数学建模和计算机的重要性

合集下载

数学建模与计算机的重要性

数学建模与计算机的重要性

数学建模与计算机的联系及重要性摘要:在当今科技发达的今天,计算机已经得到了广泛的应用,也为数学建模的计算提供了有力工具。

本文浅谈了数学建模与计算机在人类生产和生活中的重要性。

关键词:数学建模计算机重要性当今社会计算机已经被广泛的应用了,在计算机的协助下许多问题的求解变得简单、方便、快捷。

而数学建模是把现实世界中的实际问题加以提炼,抽象为数学模型,求出模型的解,验证模型的合理性,并用该数学模型所提供的解答来解释现实问题。

在科技迅猛发展的今天计算机和数学建模在人类的生存和发展中都具有举足轻重的作用。

一、数学建模与计算机息息相关其一、我们在模型求解时,有些计算单纯的用纸和笔是难以完成的,这就需要利用计算机上机计算、编制软件、绘制图形等,当结果通过计算机算出后也必须通过打印机随时进行输出。

其二、数学建模的学习对计算机能力的培养也起着极大推动作用,如报考计算机方向的研究生时,对数学的要求非常高;在进行计算机科学的研究时,也要求有极强的数学功底才能写出具有相当深度的论文,计算机科学的发展也是建立在数学基础之上的,许多为计算机的发展方面做出杰出贡献的人,在数学方面也颇有造诣。

我们在遇到一些实际问题时往往需要计算机和数学建模同时应用才能解决问题,否则问题将无法进行。

数学问题与计算机通常采用一些数学软件(lingo,Matlab,MathCAD 等等)的命令来描述算法,既简单又容易操作。

例如下面有这样一道题就是利用数学软件lingo 求解的。

例1 某工厂有两条生产线,分别用来生产M 和P 两种型号的产品,利润分别为200元每个和300元每个,生产线的最大生产能力分别为每日100和120,生产线没生产一个M 产品需要1个劳动日(1个工人工作8小时称为1个劳动日)进行调试、检测等工作,而每个P 产品需要2个劳动日,该工厂每天共计能提供160个劳动日,假如原材料等其他条件不受限制,问应如何安排生产计划,才能使获得的利润最大?解 设两种产品的生产量分别为1x 和2x ,则该问题的数学模型为:目标函数 12max 200300z x x =+约束条件 1212100,120,160,0,1,2.i x x x x x i ≤⎧⎪≤⎪⎨+≤⎪⎪≥=⎩编写LINGO 程序如下:MODEL:SETS:SHC/1,2 /:A,B,C,X; YF/1,2,3 /:J;ENDSETSDATA:A=1,2 ; B=100,120; C=200,300;ENDDATAMAX=@SUM(SHC:C*X);@FOR(SHC(I):X(I)<B(I)); @SUM(SHC(I):A(I)*X(I))<=160; END程序运行结果如下Global optimal solution found.Objective value: 29000.00Total solver iterations: 0Variable Value Reduced CostA( 1) 1.000000 0.000000A( 2) 2.000000 0.000000B( 1) 100.0000 0.000000B( 2) 120.0000 0.000000C( 1) 200.0000 0.000000C( 2) 300.0000 0.000000X( 1) 100.0000 0.000000X( 2) 30.00000 0.000000J( 1) 0.000000 0.000000J( 2) 0.000000 0.000000J( 3) 0.000000 0.000000Row Slack or Surplus Dual Price1 29000.00 1.0000002 0.000000 50.000003 90.00000 0.0000004 0.000000 150.0000最优解为12100,30,x x ==最优值为29000.00z =.即每天生产100个M 产品30个P 产品,可获得29000元利润.可见数学建模和计算机共同为问题求解提供了有效的手段,对其它课程的辅助学习帮助也是极大的。

对数学建模的认识

对数学建模的认识

对数学建模的认识作为一名大学生,我深刻认识到数学建模在现代科学和工程领域中的重要性和广泛应用。

数学建模作为一种将现实世界问题抽象为数学模型,然后通过数学方法进行分析、求解和预测的过程,不仅是学术研究的一部分,更是现实问题解决的有力工具。

在我看来,数学建模不仅是一门学科,更是一种思维方式,它在抽象、分析、解决问题等方面带来了挑战与机遇。

数学建模首先要求我们将复杂的现实问题进行抽象和简化,将问题的关键特征提取出来并用数学语言进行表达。

这个过程不仅需要对问题有深刻的理解,还需要运用数学知识和技能将问题转化为可计算的形式。

例如,考虑一个城市的交通流量问题,我们需要抽象出道路、车辆、人流等元素,并建立数学模型来描述它们之间的关系。

这种抽象能力不仅有助于理清问题,还能够培养我们从问题中抽象出本质的思维方式,使我们能够更好地应对各种挑战。

其次,数学建模要求我们具备丰富的数学知识和技能,能够在建立模型时选择适当的数学方法和工具。

不同的问题可能涉及代数、几何、微积分、概率论等不同领域的知识,因此我们需要具备跨学科的数学素养。

这也激励我在学习数学的过程中不仅仅关注基础知识,还要注重不同领域之间的联系,培养数学思维的广度和深度。

在数学建模过程中,我们需要运用数学方法对模型进行分析和求解。

这就需要我们具备系统的思维和逻辑推理能力,能够从模型中提取有用的信息,得出合理的结论。

这个过程中可能会遇到复杂的计算问题,需要我们具备良好的计算机编程能力,能够用计算机辅助求解模型。

这种分析和计算能力的培养,使我们在面对复杂问题时能够从整体把握问题,迅速找到解决方案。

数学建模也在很大程度上促进了跨学科的合作与交流。

许多问题需要多个领域的专业知识才能全面解决,这就需要不同背景的人能够用共同的语言进行交流和合作。

数学建模提供了一个平台,使不同专业的人能够协同工作,共同解决问题。

这种合作能力在现实生活和职业发展中同样具有重要意义,帮助我们更好地与他人合作,共同创造价值。

数学建模在计算机专业中的应用

数学建模在计算机专业中的应用

数学建模在计算机专业中的应用一、摘要本文重点分析了数学建模的特点,探讨了数学建模与计算机的之间的关系,并重点的阐述了数学建模在计算机专业中的应用。

当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、做出简化假设、分析内在规律等工作的基础上,用数学的符号和语言,把它表述为数学式子,也就是数学模型。

数学模型的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识。

这种应用知识从实际课题中抽象、提炼出数学模型的过程就称为数学建模(Mathematical Modeling)。

二、数学建模的特点1、面向现实生活的应用,有相关的科研背景,综合性强,涉及面广,因素关系复杂,缺乏足够的规范性,难以套用传统成熟的解决手段,数据量庞大,可采取的算法也比较复杂,结果具有一定的弹性空间,需要一定的伴随条件,许多问题得到的只能是近似解。

2、建模问题不同于理论研究,它重在对实际问题的处理,而不是深层次纯粹数学理论或者世界难题。

3、数学建模与数学试验教学的重点是高等数学与现代数学的深层应用和面向问题的设计,而不是经典理论的深入研讨和系统论证。

4、数学建模问题绝大部分来自一些具体科研课题或实际工程问题。

三、数学建模与计算机的关系数学建模与生活实际密切相关,所采集到的数据量多,而且比较复杂,比如长江水质的评价和预测,银行贷款和分期付款等,往往计算量大,需要借助于计算机才能快捷、简便地完成。

数学建模竞赛与以往所说的那种数学竞赛(纯数学竞赛)不同,它要用到计算机,甚至离不开计算机,但却又不是纯粹的计算机竞赛,它涉及到物理、化学、生物、医学、电子、农业、军事、管理等各学科、各领域,但又不受任何一个具体的学科、领域的限制。

数学建模过程需要经过模型假设、模型建立、模型求解、模型分析与检验、模型应用等几个步骤,在这些步骤中都伴随着计算机的使用。

例如,模型求解时,需要上机计算、编制软件、绘制图形等,数学建模竞赛中打印机随时可能使用,同时,数学建模的学习对计算机能力的培养也起着极大推动作用。

数学与计算机的结合应用

数学与计算机的结合应用

数学与计算机的结合应用在当今数字化时代,数学与计算机的结合应用发挥着越来越重要的作用。

数学作为一门抽象思维和逻辑推理的学科,与计算机科学的应用结合,不仅丰富了数学的研究内容和方法,也推动了计算机科学的发展和应用。

本文将从数学与计算机的密切关系、数学在计算机领域的应用以及计算机在数学领域的应用等方面进行探讨。

一、数学与计算机的密切关系数学与计算机科学是紧密相关的学科,两者相辅相成,互为依托。

数学为计算机科学提供了严密的理论基础,而计算机则使数学的研究更加高效和便捷。

数学和计算机科学在方法和思想上有许多共同点:都强调逻辑推理、精确性和抽象思维。

同时,计算机科学注重实际问题的求解和应用,而数学则更加关注问题的本质和证明。

二、数学在计算机领域的应用1. 数据加密与解密数据加密是计算机安全的重要组成部分,而数学在数据加密算法中扮演着重要角色。

例如,RSA加密算法就是基于数论的一个典型例子。

该算法利用了大数分解的困难性,将数据加密成为只有私钥才能解密的形式,保障了数据的安全性。

2. 图像处理与计算机视觉图像处理是计算机视觉中的重要分支,而数学提供了图像处理算法中的数学模型和方法。

例如,数字图像处理中的卷积算法、图像变换等操作都依赖于数学的线性代数和傅里叶分析等理论基础。

这些数学方法能够对图像进行分析、增强、压缩等处理,从而实现计算机对图像的高效处理和识别。

3. 数据分析与机器学习数据分析和机器学习是计算机科学中非常热门的领域,而数学在其中起着至关重要的作用。

数据分析依赖于统计学的方法和模型,而机器学习则基于数学的优化算法和概率模型。

数学方法可以帮助我们从大量的数据中发现规律和模式,进而进行预测和决策,应用广泛。

三、计算机在数学领域的应用1. 符号计算与计算机代数系统符号计算是数学研究中的一项重要工具,可以进行复杂的代数运算和符号推导。

计算机代数系统(如Maple、Mathematica等)的出现使符号计算更加高效和方便。

数学建模的作用和意义

数学建模的作用和意义

数学建模的作用和意义数学建模的作用和意义「篇一」大学数学具有高度抽象性和概括性等特点,知识本身难度大再加上学时少、内容多等教学现状常常造成学生的学习积极性不高、知识掌握不够透彻、遇到实际问题时束手无策,而数学建模思想能激发学生的学习兴趣,培养学生应用数学的意识,提高其解决实际问题的能力。

数学建模活动为学生构建了一个由数学知识通向实际问题的桥梁,是学生的数学知识和应用能力共同提高的最佳结合方式。

因此在大学数学教育中应加强数学建模教育和活动,让学生积极主动学习建模思想,认真体验和感知建模过程,以此启迪创新意识和创新思维,提高其素质和创新能力,实现向素质教育的转化和深入。

一、数学建模的含义及特点数学建模即抓住问题的本质,抽取影响研究对象的主因素,将其转化为数学问题,利用数学思维、数学逻辑进行分析,借助于数学方法及相关工具进行计算,最后将所得的答案回归实际问题,即模型的检验,这就是数学建模的全过程。

一般来说",数学建模"包含五个阶段。

1、准备阶段主要分析问题背景,已知条件,建模目的等问题。

2、假设阶段做出科学合理的假设,既能简化问题,又能抓住问题的本质。

3、建立阶段从众多影响研究对象的因素中适当地取舍,抽取主因素予以考虑,建立能刻画实际问题本质的数学模型。

4、求解阶段对已建立的数学模型,运用数学方法、数学软件及相关的工具进行求解。

5、验证阶段用实际数据检验模型,如果偏差较大,就要分析假设中某些因素的合理性,修改模型,直至吻合或接近现实。

如果建立的模型经得起实践的检验,那么此模型就是符合实际规律的,能解决实际问题或有效预测未来的,这样的建模就是成功的,得到的模型必被推广应用。

二、加强数学建模教育的作用和意义(一)加强数学建模教育有助于激发学生学习数学的兴趣,提高数学修养和素质。

数学建模教育强调如何把实际问题转化为数学问题,进而利用数学及其有关的工具解决这些问题,因此在大学数学的教学活动中融入数学建模思想,鼓励学生参与数学建模实践活动,不但可以使学生学以致用,做到理论联系实际,而且还会使他们感受到数学的生机与活力,激发求知的兴趣和探索的欲望,变被动学习为主动参与其效率就会大为改善。

数学建模和计算机仿真技术的研究

数学建模和计算机仿真技术的研究

数学建模和计算机仿真技术的研究数学建模和计算机仿真技术是当今社会中非常重要的两个研究领域,广泛应用于各个领域,如工业制造、金融经济、医学、科学研究等等。

数学建模是指将实际问题转化为数学问题,并利用数学方法求解实际问题的过程。

而计算机仿真技术则是指利用计算机对实际问题进行模拟和分析,进而得到实际问题的解决方案的过程。

本文将从理论和应用的角度,分别讨论数学建模和计算机仿真技术的研究。

数学建模的研究数学建模的研究主要涉及到以下三个方面。

第一,数学建模的方法。

数学建模的方法主要包括问题建模、模型选择、模型求解和模型评价等。

问题建模是指了解实际问题的背景、意义、数据等信息,并将问题抽象成数学形式;模型选择是指从候选模型中选择合适的模型,并进行合适的约束和简化;模型求解是指利用现有的数学方法对模型进行求解;模型评价是指对求解结果进行判断和评价。

第二,数学建模的应用。

数学建模广泛应用于各个领域,如物理、化学、经济、医学、环境等。

具体应用包括利用数学建模预测自然灾害、优化物流系统、研究生态环境等。

第三,数学建模的研究前沿。

数学建模的研究前沿主要包括非线性数学建模、混合整数线性规划、时间序列分析等。

这些前沿问题都需要新的理论和方法来求解。

计算机仿真技术的研究计算机仿真技术的研究也包括以下几个方面。

第一,仿真软件的开发。

仿真软件是计算机仿真技术的核心,它能够模拟实际问题,并通过仿真结果来辅助决策和优化。

目前广泛应用的仿真软件包括Matlab, Simulink, Comsol等。

第二,计算机图形学的研究。

计算机图形学主要研究计算机如何呈现和处理现实世界中的图形和动画。

它与计算机仿真技术密切相关,常用于可视化仿真结果。

第三,仿真算法的研究。

仿真算法主要研究如何利用数学方法和计算机算法来模拟实际问题。

目前最常用的仿真算法包括Monte Carlo仿真、离散事件仿真等。

数学建模与计算机仿真技术的联合应用数学建模和计算机仿真技术通常相互配合应用,以实现对实际问题的深入研究和解决。

计算机技术与数学建模的有机联系

计算机技术与数学建模的有机联系

计算机技术与数学建模的有机联系计算机技术与数学建模的有机联系摘要本文阐述了计算机技术对数学建模的影响,以及它在数学建模竞赛中的应用,结合2012年全国大学生数学建模竞赛题目重点分析了数学建模的特点,探讨了多种计算机技术在数学建模中不可或缺的作用,为更好地开展数学建模,提出了建设性思路和方法。

关键词数学建模计算机技术计算机模拟一、引言计算机科学技术的迅猛发展,给许多学科带来了巨大的影响。

它不但使问题的求解变得更加方便、快捷和精确,而且使解决实际问题的领域变得更加广泛。

计算机适合于解决那些规模大、难以解析的数学模型。

在历届国际和中国大学生的数学建模(MCM)竞赛中,学生经常用计算机模拟方法求解,然后解释验证以及指导实际问题。

这个过程如果用人工实现,费时费力且短时期内可能得不到很好的解决,如果借助计算机来完成这些过程,就从根本上加快了数学建模全过程的进度,使数学建模的发展如虎添翼[1]。

因此,计算机技术是数学建模过程中不可缺少的工具和手段,数学建模也把大学生学习计算机技术与研究数学科学两者紧密结合在一起。

二、计算机技术在数学建模中的重要性众所周知,计算机是数学建模的产物,同时计算机技术的发展又极大地推动了数学建模活动,计算机高速的运算能力,非常适合数学建模过程中的数值计算;它的大容量贮存能力以及网络通讯功能,使得数学建模过程中资料存贮、检索变得方便有效;它的多媒体化,使得数学建模中一些问题能在计算机上进行更为逼真的模拟;它的智能化,能随时提醒、帮助我们进行数学模型求解[2]。

近年来的数学建模竞赛对学生的计算机技术的要求是越来越高,几乎所有的竞赛题目都涉及大量的数值计算或逻辑运算,因此不掌握计算机技术和相关数学软件的使用很难取得较好成绩的。

因此,计算机技术和数学建模之间具有密不可分的联系,两者只有有机结合,才能有效地提高学生灵活运用理论知识的能力、知识迁移的'能力、实际应用能力以及分析问题和解决问题的能力[3]。

计算机技术在数学建模中的应用

计算机技术在数学建模中的应用

计算机技术在数学建模中的应用数学建模是一种将现实问题抽象为数学模型并运用数学方法进行分析和求解的方法。

随着计算机技术的不断发展和应用,计算机在数学建模中的作用变得越来越重要。

本文将探讨计算机技术在数学建模中的应用,并从实际案例出发,论述其在数学建模中发挥的重要作用。

一、计算机在数学模型的建立中的应用数学建模的第一步是建立问题的数学模型,这要求我们能够准确地描述问题,并将其转化为数学形式。

计算机在这一过程中发挥着重要的作用。

例如,在非线性规划问题中,我们需要求解一个非线性的优化问题,这个问题的求解过程非常复杂。

借助计算机,我们可以将问题的目标函数和约束条件转化为数学表达式,并通过求解软件来获得问题的最优解。

计算机的高计算能力和快速运算速度,使得我们能够处理更加复杂的数学模型,并获得更准确的解答。

二、计算机在数学模型的求解中的应用数学建模的第二步是对建立好的数学模型进行求解,获得问题的解析解或近似解。

计算机在数学模型的求解过程中发挥着重要的作用。

例如,在微分方程求解中,我们常常需要借助计算机进行数值计算。

通过数值方法,我们可以将微分方程转化为差分方程,并借助计算机进行迭代计算。

这样,我们就可以获得微分方程的近似解。

计算机不仅可以进行有效的计算,还能够通过图像绘制等方式直观地展示问题的求解过程和结果,使得我们更加容易理解和分析问题。

三、计算机在数学模型的分析和验证中的应用数学建模的第三步是对求解得到的数学模型进行分析和验证,确保模型的有效性和适用性。

计算机在这一过程中也起到了关键的作用。

例如,在系统动力学建模中,我们需要对系统进行仿真分析,通过模拟系统的运行过程来研究系统的行为和性能。

计算机可以帮助我们建立系统的仿真模型,并进行模拟实验,观察系统的运行情况和结果。

通过对仿真结果的分析,我们可以进一步优化数学模型,确保模型的准确性和可靠性。

总结起来,计算机技术在数学建模中发挥着重要的作用。

它不仅可以帮助我们快速建立数学模型,还能够通过高效的计算和图像展示,帮助我们求解和分析数学模型,提高问题求解的效率和准确性。

数学专业的数学建模与计算机应用

数学专业的数学建模与计算机应用

数学专业的数学建模与计算机应用数学建模和计算机应用是当今数学专业的重要组成部分。

它们不仅是数学知识的应用和发展,而且也是解决实际问题的有力工具。

本文将介绍数学建模和计算机应用在数学专业中的重要性,以及它们对于现代社会的影响。

一、数学建模数学建模是通过技术手段将现实问题转化为数学问题,并利用数学方法来解决这些问题的过程。

它要求数学专业的学生具备扎实的数学基础知识,并具备将数学知识应用于实际问题的能力。

数学建模的过程包括对问题的分析、建立模型、求解模型和对结果的解释。

数学建模在数学专业中的重要性不言而喻。

通过数学建模,学生不仅可以将抽象的数学概念应用于实际问题,而且可以培养学生的创新意识和动手能力。

同时,数学建模也为数学专业的学生提供了一个实践和锻炼的平台,使他们能够更好地理解和掌握数学知识。

二、计算机应用计算机应用是指利用计算机技术和软件工具来解决实际问题的过程。

在数学专业中,计算机应用主要包括数值计算、数据处理和图像处理等方面。

通过计算机的强大计算和处理能力,数学专业的学生可以更加高效地求解数学问题,并且能够处理大量的数据和图像信息。

计算机应用在数学专业中的重要性不可忽视。

它不仅提高了学生的工作效率,而且也拓展了数学的研究领域。

借助计算机工具,数学专业的学生可以更加深入地研究和探索数学的各个领域,并且可以对数学模型进行仿真和实验。

三、数学建模与计算机应用的结合数学建模和计算机应用是相互关联和相互促进的。

数学建模需要计算机应用来进行数学模型的求解和仿真,而计算机应用也需要数学建模来提供数学基础和方法支持。

二者的结合使学生能够更加全面地理解和应用数学知识,同时也提高了问题的解决效率和准确性。

借助数学建模和计算机应用的结合,数学专业的学生可以解决更加复杂和实际的问题,并且可以开展更加深入和广泛的研究。

他们可以利用数学建模和计算机应用来研究和分析各种现象,探索数学的新理论和应用,为现代社会的发展做出更大的贡献。

数学建模在现代科学中的重要性

数学建模在现代科学中的重要性

数学建模在现代科学中的重要性数学建模是利用数学方法和技巧来研究和解决实际问题的一种方法。

它在现代科学中起着重要的作用,被广泛应用于各个领域,包括物理学、工程学、经济学等。

本文将探讨数学建模在现代科学中的重要性,并举例说明其应用。

一、数学建模的定义和作用数学建模是一种将实际问题转化为数学问题,并运用数学方法进行分析和求解的过程。

通过建立适当的数学模型,我们可以对实际问题进行抽象和简化,从而更好地理解问题的本质,找到解决问题的方法。

数学建模在现代科学中发挥着重要的作用。

首先,它可以帮助我们深入了解问题的内在机理。

通过建立数学模型,我们可以揭示问题的规律和关系,探究问题的本质。

其次,数学建模可以为我们提供有效的工具和方法来解决实际问题。

通过运用数学的分析和求解技巧,我们可以得到准确而可靠的结果,为实际问题的应对和决策提供支持。

最后,数学建模还可以激发科学研究的创新和发展。

通过不断改进和创新数学模型,我们可以发现新的问题、提出新的假设,并得到新的科学发现。

二、数学建模的应用案例1. 物理学中的数学建模物理学是最早采用数学建模方法的学科之一。

著名的牛顿运动定律就是通过数学建模来描述物体的运动规律的。

通过建立数学模型,我们可以准确地预测物体的轨迹、速度和加速度等参数,为物理实验和工程设计提供理论支持。

2. 工程学中的数学建模工程学广泛应用数学建模方法来研究和解决实际问题。

例如,在建筑工程中,我们可以通过建立数学模型来分析建筑物的力学性能,以确保其稳定和安全。

在电力系统中,数学建模可以帮助我们进行电力负荷预测和输电线路优化等工作,提高电力系统的效率和稳定性。

3. 经济学中的数学建模经济学是另一个广泛应用数学建模的领域。

通过建立经济模型,我们可以分析市场供求关系、经济增长速度等经济现象,并预测经济变量的变化趋势。

这对于政府制定宏观经济政策和企业进行市场预测十分重要。

三、数学建模的挑战和发展方向虽然数学建模在现代科学中具有重要的地位,但它也面临着一些挑战。

数学学习的计算机计算机在数学学习中的作用和应用

数学学习的计算机计算机在数学学习中的作用和应用

数学学习的计算机计算机在数学学习中的作用和应用数学学习的计算机在数学学习中的作用和应用数学是理科中一门重要的学科,它有着广泛的应用和深远的影响。

而计算机技术的发展也为数学学习提供了新的方式和工具。

本文将探讨计算机在数学学习中的作用和应用。

一、计算机在数学学习中的作用计算机在数学学习中扮演着重要的角色,它可以提供以下几个方面的帮助:1. 提供实时计算和解题过程展示计算机可以以图形化的方式展示数学计算和解题过程,帮助学生更好地理解和掌握数学概念和原理。

通过实时演示,学生可以看到数学问题的求解过程,加深对数学方法和思想的理解。

2. 提供交互式学习环境计算机可以提供交互式的学习环境,学生可以通过计算机软件进行数学练习和测试,及时获取答题结果和反馈,从而及时纠正错误和提高成绩。

此外,计算机还可以根据学生的学习情况和表现,个性化地调整难度,使学习更加有效。

3. 提供数学模拟和实验计算机可以进行各种数学模拟和实验,帮助学生更好地理解和应用数学知识。

例如,在几何学习中,计算机可以模拟几何图形的变换和运动,使学生对几何变换有更深入的认识;在概率学习中,计算机可以模拟概率实验,加深学生对概率的理解和应用。

二、计算机在数学学习中的应用除了上述作用,计算机还有很多具体的应用场景:1. 数据分析和统计计算机可以对大量的数据进行分析和统计,帮助学生更好地理解和应用统计学知识。

例如,在统计学习中,学生可以通过计算机软件对数据进行可视化展示和分析,从而发现数据的规律和趋势。

2. 数学建模计算机在数学建模中发挥着重要的作用。

通过计算机的计算和模拟,学生可以建立数学模型,并通过模型进行预测和分析。

例如,在物理学中,学生可以利用计算机模拟物体的运动和力学过程,从而更好地理解和应用物理学知识。

3. 数学软件开发计算机可以用于开发数学软件,为学生和教师提供更好的数学学习和教学工具。

例如,数学软件可以提供丰富的数学题库和解题技巧,帮助学生提高解题能力;数学软件还可以提供各种数学工具,如图形绘制、计算器等,方便学生进行数学计算和实验。

数学与计算机科学的联系

数学与计算机科学的联系

数学与计算机科学的联系数学与计算机科学是两个密不可分的学科,它们之间存在着紧密的联系和相互依存的关系。

在计算机科学的发展过程中,数学扮演着至关重要的角色。

本文将就数学与计算机科学之间的关系展开探讨,并分析其重要性和影响。

一、数学在计算机科学中的作用1. 算法设计与分析:算法是计算机科学的核心和基础,而数学则为算法的设计和分析提供了强大的理论支持。

数学中的离散数学、数论、图论等领域,为算法设计提供了严密的证明和分析方法,保证了算法的正确性和高效性。

2. 数据结构:数据结构是计算机中用于组织和存储数据的方式,而数学中的集合论、图论等概念与计算机中的数据结构密切相关。

数学的抽象思维和逻辑推理能力,帮助计算机科学家设计出高效的数据结构,提高计算机程序的性能。

3. 网络与图像处理:计算机网络和图像处理是计算机科学中重要的应用领域,而图论和数理逻辑等数学工具在这些领域中发挥了重要作用。

比如,图论可用于网络拓扑结构的建模和优化算法的设计;概率论和统计学可用于图像处理中的噪声去除和图像分析等方面。

4. 密码学与安全性:密码学是信息安全的重要基础,而数论和代数学是密码学研究的重要数学工具。

利用数学中的数论和代数学方法,可以设计出安全可靠的密码系统,保护信息不被非法获取和篡改。

二、计算机科学对数学的影响1. 计算机模拟与数值计算:计算机科学为数学提供了强大的计算工具。

通过计算机的模拟和数值计算,可以解决许多传统数学问题,如微分方程的数值解法、高维数据的可视化等。

计算机科学的发展推动了数学研究的进一步深入和拓展。

2. 数学建模与优化:计算机科学的应用为数学在实际问题中的建模和优化提供了新的思路和方法。

通过将实际问题转化为数学模型,并利用计算机进行模拟和优化算法的求解,可以得到更快、更准确的结果,提高工程和科学领域的效率和可行性。

3. 大数据与数据挖掘:随着计算机和互联网的迅猛发展,大量的数据被生成和积累。

而数学的统计学和机器学习等理论与计算机科学中的数据挖掘技术相结合,可以从这些海量数据中挖掘出有用的信息和模式,为决策和预测提供依据。

高中数学建模教学与计算机教学融合的可行性研究

高中数学建模教学与计算机教学融合的可行性研究
校教 育教学交流 的重要平 台。它一方面大大方便 了学校教 师
间 的信 息 积 累 和 信 息 传 递 及 资源 共 享 , 另 一 方 面 也 为 学 校 对 外 宣 传 提 供 了快 捷 通 道 ,学 校 合 理 使 用 可 以起 到 低 耗 高效 的 宣传 效果。 如 今 , 学 校 在 互 通 外 网 和 发 挥 其 重 要 作 用 上 下 了 大 功
息 技 术 成 了学 校 常 流 动 的 “ 血 液 ” ,为 教 师 的发 展 、学 校 的 发展 起 到 重 要 作 用 。
高 中数学建模教 学 与 计算机教 学融合 的 可行性 研究
◆ 刘 海振
1 数 学建模教 学中融入计算机技术的必要性
1 . 1数学建模教学 的现状调查
E l 前 ,高 中 的 生 源 一 部 分 是 统 招 的 初 中 毕业 生 , 一 部 分
学生在进 行专门课程学习 的同时 ,结合各科 教学和各种活动 训练 ,能熟练 掌握上网搜索 、电脑绘 画、打 字等 各种现代教
育 技 术 使 用 技 能 。 据 不 完 全 统 计 , 目前 学 校 3~ 6年 级 已有
9 8 %以上 的学 生学 会 了制作 电脑 小报 ,学 会 了 E - m a i 1的使
借 还 手 续 , 加 快 了流 通 速 度 , 节 省 了读 者 借 书 所 用 的时 间 。
1 . 2 目前数学建模教学存在 的问题
目前高 中数 学教育受传统数 学教学 的影响较 为深 刻,传
统 数 学 课 程 设 置 、 教 学 内容 、 思 想 和 方 法 手 段 在 高 中 教 师 的 教 学 理 论 中根 深 蒂 固 , 与 数 学 建 模 的 教 学 特 点 和 目标 要 求 相 差较远 。 1 )教 学 内 容 偏 重 于 理 论 , 对 应 用 不 够 重 视 , 喜 欢 传 统 的推 理 和 古典 的方 法 ,对 于 现 代 的前 沿 方 法 却 简 而 代 之 。

数学建模中计算机技术的应用

数学建模中计算机技术的应用

数学建模中计算机技术的应用随着计算机技术的不断发展,其在数学建模领域的应用也日益广泛。

数学建模是指通过建立数学模型来描述现实问题,并借助计算机技术进行数据分析、预测和优化。

本文将介绍计算机技术在数学建模中的意义、作用和应用场景,并通过具体案例分析其具体应用。

数学建模中可能涉及的关键词包括算法、数据结构、模拟等等。

其中,算法是数学建模的核心,它用于解决特定问题,并确定如何通过数据结构组织和分析数据。

数据结构则用于存储和操作数据,以便在算法执行期间更高效地解决问题。

模拟则是通过计算机技术对现实问题进行建模和实验,以帮助我们更好地了解问题本质。

计算机技术在数学建模中有着广泛的应用场景。

例如,在优化问题中,计算机技术可以用于求解最优化算法,以获得最佳解决方案。

在随机数生成中,计算机技术可以用于产生高质量的随机数,以满足数学建模的需求。

在实验设计中,计算机技术可以用于模拟实验过程,以便更好地理解实验结果和优化实验方案。

具体来说,计算机技术在数学建模中的应用可以通过以下案例进行说明。

例如,在解决车辆路径问题时,我们可以建立相应的数学模型,然后使用计算机技术搜索最优解。

在车辆路径问题中,我们需要寻找一条最优路线,使得车辆在满足一定限制条件下行驶的总距离最短。

为了解决这个问题,我们可以使用图论中的最短路径算法,如Dijkstra算法或A*算法,来求解最短路径问题。

通过计算机技术的辅助,我们能够更快速、准确地找到最优解。

计算机技术在数学建模中具有重要的作用和使用价值。

计算机技术的运用可以大大提高数学建模的效率和准确性。

传统的数学建模方法往往需要大量的人工计算和分析,而计算机技术可以快速、准确地处理大量数据,并帮助我们获得更精确的结果。

计算机技术的运用可以扩展数学建模的应用范围。

例如,在解决复杂系统中的动态行为和优化问题时,计算机技术可以为我们提供强有力的支持,以应对更为复杂的问题。

然而,使用计算机技术进行数学建模时也需要注意一些问题。

浅谈数学在计算机领域中的应用

浅谈数学在计算机领域中的应用

浅谈数学在计算机领域中的应用1. 引言1.1 数学与计算机的关系数学与计算机的关系是密不可分的。

数学是计算机科学的重要基础,两者之间有着深刻的联系和互相依赖关系。

计算机是利用数学原理和算法来进行运算和处理数据的工具,而数学则为计算机提供了精确的描述和分析方法。

数学的逻辑思维和抽象能力对于计算机科学家来说至关重要,数学不仅是计算机科学的理论基础,也是实际应用中不可或缺的工具。

数学与计算机的关系可以追溯到计算机诞生的初期。

早期的计算机就是由数学家们设计和制造的,计算机的运行原理也是建立在数学的基础上。

随着计算机科学的发展,数学在计算机领域中的地位变得更加重要。

从算法设计到图像处理,从密码学到人工智能,数学都扮演着不可或缺的角色。

数学的严谨性和精确性为计算机科学提供了稳固的基础,也推动了计算机科学的不断发展。

数学与计算机的关系是一种相辅相成的关系,两者相互促进、相互推动。

数学为计算机领域提供了理论基础和工具方法,而计算机则在实践中验证和应用数学的理论。

深入挖掘数学在计算机领域中的应用,将会为科学技术的发展和人类社会的进步带来更多的可能性。

【完成】1.2 数学在计算机领域中的重要性数学在计算机领域中的重要性不言而喻。

作为计算机科学的基础,数学在计算机领域中扮演着至关重要的角色。

数学提供了计算机科学家们所需的工具和方法论,帮助他们解决各种复杂的问题。

从算法设计到数据分析,再到人工智能和机器学习,数学贯穿于整个计算机领域的各个方面。

在算法设计和分析中,数学提供了问题建模和解决方案的数学基础。

通过数学方法,计算机科学家们可以设计出高效的算法,并对其进行分析和优化。

数学在密码学和网络安全中的应用更是不可或缺的。

加密算法和安全协议的设计都建立在数学的基础上,保护了数据的安全和隐私。

在人工智能和机器学习领域,数学更是起着举足轻重的作用。

从神经网络到贝叶斯统计,数学方法被广泛应用于模式识别、数据挖掘和预测分析等方面。

谈计算机在数学建模中的作用

谈计算机在数学建模中的作用

自不同领域 , 如果事先没有 了解过, 可 以通过 I n t e me t 快速查 找相 关资料 , 这样 就可以帮助参赛者取得好成绩。因此 , 计算 机跟 数学 建模竞赛之 间有着密切关系。 笔者 在 上 学 期 间 , 也有 幸 参 加 了几 次 建 模 的 辅 导和 竞赛 , 深知其中的奥秘和精髓 。可 以说,数学建模是通 向未来必不
明显, 前 者 是 建 立 在 后 者 的基 础 上 的 。只 有 确 立 了 工 具 方案 ,
若是想绘制 大致的 图形 ,则 需要 绘图软件 ,例如几 何画板、
P h o t o s h o p 、 F l a s h等 等 。将 一 些 图表 加 入 附 件 里 , 也 可 以为 文
章添色不少 。不难看出,建模竞赛今后 的发展趋势就是要求 学生对各方面 的知识都要有所 涉及 ,对计算机知识也要更加 熟悉 。近年来 , 建模竞赛 中, 几乎所有 的题 目都涉及到 了大范 围的计算和逻辑运算 。对于没有掌握计算机 的相关数学软件
要 的课 程 , 是一个技术应用方面的课程, 而 非 基 础 教 育 方 面 的
课程 。建模讲究的是如何好而快地解 决问题 ,如何充分利用 好各种手段和技术 , 因此 , 计算机在建模 的世界里有着不可或 缺 的重要作用 。与建模相关的计算机技术主要可 以被分成两 种: ( 1 ) 把实际问题转化为计算机软件或编程可 以进行的算法 ; ( 2 )找到可 以解决这些 问题的应用软件或者是编程技术 。很
总 的来说 , 拥有计算机基础 , 是培养建模意识 的关键, 也是 培
养建模创新能力 的基础条件 。而计算机也是建模竞赛活动里
的不 可 缺 少 的工 具 。
3 数学 建模 里计 算机 的运用

谈数学建模的重要性

谈数学建模的重要性

谈数学建模的重要性作者:谢晋来源:《文存阅刊》2017年第22期摘要:随着全球经济的发展,计算机的迅速发展,利用计算机去解决数学问题再用数学去解决实际问题显得尤为重要,而数学建模就是利用计算机与数学解决实际问题。

本文从四个方面论述了现代数学应用中数学建模的重要性,详细阐述了数学建模在生活中的应用和怎样在学校教育中开展数学建模的教学这两个问题。

通过对四个方面即概念、重要性、应用、养数学建模的能力的深刻论述得出结论,数学建模是架于数学理论和生活实际之间的一个桥梁,让人们看到了数学建模的价值,体会到数学建模的教学在现代教育中的重要地位和作用。

关键词:数学建模;综合素质;教学;数学应用(一)数学建模的概念数学建模非常广泛、简单,它一直与生活、学习息息相关。

例如,在学习中学数学的课程时,根据应用题的已知量列出的数学等式就是最简单的数学模型,对方程进行求解的过程就是在进行简单的数学建模。

数学建模就是应用数学模型来解决各种实际问题的方法。

也就是通过对实际问题的抽象、简化、确定变量和参数、并应用某些“规律”建立变量,参数间的确定性的数学问题(也可称为一个数学模型)求解数学问题,解释验证所得到的解,从而确定能否应用于解决实际问题的多次循环,不断深化结果。

它是用数学方法解决各种实际问题的桥梁。

(二)数学建模的思想内涵数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并“处理”现实问题的一种有效的数学手段。

而通过对实际问题建立数学形式的模型。

求解检验体问题获得解决的方法称为数学建模方法。

数学建模是一个系统的过程,进行数学建模活动的过程中需要利用各种技巧、技能的及分析、综合等认知活动。

综合分析,运用数学建模解决实际问题必须先通过观察分析、提炼出实际问题的数学模型,之后再把数学模型纳入知识系统去处理。

(三)数学建模的流程这里所说的建模步骤只是大体上的规范,实际操作中应针对具体问题作具体分析,灵活运用。

数学建模在计算科学中的应用

数学建模在计算科学中的应用

数学建模在计算科学中的应用计算科学是一门基础科学,它以计算机技术与数学理论为基础,研究计算机算法、结构和性能,并探索计算机与现实世界之间的关系。

数学建模则是计算科学的一个分支,它通过运用数学理论和方法,模拟和描述现实世界中的问题,并为解决这些问题提供可靠的数学模型和解法。

在计算科学的发展中,数学建模已经得到了广泛的应用,它在各个领域都起着非常重要的作用,尤其是在计算机网络、人工智能、图像处理、金融、医学、地质勘探等领域中。

在计算科学中,数学建模起着至关重要的作用。

数学建模的过程通常包括了模型的建立、意义的分析、数值的计算和结果的解释等步骤。

数学建模的过程就是简单化一个复杂的现实问题,将其与数学联系起来,然后建立一个包含有问题所在数学模型,最后用计算机求解,然后得出相应的结果。

其中,最关键的步骤就是模型的建立和求解,因为只有建立出一个与实际情况尽可能地接近的数学模型,才能得出一个符合实际的结果,进而解决实际问题。

数学建模在计算科学中的应用非常广泛。

例如,在计算机网络中,数学建模可以用来分析网络的拓扑结构、研究数据传输等方面;在人工智能中,数学建模可以用来构建智能机器人、智能系统等;在图像处理中,数学建模可以用来实现图像的压缩、分割、识别等功能;在金融领域中,数学建模可以用来预测股票价格、研究概率统计等;在医学领域中,数学建模可以用来模拟人体系统、研究疾病传播和患者管理等方面。

下面结合几个具体的应用,来进一步说明数学建模在计算科学中的重要性和应用价值。

一、计算机网络计算机网络是计算机技术应用范围广泛的一个领域,它不仅可以提供人们通信,而且可以将不同地区的代理商连接起来,加强经济交流。

为了让计算机网络正常运行,需要进行网络规划,而这个过程中数学建模起到了重要的作用。

首先,我们需要建立网络的拓扑模型,用图论的方法来描述网络节点的关系;然后需要分析参数,如网络带宽、传输速度等,将其转换成数学公式;最后,利用数学计算方法,来检验网络各个环节的可靠性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学建模与计算机的联系及重要性
摘要:在当今科技发达的今天,计算机已经得到了广泛的应用,也为数学建模的计算提供了有力工具。

本文浅谈了数学建模与计算机在人类生产和生活中的重要性。

关键词:数学建模计算机重要性
当今社会计算机已经被广泛的应用了,在计算机的协助下许多问题的求解变得简单、方便、快捷。

而数学建模是把现实世界中的实际问题加以提炼,抽象为数学模型,求出模型的解,验证模型的合理性,并用该数学模型所提供的解答来解释现实问题。

在科技迅猛发展的今天计算机和数学建模在人类的生存和发展中都具有举足轻重的作用。

一、数学建模与计算机息息相关
其一、我们在模型求解时,有些计算单纯的用纸和笔是难以完成的,这就需要利用计算机上机计算、编制软件、绘制图形等,当结果通过计算机算出后也必须通过打印机随时进行输出。

其二、数学建模的学习对计算机能力的培养也起着极大推动作用,如报考计算机方向的研究生时,对数学的要求非常高;在进行计算机科学的研究时,也要求有极强的数学功底才能写出具有相当深度的论文,计算机科学的发展也是建立在数学基础之上的,许多为计算机的发展方面做出杰出贡献的人,在数学方面也颇有造诣。

我们在遇到一些实际问题时往往需要计算机和数学建模同时应用才能解决问题,否则问题将无法进行。

数学问题与计算机通常采用一些数学软件(lingo,Matlab,MathCAD 等等)的命令来描述算法,既简单又容易操作。

例如下面有这样一道
题就是利用数学软件lingo 求解的。

例1 某工厂有两条生产线,分别用来生产M 和P 两种型号的产品,利润分别为200元每个和300元每个,生产线的最大生产能力分别为每日100和120,生产线没生产一个M 产品需要1个劳动日(1个工人工作8小时称为1个劳动日)进行调试、检测等工作,而每个P 产品需要2个劳动日,该工厂每天共计能提供160个劳动日,假如原材料等其他条件不受限制,问应如何安排生产计划,才能使获得的利润最大?
解 设两种产品的生产量分别为1x 和2x ,则该问题的数学模型
为:
目标函数 12max 200300z x x =+
约束条件 1212100,120,160,
0,1,2.
i x x x x x i ≤⎧⎪≤⎪⎨+≤⎪⎪≥=⎩
编写LINGO 程序如下:
MODEL:
SETS:
SHC/1,2 /:A,B,C,X; YF/1,2,3 /:J;
ENDSETS
DATA:
A=1,2 ; B=100,120; C=200,300;
ENDDATA
MAX=@SUM(SHC:C*X);
@FOR(SHC(I):X(I)<B(I)); @SUM(SHC(I):A(I)*X(I))<=160; END
程序运行结果如下
Global optimal solution found.
Objective value: 29000.00
Total solver iterations: 0
Variable Value Reduced Cost
A( 1) 1.000000 0.000000
A( 2) 2.000000 0.000000
B( 1) 100.0000 0.000000
B( 2) 120.0000 0.000000
C( 1) 200.0000 0.000000
C( 2) 300.0000 0.000000
X( 1) 100.0000 0.000000
X( 2) 30.00000 0.000000
J( 1) 0.000000 0.000000
J( 2) 0.000000 0.000000
J( 3) 0.000000 0.000000
Row Slack or Surplus Dual Price
1 29000.00 1.000000
2 0.000000 50.00000
3 90.00000 0.000000
4 0.000000 150.0000
最优解为12100,30,x x ==最优值为29000.00z =.即每天生产100个M 产品30个P 产品,可获得29000元利润.可见数学建模和计算机共同为问题求解提供了有效的手段,对其它课程的辅助学习帮助也是极大的。

二、 数学建模和计算机共同促进科学问题的探索
在自然科学中许多问题都被归结为了某些数学问题,数学建模将这些应用问题的静态特性和动态特性用数据和图形的方式多方面描述,有助于问题的解决。

数学建模问题绝大部分来自一些具体的科研课题或实际工程问题,而不同于普通的数学习题或竞赛题。

数学建模问题的特点是:面向现实生活的应用,有相关的科研背景,综合性强,涉及面广,因素关系复杂,缺乏足够的规范性,难以套用传统成熟的解决手段,数据量庞大,可采取的算法也比较复杂,结果具有一定的弹性空间,需要一定的伴随条件,许多问题得到的只能是近似解。

这些难度大、工作量大问题都需要数学建模和计算机共同合作来解决。

由此
可见,二者在科学问题的探索上作用极大、密不可分的。

三、数学建模和计算机共同完成优秀的课件
为了提高教学效率,学生对教师制作课件的水平也越来越高,这就需要我们制作出非常优秀的数学课件,制作数学课件需要使用大量的数学对象(数学符号、数学公式、数学表格、数学图形等)。

数学建模利用相关的软件就可以完成复杂的数值计算机和符号运算。

而且数学软件的HTML、TeX图形输出格式,可以直接用于课件的创作。

有些软件可以得到数学符号和公式的数学排版系统,这样就避免了输入公式和符号的麻烦,同时老师和学生们也可以利用一些软件(Flash,Firework.Dreamweaver等)和与之相结合,并稍加润色,就会成为高水平的数学课件样本。

四、数学建模和计算机课的实用性都非常强
我身边从事教育的朋友对数学建模和计算机课都非常感兴趣,我想原因在于这两门课程的实用性都非常强。

数学模型是利用数学语言模拟现实的模实的模型,是用来解释现实问题的。

而计算机已经成为了当今社会人类生产、生活必备之物。

大到世界各国、小到各个家庭都应用到了计算机,它能帮助人类把复杂性的问题简单化,从而也推动了社会的进步、人类的发展。

因此,我相信数学建模和计算机一样会越来越受到人们的重视。

五、数学建模和计算机一样应该在各学校早点开设
现在计算机课程小学有的已经开设了,而数学建模一般大学才有,我们应该把简单的数学建模题编成一本书,提前在中小学开设,相信同学们一定会对这门课程感兴趣,同时也会促进其它课程的学习,从而为快速提高教学效率奠定坚实的基础。

参考文献《计算机应用基础》
《优化数学课堂教学》 2012-2-22。

相关文档
最新文档