值,并证明你的结论;(4)若点P从O出发,以每秒一个单位的速度向点B作直线运动,点Q同时从B出发,以相同速度向点C作直线运动,经过t (0 v t w)秒时恰好使△ BPQ为等腰三角形,请求出满足条件的t 值.考点:二次函数综合题.分析:(1)用待定系数法即可求得;(2)应用待定系数法以及顶点公式即可求得;(3)连接AE、AM、AF,贝U AM 丄EF,证得Rt△ AOE 也RT A AME,求得/ OAE= /MAE,同理证得/ BAF= / MAF,进而求得/ EAF=90°,然后根据射影定理即可求得.(4)分三种情况分别讨论,①当PQ=BQ时,作QH丄PB,根据直线BC的斜率可知HB :BQ=4 : 5;即可求得,②当PB=QB时,贝U 10- t=t即可求得,③当PQ=PB时,作QH丄OB,根据勾股定理即可求得.解答:解:(1)设直线BC的解析式为y=kx+b,直线BC经过B、(0=10k+b-15解得:(3) m?n=25;如图2,连接 AE 、AM 、AF ,贝U AM 丄EF , 在 RT △ A0E 与 RT A AME 中/0A=MA\AE =AB• Rt △ A0E 也 RT A AME (HL ), • / OAE= / MAE , 同理可证/ BAF= / MAF , • / EAF=90 ,在RT △ EAF 中,根据射影定理得 AM2=EM?FM , • AM=OB=5 , ME=m , MF=n , • m? n=25;(4) 如图3•有三种情况; ①当PQ=BQ 时,作QH 丄PB ,• •直线 BC 的斜率为,• HQ : BQ=3 : 5, HB : BQ=4 : 5; • HB= ( 10- t ) >, BQ=t ,15•••直线BC 的解析式为;y=x -2 .(2)•••抛物线 y=ax2+bx+c (a ^0过0、B 、C 三点,B 、C 坐标分别为( 18 24 (,-),10, 0)和 解得 c=00=102a+10b+c-罕二(¥)备+¥应5 5 5•c5乜12上二0,25•抛物线的解析式为:2? 12y= : _x2 --二x ;_b_ • x= - 2a = - 24 5 25 5 25 125•顶点坐标为(5, =5, y= '■ ~x2 - V x= '■ _>52 - I >5=--,125-亠);50OnE0 B圏2X2则 10- t=t , 作 QH 丄 OB ,贝 U PQ=PB=10 - t , BQ=t , HP=t -( 10- t ), QH=t ; (10 -t ) ]2+ (t ) 2;解得;t=丨「:,② 当PB=QB 时, 解得t=5,③ 当PQ=PB 时, •/ PQ2=PH2+QH2 , •••( 10 - t ) 2=【t - 解得t= I ::.VA点评:本题考查了待定系数法求解析式,顶点坐标的求法,圆的切线的性质,数形结合分类讨论是本题的关键.24. (2014年贵州黔东南24. (14分))如图,直线y=x+2与抛物线y=ax +bx+6 (a旳)相交于A (,)和B (4, m),点P是线段AB上异于A、B的动点,过点P作PC丄x轴于点D,交抛物线于点C.(1)求抛物线的解析式;(2)是否存在这样的P点,使线段PC的长有最大值,若存在,求出这个最大值;若不存在,请说明理由;(3)求△ PAC为直角三角形时点P的坐标.考点:二次函数综合题.分析:(1)已知B (4, m)在直线y=x+2上,可求得m的值,抛物线图象上的A、B两点坐标,可将其代入抛物线的解析式中,通过联立方程组即可求得待定系数的值.(2)要弄清PC的长,实际是直线AB与抛物线函数值的差•可设出P点横坐标,根据直线AB和抛物线的解析式表示出P、C的纵坐标,进而得到关于PC与P点横坐标的函数关系式,根据函数的性质即可求出PC的最大值.(3)根据直线AB的解析式,可求得直线AC 的解析式y= - x+b,已知了点A的坐标,即可求得直线AC的解析式,联立抛物线的解析式,可求得C点的坐标;解答:解:(1): B (4, m)在直线线y=x+2上,m=4+2=6,二 B (4, 6),••• A (,)、B (4, 6)在抛物线y=ax2+bx - 4 上,L 6=42a+4b+c■/ c=6,••• a=2, b= - 8,/• y=2x2- 8x+6 .(2)设动点P的坐标为(n, n+2),贝U C点的坐标为(n, 2n2- 8n+6),2• PC= ( n+2)-( 2n2-8n+6),2=-2n +9n - 4, =-2 (n-)•/ PC> 0,•••当n=时,线段PC最大且为'".S(3)设直线AC的解析式为y= - x+b,把A (,)代入得:=-+b,解得:b=3,•直线AC解析式:y= - x+3 ,2 2点 C 在抛物线上,设 C ( m, 2m - 8m+6),代入y= - x+3 得:2m - 8m+6= - m+3 , 整理得:2m2- 7m+3=0 ,解得;m=3或m=,• P (3, 0)或P (,).点评:此题主要考查了二次函数解析式的确定、二次函数最值的应用以及直角三角形的判定、函数图象交点坐标的求法等知识;25. (2014?十堰)25. (12分)已知抛物线C i: y=a ( x+1) - 2的顶点为A,且经过点B (2,- 1).(1)求A点的坐标和抛物线C i的解析式;(2)如图1 ,将抛物线C1向下平移2个单位后得到抛物线C2,且抛物线C2与直线AB相交于C, D两点,求S^OAC : S A OAD的值;(3)如图2,若过P (- 4, 0), Q (0, 2 )的直线为I,点E在(2 )中抛物线C2对称轴右侧部分(含顶点)运动,直线m过点C和点E.问:是否存在直线m,使直线I, m与x轴围成的三角形和直线I, m与y轴围成的三角形相似?若存在,求出直线m的解析式;若不存在,说明理由.24二次函数综合题;待定系数法求一次函数解析式;待定系数法求二次函数解析式;相 似三角形的判定与性质;锐角三角函数的增减性. 压轴题;存在型.(1) 由抛物线的顶点式易得顶点 A 坐标,把点B 的坐标代入抛物线的解析式即可解 决问题. (2)根据平移法则求出抛物线 C 2的解析式,用待定系数法求出直线 AB 的解析式,再通过解方程组求出抛物线 C 2与直线AB 的交点C 、D 的坐标,就可以求出 S A OAC : S ^OAD的值.(3) 设直线m 与y 轴交于点G ,直线I , m 与x 轴围成的三角形和直线 I , m 与y 轴 围成的三角形形状、位置随着点G 的变化而变化,故需对点 G 的位置进行讨论,借助于相似三角形的判定与性质、三角函数的增减性等知识求出符合条件的点 G 的坐标,解:(1)v 抛物线C i : y=a ( x+1) - 2的顶点为A ,•••点A 的坐标为(-1,- 2).•••抛物线 C i : y=a (x+1 ) 2- 2 经过点 B (- 2, - 1), 2 • a (- 2+1) - 2= - 1.解得:a=1.•抛物线C 1的解析式为:y= (x+1) 2-2.(2)•••抛物线 C 2是由抛物线C 1向下平移2个单位所得,•抛物线 C 2 的解析式为:y= ( x+1) 2 - 2 - 2= (x+1 ) 2 -4. 设直线AB 的解析式为y=kx+b .• A (- 1 , - 2), B (- 2, - 1),'-k+b= - 2 …_2k+b=_]k= _ 1解得:*b=- 3y= (x+1 )y= _ K _ 3从而求出相应的直线 m 的解析式. 解答: •直线AB 的解析式为 y= - x - 3.丽/曰x— 1 3 | x—-0解得:d 或』L y=O \y=-3■- C (-3, 0), D (0,—3).••• OC=3 , OD=3 .过点A作AE丄x轴,垂足为E, 过点A作AF丄y轴,垂足为F,A (- 1 , - 2),• AF=1 , AE=2 .•- S^OAC : S OAD=(OC?AE) : (OD?AF)=(>3 X2) : ( X3 >1)=2.• S^OAC : S AOAD 的值为2.(3)设直线m与y轴交于点G,与直线I交于点H , 设点G的坐标为(0, t) 当m // I 时,CG // PQ.•△ OCG OPQ.•实空•0G=忑.••• P (- 4, 0), Q (0, 2),• OP=4 , OQ=2 ,==.0G• OG=.• t=时,直线l, m与x轴不能构成三角形.•/ t=0时,直线m与x轴重合,•直线l, m与x轴不能构成三角形.• t老且t壬①t v 0时,如图2①所示.•••/ PHC >/PQG,/ PHC >/QGH ,•/ PHC 立PQG,/ PHC 之QGH . 当/ PHC= / GHQ 时,•••/ PHC+ / GHQ=180 °•/ PHC= / GHQ=90 °•••/ POQ=90 °•/ HPC=90 °-Z PQO= / HGQ .•△ PHC GHQ .•••/ QPO= / OGC ,• tan/ QPO=tan / OGC .•0=0• OP云.•直线m 的解析式为y= - 2x - 6, 联立「''- 2x - 6\=-3 子0•- E (- 1 , - 4).此时点E 在顶点,符合条件. •直线m 的解析式为y= - 2x - 6. ②O v t v时,如图2②所示, •/ tan / GCO^_=v,octan /PQO= /=2• tan / GCO 強an / PQO . •••/ GCO 立 PQO . •••/ GCO= / PCH , • / PCH 立 PQO . 又•••/ HPC >/ PQO , • △ PHC 与厶GHQ 不相似.• ••符合条件的直线 m 不存在. ③v t 电时,如图2③所示.nr■/ tan / CGO=——=青0Gtan / QPO=—==. OP • tan / CGO 強an / QPO . • / CGO 立 QPO .•••/ CGO= / QGH , • / QGH QPO ,又•••/ HQG >/ QPO ,•••点G 的坐标为(0,- 6) 设直线m 的解析式为y=mx+n ,•••点 C (- 3, 0),点 G (0, - 6)在直线 m 上,.'-3irr+n=0••甲.n= - 6X.解得:OG•••OG=6 .•••△ PHC与厶GHQ不相似.•••符合条件的直线m不存在.④t> 2时,如图2④所示. 此时点E在对称轴的右侧.•••/ PCH >/ CGO,•••/ PCH 立CGO . 当/ QPC= / CGO 时,•••/ PHC= / QHG,/ HPC= / HGQ ,•△ PCH GQH .•••符合条件的直线m存在.•••/ QPO= / CGO,/ POQ= / GOC=90 ° •••△ POQ GOC.•卜」…OG 0C.• 1 = 0G .• OG=6 .•••点G的坐标为(0, 6). 设直线m的解析式为y=px+q•••点 C (- 3, 0)、点G (0, 6)在直线m 上, .'-3p+q=0I q二6•直线m的解析式为y=2x+6 .综上所述:存在直线m,使直线I, m与x轴围成的三角形和直线I, m与y轴围成的三角形相似,此时直线m的解析式为y= - 2x - 6和y=2x+6 .A 卸④解得:点评:本题考查了二次函数的有关知识,考查了三角形相似的判定与性质、三角函数的定义及增减性等知识,考查了用待定系数法求二次函数及一次函数的解析式,考查了通过解方程组求两个函数图象的交点,强化了对运算能力、批判意识、分类讨论思想的考查,具有较强的综合性,有一定的难度.2 、6. (2014 ?娄底26. (10分))如图,抛物线y=x +mx+ ( m- 1)与x轴交于点A (x i, 0), B2 2(X2, 0), x i< X2,与y 轴交于点 C (0, c),且满足x i +X2+X1X2=7.(1) 求抛物线的解析式;(2) 在抛物线上能不能找到一点P,使/ POC= / PCO?若能,请求出点P的坐标;若不能,考点:二次函数综合题.| 2 2分析:(1 )利用根与系数的关系,等式x i +X2+X1X2=7 •由一元二次方程根与系数的关系,得x i+x2= - m, x i x2=m - 1.代入等式,即可求得m的值,从而求得解析式.(2 )根据线段的垂直平分线上的点到两端点的距离相等,求得P点的纵坐标,代入抛物线的解析式即可求得.解答:解(1 )依题意:x i+x2= - m, x i x2=m - 1,T X i+X2+X1X2=7 ,•'•( X i+x2)2- X1X2=7 ,2••(- m) -( m - 1) =7,2 即m - m - 6=0 ,解得m i= - 2, m2=3,■/ c=m - 1 v 0, • m=3 不合题意• m= - 2抛物线的解析式是y=x 2- 2x- 3;如图,设p是抛物线上的一点,连接PO, PC,过点P作y轴的垂线,垂足为D. 若/ POC= / PCO则PD应是线段OC的垂直平分线•/ C的坐标为(0,- 3)• D的坐标为(0,-)• P的纵坐标应是-令X 2-2x-3=,解得,X1 = ',X2=二2 2因此所求点P的坐标是(戈■血,-),(如亘,-)2 2__________________________点评:本题考查了根与系数的关系是:X i+X2=-, X1X2=,以及线段的垂直平分线的性质,函数图象交点坐标的求法等知识.7. (2014?娄底27. (10 分))如图甲,在△ ABC 中,/ ACB=90 ° AC=4cm , BC=3cm .如果点P 由点B出发沿BA方向向点A匀速运动,同时点Q由点A出发沿AC方向向点C匀速运动,它们的速度均为1cm/s.连接PQ,设运动时间为t (s) (0 v t v 4),解答下列问题:(1)设厶APQ的面积为S,当t为何值时,S取得最大值?S的最大值是多少?(2)如图乙,连接PC,将厶PQC沿QC翻折,得到四边形PQP' C,当四边形PQP' C为菱形时,求t的值;’考点:相似形综合题分析:(1)过点P作PH丄AC于出由厶APH ABC,得出」',从而求出AB,再根BC ABpij C —+ 据竺= _I,得出PH=3 - t,则△ AQP的面积为:AQ ?PH=t (3 - t),最后进行整理3 5即可得出答案;ip 4P(2)连接PP'交QC于E,当四边形PQP' C为菱形时,得出△ APE ABC,"'=",AC AB 求出AE= - t+4,再根据QE=AE - AQ , QE=QC 得出-t+4= - t+2,再求t 即可;(3)由(1 )知,PD= - t+3,与(2)同理得:QD= - t+4,从而求出PQ=--丨.,在厶APQ中,分三种情况讨论:①当AQ=AP,即t=5 - t,②当PQ=AQ,即厶, ;,③当PQ=AP,即•'厶, ;=5-t,再分别计算即可.解答:解:(1)如图甲,过点P作PH丄AC于H,•••/ C=90 °••• AC 丄BC,••• PH // BC,• △ APH ABC,•世=塑•反-逓,■/ AC=4cm , BC=3cm ,/• AB=5cm ,•二H/甲乙(3)当t为何值时,△3 5• PH=3 - t,•△ AQP的面积为:2 'I '■S=>AQ >PH= xtX(3- t) = - (t-) + ,10 8•••当t为秒时,S最大值为卩'cm2.8(2)如图乙,连接PP', PP'交QC于E,当四边形PQP' C为菱形时,PE垂直平分QC ,即卩PE丄AC , QE=EC ,•△ APEABC ,•蝕=塑•AC -逓,• AE「•「=-t+4AB 5QE=AE - AQ ----- t+4 - t= - t+4,QE=QC= ( 4- t) =- t+2,•- t+4= - t+2 ,解得:t==〔,13•/ 0 V—"v 4 ,13•••当四边形PQP' C为菱形时,t的值是■' s;13(3 )由(1 )知,PD= - t+3 , 与( 2)同理得:QD=AD - AQ= - t+4•PQ=:.:」|i'=「丄:卜一- -t- ■:■ ‘一在厶APQ中,①当AQ=AP ,即t=5 - t时,解得:t i = ;②当PQ=AQ ,即^ ■■- =t 时,解得:t2=': , t3=5;Y 5 1J③当PQ=AP ,即^ - - - =5 - t 时,解得:t4=0 , t5=—';•/ 0 V t v 4 ,t3=5 , t4=0不合题意,舍去,.•.当t为s或二S或J s时,△ APQ是等腰三角形.13 13点评:此题主要考查了相似形综合,用到的知识点是相似三角形的判定与性质、勾股定理、 三角形的面积公式以及二次函数的最值问题,关键是根据题意做出辅助线,利用数形 结合思想进行解答.P' 乙28. (2014年河南)(11分)如图,抛物线y= —x+bx+c与x轴交于A(— 1,0),B(5,0)两点,直线3y= —-x+3与y轴交于点C,,与x轴交于点D.点P是x轴上方的抛物线上一动点,过点P 4作PF丄x轴于点F,交直线CD于点E.设点P的横坐标为m。

初中数学中考二轮复习重难突破专题03 动点函数图象(含答案)

初中数学中考二轮复习重难突破专题03 动点函数图象(含答案)

1.点P(x,y)在x轴上,y=0如图①中,点点出发沿运动到点的运动路程为,的面积为,与的函数图像如图②所示,则AB的长为(A. 10B. 12C. 14D. 16【答案】A【解析】由函数图像可知:当时,,面积最大时,可以求出,最后由勾股定理求出AB的值.【详解】当时,,面积最大时,∴,∴,解得或,∴,故选A.【点拨】本题考查函数图像与几何动点问题,需要分析清楚函数图像各个拐点的意义是解题关键.2.如图①,在矩形ABCD中,AB>AD,对角线A C.B D相交于点O,动点P由点A出发,沿AB→BC→CD向点D运动,设点P的运动路径为x,△AOP的面积为y,图②是y关于x的函数关系图象,则AB边的长为( )A. 3B. 4C. 5D. 6【答案】B【解析】根据图形,分情况分析:当P点在AB上运动时,△AOP面积逐渐增大,当P点到达B点时,△AOP面积最大为3,推出AB•BC=12;当P点在BC上运动时,△AOP面积逐渐减小,当P点到达C点时,△AOP面积为0,此时结合图象可知P点运动路径长为7,可推出A B.【详解】解:当P点在AB上运动时,△AOP面积逐渐增大,当P点到达B点时,△AOP面积最大为3.∴AB•BC=3,即AB•BC=12.当P点在BC上运动时,△AOP面积逐渐减小,当P点到达C点时,△AOP面积为0,此时结合图象可知P点运动路径长为7,∴AB+BC=7.则BC=7﹣AB,代入AB•BC=12,得AB2﹣7AB+12=0,解得AB=4或3,因为AB>BC,所以AB=4.故选B.【点拨】本题主要考查动点问题的函数图象,解题的关键是分析三角形面积随动点运动的变化过程,找到分界点极值,结合图象得到相关线段的具体数值.3.如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1 cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为( )A. 2B.C.D.【答案】B【解析】通过分析图象,点F从点A到D用a s,此时,△FBC的面积为a,依此可求菱形的高DE,再由图象可知,B D=,应用两次勾股定理分别求B E和a.【详解】过点D作D E⊥B C于点E由图象可知,点F由点A到点D用时为a s,△F BC的面积为a cm2.∴A D=a∴D E•A D=a∴D E=2当点F从D到B时,用s∴BD=Rt△D BE中,B E=∵A BCD是菱形∴E C=a-1,D C=aRt△D EC中,a2=22+(a-1)2解得a=故选B.【点拨】本题综合考查了菱形性质和一次函数图象性质,解答过程中要注意函数图象变化与动点位置之间的关系.4.如图甲所示,A,B是半径为2的⊙O上两点,且OA⊥OB,点P从点A出发,在⊙O以每秒一个单位长度度速度匀速运动,回到点A运动结束,设P点的运动时间为x(单位:s),弦BP的长为y,那么在图乙中可能表示y与x函数关系的是( )A. ①B. ②C. ②或④D. ①或③【答案】D【解析】分两种情形讨论当点顺时针旋转时,图象是③,当点逆时针旋转时,图象是①,由此即可解决问题.【详解】解:当点顺时针旋转,到达⊙O顶点时,运动过程中BP逐渐增大,从增大到4,据此可以判断,y与x函数图象是③,当点逆时针旋转,到达B点时,运动过程中BP逐渐减小,从减小到0,据此可以判断,y与x函数图象是①,故①③正确,故选:D.【点拨】本题考查动点问题函数图象、圆的有关知识,解题的关键理解题意,学会用分类讨论的思想思考问题.5. 如图1,四边形是轴对称图形,对角线,所在直线都是其对称轴,且,相交于点E.动点P从四边形的某个顶点出发,沿图1中的线段匀速运动.设点P运动的时间为x,线段的长为y,图2是y与x的函数关系的大致图象,则点P的运动路径可能是()A. B.C. D.【答案】D【解析】根据图像,以及点的运动变化情况,前两段是y关于x的一次函数图像,判断y随x的增减变化趋势,第一段的最高值与第二段的最高值不相等,即可排除A,B,C选项.【详解】根据图像,前端段是y关于x的一次函数图像,∴应在A C,B D两段活动,故A,B错误,第一段y随x的增大而减小,第二段y随x增大而增大,第一段的最高值与第二段的最高值不相等,∵A E=E C∴C错误故选:D【点拨】本题考查函数的图像,比较抽象,解题的关键是根据图像判断函数值随自变量的值的增减变化情况,以及理解分段函数的最值是解题的关键.6.如图,菱形ABCD的边长为5 cm,s in A=,点P从点A出发,以1 cm/s的速度沿折线AB﹣BC﹣CD运动,到达点D停止;点Q同时从点A出发,以1 cm/s的速度沿AD运动,到达点D停止设点P运动x(s)时,△APQ的面积为y(cm2),则能够反映y与x之间函数关系的图象是( )A. B.C. D.【答案】C【解析】根据题意可以分别得到各段y与x的函数解析式,从而可以解答本题.【详解】解:∵菱形ABCD的边长为5 cm,P,Q的速度都是1 cm/s,当时,,点都在运动,, 故选项A、\D错误,当时,点停止,点运动,高不变,,当时,点停止,点运动,,故选项B错误,选项C正确,故选:C.【点拨】本题考察了三角函数,菱形性质等知识点,讨论动点在不同边的情况,求出对应函数关系式,再去判断是解题关键.7.李叔叔开车上班,最初以某一速度匀速行驶,中途停车加油耽误了几分钟,为了按时到单位,李叔叔在不违反交通规则的前提下加快了速度,仍保持匀速行驶,则汽车行驶的路程y(千米)与行驶的时间t(小时)的函数关系的大致图象是()A. B. C. D.【答案】B【解析】根据“路程速度时间”可得与之间的函数关系式,再根据加完油后,加快了速度可得后面的一次函数的一次项系数更大,图象更陡,由此即可得.【详解】解:设最初的速度为千米/小时,加快了速度后的速度为千米/小时,则,由题意得:最初以某一速度匀速行驶时,,加油几分钟时,保持不变,加完油后,,,函数的图象比函数的图象更陡,观察四个选项可知,只有选项B符合,故选:B.【点拨】本题考查了一次函数的图象,熟练掌握一次函数图象的特征是解题关键.8..如图,在中,,,点从点沿边,匀速运动到点,过点作交于点,线段,,,则能够反映与之间函数关系的图象大致是()A. B. C. D.【答案】D【解析】分两种情况:①当P点在OA上时,即0≤x≤2时;②当P点在A B上时,即2<x≤4时,求出这两种情况下的P C长,则y=P C•OC的函数式可用x表示出来,对照选项即可判断.【详解】解:∵△AOB是等腰直角三角形,A B=,∴O B=4.①当P点在OA上时,即0≤x≤2时,P C=O C=x,S△P OC=y=PC•OC=x2,是开口向上的抛物线,当x=2时,y=2;O C=x,则B C=4-x,P C=B C=4-x,S△P OC=y=PC•OC=x(4-x)=-x2+2x,是开口向下的抛物线,当x=4时,y=0.综上所述,D答案符合运动过程中y与x的函数关系式.故选:D.【点拨】本题主要考查了动点问题的函数图象,解决这类问题要先进行全面分析,根据图形变化特征或动点运动的背景变化进行分类讨论,然后动中找静,写出对应的函数式.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年中考数学二轮复习精品资料
动点型问题
一、中考专题诠释
所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.
“动点型问题”题型繁多、题意创新,考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等,是近几年中考题的热点和难点。

二、解题策略和解法精讲
解决动点问题的关键是“动中求静”.
从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。

在动点的运动过程中观察图形的变化情况,理解图形在不同位置的情况,做好计算推理的过程。

在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。

三、中考考点精讲
考点一:建立动点问题的函数解析式(或函数图像)
函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.
例1 (2013•兰州)如图,动点P从点A出发,沿线段AB运动至点B后,立即按原路返回,点P在运动过程中速度不变,则以点B为圆心,线段BP长为半径的圆的面积S与点P 的运动时间t的函数图象大致为()
A.B.C.D.
思路分析:分析动点P的运动过程,采用定量分析手段,求出S与t的函数关系式,根据关系式可以得出结论.
解:不妨设线段AB长度为1个单位,点P的运动速度为1个单位,则:
(1)当点P在A→B段运动时,PB=1-t,S=π(1-t)2(0≤t<1);
(2)当点P在B→A段运动时,PB=t-1,S=π(t-1)2(1≤t≤2).
综上,整个运动过程中,S与t的函数关系式为:S=π(t-1)2(0≤t≤2),
这是一个二次函数,其图象为开口向上的一段抛物线.结合题中各选项,只有B符合要求.故选B.
点评:本题结合动点问题考查了二次函数的图象.解题过程中求出了函数关系式,这是定量的分析方法,适用于本题,如果仅仅用定性分析方法则难以作出正确选择.
对应训练
1.(2013•白银)如图,⊙O的圆心在定角∠α(0°<α<180°)的角平分线上运动,且⊙O 与∠α的两边相切,图中阴影部分的面积S关于⊙O的半径r(r>0)变化的函数图象大致是()
A.B.C.D.
1.C
考点二:动态几何型题目
点动、线动、形动构成的问题称之为动态几何问题. 它主要以几何图形为载体,运动变化为主线,集多个知识点为一体,集多种解题思想于一题. 这类题综合性强,能力要求高,它能全面的考查学生的实践操作能力,空间想象能力以及分析问题和解决问题的能力.
动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。

)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。

(一)点动问题.
例2 (2013•河北)如图,梯形ABCD中,AB∥DC,DE⊥AB,CF⊥AB,且AE=EF=FB=5,DE=12动点P从点A出发,沿折线AD-DC-CB以每秒1个单位长的速度运动到点B停止.设运动时间为t秒,y=S△EPF,则y与t的函数图象大致是()
A.B.C.D.
A.B.
C.D.
2.A
(二)线动问题
例3 (2013•荆门)如右图所示,已知等腰梯形ABCD,AD∥BC,若动直线l垂直于BC,且向右平移,设扫过的阴影部分的面积为S,BP为x,则S关于x的函数图象大致是()
A.B.
C.D.
思路分析:分三段考虑,①当直线l经过BA段时,②直线l经过AD段时,③直线l经过DC 段时,分别观察出面积变化的情况,然后结合选项即可得出答案.
解:①当直线l经过BA段时,阴影部分的面积越来越大,并且增大的速度越来越快;
②直线l经过DC段时,阴影部分的面积越来越大,并且增大的速度保持不变;
③直线l经过DC段时,阴影部分的面积越来越大,并且增大的速度越来越小;
结合选项可得,A选项的图象符合.
故选A.
点评:本题考查了动点问题的函数图象,类似此类问题,有时候并不需要真正解出函数解析式,只要我们能判断面积增大的快慢就能选出答案.
对应训练
3.(2013•永州)如图所示,在矩形ABCD中,垂直于对角线BD的直线l,从点B开始沿着线段BD匀速平移到D.设直线l被矩形所截线段EF的长度为y,运动时间为t,则y关于t 的函数的大致图象是()
A.B.
C.D.
3.A
(三)面动问题
例4 (2013•牡丹江)如图所示:边长分别为1和2的两个正方形,其中一边在同一水平线
上,小正方形沿该水平线自左向右匀速穿过大正方形,设穿过的时间为t,大正方形内去掉小正方形后的面积为s,那么s与t的大致图象应为()
A.B.C.D.
思路分析:根据题意,设小正方形运动的速度为V,分三个阶段;①小正方形向右未完全穿入大正方形,②小正方形穿入大正方形但未穿出大正方形,③小正方形穿出大正方形,分别求出S,可得答案.
解:根据题意,设小正方形运动的速度为V,分三个阶段;
①小正方形向右未完全穿入大正方形,S=2×2-Vt×1=4-Vt,
②小正方形穿入大正方形但未穿出大正方形,S=2×2-1×1=3,
③小正方形穿出大正方形,S=Vt×1,
分析选项可得,A符合;
故选A.
点评:解决此类问题,注意将过程分成几个阶段,依次分析各个阶段得变化情况,进而综合可得整体得变化情况.
对应训练
4.(2013•衡阳)如图所示,半径为1的圆和边长为3的正方形在同一水平线上,圆沿该水平线从左向右匀速穿过正方形,设穿过时间为t,正方形除去圆部分的面积为S(阴影部分),则S与t的大致图象为()
A.B.C.D.
四、中考真题演练
一、选择题
1.(2013•新疆)如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE是直角三角形时,t的值为()
A.2 B.2.5或3.5
C.3.5或4.5 D.2或3.5或4.5
1.D
2.(2013•安徽)图1所示矩形ABCD中,BC=x,CD=y,y与x满足的反比例函数关系如图2所示,等腰直角三角形AEF的斜边EF过C点,M为EF的中点,则下列结论正确的是()
A.当x=3时,EC<EM
B.当y=9时,EC>EM
C.当x增大时,EC•CF的值增大
D.当y增大时,BE•DF的值不变
2.D
3.(2013•盘锦)如图,将边长为4的正方形ABCD的一边BC与直角边分别是2和4的Rt △GEF的一边GF重合.正方形ABCD以每秒1个单位长度的速度沿GE向右匀速运动,当点A和点E重合时正方形停止运动.设正方形的运动时间为t秒,正方形ABCD与Rt△GEF 重叠部分面积为s,则s关于t的函数图象为()
A.B.C.D.
3.B
4.(2013•龙岩)如图,在平面直角坐标系xOy中,A(0,2),B(0,6),动点C在直线y=x上.若以A、B、C三点为顶点的三角形是等腰三角形,则点C的个数是()
A.2 B.3 C.4 D.5
4.B
5.(2013•武汉)如图,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连接CF 交BD于点G,连接BE交AG于点H.若正方形的边长为2,则线段DH长度的最小值是.
51
6.(2013•连云港)如图,在平面直角坐标系中,O为坐标原点,点A、B的坐标分别为(8,0)、(0,6).动点Q从点O、动点P从点A同时出发,分别沿着OA方向、AB方向均以1个单位长度/秒的速度匀速运动,运动时间为t(秒)(0<t≤5).以P为圆心,PA长为半径的⊙P与AB、OA的另一个交点分别为C、D,连接CD、QC.
(1)求当t为何值时,点Q与点D重合?
(2)设△QCD的面积为S,试求S与t之间的函数关系式,并求S的最大值;
7.(2013•宜昌)半径为2cm的与⊙O边长为2cm的正方形ABCD在水平直线l的同侧,⊙O与l相切于点F,DC在l上.
(1)过点B作的一条切线BE,E为切点.
①填空:如图1,当点A在⊙O上时,∠EBA的度数是;
②如图2,当E,A,D三点在同一直线上时,求线段OA的长;
(2)以正方形ABCD的边AD与OF重合的位置为初始位置,向左移动正方形(图3),至边BC与OF重合时结束移动,M,N分别是边BC,AD与⊙O的公共点,求扇形MON的面积的范围.
7.解:(1)①∵半径为2cm的与⊙O边长为2cm的正方形ABCD在水平直线l的同侧,当点A在⊙O上时,过点B作的一条切线BE,E为切点,
∴OB=4,EO=2,∠OEB=90°,
∴∠EBA的度数是:30°;
②如图2,
∵直线l与⊙O相切于点F,
∴∠OFD=90°,
∵正方形ADCB中,∠ADC=90°,
∴OF∥AD,
∵OF=AD=2,
9.解:如图,
36
(3)当点P在线段FD上运动时,求y与x之间的函数关系式.

2。

相关文档
最新文档