正项级数敛散性的判断及其应用
级数收敛与发散的判定方法
级数收敛与发散的判定方法级数是由一系列连加的无穷项组成的数列。
在数学中,判断一个级数是收敛还是发散是一个重要的问题。
下面我将介绍几种常见的方法来判定级数的收敛性或发散性。
一、正项级数收敛判定法正项级数是指级数的每一项都是非负数。
对于正项级数,我们可以使用以下几种方法来判定其收敛性或发散性。
1. 比较判别法:如果一个正项级数的每一项都小于等于另一个已知收敛的正项级数的对应项,那么这个级数也是收敛的;如果一个正项级数的每一项都大于等于另一个已知发散的正项级数的对应项,那么这个级数也是发散的。
2. 比值判别法:对于正项级数,计算相邻两项的比值,如果这个比值的极限存在且小于1,则级数收敛;如果大于1,则级数发散;如果等于1,则无法判定。
3. 根值判别法:对于正项级数,计算相邻两项的根的比值,如果这个比值的极限存在且小于1,则级数收敛;如果大于1,则级数发散;如果等于1,则无法判定。
二、交错级数收敛判定法交错级数是指级数的每一项交替正负。
对于交错级数,我们可以使用以下方法进行判定。
1. 莱布尼茨判别法:对于交错级数,如果级数的每一项绝对值递减趋向于零,并且满足单调性条件,即后一项的绝对值不大于前一项的绝对值,那么该级数收敛。
三、级数收敛判定法对于非正项级数,也有一些方法可以判定其收敛性。
1. 绝对收敛判别法:如果一个级数的绝对值级数收敛,那么原级数也收敛。
2. 条件收敛判别法:如果一个级数是收敛的但不是绝对收敛的,那么它是条件收敛的。
四、其他级数的判定方法除了上述常见的判定法外,还有一些特殊的级数判定方法。
1. 积分判别法:将一个级数与一个函数的积分进行比较,如果积分收敛,则级数收敛;如果积分发散,则级数发散。
2. 定积分法:将级数的前n项求和表示为一个关于n的函数,然后对该函数进行定积分,如果定积分收敛,则级数收敛;如果定积分发散,则级数发散。
总结:级数的收敛与发散的判定方法有比较判别法、比值判别法、根值判别法、莱布尼茨判别法、绝对收敛判别法、条件收敛判别法、积分判别法和定积分法等。
正项级数敛散性地判别方法
正项级数敛散性的判别方法摘要:正项级数是级数容中的一种重要级数,它的敛散性是其基本性质。
正项级数敛散性的判别方法虽然较多,但是用起来仍有一定的技巧,归纳总结正项级数敛散性判别的一些典型方法,比较这些方法的不同特点,总结出一些典型判别法的特点及其适用的正项级数的特征。
根据不同级数的特点分析、判断选择适宜的方法进行判别,才能事半功倍。
关键词:正项级数;收敛;方法;比较;应用1引言数项级数是伴随着无穷级数的和而产生的一个问题,最初的问题可以追溯到公元前五世纪,而到了公元前五世纪,而到了公元17、18世纪才有了真正的无穷级数的理论。
英国教学家Gregory J (1638—1675)给出了级数收敛和发散两个术语从而引发了数项级数敛散性广泛而深入的研究,得到了一系列数项级数的判别法。
因而,判断级数的敛散性问题常常被看作级数的首要问题。
我们在书上已经学了很多种正项级数敛散性的判定定理,但书上没有做过多的分析。
我们在实际做题目时,常会有这些感觉:有时不知该选用哪种方法比较好;有时用这种或那种方法时,根本做不出来,也就是说,定理它本身存在着一些局限性。
因此,我们便会去想,我们常用的这些定理到底有哪些局限呢?定理与定理之间会有些什么联系和区别呢?做题目时如何才能更好得去运用这些定理呢?这就是本文所要讨论的。
2正项级数敛散性判别法2.1判别敛散性的简单方法由级数收敛的基本判别定理——柯西收敛准则:级数1nn u∞=∑收敛⇔0,,,,N N n N p N ε+∀>∃∈∀>∀∈有12n n n p u u u ε++++++<。
取特殊的1p =,可得推论:若级数1nn u∞=∑收敛,则lim 0n n u →∞=。
2.2比较判别法定理一(比较判别法的极限形式): 设1n n u ∞=∑和1n n v ∞=∑为两个正项级数,且有limnn nu l v →∞=,于是(1)若0l <<+∞,则1nn u∞=∑与1nn v∞=∑同时收敛或同时发散。
关于正项级数敛散性判定方法的总结比较
关于正项级数敛散性判定方法的总结比较正项级数指的是所有项都是正数的级数。
求解正项级数的敛散性是数学分析、高等数学、物理等学科中经常使用的基本问题。
以下是关于正项级数敛散性判定方法的总结。
1. 通项公式法如果正项级数的通项公式可以明确地表示出来,那么可以通过解析判断级数的敛散性。
例如:$\sum\limits_{n=1}^{\infty} \frac{1}{n^2}$,该级数的通项公式为$\frac{1}{n^2}$,由于是调和级数的平方,因此它是收敛的。
但如果通项公式不容易明确表示出来,就需要采用其他方法。
2. 比较判别法当正项级数与一个已知收敛或发散的级数的通项公式形式非常类似时,就可以使用比较判别法。
若存在一个收敛级数$\sum\limits_{n=1}^{\infty} a_n$,则当正项级数$\sum\limits_{n=1}^{\infty} b_n$满足$\lim\limits_{n\to\infty}\frac{b_n}{a_n}=c>0$时,$\sum\limits_{n=1}^{\infty}b_n$与$\sum\limits_{n=1}^{\infty} a_n$同时敛散。
其中,$a_n$和$b_n$都是正数。
3. 极限比值法极限比值法也叫作柯西-黎曼判别法。
该方法需要计算正项级数的项数无穷大时的比值$\lim\limits_{n\to\infty}\frac{a_{n+1}}{a_n}$,如果该比值$<1$,则级数收敛;如果$>1$,则级数发散;如果$=1$,则判别不出敛散性。
此外,当无法计算极限时,也可以将比值的极限转化为自然对数的形式再进行计算。
将正项级数转化为积分形式,再判断积分的敛散性。
若存在一个$a>0$,使得函数$f(x)$在$[a,+\infty)$上单调递减且非负,则当正项级数$\sum\limits_{n=1}^{\infty} a_n$的通项公式为$a_n=f(n)$时,级数敛散与积分$\int_a^{+\infty} f(x)dx$的敛散性相同。
6敛散性的判别方法及其应用(修改版)
正项级数敛散性的判别方法及其应用数学与应用数学专业学生:王万超指导教师:邹庆云摘要:正项级数敛散的判别方法是一个重要而有趣的数学课题,关于正项级数的敛散性尽管已经有不少经典性的判别法,然而对正项级数敛散性的探索与研究至今还在继续与深入,并且获得了一些新的知识与发现。
本文首先论述了正项级数的概念,接着重点阐述了正项级数敛散性的几种判别方法(比较原则、达朗贝尔判别法、柯西判别法、积分判别法、拉贝判别法、),最后,探讨了正项级数敛散性判别方法的应用,并对各种判别法进行了分析、举例。
关键词:正项级数,敛散性,判别方法,应用。
Abstract: The convergence of positive series of discrimination is an important and interesting topic of mathematics, on the positive series despite the convergence of the classic has a lot of discrimination law, but the series is the convergence of the Exploration and research has continued and in-depth, and has a number of new knowledge and discovery. This paper discusses the concept of positive series, and then focus on the positive series convergence of the discrimination of several methods (compared principle, d'Alembert Discrimination Act, Cauchy Test, Integral Test, Rabe Test ,), And finally, on a positive series convergence of the application of methods of discrimination and discrimination of all kinds were analyzed, for example. Key words: positive series, Convergence and Divergence, determine methods, applications.1引言近年来,对正项级数收敛性问题又有一些新的研究得到了一些新的敛散性判别法与相关命题,这些新结果是对正项级数敛散性理论中原有命题的有力改进和补充。
正项级数敛散性地判别
一、 正项级数敛散性的判别设∑∞=1n n u 是正项级数,假设 0lim ≠∞→n n u ,那么∑∞=1n n u 发散。
若0lim =∞→n n u ,那么∑∞=1n n u 可能收敛也可能发散。
可依照下面的思路判别其敛散性。
(1)若是通项n u 包括有n !之类的因子,或关于n 的假设干因子连乘形式,那么用比值判别法,即ρ=+→∞n n n u u 1lim ,那么当1<ρ时∑∞=1n n u 收敛,当1>ρ时∑∞=1n n u 发散。
若是nn n u u 1lim +∞→不易计算,或不存在,或存在为1,那么适当放大n u ,使得n n v u ≤,并对∑∞=1n nv 应用比值判别法,若是∑∞=1n n v 收敛,那么∑∞=1n n u 收敛;或适当缩小n u ,使得0>≥n n v u ,并对应用比值判别法,若是∑∞=1n n v 发散,则∑∞=1n n u 发散。
(2)若是通项n u 包括有n 或关于n 的函数为指数的因子,那么用根值判别法,即ρ=∞→n lim n n u ,那么当1<ρ时∑∞=1n nu收敛,当1>ρ时∑∞=1n n u 发散。
若是n lim n n u →∞不易计算,或不存在,或存在为1,那么适当放大n u ,使得n n v u ≤,并对∑∞=1n n v 应用根值判别法,若是∑∞=1n n v 收敛,那么∑∞=1n n u 收敛;或适当缩小n u ,使得0>≥n n v u ,并对应用根值判别法,若是∑∞=1n n v 发散,那么∑∞=1n n u 发散。
(3)当n u 不是以上情形时,寻觅∞→n 时n u 的等价无穷小,可利用等价无穷小的经常使用公式和麦克劳林展开式,取得)0(~>C nCu n α,第八讲 常数项级数敛散性的判别等价的通项,两级数应具有相同的敛散性。
因此当1>α时∑∞=1n n u 收敛;当1≤α时∑∞=1n nu发散。
正项级数的比较审敛法
正项级数的比较审敛法正项级数的比较审敛法是数学中一种常用的判别级数收敛性的方法。
通过与已知的收敛或发散级数进行比较,我们可以判断一个正项级数的收敛性。
本文将介绍正项级数的比较审敛法的基本原理和应用。
正项级数是指所有项都是非负数的级数。
我们知道,一个正项级数的收敛性与其项的大小相关。
如果一个级数的每一项都小于等于另一个级数的对应项,并且后者收敛,那么我们可以推断前者也收敛。
同样地,如果一个级数的每一项都大于等于另一个级数的对应项,并且后者发散,那么我们可以推断前者也发散。
这就是正项级数的比较审敛法的基本思想。
比较审敛法分为两种情况:比较法和极限比较法。
下面我们将分别介绍这两种方法。
一、比较法比较法是通过比较待判定级数与已知级数的大小关系来判断待判定级数的收敛性。
具体而言,我们选择一个已知的收敛级数和一个待判定级数,然后比较它们的项的大小。
如果待判定级数的每一项都小于等于已知级数的对应项,那么待判定级数也收敛;如果待判定级数的每一项都大于等于已知级数的对应项,那么待判定级数也发散。
比较法的关键在于选择合适的已知级数。
常用的已知级数包括调和级数、几何级数和指数级数等。
例如,我们可以使用调和级数来判断一个正项级数的收敛性。
调和级数是指形如1+1/2+1/3+1/4+...的级数。
根据比较法的原理,如果一个正项级数的每一项都小于等于调和级数的对应项,那么该正项级数也收敛。
二、极限比较法极限比较法是比较法的一种特殊情况。
当我们无法直接比较待判定级数和已知级数的项时,可以通过比较它们的极限值来判断待判定级数的收敛性。
具体而言,我们选择一个已知的收敛级数和一个待判定级数,然后比较它们的极限值。
如果待判定级数的极限值与已知级数的极限值相等或者待判定级数的极限值无穷大,那么待判定级数也收敛;如果待判定级数的极限值与已知级数的极限值比较大,那么待判定级数也发散。
极限比较法的关键在于计算级数的极限值。
对于一些常见的级数,我们可以通过取极限值来判断其收敛性。
数项级数敛散性判别法
数项级数敛散性判别法数项级数是由一系列数值相加而得到的无穷级数。
在数学中,我们经常需要判断一个数项级数的敛散性,即判断它是否会无限逼近一个有限值(收敛)或者永远无法收敛(发散)。
下面将介绍一些常见的判断数项级数敛散性的方法。
1.正项级数判别法(比较判别法):对于一个数项级数∑an,如果对于所有的n,都有an≥0,并且an+1≤an,那么我们可以使用正项级数判别法来判断敛散性。
即如果极限值lim(n→∞)an=0,则级数收敛;如果极限值lim(n→∞)an>0,则级数发散。
2.比值判别法:如果存在一个正数r,使得lim(n→∞)an+1/an=r,那么根据r的大小,可以判断原级数的敛散性。
具体判别如下:-如果r<1,那么级数收敛;-如果r>1,那么级数发散;-如果r=1,判别不出来,需要使用其他方法进行判断。
3.根值判别法:如果存在一个正数r,使得lim(n→∞)√(n)(an) = r,那么根据r 的大小,可以判断原级数的敛散性。
具体判别如下:-如果r<1,那么级数收敛;-如果r>1,那么级数发散;-如果r=1,判别不出来,需要使用其他方法进行判断。
4.绝对收敛与条件收敛:如果一个级数的各项都是正数,并且该级数收敛,那么称该级数是绝对收敛的。
如果一个级数是收敛的,但其对应的绝对值级数是发散的,则称该级数是条件收敛的。
5.莱布尼茨判别法:对于一个交替级数∑((-1)^(n+1)*bn),如果满足以下条件,那么该级数收敛:- bn>0,即各项都是正数;- bn≥bn+1(递减趋势);- lim(n→∞)bn=0。
6.积分判别法:如果能够找到一个函数f(x),使得f(x)在[1,∞)上连续且单调递减,并且∑an与∫f(x)dx之间有关系,那么可以使用积分判别法来判断敛散性。
具体判别如下:- 如果∫f(x)dx收敛,那么∑an也收敛;- 如果∫f(x)dx发散,那么∑an也发散。
关于正项级数敛散性判定方法的总结比较
关于正项级数敛散性判定方法的总结比较1. 引言1.1 介绍正项级数是数学中一个非常重要的概念,它在数学分析、实变函数论等领域都有着广泛的应用。
正项级数的收敛性质对于理解数学问题、解决实际问题都有着重要的意义。
在研究正项级数的收敛散性判定方法时,我们可以利用一些常用的方法来对其进行分析和求解。
在数学中,我们经常会遇到各种各样的级数,如调和级数、几何级数等。
这些级数的收敛性质可能相差甚远,有些级数可能收敛,而有些级数可能发散。
我们需要通过一些方法来判断一个级数是否收敛。
对于正项级数而言,有一些常用的判定方法,如比较判别法、根值判别法、积分判别法、对数判别法等。
本文将重点介绍正项级数的收敛散性判定方法,通过比较这些方法的特点和适用范围,帮助读者更好地理解正项级数的收敛性质。
希望本文能够为相关领域的研究者提供一些帮助,并为未来的研究工作提供一定的参考。
1.2 研究意义正项级数是数学中重要的研究对象,对其收敛和发散性进行判定具有重要的理论和实际意义。
正项级数的收敛性判定可以帮助我们了解无穷级数的性质,进一步推导出一些重要的数学定理和结论。
正项级数在实际问题中的应用十分广泛,比如在概率论、统计学、物理学等领域都有着重要的应用价值。
通过对正项级数的收敛性进行准确判断,可以帮助我们更好地理解和解决实际问题。
研究正项级数的收敛性判定方法,可以拓展数学领域中的知识体系,丰富数学理论的内涵,推动数学学科的发展。
深入研究正项级数的收敛性判定方法具有重要的研究意义和实际应用价值。
1.3 研究现状正项级数是数学中重要的概念,其收敛性对于分析问题的解决具有重要的意义。
关于正项级数的收敛性判定方法,已经有许多经典的理论成果,这些方法在实际问题的解决中发挥着重要作用。
在研究现状方面,正项级数的收敛性已经得到了深入的研究和总结。
目前常用的级数收敛判定方法有比较判别法、根值判别法、积分判别法和对数判别法。
这些方法各有特点,能够适用于不同类型的正项级数,为研究者提供了多种选择。
正项级数敛散性的判别方法
正项级数敛散性的判别方法正项级数是指级数的所有项都是非负数的级数。
判断正项级数的敛散性的方法主要有以下几种:比较判别法、根式判别法、积分判别法、极限判别法和对数判别法。
一、比较判别法:1. 比较判别法之比较大法:如果对于正项级数∑an和∑bn,当n趋向于无穷大时有an≤bn,那么若∑bn收敛,则∑an也收敛;若∑bn发散,则∑an也发散。
2. 比较判别法之比较小法:如果对于正项级数∑an和∑bn,当n趋向于无穷大时有an≥bn,那么若∑bn发散,则∑an也发散;若∑bn收敛,则∑an也收敛。
二、根式判别法:设an≥0,如果存在正常数p使得lim[(an)^1/n]=a,则1. 若a<1,则级数∑an收敛;2. 若a>1,则级数∑an发散;3.若a=1,根式判别法无法确定级数的敛散性。
三、积分判别法:将正项级数∑an转化为函数f(x)的积分,即∫f(x)dx,如果对于函数f(x),当x趋向于无穷大时有f(x)递减且连续,则1. 若∫f(x)dx收敛,则级数∑an也收敛;2. 若∫f(x)dx发散,则级数∑an也发散。
四、极限判别法:如果存在常数L>0,使得lim(n→∞)n*an=L,则1. 若L<1,则级数∑an收敛;2. 若L>1,则级数∑an发散;3.若L=1,极限判别法无法确定级数的敛散性。
五、对数判别法:设an≥0,如果存在正常数p使得limln(an)/ln(n)=a,则1. 若a<1,则级数∑an收敛;2. 若a>1,则级数∑an发散;3.若a=1,对数判别法无法确定级数的敛散性。
这些判别方法在实际应用中都有其适用范围和局限性,需要根据具体情况选择合适的方法进行判断。
同时,在判断级数的敛散性时,还可以结合其他定理和方法,如柯西收敛准则、阿贝尔定理、绝对收敛等进行综合分析。
级数敛散性的判别方法
级数敛散性的判别方法级数是数学中一个重要的概念,它在分析、微积分等领域有着广泛的应用。
在研究级数时,一个重要的问题就是判别级数的敛散性。
本文将介绍几种常见的判别方法,帮助读者更好地理解级数的敛散性。
首先,我们来看级数的敛散性定义。
对于一个级数$\sum_{n=1}^{\infty}a_n$,如果它的部分和数列${S_n}$收敛于某个值$S$,即$\lim_{n \to \infty}S_n=S$,那么我们称级数$\sum_{n=1}^{\infty}a_n$是收敛的,$S$称为级数的和。
如果${S_n}$发散,那么级数$\sum_{n=1}^{\infty}a_n$就是发散的。
接下来,我们将介绍几种判别级数敛散性的方法。
一、比较判别法。
比较判别法是判别级数敛散性常用的方法之一。
设$\sum_{n=1}^{\infty}a_n$和$\sum_{n=1}^{\infty}b_n$是两个级数,如果对于所有的$n$,都有$0 \leq a_n \leq b_n$,且$\sum_{n=1}^{\infty}b_n$收敛,那么$\sum_{n=1}^{\infty}a_n$也收敛;如果$\sum_{n=1}^{\infty}b_n$发散,那么$\sum_{n=1}^{\infty}a_n$也发散。
二、比值判别法。
比值判别法是判别正项级数敛散性的一种方法。
对于正项级数$\sum_{n=1}^{\infty}a_n$,计算极限$\lim_{n \to\infty}\frac{a_{n+1}}{a_n}$,如果这个极限存在且小于1,那么级数$\sum_{n=1}^{\infty}a_n$收敛;如果这个极限大于1或者不存在,那么级数$\sum_{n=1}^{\infty}a_n$发散;如果这个极限等于1,比值判别法不起作用,需要使用其他方法进行判别。
三、积分判别法。
积分判别法适用于正项级数。
对于正项级数$\sum_{n=1}^{\infty}a_n$,如果函数$f(x)$在$[1, +\infty)$上连续、单调递减且非负,那么级数$\sum_{n=1}^{\infty}a_n$与积分$\int_{1}^{\infty}f(x)dx$的敛散性是等价的,即$\sum_{n=1}^{\infty}a_n$与$\int_{1}^{\infty}f(x)dx$同时收敛或者同时发散。
关于正项级数敛散性判定方法的总结比较
关于正项级数敛散性判定方法的总结比较正项级数是指级数中所有的项均为非负数的级数,即对于级数\sum_{n=1}^{\infty}a_n,其中a_n\geq0。
正项级数的收敛性和发散性对于数学分析和实际问题都具有重要意义,在实际应用中,我们经常需要对正项级数的收敛性进行判定。
针对正项级数的收敛性和发散性,数学中有多种方法来进行判定,本文将对这些方法进行总结比较。
一、比较判别法比较判别法是判定正项级数收敛性和发散性的常用方法之一。
该方法的基本思想是通过比较给定级数与一个已知级数的大小关系来判定。
比较判别法分为两种情况,分别是比较判别法和极限比较判别法。
比较判别法是指对于给定级数\sum_{n=1}^{\infty}a_n和另一个级数\sum_{n=1}^{\infty}b_n,如果对于任意n均有a_n\leq b_n,且级数\sum_{n=1}^{\infty}b_n收敛,则级数\sum_{n=1}^{\infty}a_n也收敛;如果级数\sum_{n=1}^{\infty}b_n发散,则级数\sum_{n=1}^{\infty}a_n也发散。
比较判别法的优点是简单易用,只需找到一个已知级数与待判定级数的大小关系即可进行判定;缺点是对于不同的级数,需要选择合适的已知级数进行比较,因此并不是所有情况都适用。
2. 极限比较判别法极限比较判别法的优点是适用范围广,可以处理更多的情况,但缺点是需要计算极限值,有时可能较为复杂。
二、积分判别法积分判别法是判定正项级数收敛性和发散性的另一种重要方法。
对于给定正项级数\sum_{n=1}^{\infty}a_n,如果a_n是连续函数f(x)在[1,+\infty)上的值,且f(x)在[1,+\infty)上单调递减,则级数\sum_{n=1}^{\infty}a_n与函数的积分\int_{1}^{\infty}f(x)dx的收敛性是一致的。
积分判别法的优点是利用了函数积分的性质,简化了级数的判定过程;但缺点是需要对函数进行积分运算,有时可能不太容易求得积分结果。
一个正项级数敛散性的判别法
一个正项级数敛散性的判别法
正项级数敛散性是指一个级数能够在某种给定的运算规则下被加起来,表示为一个有穷的值。
它允许积分,求和,数组操作以及定义特定类型的序列的可行性。
鉴于其运算的复杂性,正项级数敛散性广泛应用于计算数学,统计学,机器学习等领域。
正项级数敛散性的判别法是指识别任意可求正项级数敛散性序列是否为有穷数的过程。
换句话说,它检查序列中是否有一项或多项位于极限,以检测序列是否有穷。
正项级数的敛散性表示的是序列的最后一项的特性。
若序列的最后一项是有限的,则该序列敛散;若序列的最后一项是无限的,则该序列不敛散。
例如,以下是一个最基本的级数:a_n=1/n^2。
该序列的最后一项是无限的,因此该序列不敛散。
正项级数敛散性的判别法测试可分为三步:首先,检查有限比,它由西格玛紧缩度度量表示;其次,计算绝对正项级数的和;最后,依据给定的条件来定义是否有限。
与奇偶性判断法相比,正项级数敛散性判断法有更少的变量限制,可使用于更多情况下。
总之,正项级数敛散性的判别法是通过检查有限比、计算绝对正项级数的和,以及依据给定条件来判断序列是否有穷的过程,作为鉴别级数是否有穷的效率高、功能强大的数学工具,可广泛应用于计算数学、统计学和机器学习等领域。
7.2正项级数敛散性的判别
∞
1 lim ln n = ∞ 而∑ 2 收敛, n →∞ n =1 n
∞
∞
ln n ∴ ∑ 2 的敛散性依据该定理无法判别. n =1 n
1 ln n n2 = lim ln n = lim ln x = lim x = lim 2 1 = 0 lim 1 n →∞ x →+∞ x →+∞ n →∞ 1 x x x →+∞ 1 2 n 3 2 x 2 n
3 2
n2 1 = lim 2 = n →∞ 3n − 1 3
而级 数 ∑
n =1 ∞
1 n
3 2
n 收敛 , ∴ 级 数 ∑ 2 收敛. n =1 3n − 1
∞
1 的敛散性 . 例 判定级数 ∑ n n =1 3 − n 1
∞
3 n = lim 1 ∵ lim 3 − n = lim = 1, 解 n n→ ∞ n→ ∞ 1 n n→ ∞ 3 − n 1−
当q < 1时, 收敛 n 1 ∑aq 敛散性 、 当q ≥ 1时, 发散 n=0
∞
1 2、调和级数 、 ∑n发散. n=1
∞
§7.2 正项级数敛散性的判别
• • • • 一、正项级数的概念 二、比较判别法 三、比值判别法 四、*根值判别法 根值判别法
一、正项级数
称为正项级数 正项级数. 定义 如果级数 ∑ un中各项均有 un ≥ 0, 这种级数 称为正项级数.
n=1 n =1 n =1 ∞ n=1 ∞
∞
∞
判 断 ∑ u n的 敛 散 性 .
n=1
∞
对欲求级数进行 缩小应缩小为发 发 散级数. 散级数
c n ≤ un ≤ v n
放大, 放大,缩小的方向
正项级数敛散性的判别
(1 an )
1
1
1
1
(1 a1 ) (1 a1 ) (1 a1 )(1 a2 )
1
1
(1 a1 )(1 a2 ) (1 an1 ) (1 a1 )(1 a2 )
(1 an )
1 1
(1 a1 )(1 a2 )
(1 an ) 1 {Sn }有界.
n1 n (n2 1)
解:
n
1 (n2
1)
1 n2
且
n1
1 n2
收敛
,
所以原级数收敛.
例 判断级数
1 的敛散性.
n1 ln(n 1)
解:
1 1
ln(n 1) n 1
且
1 发散,
n1 n 1
所以原级数发散.
例
判断级数
n1
n 2n
1
n
的敛散性.
解:
n n 2n 1
1 2
n
且
n1
1 2
n
收敛,
所以原级数收敛.
例 判断级数
n4 1- n4 1 的敛散性.
解:
n1
n4 1- n4 1
2 n4 1
n4 1
2
1
解
lim 3n n n 1
3n
3n
lim
n
3n
n
1
lim
正项级数的敛散性问题研究
法可知 数 由
= Z
·
根
j + { 一 l J
明显,当n为奇数时,结果为 1;当n为偶数时,结果为÷ .
1im 兰 不存在 ,所 以此 级数 不能用比值法判定敛散性.
+ Ⅱ
二 、总 结 本文重点介绍 了数项级数 中最基本的级数 —— 正项级
数的各种收敛方法.判断某一个正项级数∑u 收敛的一般
推 论 1 设
l+ 2+ … + +…
(1)
1+ 2+… + +…
(2)
是 两 个 正 项 级 数 ,若 lim : l, 则当0<2<+。。时,级数(1),(2)同时收敛或同时发散 ;
当 l=0且 级 数 (2)收 敛 时 ,级 数 (1)也 收 敛 ; 当 z=+。。且级数 (2)发散时 ,级数(I)也发散. (二 )比式判别法(达朗贝尔判别法 )
例 1 判 别 级 数
的 敛 散 性·
分 析 考 虑 通 项 翌 .
解 因为 ≤
= = .
二 n
二 n
二 n
n
又由于∑ I收敛,则由比较收敛法知,原级数是收
敛 的 .
在 实 际 处 理 题 目时 ,比较 收 敛 法 的 下 述 形 式 有 时 候 会
更 为 方 便 .
过 程 : (1)首 先 检 查 通 项 ,如果 判 断 出 lim “ ≠ 0,则 级 数 发
散 ;如 果 判 断 出 lir a =0,则 可 进 入 下 一个 过 程 ; (2)针对不 同的题 目采用不 同的收敛方法 ,若找不 到适
合 的方法 ,则可 以进入下一过程 ; (3)检查正项级数的敛散性和数列 {S }是否有上界或
正项级数敛散性的判断和应用
正项级数敛散性的判断与其应用摘要级数是高等数学教学中的一个重要内容,而正项级数又是级数的重要组成局部,敛散性问题级数理论的一个根本问题,判别正项级数敛散性的方法很多.本文总结了正项级数的各种敛散性判别法,主要有比拟判别法与其推广、积分判别法与其推广、导数判别法和一般项级数敛散性判别法;简单介绍了它们强弱性关系,给出了典型例题验证上述判别法的有效性.关键词正项级数;判别法;敛散性The Convergence Tests and Applicationfor Series of Positive TermsAbstractHigher Mathematics series is an important part of teaching, The series of positive terms is an important series Part, Positive identification of Convergence and Divergence of many ways.This paper has summarizeda variety of convergence judge methods for positive terms series,including parison principle and its extension, integrated judge method and its extension,derivate judge method and judge methods of general series, somefamous tests such as Cauchy Test, D’Alembert Test, Kummer Test andGauss Test e from parison principle;given a brief introduction of their week and strong relationship of convergence, set examples for identifying the effectiveness of these judge methods.Key wordspositive terms series; judge methods;convergence1前言历史上,人们曾把无穷个实数相加12n u u u +++看成无穷个数的和.恰如有限个数的和一样,这在直观上容易被人承受.在《庄子·天下篇》中提到“一尺之捶,日取半截,万世不竭〞,把每天截下的那一局部的长度加起来:2311112222n ++++,从直观上看,它的和是1,但是下面“无限个实数相加〞111111-+-+-的和是多少?如果写成()(11)11(11)00-+-+-=++其结果是0.如果写成1(11)(11)(11)100------=---其结果是1.两个结果完全不同.因此提出这样的问题:“无限个数相加〞是否存在“和〞?如果存在,“和〞是多少?十七八世纪的一些著名的数学家曾对此感到迷惑,并有许多争论,并给出了这个级数“和〞“和〞是0到1之间的一个数.他论证说,这个级数前n 项和形成一个数列12341,0,1,0,S S S S ====,其中0和1出现的机会一样,因此取它的平均数01122+=为这个级数的和.这一说法得到了著名数学家伯努利(Bernouli)兄弟的首肯.有人做过如下论证:既然111111-+-+-是一个数,记为S ,由于11(1111)1111S S -=--+-+=-+-+=,即为1S S -=,得12S =.大数学家欧拉(Euler)也主X 用等比公式:23111q q q q++++=-,把1q =-代入得到111+112=--+2q =-代入得112483=-+-+,而这些结果现在看起来都是荒谬的.后来人们认识到“无穷多个数相加〞,这是一个根本无法操作的过程,人们不知道怎样把无穷多个数相加.经过很长一段时间,数学家柯西(Cauchy)给出了无穷级数的严格定义,之后级数理论得到了充分地开展.无穷级数是表示函数、研究函数和数值计算的重要工具,我国古代数学家X 徵创立的“割圆术〞对圆面积的近似计算已具有了初步的无穷级数的概念,无穷级数在自然科学与工程技术中具有广泛的应用.级数是否存在和,即为判断级数是否收敛的问题.级数的收敛性是级数首要的重要性质.因此对于一个给定的级数,首先应判断它是否收敛.假如数项级数各项符号都一样称为同号级数.对于同号级数,只须研究各项是正数组成的级数---正项级数.定义在区间I 的函数项级数()1n n u x ∞=∑,当在I 内任意取定一点0x 时, , 对函数项级数的研究极大地依赖于对数项级数的研究,而正项级数是数项级数中最根底的级数,研究数项级数的性质如绝对收敛、条件收敛,需要用到正项级数敛散性判别法,在函数项级数如幂级数收敛半径求解,函数项级数一致收敛Weierstrass 判别法(M 判别法或优级数判别法)中也用到了正项级数敛散性.1 正项级数的定义和收敛的充要条件定义如果级数1n n u ∞=∑中各项均有0n u ≥,这种级数称为正项级数.1.2 正项级数收敛的充要条件如果级数1n n u ∞=∑中,局部和数列{}n S 有界,即存在某正数M ,对0,n ∀>有{}n S M <.2比拟判别法与其推广2.1 比拟判别法【 1】设n u ∑和n v ∑是两个正项级数,如果存在某个正数N ,对一切n>N 都有n u n v ≤,那么(1) 假如级数n v ∑收敛,如此级数n u ∑也收敛; (2) 假如级数n u ∑发散,如此级数n v ∑也发散.推论:比拟判别法的极限形式:设n u ∑和n v ∑limnn nu l v →∞=,如此 〔1〕当0l <<+∞时,n u ∑和n v ∑同时收敛或同时发散; 〔2〕当0l =时,假如级数n v ∑收敛,如此级数n u ∑也收敛; 〔3〕当l =+∞,假如级数n v ∑发散,如此级数n u ∑也发散.定理[]1〔达朗贝尔判别法或比值判别法〕设为n u ∑正项级数,且存在某正整数0N 与常数(01)q q << (1) 假如对一切0n N >,成立不等式1n nu q u +≤,如此级数n u ∑收敛; 〔2〕假如对一切0n N >,成立不等式11n nu u +≥,如此级数n u ∑发散.推论[]1〔达朗贝尔判别法的极限形式〕设∑∞=1n n u 为正项级数,且1limn n nu q u +→∞=,如此 (1)当1<q 时,级数∑∞=1n n u 收敛;(2)当1>q 或∞=q 时,级数∑∞=1n n u 发散.推论[4]假如为n u ∑正项级数,如此〔1〕当1lim 1n n n u u +→∞<时,级数n u ∑收敛;〔2〕当1lim1n n nu u +→∞≥时,级数n u ∑发散.例讨论级数()()()()()()()1111110,0,0!11n n n n n αααβββαβγγγγ∞=++-++-+>>>++-∑的敛散性.解令()()()()()()1111!11n n n u n n αααβββγγγ++-++-=++-,如此 ()()()()111111lim lim lim 11nnn n n n n n n n n n n u e e n n e u n n e e n n γγαβαβγγαβαβ+--→∞→∞→∞+⎛⎫⎛⎫+⋅+ ⎪ ⎪⎡⎤++⎛⎫⋅⎝⎭⎝⎭====⎢⎥ ⎪++⋅⎛⎫⎛⎫⎝⎭⎣⎦+⋅+ ⎪ ⎪⎝⎭⎝⎭,所以,当11γαβ+-->时,即0γαβ-->时,∑∞=1n n u 收敛,故原级数收敛;当11γαβ+--<时,即0γαβ--<时,∑∞=1n n u 发散,故原级数发散.例讨论级数1!nn n n n e∞=∑的敛散性.解令!nn n nu n e =,()()1111!!111nnnn n n n n n nn n e u n e H u n e n n ++⎡⎤⎢⎥⎡⎤+⎛⎫⎢⎥==⋅=⎢⎥ ⎪⎢⎥+⎢⎥⎛⎫⎝⎭⎣⎦+⎢⎥ ⎪⎝⎭⎣⎦,如此 ()()()20001ln 1111lim ln lim 1ln 1lim1ln 11ln 1lim lim 11lim 212n n n n x x x n n H n n n nx x x x x x x →∞→∞→∞→→→⎛⎫+ ⎪⎝⎭-⎡⎤⎛⎫=-+= ⎪⎢⎥⎝⎭⎣⎦+--+====+. 如此12lim n n H e e →∞=<,由推论得级数1!nn n n n e∞=∑发散. 定理2.2[]1〔柯西判别法〕设∑∞=1n n u 为正项级数,且存在某正整数0N 与正常数l ,(1)假如对一切0N n >,不等式1<≤l u nn 成立,如此级数∑∞=1n n u 收敛;(2)假如对一切0N n >,不等式1≥n n u 成立,如此级数∑∞=1n n u 发散.推论[]1〔柯西判别法的极限形式〕设∑∞=1n n u 为正项级数,且n l =.如此(1)当1<l 时,级数∑∞=1n n u 收敛;(2)当1>l 时,级数∑∞=1n n u 发散.定理[]2设∑∞=1n n u 为正项级数,假如2211limlim n n n n n n u u u u ρ+→∞→∞+==,如此当21<ρ时,∑∞=1n n u 收敛;当21>ρ时,∑∞=1n n u 发散.证明 当21<ρ时,取0>ε,使()121><=+s r s ερ,如此212n s n u r u ρε<+=<,21112n s n u r u ρε++<+=<.取s n nb 1=,如此21111lim lim 212sn s n n n b n b n +→∞→∞++⎛⎫== ⎪+⎝⎭,21lim lim 22sn s n n nb n b n →∞→∞⎛⎫== ⎪⎝⎭,由极限保号性得r b b n n >++112,2nn b r b >,故112112++++>n n n n u u b b ,nn n n u u b b 22>,而∑∞=1n n b 收敛,由引理2.3知∑∞=1n n u 收敛;当21>ρ时,由2211lim lim n n n n n n u uu u ρ+→∞→∞+==,对任意的0ε>当n 充分大时,有2n n u u ρερε-<<+与211n n u u ρερε++-<<+,取11-=n b n ,如此2111limlim 22n n n n b n b n +→∞→∞+==,211lim lim 212n n n nb n b n →∞→∞-==-,对任意的0ε>当n 充分大时,有2111122n n b b εε++-<<+与21122n n b b εε-<<+,取1202ρε-<<,如此当n 充分大时,有22n n n n b u b u <,212111n n n n b u b u ++++<,由引理知∑∞=1n n u 发散. 例2.3判断正项级数21ln n nn∞=∑的敛散性. 解()()212ln 1lim lim 11ln n n n nn n a a n n +→∞→∞+==+,故由达朗贝尔判别法无法判断,而()()222ln 211lim lim 422ln n n n nn n a a n n →∞→∞==<,()()()()221211ln 2111lim lim 4221ln 1n n n n n n a a n n +→∞→∞+++==<++,由定理得21ln n nn ∞=∑收敛. 推论2.5[]3设∑∞=1n n u 为正项级数,假如()1lim0,1,21kn in nu i k u ρ-+→∞==-,当k 1<ρ时,∑∞=1n n u 收敛,当1k ρ>时,∑∞=1n n u 发散.推论2.6[]3设∑∞=1n n u 为正项级数,假如1lim1n n n u u +→∞=且2lim n n nuu ρ→∞=,如此当21<ρ时,∑∞=1n n u 收敛;当21>ρ时,∑∞=1n n u 发散.推论2.7[]3设∑∞=1n n u 为正项级数,且1limn n nu u ρ+→∞=,假如1<ρ,如此2211limlim 0n n n n n n u u u u +→∞→∞+==;假如1>ρ,如此2211lim lim n n n n n n u uu u +→∞→∞+==+∞. 3积分判别法引理[]1正项级数∑∞=1n n u 收敛的充要条件是:局部和数列{}n S 有界,即存在某正整数M ,对一切正整数n 有M S n <.定理[]1设f 为[)+∞,1上非负递减函数,那么正项级数∑)(n f 与反常积分dx x f ⎰+∞1)(同时收敛或同时发散.例讨论级数()21ln pn n n ∞=∑的敛散性.解由定理知级数与反常积分()2ln pdx x x +∞⎰具有一样的敛散性,而()()()22ln =ln ln pppInn d x dx duu x x x +∞+∞+∞=⎰⎰⎰, 当1p >时收敛,当1p ≤1p >时级数收敛,当1p ≤级数时发散.定理3.2[]5设函数()x f 是单调递减的正值函数,如果存在充分大的N ,当N x >时,有()()x f e f e x x ρ<,如此当01ρ<<时,级数∑)(n f 收敛;假如()()x f e f e x x ≥,级数∑)(n f 发散.证明当N x >时,有()()x f e f e x x ≥,对任意正数1n x x x -<,有()()dx x f dx e f e nn nn x x x x xx⎰⎰--<11ρ,变量替换后得()()dx x f dx x f nn nx n x x x e e ⎰⎰--≥11ρ.取如下序列{}n x , ,,,,,112321-====n x n x e x e x e x x ,故上述积分变为()()()111,2,3,n nnn x x xx f x dx f x dxn ρ+-≥=⎰⎰故有()()() ,3,2,111=≥⎰⎰+n dx x f dx x f e x x n nρ故有()()()()∞→∞→≥=⎰∑⎰⎰=+n dx x f n dx x f dx x f enk x x x k kn当1111ρ所以dx x f ⎰+∞1)(发散,由引理知∑)(n f 发散.假如()()x f e f e x x ρ<,如此()()()()1111221nkk ennx x ex k k f x dx f x dx f x dx f x dx ρ-===<<<+∞-⎰∑∑⎰⎰⎰,由比拟判别法,dx x f ⎰+∞1)(收敛,由定理3.1知∑)(n f 收敛.推论[]5设函数()x f 是单调递减的正值函数,又设()()limx x x e f e f x λ→+∞=,如此当1<λ时,级数∑)(n f 收敛;当1>λ时,级数∑)(n f 发散.例 讨论级数()()11ln ln ln pqn n n n ∞=∑的敛散性.解 令()()()1ln ln ln pqf x x x x =,且()()()()1limlim ln ln ln x x p qqp x x e f e x x x f x --→+∞→+∞=,当10p ->,即1p <,或当1p =,0p q -<时,()()lim01x x x e f e f x →+∞=<,如此级数()()11ln ln ln pqn n n n ∞=∑收敛;当1p q ==时,()()lim1x x x e f e f x →+∞=+∞>,如此级数发散.4导数判别法定理[]6〔导数极限判别法〕设∑)1(nf 为正项级数,)(x f 是一连续实函数,假如级数∑)1(nf 收敛,如此()00f =.定理[]6设∑)1(nf 为正项级数,)(x f 是一连续实函数且在0x =处二阶可导,如此级数∑)1(n f 收敛的充分必要条件是0)0()0(='=f f .证明得0)0(=f .设(0)(0,)f a a '=≠∞,a xx f x f x f f x x ==-='→→)(lim )0()(lim)0(00,由归结原理得a n n f n =⎪⎭⎫ ⎝⎛→11lim 0,取a <<ε0,当n N >时,ε<-⎪⎭⎫ ⎝⎛a nn f 11,即1a f n n ε-⎛⎫>⎪⎝⎭,而11n n∞=∑发散,由比拟判别法,得∑)1(nf 发散;当+∞=')0(f ,+∞==-='→→xx f x f x f f x x )(lim )0()(lim)0(00,由归结原理得+∞=⎪⎭⎫ ⎝⎛→n nf n 11lim 0.对任意正整数M ,存在正整数N ,当n N >时,M nn f >⎪⎭⎫ ⎝⎛11,即nM n f >⎪⎭⎫ ⎝⎛1,由比拟判别法,得∑)1(n f 发散,与条件矛盾,故0)0(='f .充分性对于任意的01α<<有()()()()()111+00000()()1limlim lim 0lim 0111+x x x x f x f f x f x x f x x x xααααααα--→→→→''-'''====++, 于是由归结原理011lim01x f n n α→+⎛⎫⎪⎝⎭=,而()1110n nαα∞+=>∑收敛,故∑)1(n f 收敛. 例判断级数11sin n n∞=∑的敛散性.解级数11sin n n∞=∑为正项级数,()sin f x x =为连续二阶可导函数,且(0)10f '=≠,由定理知11sinn n∞=∑发散. 例判断级数111cos n n ∞=⎛⎫- ⎪⎝⎭∑的敛散性.解级数111cos n n ∞=⎛⎫- ⎪⎝⎭∑为正项级数,()1cos f x x =-为连续二阶可导函数,且0)0()0(='=f f ,由定理知111cos n n ∞=⎛⎫- ⎪⎝⎭∑收敛.5两种一般项级数收敛性的方法 阿贝尔判别法定理[]1(阿贝尔判别法)假如{}n a 为单调有界数列,且n b ∑收敛,如此n n a b ∑收敛.例 讨论级数()311ln 1ln n n n ∞=⎛⎫+ ⎪⎝⎭∑的敛散性. 解1ln 1n ⎧⎫⎛⎫+⎨⎬ ⎪⎝⎭⎩⎭为单调递减有界数列,且()311ln n n ∞=∑收敛,由阿贝尔判别法知级数()311ln 1ln n n n ∞=⎛⎫+ ⎪⎝⎭∑收敛. 例 讨论级数211nn n⎛⎫+ ⎪⎝⎭∑的敛散性.解 数列11n n ⎧⎫⎪⎪⎛⎫+⎨⎬ ⎪⎝⎭⎪⎪⎩⎭单调有界,且211n n ∞=∑收敛,由阿贝尔判别法知211nnn ⎛⎫+ ⎪⎝⎭∑收敛.狄利克雷判别法定理[]1 (狄利克雷判别法)假如数列{}n a 为单调递减,且lim 0n n a →∞=,又级数n b ∑的局部和有界,如此n n a b ∑收敛.例讨论2sin12ln n n nπ∞=∑的敛散性.解21cos cos sinsin 1661212ln ln 2ln 2ln 2ln n n n n n n n n nππππ-≥==-. 因为1ln n当n →∞时单调下降趋于零,又 121sin sin 31212cos 62sin 2sin1212k n k πππππ∞=+-=≤∑, ,由狄利克雷判别法知级数1cos6ln n n nπ∞=∑21ln n n ∞=∑发散,故级数2sin12ln n n nπ∞=∑发散. 判断一般项级数收敛性的方法,也适用于正项级数.假如正项级数可以看成两级数通项乘积的形式,如此可利用上述两种方法判断之. 6完毕语级数理论是数学分析的重要组成局部,无穷级数是表示函数、研究函数和数值计算的重要工具,无穷级数在自然科学与工程技术中具有广泛的应用.而正项级数又是级数理论中重要的组成局部,级数的收敛性是级数重要性质.判断正项级数的一般顺序是先检验通项的极限是否为0,假如不为0,如此发散,假如为0,如此判断级数的局部和是否有界,有界如此收敛,否如此发散.假如级数的一般项可以进展适当的放缩如此使用比拟判别法,或可以找到其等价式用等价判别法.当通项具有一定的特点时,如此根据其特点选择适用的方法,如达朗贝尔判别法、柯西判别法或拉贝判别法等.同时,根据条件选择积分判别法或导数判别法等.由此,我们可以得到正项级数的判别法是多种多样的,每当一种判别法无法判断时,就出现一种新的判别法来进展判断,因此对正项级数的判别法的探讨无穷无尽.正项级数收敛性判断的方法虽然较多,但使用起来仍有一定的技巧,根据不同的题目特点选择适宜的方法进展判断,能够节约时间,提高效率,特别是一些典型问题,运用典型方法,才能事半功倍.本文归纳正项级数收敛性判断的一些典型方法,收集了一些典型例题.正项级数收敛判别法也可用于判定负项级数与变号级数的绝对收敛性的判断,也可以推广到函数项级数的敛散性判别中.参考文献[1]华东师X大学数学系.数学分析(第三版)[M].:高等教育,2006:6-16.[2]李铁烽.正项级数判敛的一种新的比值判别法[J].:数学通报,1990, (1) :46 - 47. [J].某某师X学院学报,2009,28(6):1-3.[4]冯江浪.关于一些特殊正项级数敛散性的判别法[J].中国科技信息,2009,(1):25.[5][M].:高等教育,2006:448-452.[6]X玉璞.导数在正项级数敛散性判定中的应用[J]. 高等数学研究,1994,(2):13-14.致谢四年时光飞逝,大学即将毕业,在这里我要向数学系的教师同学们,尤其是我的指导教师王树泽教师表示诚挚的感谢!在写作过程中您对我进展了细心地指导,悉心地点拨,不仅使我承受了新的思想观念,激发了学习兴趣,而且提高了收集整理材料和自学能力,掌握了新的数学思想.另外,感谢校方提供了使我能够独立完成一个课题的机会,并在这个过程中给予我们各种方便,使我们在即将离校的最后一段时间里,能够更多学习一些实践应用知识,增强了我们实践能力和动手能力,提高了独立思考的能力.路漫漫其修远兮,吾将上下而求索.我愿在未来的学习和研究过程中,以更加丰厚的成果来答谢曾经关心、帮助和支持过我的所有领导、教师、同学、和朋友.学无止境.明天,将是我终身学习另一天的开始!。
关于正项级数敛散性判定方法的总结比较
关于正项级数敛散性判定方法的总结比较正项级数是一种特殊的级数,指其中所有的项都是非负数。
在数学和物理等领域中,正项级数被广泛应用。
为了研究正项级数的敛散性,数学家们提出了很多敛散性判别法。
1. 比较判别法比较判别法是判断正项级数敛散性的最基本方法之一。
如果对于级数 $\sum a_n$ 和级数 $\sum b_n$,存在正常数 $C$,使得对于充分大的 $n$,都有 $a_n \leq Cb_n$,那么若级数 $\sum b_n$ 收敛,则级数 $\sum a_n$ 收敛,反之则发散。
比较判别法原理的思路是将待求级数和已知级数比较,将待求级数与已知收敛的级数比较,若待求级数的项小于已知级数的项,则待求级数收敛;若待求级数的项大于已知级数的项,则待求级数发散。
比较判别法需要能选择一个已知级数,使得比较条件能够确定,最好的情况是能选择极大简单(或极小复杂)的已知级数。
例如,在比较判别法的应用中,经常使用常数级数 $\sum C$ 的敛散性,当 $C=0$ 时收敛,当 $C > 0$ 时发散。
因此,只要 $a_n$ 的增长快于常数,就能证明级数 $\suma_n$ 发散。
极限判别法的适用条件为比值必须是存在的,即当 $n$ 充分大时,$\frac{a_n}{b_n}$ 有意义。
比较判别法和极限判别法的区别在于,比较判别法可以比较不同级数之间的项,而极限判别法必须将比值限定在同一个级数内进行比较。
3. Cauchy判别法Cauchy判别法和其他方法不同的地方在于,它并不结合其他级数进行比较,而是对直接对级数的项进行判断。
它的适用条件是需要找到一个不依赖于 $n$ 的实数$\varepsilon$,这也是极度苛刻的。
积分判别法是利用一般函数积分或其他积分的性质来判断正项级数的敛散性。
设$f(x)$ 是定义在 $[1,\infty)$ 上的连续正函数,若 $\int_1^\infty f(x)dx$ 收敛,则正项级数 $\sum_{n=1}^\infty f(n)$ 也收敛。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正项级数敛散性的判断及其应用摘要级数是高等数学教学中的一个重要内容,而正项级数又是级数的重要组成部分,敛散性问题级数理论的一个基本问题,判别正项级数敛散性的方法很多.本文总结了正项级数的各种敛散性判别法,主要有比较判别法及其推广、积分判别法及其推广、导数判别法和一般项级数敛散性判别法;简单介绍了它们强弱性关系,给出了典型例题验证上述判别法的有效性.关键词正项级数;判别法;敛散性The Convergence Tests and Applicationfor Series of Positive Terms!AbstractHigher Mathematics series is an important part of teaching, The series of positive terms is an important series Part, Positive identification of Convergence and Divergence of many paper has summarized a variety of convergence judge methods for positive terms series, including comparison principle and its extension, integrated judge method and its extension, derivate judge method and judge methods of general series, some famous tests such as Cauchy Test, D’Alembert Test, Kummer Test and Gauss Test come from Comparison principle; given a brief introduction of their week and strong relationship of convergence, set examples for identifying the effectiveness of these judge methods.Key wordspositive terms series; judge methods; convergence1 前言历史上,人们曾把无穷个实数相加12n u u u +++看成无穷个数的和.恰如有限个数的和一样,这在直观上容易被人接受.在《庄子·天下篇》中提到“一尺之捶,日取半截,万世不竭”,把每天截下的那一部分的长度加起来:2311112222n ++++,从直观上看,它的和是1,但是下面“无限个实数相加”111111-+-+-的和是多少如果写成()(11)11(11)00-+-+-=++其结果是0.如果写成1(11)(11)(11)100------=---其结果是1.两个结果完全不同.因此提出这样的问题:“无限个数相加”是否存在“和”如果存在,“和”是多少十七八世纪的一些著名的数学家曾对此感到迷惑,并有许多争论,并给出了这个级数“和”的不同结果.例如莱布尼兹认为这个“和”是0到1之间的一个数.他论证说,这个级数前n 项和形成一个数列12341,0,1,0,S S S S ====,其中0和1出现的机会相同,因此取它的平均数01122+=为这个级数的和.这一说法得到了著名数学家伯努利(Bernouli)兄弟的首肯.有人做过如下论证:既然111111-+-+-是一个数,记为S ,由于11(1111)1111S S -=--+-+=-+-+=,即为1S S -=,得12S =.大数学家欧拉(Euler)也主张用等比公式:23111q q q q ++++=-,把1q =-代入得到111+112=--+,他用同样的讨论得到其他的一些结果.例如把2q =-代入得112483=-+-+,而这些结果现在看起来都是荒谬的.后来人们认识到“无穷多个数相加”,这是一个根本无法操作的过程,人们不知道怎样把无穷多个数相加.经过很长一段时间,数学家柯西(Cauchy)给出了无穷级数的严格定义,之后级数理论得到了充分地发展.无穷级数是表示函数、研究函数和数值计算的重要工具,我国古代数学家刘徵创立的“割圆术”对圆面积的近似计算已具有了初步的无穷级数的概念,无穷级数在自然科学与工程技术中具有广泛的应用.级数是否存在和,即为判断级数是否收敛的问题.级数的收敛性是级数首要的重要性质.因此对于一个给定的级数,首先应判断它是否收敛.若数项级数各项符号都相同称为同号级数.对于同号级数,只须研究各项是正数组成的级数---正项级数.定义在区间I 的函数项级数()1n n u x ∞=∑,当在I 内任意取定一点0x 时, 便得到一个数项级数.自然,对函数项级数的研究极大地依赖于对数项级数的研究,而正项级数是数项级数中最基础的级数,研究数项级数的性质如绝对收敛、条件收敛,需要用到正项级数敛散性判别法,在函数项级数如幂级数收敛半径求解,函数项级数一致收敛Weierstrass 判别法(M 判别法或优级数判别法)中也用到了正项级数敛散性. 1 正项级数的定义和收敛的充要条件正项级数的定义如果级数1n n u ∞=∑中各项均有0n u ≥,这种级数称为正项级数.正项级数收敛的充要条件如果级数1n n u ∞=∑中,部分和数列{}n S 有界,即存在某正数M ,对0,n ∀>有{}n S M <.2 比较判别法及其推广比较判别法【 1】设n u ∑和n v ∑是两个正项级数,如果存在某个正数N ,对一切n>N 都有n un v ≤,那么(1) 若级数n v ∑收敛,则级数n u ∑也收敛; (2) 若级数n u ∑发散,则级数n v ∑也发散.推论:比较判别法的极限形式:设n u ∑和n v ∑是两个正项级数.若limnn nu l v →∞=,则 (1)当0l <<+∞时,n u ∑和n v ∑同时收敛或同时发散; (2)当0l =时,若级数n v ∑收敛,则级数n u ∑也收敛; (3)当l =+∞,若级数n v ∑发散,则级数n u ∑也发散.定理[]1(达朗贝尔判别法或比值判别法)设为n u ∑正项级数,且存在某正整数0N 及常数(01)q q << (1) 若对一切0n N >,成立不等式1n nu q u +≤,则级数n u ∑收敛; (2)若对一切0n N >,成立不等式11n nu u +≥,则级数n u ∑发散.推论[]1(达朗贝尔判别法的极限形式) 设∑∞=1n n u 为正项级数,且1limn n nu q u +→∞=,则 (1)当1<q 时,级数∑∞=1n n u 收敛;(2)当1>q 或∞=q 时,级数∑∞=1n n u 发散.推论[4] 若为n u ∑正项级数,则(1)当1lim1n n n u u +→∞<时,级数n u ∑收敛;(2)当1lim1n n nu u +→∞≥时,级数n u ∑发散.例 讨论级数()()()()()()()1111110,0,0!11n n n n n αααβββαβγγγγ∞=++-++-+>>>++-∑的敛散性.解 令()()()()()()1111!11n n n u n n αααβββγγγ++-++-=++-,则()()()()111111lim lim lim 11n nn n n n n n n n n n n u e e n n e u n n e e n n γγαβαβγγαβαβ+--→∞→∞→∞+⎛⎫⎛⎫+⋅+ ⎪ ⎪⎡⎤++⎛⎫⋅⎝⎭⎝⎭====⎢⎥ ⎪++⋅⎛⎫⎛⎫⎝⎭⎣⎦+⋅+ ⎪ ⎪⎝⎭⎝⎭, 所以,当11γαβ+-->时,即0γαβ-->时,∑∞=1n n u 收敛,故原级数收敛;当11γαβ+--<时,即0γαβ--<时,∑∞=1n n u 发散,故原级数发散.例 讨论级数1!nn n n n e∞=∑的敛散性.解 令!nn n nu n e =,()()1111!!111nnnn n n n n n nn n e u n e H u n e n n ++⎡⎤⎢⎥⎡⎤+⎛⎫⎢⎥==⋅=⎢⎥ ⎪⎢⎥+⎢⎥⎛⎫⎝⎭⎣⎦+⎢⎥ ⎪⎝⎭⎣⎦,则 ()()()20001ln 1111lim ln lim 1ln 1lim1ln 11ln 1lim lim 11lim 212n n n n x x x n n H n n n nx x x x x x x →∞→∞→∞→→→⎛⎫+ ⎪⎝⎭-⎡⎤⎛⎫=-+= ⎪⎢⎥⎝⎭⎣⎦+--+====+. 则12lim n n H e e →∞=<,由推论得级数1!nn n n n e∞=∑发散. 定理[]1(柯西判别法) 设∑∞=1n n u 为正项级数,且存在某正整数0N 及正常数l ,(1)若对一切0N n >,不等式1<≤l u nn 成立,则级数∑∞=1n n u 收敛;(2)若对一切0N n >,不等式1≥nn u 成立,则级数∑∞=1n n u 发散.推论[]1(柯西判别法的极限形式) 设∑∞=1n n u 为正项级数,且n l =.则(1)当1<l 时,级数∑∞=1n n u 收敛;(2)当1>l 时,级数∑∞=1n n u 发散.定理[]2 设∑∞=1n n u 为正项级数,若2211limlim n n n n n n u u u u ρ+→∞→∞+==,则当21<ρ时,∑∞=1n n u 收敛;当21>ρ时,∑∞=1n n u 发散.证明 当21<ρ时,取0>ε,使()121><=+s r sερ,则 212n s n u r u ρε<+=<,21112n s n u r u ρε++<+=<.取sn n b 1=,则21111lim lim 212sn s n n n b n b n +→∞→∞++⎛⎫== ⎪+⎝⎭,21lim lim 22sn s n n n b n b n →∞→∞⎛⎫== ⎪⎝⎭,由极限保号性得r b b n n >++112, 2nn b r b >,故112112++++>n n n n u u b b ,n n n n u u b b 22>,而∑∞=1n n b 收敛,由引理知∑∞=1n n u 收敛;当21>ρ时,由2211lim lim n n n n n n u uu u ρ+→∞→∞+==,对任意的0ε>当n 充分大时,有2n n u u ρερε-<<+与211n n u u ρερε++-<<+,取11-=n b n ,则2111limlim 22n n n n b n b n +→∞→∞+==,211lim lim 212n n n n b n b n →∞→∞-==-,对任意的0ε>当n 充分大时,有2111122n n b b εε++-<<+与21122n n b b εε-<<+,取1202ρε-<<,则当n 充分大时,有22n n n n b u b u <,212111n n n n b u b u ++++<,由引理知∑∞=1n n u 发散.例 判断正项级数21ln n nn∞=∑的敛散性. 解 ()()212ln 1lim lim 11ln n n n nn n a a n n +→∞→∞+==+,故由达朗贝尔判别法无法判断,而()()222ln 211lim lim 422ln nn n nn n a a n n →∞→∞==<,()()()()221211ln 2111lim lim 4221ln 1n n n n n n a a n n +→∞→∞+++==<++,由定理得21ln n nn∞=∑收敛. 推论[]3 设∑∞=1n n u 为正项级数,若()1lim0,1,21kn in nu i k u ρ-+→∞==-,当k 1<ρ时,∑∞=1n n u 收敛,当1k ρ>时,∑∞=1n n u 发散.推论[]3 设∑∞=1n n u 为正项级数,若1lim1n n n u u +→∞=且2lim n n nu u ρ→∞=,则当21<ρ时,∑∞=1n n u 收敛;当21>ρ时,∑∞=1n n u 发散.推论[]3 设∑∞=1n n u 为正项级数,且1limn n nu u ρ+→∞=,若1<ρ,则2211limlim 0n n n n n n u u u u +→∞→∞+==;若1>ρ,则2211lim lim n n n n n n u uu u +→∞→∞+==+∞. 3 积分判别法引理[]1 正项级数∑∞=1n n u 收敛的充要条件是:部分和数列{}n S 有界,即存在某正整数M ,对一切正整数n 有M S n <.定理[]1 设f 为[)+∞,1上非负递减函数,那么正项级数∑)(n f 与反常积分dx x f ⎰+∞1)(同时收敛或同时发散.例 讨论级数()21ln pn n n ∞=∑的敛散性.解 由定理知级数与反常积分()2ln pdx x x +∞⎰具有相同的敛散性,而()()()22ln =ln ln pppInn d x dx du u x x x +∞+∞+∞=⎰⎰⎰, 当1p >时收敛,当1p ≤时发散.故当1p >时级数收敛,当1p ≤级数时发散.定理[]5 设函数()x f 是单调递减的正值函数,如果存在充分大的N ,当N x >时,有()()x f e f e x x ρ<,则当01ρ<<时,级数∑)(n f 收敛;若()()x f e f e x x ≥,级数∑)(n f 发散.证明 当N x >时,有()()x f e f e x x ≥,对任意正数1n x x x -<,有()()dx x f dx e f e nn nn x x x x xx⎰⎰--<11ρ,变量替换后得()()dx x f dx x f nn nx n x x x e e ⎰⎰--≥11ρ.取如下序列{}n x , ,,,,,112321-====n x n x e x e x e x x ,故上述积分变为()()()111,2,3,n nnn x x xx f x dx f x dxn ρ+-≥=⎰⎰故有()()() ,3,2,111=≥⎰⎰+n dx x f dx x f e x x n nρ故有()()()()∞→∞→≥=⎰∑⎰⎰=+n dx x f n dx x f dx x f enk x x x k kn当1111ρ所以dx x f ⎰+∞1)(发散,由引理知∑)(n f 发散.若()()x f e f e x x ρ<,则()()()()1111221nkk ennx x ex k k f x dx f x dx f x dx f x dx ρ-===<<<+∞-⎰∑∑⎰⎰⎰,由比较判别法,dx x f ⎰+∞1)(收敛,由定理知∑)(n f 收敛.推论[]5 设函数()x f 是单调递减的正值函数,又设()()limx x x e f e f x λ→+∞=,则当1<λ时,级数∑)(n f 收敛;当 1>λ时,级数∑)(n f 发散.例 讨论级数()()11ln ln ln pqn n n n ∞=∑的敛散性.解 令()()()1ln ln ln pqf x x x x =,且()()()()1limlim ln ln ln x x p qqp x x e f e x x x f x --→+∞→+∞=,当10p ->,即1p <,或当1p =,0p q -<时,()()lim01x x x e f e f x →+∞=<,则级数()()11ln ln ln pqn n n n ∞=∑收敛;当1p q ==时,()()lim1x x x e f e f x →+∞=+∞>,则级数发散.4导数判别法定理[]6(导数极限判别法) 设∑)1(nf 为正项级数,)(x f 是一连续实函数,若级数∑)1(nf 收敛,则()00f =.定理[]6设∑)1(nf 为正项级数,)(x f 是一连续实函数且在0x =处二阶可导,则级数∑)1(nf 收敛的充分必要条件是0)0()0(='=f f .证明 必要性.由定理 得0)0(=f . 设(0)(0,)f a a '=≠∞,a xx f x f x f f x x ==-='→→)(lim )0()(lim)0(00,由归结原理得an n f n =⎪⎭⎫ ⎝⎛→11lim 0,取a <<ε0,当n N >时,ε<-⎪⎭⎫ ⎝⎛a nn f 11,即1a f n n ε-⎛⎫> ⎪⎝⎭,而11n n∞=∑发散,由比较判别法,得∑)1(nf 发散;当+∞=')0(f ,+∞==-='→→xx f x f x f f x x )(lim )0()(lim)0(00,由归结原理得+∞=⎪⎭⎫⎝⎛→n nf n 11lim 0.对任意正整数M ,存在正整数N ,当n N >时,Mnn f >⎪⎭⎫ ⎝⎛11,即n M n f >⎪⎭⎫ ⎝⎛1,由比较判别法,得∑)1(n f 发散,与条件矛盾,故0)0(='f .充分性 对于任意的01α<<有()()()()()111+00000()()1lim lim lim 0lim 0111+x x x x f x f f x f x x f x x x x ααααααα--→→→→''-'''====++, 于是由归结原理011lim01x f n n α→+⎛⎫⎪⎝⎭=,而()1110n nαα∞+=>∑收敛,故∑)1(n f 收敛. 例 判断级数11sin n n∞=∑的敛散性.解 级数11sin n n∞=∑为正项级数,()sin f x x =为连续二阶可导函数,且(0)10f '=≠,由定理知11sinn n∞=∑发散. 例 判断级数111cos n n ∞=⎛⎫- ⎪⎝⎭∑的敛散性.解 级数111cos n n ∞=⎛⎫- ⎪⎝⎭∑为正项级数,()1cos f x x =-为连续二阶可导函数,且0)0()0(='=f f ,由定理知111cos n n ∞=⎛⎫- ⎪⎝⎭∑收敛.5 两种一般项级数收敛性的方法 阿贝尔判别法定理[]1(阿贝尔判别法) 若{}n a 为单调有界数列,且n b ∑收敛,则n n a b ∑收敛.例 讨论级数()311ln 1ln n nn ∞=⎛⎫+ ⎪⎝⎭∑的敛散性.解 1ln 1n ⎧⎫⎛⎫+⎨⎬ ⎪⎝⎭⎩⎭为单调递减有界数列,且()311ln n n ∞=∑收敛,由阿贝尔判别法知级数()311ln 1ln n nn ∞=⎛⎫+ ⎪⎝⎭∑收敛.例 讨论级数211nnn⎛⎫+ ⎪⎝⎭∑的敛散性.解 数列11n n ⎧⎫⎪⎪⎛⎫+⎨⎬ ⎪⎝⎭⎪⎪⎩⎭单调有界,且211n n ∞=∑收敛,由阿贝尔判别法知211nn n ⎛⎫+ ⎪⎝⎭∑收敛. 狄利克雷判别法定理[]1 (狄利克雷判别法) 若数列{}n a 为单调递减,且lim 0n n a →∞=,又级数n b ∑的部分和有界,则n n a b ∑收敛.例 讨论2sin12ln n n nπ∞=∑的敛散性.解21cos cos sinsin 1661212ln ln 2ln 2ln 2ln n n n n n n n n nππππ-≥==-. 因为1ln n当n →∞时单调下降趋于零,又 121sin sin 31212cos 62sin 2sin1212k n k πππππ∞=+-=≤∑, ,由狄利克雷判别法知级数1cos6ln n n n π∞=∑收敛.而级数21ln n n ∞=∑发散,故级数2sin12ln n n nπ∞=∑发散. 判断一般项级数收敛性的方法,也适用于正项级数.若正项级数可以看成两级数通项乘积的形式,则可利用上述两种方法判断之. 6 结束语级数理论是数学分析的重要组成部分,无穷级数是表示函数、研究函数和数值计算的重要工具,无穷级数在自然科学与工程技术中具有广泛的应用.而正项级数又是级数理论中重要的组成部分,级数的收敛性是级数重要性质.判断正项级数的一般顺序是先检验通项的极限是否为0,若不为0,则发散,若为0,则判断级数的部分和是否有界,有界则收敛,否则发散.若级数的一般项可以进行适当的放缩则使用比较判别法,或可以找到其等价式用等价判别法.当通项具有一定的特点时,则根据其特点选择适用的方法,如达朗贝尔判别法、柯西判别法或拉贝判别法等.同时,根据条件选择积分判别法或导数判别法等.由此,我们可以得到正项级数的判别法是多种多样的,每当一种判别法无法判断时,就出现一种新的判别法来进行判断,因此对正项级数的判别法的探讨无穷无尽.正项级数收敛性判断的方法虽然较多,但使用起来仍有一定的技巧,根据不同的题目特点选择适宜的方法进行判断,能够节约时间,提高效率,特别是一些典型问题,运用典型方法,才能事半功倍.本文归纳正项级数收敛性判断的一些典型方法,收集了一些典型例题.正项级数收敛判别法也可用于判定负项级数及变号级数的绝对收敛性的判断,也可以推广到函数项级数的敛散性判别中.参考文献[1] 华东师范大学数学系.数学分析(第三版)[M].北京:高等教育出版社,2006:6-16.[2] 李铁烽.正项级数判敛的一种新的比值判别法[J].北京:数学通报,1990, (1) :46 - 47.[3] 龙艳.关于正项级数收敛性判断的一个推广[J].长春师范学院学报, 2009,28(6):1-3.[4] 冯江浪.关于一些特殊正项级数敛散性的判别法[J].中国科技信息,2009,(1):25.[5]裴礼文.数学分析中的典型问题与方法[M].北京:高等教育出版社,2006:448-452.[6] 刘玉璞.导数在正项级数敛散性判定中的应用[J]. 高等数学研究,1994,(2):13-14.致谢四年时光飞逝,大学即将毕业,在这里我要向数学系的老师同学们,尤其是我的指导老师王树泽老师表示诚挚的感谢!在写作过程中您对我进行了细心地指导,悉心地点拨,不仅使我接受了新的思想观念,激发了学习兴趣,而且提高了收集整理材料和自学能力,掌握了新的数学思想.另外,感谢校方提供了使我能够独立完成一个课题的机会,并在这个过程中给予我们各种方便,使我们在即将离校的最后一段时间里,能够更多学习一些实践应用知识,增强了我们实践能力和动手能力,提高了独立思考的能力.路漫漫其修远兮,吾将上下而求索.我愿在未来的学习和研究过程中,以更加丰厚的成果来答谢曾经关心、帮助和支持过我的所有领导、老师、同学、和朋友.学无止境.明天,将是我终身学习另一天的开始!%。