详细逆变电路
单相全桥电压型逆变电路
单相全桥电压型逆变电路单相全桥电压型逆变电路是一种常用的电力电子变换器,它能将直流电源转换为交流电源,广泛应用于各种电力供应系统和电力调节系统中。
本文将对单相全桥电压型逆变电路的工作原理、优缺点以及应用领域进行详细介绍。
一、工作原理单相全桥电压型逆变电路由四个开关管和相应的控制电路组成。
开关管分别为Q1、Q2、Q3和Q4,通过适当的控制,可以实现对开关管的导通和关断。
在工作过程中,当Q1和Q4导通,Q2和Q3关断时,直流电源的正极连接到电路的A相,负极连接到电路的B 相,此时输出的是正半周的交流电压。
当Q1和Q4关断,Q2和Q3导通时,正负极的连接情况反转,输出的是负半周的交流电压。
通过不断交替导通和关断,可以在输出端获得一段完整的交流电压波形。
二、优缺点单相全桥电压型逆变电路具有以下优点:1. 输出电压稳定:由于采用全桥结构,能够有效地消除直流电源的波动和噪声,输出电压稳定可靠。
2. 输出功率大:全桥结构能够充分利用电源能量,输出功率相对较大。
3. 输出电压可调:通过控制开关管的导通和关断时间,可以实现对输出电压的调节,满足不同需求。
4. 抗干扰能力强:逆变电路可有效抑制外界干扰信号,提高系统的抗干扰能力。
然而,单相全桥电压型逆变电路也存在一些缺点:1. 成本较高:由于需要四个开关管,控制电路和保护电路等,相对于其他逆变电路而言,成本较高。
2. 效率较低:由于开关管的导通和关断需要一定的时间,逆变过程中会产生一定的开关损耗,导致转换效率有所降低。
三、应用领域单相全桥电压型逆变电路具有广泛的应用领域,包括但不限于以下几个方面:1. 电力供应系统:逆变电路可以将直流电源转换为交流电源,用于电力供应系统中的电压和频率调节,满足不同负载的需求。
2. 电动机控制:逆变电路可将直流电源转换为交流电源,用于电动机的控制和驱动,实现电机的速度调节和方向控制等功能。
3. 新能源应用:逆变电路可以将太阳能、风能等新能源转换为交流电源,供应给家庭、工厂等用电设备。
三相逆变器电路原理和工作过程图文说明
三相逆变器电路原理和工作过程图文说明单相逆变器电路由于受到功率开关器件的容量、零线(中性线)电流、电网负载平衡要求和用电负载性质等的限制,容量一般都在100kV A以下,大容量的逆变电路大多采用三相形式。
三相逆变器按照直流电源的性质不同分为三相电压型逆变器和三相电流型逆变器。
1.三相电压型逆变器。
电压型逆变器就是逆变电路中的输入直流能量由一个稳定的电压源提供,其特点是逆变器在脉宽调制时的输出电压的幅值等于电压源的幅值,而电流波形取决于实际的负载阻抗。
三相电压型逆变器的基本电路如图6-15所示。
该电路主要由6只功率开关器件和6只续流二板管以及带中性点的直流电源构成。
图中负载L和R表示三相负载的各路相电感和相电阻。
图6-15 三相电压型逆变器电路原理图图6-15三相电压型逆变器电路原理图功率开关器件VT1~VT6在控制电路的作用下,控制信号为三相互差1200的脉冲信号时,可以控制每个功率开关器件导通180度或120度,相邻两个开关器件的导通时间互差60度逆变器三个桥臂中上部和下部开关元件以180度间隔交替开通和关断,VT1~VT6以60度的电位差依次开通和关断,在逆变器输出端形成a、b、c三相电压。
控制电路输出的开关控制信号可以是方波、阶梯波、脉宽调制方波、脉宽调制三角波和锯齿波等,其中后三种脉宽调制的波形都是以基础波作为载波,正弦波作为调制波,最后输出正弦波波形。
普通方波和被正弦波调制的方波的区别如图6-16所示,与普通方波信号相比,被调制的方波信号是按照正弦波规律变化的系列方波信号,即普通方波信号是连续导通的,而被调制的方波信号要在正弦波调制的周期内导通和关断N次。
方波调制波形图6-16 方波与被调制方波波形示意图2.三相电流型逆变器。
电流型逆变器的直流输入电源是一个恒定的直流电流源,需要调制的是电流,若一个矩形电流注入负载,电压波形则是在负载阻抗的作用下生成的。
在电流型逆变器中,有两种不同的方法控制基波电流的幅值,一种方法是直流电流源的幅值变化法,这种万法使得交流电输出侧的电流控制比较简单;另一种方法是用脉宽调制来控制基波电流。
电力电子整流逆变电路讲解
4.1 换流方式 4.2 电压型逆变电路 4.3 电流型逆变电路 4.4 多重逆变电路和多电平逆变电路 本章小结
引言
■逆变的概念 ◆与整流相对应,直流电变成交流电。 ◆交流侧接电网,为有源逆变。 ◆交流侧接负载,为无源逆变,本章主要讲述无源逆变。 ■逆变与变频 ◆变频电路:分为交交变频和交直交变频两种。 ◆交直交变频由交直变换(整流)和直交变换两部分组 成,后一部分就是逆变。 ■逆变电路的主要应用 ◆各种直流电源,如蓄电池、干电池、太阳能电池等。 ◆交流电机调速用变频器、不间断电源、感应加热电源 等电力电子装置的核心部分都是逆变电路。
e) f)
O O
2 U 3
d
t
U d 3
uNN'
t
1 (uUN' uVN' uWN' ) 3
(4-7)
iU g) i h) O
d
t
O
t
图4-10 电压型三相桥式逆变电路的工作波形
◆负载参数已知时,可以由uUN的波形 求出U相电流iU的波形,图4-10g给出的 是阻感负载下 / 3时iU的波形。 ◆把桥臂1、3、5的电流加起来,就可 得到直流侧电流id的波形,如图4-10h所 示,可以看出id每隔60°脉动一次。
图4-4 电感耦合式强迫换流原理图
■换流方式总结 ◆器件换流只适用于全控型器件,其余三种方式主要是针对晶闸管而言的。 ◆器件换流和强迫换流属于自换流,电网换流和负载换流属于外部换流。 ◆当电流不是从一个支路向另一个支路转移,而是在支路内部终止流通而 变为零,则称为熄灭。
8/47
4.2 电压型逆变电路
u a) u b) u c) u d)
UN'
逆变电路概述
成负载换流; 4)强迫换流指的是设置附加换流电路,给欲关断的晶闸管强迫施加反向
电压以完成换流。
8/14
相关重点概念
3.3 死区效应及其补偿: 1)死区时间: 三相桥式逆变电路中,通常采用双极性 SPWM调制技术。任何固态的功率开关 管都存在着一定的导通和关断时间,为确 保同一桥臂上下开关管不致发生直通故 障,通常采用将理想的SPWM驱动信号 上升沿(或下降沿)延迟一段时间Td称为 死区时间。死区是为保证开关器件安全、可靠运行而采取的措施。
2
逆变电路的分类
3
逆变电路的换流和死区
7/14
相关重点概念
3.1 换流: 换流(commutation)指电力电子电路中支路间电流的转移。也成为换
相。 3.2 逆变电路的换流方式: 1)器件换流指的是利用全控型器件自关断的能力进行换流,主要用于全
控型逆变电路; 2)电网换流指的是电网提供换流电压,只要在待换流器件上添加负的电
1/14
1
逆变电路的基本概念
2
逆变电路的分类
3
逆变电路的换流和死区
2/14
逆变电路基本概念
1.1 什么是逆变电路? 逆变电路是指把直流电变为交流电的电路,它与整流电路相对应,有非 常重要的作用.它的基本作用是在控制电路的控制下,将中间的直流电 路输出的直流电源转换为频率和电压都任意可调的交流电源。
5/14
逆变电路分类
2.4 按电流波形: 可分为正弦逆变电路和非正弦逆变电路.前者开关器件中的电流为正 弦波,其开关损耗较小,宜工作于较高频率.后者开关器件电流为非正弦 波,因其开关损耗较大,故工作频率较正弦逆变电路低。
三相电压型逆变电路工作过程
三相电压型逆变电路工作过程三相电压型逆变电路是将三相交流电转换为直流电的一种电路形式。
它由三相桥式整流器和逆变器两个部分组成,整流器将三相交流电转换为直流电,而逆变器则将直流电转换为可变频率、可调幅度的交流电。
下面我将详细介绍三相电压型逆变电路的工作过程。
首先,我们来看整流器的工作过程。
整流器由三相桥式整流电路组成,它由六个晶闸管或整流二极管构成,分别连接在三相交流电源的三个相线上。
当晶闸管或整流二极管接通时,对应的相线上的交流电流通过整流器进入负载电路,同时在负载电路两端形成正向电压。
当晶闸管或整流二极管关断时,交流电流被阻断,负载电路的电压为零。
整流器通过不断的开关操作,使得交流电源的电压在负载电路两端产生一系列脉冲电压。
接下来,我们来看逆变器的工作过程。
逆变器由若干个晶闸管或功率管构成,这些管子将整流器输出的脉冲电压转换为可变频率的交流电。
逆变器的工作原理是通过改变晶闸管或功率管的导通时间,控制输出脉冲电压的频率和幅度。
逆变器的脉冲宽度调制技术采用了PWM技术(Pulse Width Modulation),根据输入的参考信号引导晶闸管或功率管的导通和断开,从而实现对输出电压频率和幅度的调节。
具体来说,逆变器通过接收控制信号,将输入的直流电转换为脉冲信号,并通过PWM技术对脉冲信号的宽度进行调制,使得输出电压的频率和幅度可以根据需要进行调节。
这样就实现了将直流电转换为可变频率、可调幅度的交流电。
逆变器输出的电压通常是三相对称的正弦波,它可以用来驱动各种交流电动机、电动机控制系统和其他需要交流电源的设备。
总结一下,三相电压型逆变电路主要由整流器和逆变器两个部分组成。
整流器将输入的三相交流电转换为直流电,而逆变器将直流电转换为可变频率、可调幅度的交流电。
通过整流器和逆变器的组合,可以实现将三相交流电源转换为直流电源,并通过逆变器将直流电源转换为三相交流电源。
这种电路在电力变频调速系统和其他需要交流电源的应用中具有广泛的应用前景。
逆变电路
S2 a)
b)
图5-1 逆变电路及其波形举例
5-4
5.1.1 逆变电路的基本工作原理
S1、S4闭合,S2、S3断开时,负载电压uo为正。 S1、S4断开,S2、S3闭合时,负载电压uo为负。
第 5 章 逆 变 电 路
直流电
交流电
5-5
5.1.1 逆变电路的基本工作原理
逆变电路最基本的工作 原理 ——改变两组开关 切换频率,可改变输出 交流电频率。
电压型逆变电路——又称为电压源
型逆变电路 Voltage Source Type Inverter-VSTI
直流侧是电流源
电流型逆变电路——又称为电流源
型逆变电路 Current Source Type Inverter-VSTI
5-13
5.2 电压型逆变电路
2)电压型逆变电路的特点
(1)直流侧为电压源或 并联大电容,直流侧电压 基本无脉动。 (2)输出电压为矩形波, 输出电流因负载阻抗不同 而不同。
1 (u UN' u VN' u WN' ) 3
一相上下两桥臂间的换流过程和半桥电路相似。
桥臂1、3、5的电流相加可得直流侧电流id的波形,id每60°脉动 一次,直流电压基本无脉动,因此逆变器从交流侧向直流侧传 送的功率是脉动的,电压型逆变电路的一个特点。 防止同一相上下两桥臂的开关器件同时导通而引起直流侧电源 短路,应采取“先断后通” 数量分析见教材。
电容器串联,要控制两者电压均衡。
第 5 章 逆 变 电 路
应用:
用于几kW以下的小功率逆变电源。 单相全桥、三相桥式都可看成若干个半桥逆变电 路的组合。
5-17
5.2.1 单相电压型逆变电路
逆变电路工作原理
逆变电路工作原理逆变电路是一种将直流电能转换为交流电能的电路,其工作原理是通过控制开关器件的导通和断开,改变电路中电流的方向和大小,从而实现将直流电能转换为交流电能的目的。
逆变电路广泛应用于各种电力电子设备中,如逆变器、变频器、交流电源等。
逆变电路主要由开关器件、滤波电路、控制电路和保护电路组成。
1. 开关器件:逆变电路中常用的开关器件有晶体管和功率MOSFET。
当开关器件导通时,电流可以流过开关器件,从而实现电流的方向和大小的改变。
当开关器件断开时,电流无法通过开关器件,从而实现电流的反向改变。
2. 滤波电路:逆变电路中的滤波电路用于平滑输出电压,减小电压的纹波。
常见的滤波电路包括电容滤波和电感滤波。
电容滤波器通过连接电容器来存储电荷,使得输出电压平滑。
电感滤波器通过连接电感器来抑制高频噪声,使得输出电压更加稳定。
3. 控制电路:逆变电路中的控制电路用于控制开关器件的导通和断开。
控制电路可以根据输入信号的变化来判断何时开关器件导通和断开,从而实现输出电压的控制。
常见的控制电路包括脉宽调制(PWM)控制和频率调制(FM)控制。
4. 保护电路:逆变电路中的保护电路用于保护开关器件和其他电子元件免受过电流、过电压和过温等异常情况的伤害。
保护电路可以通过监测电流、电压和温度等参数,并及时采取相应的措施来保护电路的安全运行。
逆变电路可以实现不同的输出波形,如方波、正弦波和三角波等。
根据输出波形的不同,逆变电路可以分为全桥逆变电路、半桥逆变电路和单相逆变电路等。
全桥逆变电路可以实现正弦波输出,适合于高功率应用。
半桥逆变电路适合于中功率应用。
单相逆变电路适合于低功率应用。
逆变电路的应用非常广泛。
在家庭中,逆变电路常用于太阳能发电系统和风能发电系统中,将直流电能转换为交流电能供电给家庭用电设备。
在工业领域,逆变电路常用于机电驱动系统中,控制机电的转速和转向。
此外,逆变电路还广泛应用于电力电子设备、电动车充电器、UPS电源等领域。
逆变电路工作原理
逆变电路工作原理逆变电路是一种将直流电转换为交流电的电路,其工作原理是通过逆变器将直流电源的电压和频率转换为所需的交流电信号。
逆变电路广泛应用于各种电子设备和系统中,例如太阳能发电系统、电动汽车、UPS电源等。
逆变电路的基本原理是利用半导体开关器件(如晶体管、MOSFET、IGBT等)来控制电流流向,从而改变电压的极性。
常见的逆变电路有两种:单相逆变电路和三相逆变电路。
在单相逆变电路中,通常采用全桥逆变器的结构。
全桥逆变器由四个开关器件组成,分为上桥臂和下桥臂。
通过控制上下桥臂的开关状态,可以实现直流电源电压的反向变换。
在工作过程中,交流输出电压的频率和幅值可以通过调节开关器件的开关频率和占空比来实现。
三相逆变电路通常采用三相桥式逆变器的结构。
三相桥式逆变器由六个开关器件组成,分为上桥臂和下桥臂。
通过控制上下桥臂的开关状态,可以实现三相交流电源电压的反向变换。
与单相逆变电路类似,通过调节开关器件的开关频率和占空比,可以实现所需的交流输出电压频率和幅值。
逆变电路的工作原理可以简单概括为以下几个步骤:1. 直流输入:逆变电路的输入为直流电源,通常通过整流电路将交流电转换为直流电。
2. 逆变器控制:逆变器控制电路根据所需的输出电压和频率信号,通过控制开关器件的开关状态来实现电压和频率的转换。
3. 开关器件操作:根据控制信号,开关器件在不同的时间段内进行开关操作。
当开关器件导通时,直流电源的电流流向负载,产生正向电压;当开关器件断开时,负载上的电感元件储存的能量释放,产生反向电压。
4. 输出滤波:逆变电路的输出通常需要经过滤波电路进行平滑处理,去除交流输出中的高频噪声和谐波成份,得到稳定的交流输出电压。
5. 输出负载:经过滤波处理后的交流输出电压可以连接到各种负载上,供电设备正常工作。
总结起来,逆变电路通过控制开关器件的导通和断开,将直流输入电源转换为所需的交流输出电压。
逆变电路的工作原理涉及到开关器件的操作和控制电路的设计,以及输出电压的滤波和负载的连接。
电流型三相桥式逆变电路
电流型三相桥式逆变电路直流电源为电流源的逆变电路——电流型逆变电路。
一般在直流侧串联大电感,电流脉动很小,可近似看成直流电流源。
实例之一:电流型三相桥式逆变电路。
交流侧电容用于吸收换流时负载电感中存贮的能量。
电流型三相桥式逆变电路电流型逆变电路主要特点:(1) 直流侧串大电感,相当于电流源。
(2) 交流输出电流为矩形波,输出电压波形和相位因负载不同而不同。
(3) 直流侧电感起缓冲无功能量的作用,不必给开关器件反并联二极管。
电流型逆变电路中,采用半控型器件的电路仍应用较多。
换流方式有负载换流、强迫换流。
(1)单相电流型逆变电路单相桥式电流型(并联谐振式)逆变电路4桥臂,每桥臂晶闸管各串一个电抗器LT限制晶闸管开通时的di/dt。
1、4和2、3以1000~2500Hz的中频轮流导通,可得到中频交流电。
采用负载换相方式,要求负载电流超前于电压。
负载一般是电磁感应线圈,加热线圈内的钢料,RL串联为其等效电路。
因功率因数很低,故并联C。
C和L、R构成并联谐振电路,故此电路称为并联谐振式逆变电路。
输出电流波形接近矩形波,含基波和各奇次谐波,且谐波幅值远小于基波。
因基波频率接近负载电路谐振频率,故负载对基波呈高阻抗,对谐波呈低阻抗,谐波在负载上产生的压降很小,因此负载电压波形接近正弦波。
工作波形分析:一周期内,两个稳定导通阶段和两个换流阶段。
t1-t2:VT1和VT4稳定导通阶段,io=Id,t2时刻前在C上建立了左正右负的电压。
t2-t4:t2时触发VT2和VT3开通,进入换流阶段。
LT使VT1、VT4不能立刻关断,电流有一个减小过程。
VT2、VT3电流有一个增大过程。
4个晶闸管全部导通,负载电压经两个并联的放电回路同时放电。
t2时刻后,LT1、VT1、VT3、LT3到C;另一个经LT2、VT2、VT4、LT4到C。
t=t4时,VT1、VT4电流减至零而关断,换流阶段结束。
t4-t2= tg 称为换流时间。
三相的方波逆变电路原理说明书
三相的方波逆变电路原理说明书一、引言本文将详细介绍三相的方波逆变电路的原理及工作方式。
方波逆变电路是一种常用的电力电子转换器,广泛应用于工业控制、电力传输和电力供应等领域。
本文将从电路结构、工作原理、性能参数等方面进行说明。
二、电路结构三相的方波逆变电路由三相桥式整流器、滤波电容、逆变器等组成。
其基本电路结构如下图所示:[插入电路结构示意图]三相桥式整流器将交流电源转换为直流电压,并通过滤波电容对直流电压进行平滑处理。
逆变器将直流电压转换为方波交流电压输出。
三、工作原理1. 三相桥式整流器工作原理:三相桥式整流器由六个二极管组成,分为正半桥和负半桥。
当交流电源的A相电压大于B相和C相电压时,A相的二极管导通,B相和C相的二极管截止,此时A相电流通过负半桥输出。
当B相电压大于A相和C相电压时,B相的二极管导通,A相和C相的二极管截止,此时B相电流通过正半桥输出。
同理,当C相电压大于A相和B相电压时,C相的二极管导通,A相和B相的二极管截止,此时C相电流通过负半桥输出。
通过这样的切换,交流电源的三相电压可以被转换为直流电压输出。
2. 逆变器工作原理:逆变器由六个开关管组成,分为正半桥和负半桥。
逆变器的工作周期分为两个阶段:正半周期和负半周期。
在正半周期中,正半桥的两个开关管分别导通和截止,负半桥的两个开关管截止。
在负半周期中,正半桥的两个开关管截止,负半桥的两个开关管分别导通和截止。
通过这样的切换,直流电压可以被转换为方波交流电压输出。
四、性能参数1. 输出电压:三相的方波逆变电路的输出电压为方波交流电压,其峰值电压与直流电压相关。
可以通过控制逆变器的开关频率和占空比来调节输出电压的大小。
2. 输出频率:三相的方波逆变电路的输出频率与输入交流电源的频率相同。
3. 输出功率:三相的方波逆变电路的输出功率与输入直流电压和负载电阻相关。
可以通过调节输入直流电压和负载电阻来控制输出功率的大小。
五、应用领域三相的方波逆变电路广泛应用于工业控制、电力传输和电力供应等领域。
电力电子技术——有源逆变电路
其值为
E0 Ud 1.17U2 cos60 0.585U2
非线性特性
图4-10 电流断续时电动势的特性曲线
Goback
❖实际上,当Id减小至某一定值Idmin以后,电流变 为断续,真正的理想空载点远大于此值,因为
此时晶闸管触发导通时的相电压瞬时值为 2U2 。
❖考虑直流等效回路,左侧电源为脉动直流电压
ud波形,最大瞬时值为 2U 2 ,并且由于整流器
件的单向导电性,回路电流Id的方向是固定的,
只有当反电动势EM等于脉动直流电压ud的最大
峰值时,电流才能完全等于零,否则,只要EM
比ud的最大峰值略小一点,就总是存在断断续
续的电流脉冲。因此 2U2 才是实际的理想空载
no Ke
Goback
2. 电流断续时电动机的机械特性 • 由于整流电压是一个脉动的直流电压,当电动
机的负载减小时,平波电抗器中的电感储能减 小,致使电流不再连续,此时电动机的机械特 性也就呈现出非线性。
• 电流断续时电动机机械特性的第一个特点: 当 电流断续时,电动机的理想空载转速抬高。
❖由三相半波电路电流连续时反电动势表达式,
变化很小也可引起很大的转速变化。
❖ 设整流控制角一定,由于轻载时电流断续,各晶闸管 的导通角 120 ,此时ud波形将发生一定的变化,水 平直线E以下的部分作用时间将比电流连续时缩短,负 面积减小,平均面积Ud比电流连续时的计算值升高, 在电流连续的条件下得出的Ud计算公式不再适用。
整流波形
图4-11 考虑电流断续时不同时反电动势的特性曲线
➢整流输出电压ud是脉动的,可分为两部分:直 流分量Ud,和交流分量。交流电流分量的大小 主要取决于直流侧的回路电感,特别是平波电
3525逆变器电路图
3525逆变器电路图
2010-05-19 20:39:19
在中小容量变频电源的设计中,采用自关断器件的脉宽调制系统比非自关断器件的相控系统具有更多的优越性。
第一代脉宽调制器SG3525A应用于交流电机调速、UPS电源以及其他需要PWM脉冲的领域。
其外围电路可对串联谐振式逆变电源进行多功能控制,实现H桥式IGBT脉宽调制PWM信号的生成和逆变电源的保护功能,以及变频电源工作过程中谐振频率的跟踪控制。
控制电路(图4.1)的核心为PWM控制器SG3525A,用SG3525A发出的PWM脉冲,来控制逆变器VT1、 VT4和VT2、VT3轮流导通,从而控制逆变电压和逆变频率。
图4.1中SG3525A的6脚连接电阻R,改变R的大小,这样就可调控SG3525输出的PWM脉冲频率。
同时通过调节SG3525的9脚电压来改变输出脉宽。
3525逆变器电路图
反馈电路如上图4.1所示,当电流互感器从负载端感应出交流电流,通过桥式整流器把他转化为直流电,在滑动变阻器PR2上产生电压。
由滑动端输出的信号接到SG3525A的10脚上,当脚10电压大于0. 7V时,芯片将进行限流操作,当脚10电压超过1.4V 时,将使PWM锁存器关断,直至下一个时钟周期才能够恢复。
以下分别独立介绍感应加热电源控制电路各个组成部分的基本原理、功能及参数计算。
由SG3525组成的300W正弦波逆变电路图:。
逆变电路工作原理
逆变电路工作原理
逆变电路是一种将直流电转换为交流电的电子装置。
其工作原理基本上是通过不间断地开关和关闭电流来产生一个平均为零的电压波形,从而产生交流电。
具体的工作原理如下:
1. 开关电路:逆变电路中的主要元件是开关管(如MOSFET、IGBT等),它们可以根据控制信号的输入来开关电流通路。
通过适当地控制开关管的导通和截止,可以实现从输入直流电源到输出交流电源的开关切换。
2. 输入电流滤波:由于直流电源的输出中包含有高频脉冲,需要通过电感元件和电容元件来滤除高频噪声。
这通常通过输入电感和输入电容来实现。
3. 输出电压滤波:在开关管开关频率很高的情况下,通过电感元件和电容元件将切割波形转换为平滑的交流电压输出。
输出电感和输出电容构成了一个LC滤波网络,能够滤除开关产生
的高频分量,得到所需的交流电信号。
4. 控制电路:为了实现逆变电路的稳定和可靠工作,需要一个控制电路来控制开关管的开关时间和开关频率。
控制电路可以根据输入直流电压、负载变化等信息,通过反馈调节的方式控制开关管的开关状态,以保持输出交流电压稳定。
总结来说,逆变电路通过适当地开关和关闭开关管来切换电流,通过适当的滤波和控制电路,可以将直流电转换为平滑的交流电输出。
单相全桥逆变电路工作原理
单相全桥逆变电路工作原理单相全桥逆变电路是一种常用的电力变换装置,其主要用途是将直流电转换为交流电。
其工作原理是通过四个开关管将直流电进行切割和逆向变换,最终得到一定电压和频率的交流输出。
下面将从工作原理、电路构成、优缺点和应用领域等方面详细阐述单相全桥逆变电路。
一、工作原理单相全桥逆变电路由四个开关管(晶闸管或MOSFET)组成,与一台变压器一起工作。
当1、2交流电源正负极向变压器输入直流电压时,S1和S4开启,S2和S3关闭。
这时,直流电源会通过变压器的一端进入,而另一端则会输出负电压,这样输出端就获得了一种交流电压。
然后,当1、2交流电源正负极的电压变为相反时,S2和S3打开,S1和S4关闭,这样直流电压就会反向通过变压器,输出端就依然能够获得一种交流电压。
两次的输出发生的相位差为180度,即输出的正弦波形左右当中的各一半,从而实现了逆变电路的工作。
二、电路构成单相全桥逆变电路的电路构成简单,主要由直流电源、四个开关管和变压器组成。
其中直流电源的电压和电流都需要进行选定和计算,开关管的类型和参数也需要进行选择和配合,变压器的参数也需要充分考虑和计算。
其中,开关管就是单向导电的器件,分为输入端和输出端,控制端与两个端口相连,当接收到控制信号时,控制端就开启器件,这样开关管就导通了。
在单相全桥逆变电路中,由于一次侧变压器中心点与输出端相连,所以开关管的控制信号需要进行相互协调,以保证逆变电路的正常工作。
三、优缺点单相全桥逆变电路也有其自身的优缺点。
其优点在于逆变电路稳定性高、输出电压频率可控、输出精度较高、效率高等,还能够实现交流电的变换、整流、调节及保护等多种功能。
而缺点在于电路构造较为复杂、噪声等环境干扰较大、器件选配精度较高等。
四、应用领域单相全桥逆变电路在现代工业生产中得到广泛应用,如电子、电力、通讯、光学、机械、石油化工等行业。
其中在工业控制领域,逆变电路可被应用于电机启动、转速控制、液压泵站控制、机床等方面。
逆变器电路图介绍(TL494555作逆变器纯正弦波逆变器电路)
逆变器电路图介绍(TL494555作逆变器纯正弦波逆变器电路)逆变器电路图—最简单12v变220v逆变器以下是一款较为容易制作的逆变器电路图,可以将12V直流电源电压逆变为220V市电电压,电路由BG2和BG3组成的多谐振荡器推动,再通过BG1和BG4驱动,来控制BG6和BG7工作。
其中振荡电路由BG5与DW组的稳压电源供电,这样可以使输出频率比较稳定。
在制作时,变压器可选有常用双12V输出的市电变压器。
可根据需要,选择适当的12V蓄电池容量。
逆变器电路图—TL494逆变器电路TL494芯片400W逆变器电路图变压器功率为400VA,铁芯采用45&TImes;60mm2的硅钢片。
初级绕组采用直径1.2mm的漆包线,两根并绕2&TImes;20匝。
次级取样绕组采用0.41mm漆包线绕36匝,中心抽头。
次级绕组按230V 计算,采用0.8mm漆包线绕400匝。
开关管VT4~VT6可用60V/30A任何型号的N沟道MOS FET管代替。
VD7可用1N400X系列普通二极管。
该电路几乎不经调试即可正常工作。
当C9正极端电压为12V时,R1可在3.6~4.7kΩ之间选择,或用10kΩ电位器调整,使输出电压为额定值。
如将此逆变器输出功率增大为近600W,为了避免初级电流过大,增大电阻性损耗,宜将蓄电池改用24V,开关管可选用VDS为100V的大电流MOS FET管。
需注意的是,宁可选用多管并联,而不选用单只IDS大于50A的开关管,其原因是:一则价格较高,二则驱动太困难。
建议选用100V/32A的2SK564,或选用三只2SK906并联应用。
同时,变压器铁芯截面需达到50cm2,按普通电源变压器计算方式算出匝数和线径,或者采用废UPS-600中变压器代用。
如为电冰箱、电风扇供电,请勿忘记加入LC低通滤波器。
利用TL494组成的400W大功率稳压逆变器电路。
它激式变换部分采用TL494,VT1、VT2、VD3、VD4构成灌电流驱动电路,驱动两路各两只60V/30A的MOS FET开关管。
单相电压型逆变电路工作原理
单相电压型逆变电路工作原理一、引言逆变电路是将直流电转换为交流电的一种电路,逆变电路的应用非常广泛,例如变频器、UPS等。
单相电压型逆变电路是一种常见的逆变电路,本文将详细介绍其工作原理。
二、单相电压型逆变电路结构单相电压型逆变电路由直流输入端、滤波器、开关管和输出端组成。
其中,直流输入端提供直流输入信号;滤波器用于过滤掉直流信号中的高频噪声;开关管用于控制输出信号的频率和幅值;输出端则输出经过处理后的交流信号。
三、单相电压型逆变电路工作原理1. 直流输入信号经过滤波器在单相电压型逆变电路中,直流输入信号首先通过滤波器进行滤波处理。
滤波器主要由一个大容量的滤波电容和一个小阻值的滤波电阻组成,在这个过程中,高频噪声被短时间内充放电而被消除。
2. 交错控制开关管在单相逆变器中,开关管是最重要的元件之一。
在正半周期和负半周期中,开关管的控制是不同的。
在正半周期,当开关管导通时,输出端的电压为正;当开关管断开时,输出端的电压为零。
在负半周期中,当开关管导通时,输出端的电压为零;当开关管断开时,输出端的电压为负。
3. 输出信号经过滤波器在单相逆变器中,输出信号需要通过滤波器进行处理。
滤波器主要由一个大容量的滤波电容和一个小阻值的滤波电阻组成,在这个过程中,高频噪声被短时间内充放电而被消除。
4. 输出信号经过变压器在单相逆变器中,输出信号需要通过变压器进行处理。
变压器主要由一个铁芯和两个绕组组成。
其中一个绕组接收逆变器产生的交流信号,并将其转换为所需的交流信号;另一个绕组则将交流信号传输到负载上。
四、总结单相电压型逆变电路是一种将直流转换为交流的常见逆变电路。
其工作原理主要包括直流输入信号经过滤波器、交错控制开关管、输出信号经过滤波器和输出信号经过变压器等步骤。
逆变电路的应用非常广泛,例如变频器、UPS等。
第5章逆变电路
第五章逆变电路一.换流方式1.分类:器件换流、电网换流、负载换流、强迫换流2.器件换流:适用于全控型器件●其余三种方式:针对晶闸管●器件换流和强迫换流属于自换流●电网换流和负载换流属于外部换流●当电流不是从一个支路向另一个支路转移,而是在支路内部终止流通而变为零,则称为熄灭二.逆变1.逆变电路的概念以及组成:与整流相对应,直流电变成交流电,它由逆变桥、控制逻辑和滤波电路组成●逆变:把直流电转变成交流电,整流的逆过程。
●交流侧接电网,为有源逆变●交流侧接负载,为无源逆变●既工作在整流状态又工作在逆变状态,称为变流电路。
2.逆变电路的分类:根据直流侧电源性质的不同●直流侧是电压源:电压型逆变电路又称为电压源型逆变电路●直流侧是电流源:电流型逆变电路又称为电流源型逆变电路3.产生逆变的条件:●有直流电动势,其极性和晶闸管导通方向一致,其值大于变流器直流侧平均电压●晶闸管的控制角α>π/2,使Ud为负值●半控桥或有续流二极管的电路,因其整流电压u d不能出现负值,也不允许直流侧出现负极性的电动势,故不能实现有源逆变●欲实现有源逆变,只能采用全控电路4.逆变和整流的区别:控制角α不同●0<α<π/2时,电路工作在整流状态●π/2<α<π时,电路工作在逆变状态5.把a>π/2时的控制角用π-α=β表示,β称为逆变角●逆变角β和控制角α的计量方向相反,其大小自β=0的起始点向左方计量6.逆变电路的基本工作原理:●逆变电路最基本的工作原理:改变两组开关切换频率,可改变输出交流电频率●电阻负载时,负载电流i o和u o的波形相同,相位也相同●阻感负载时,i o相位滞后于u o,波形也不同7.逆变失败的原因:●触发电路工作不可靠,不能适时、准确地给各晶闸管分配脉冲,脉冲丢失、脉冲延时,致使晶闸管不能正常换相●晶闸管发生故障,该断时不断,或该通时不通●交流电源缺相或突然消失●换相的裕量角不足,引起换相失败8.三相桥整流电路有源逆变状态时各电量的计算:●U d=-1.35U2cosβ●输出直流电流的平均值亦可用整流的公式I d=(U-E)/R∑●每个晶闸管导通2π/3,故流过晶闸管的电流有效值I VT=I d/√3=0.577I d●从交流电源送到直流侧负载的有功功率Pd=R∑I d2+E M I d●在三相桥式电路中,变压器二次侧线电流的有效值I2=√2I VT=√(2/3)I d=0.816I d9.确定最小逆变角βmin的依据:●逆变时允许采用的最小逆变角β应等于βmin=δ+γ+θ●δ晶闸管的关断时间t q折合的电角度,t q大的可达200~300ms,折算到电角度约4︒~5︒●γ换相重叠角,随直流平均电流和换相电抗的增加而增大●θ安全裕量角,主要针对脉冲不对称程度一般可达5︒约取为10︒●βmin一般取30︒~35︒三.电压型逆变电路1.电压型逆变电路的特点:●直流侧为电压源或并联大电容,直流侧电压基本无脉动●输出电压为矩形波,输出电流因负载阻抗不同而不同●阻感负载时需提供无功功率,为了给交流侧向直流侧反馈的无功能量提供通道,逆变桥各臂并联反馈二极管四.单相电压型逆变电路1.半桥逆变电路●优点:电路简单,使用器件少●缺点:输出交流电压幅值为U d/2,且直流侧需两电容器串联,要控制两者电压均衡●应用:用于几kW以下的小功率逆变电源、单相全桥,三相桥式都可看成若干个半桥逆变电路的组合2.全桥逆变电路特点●共四个桥臂,可看成两个半桥电路组合而成●两对桥臂交替导通180°●输出电压合电流波形与半桥电路形状相同,幅值高出一倍●改变输出交流电压的有效值只能通过改变直流电压U d来实现●基波的幅值U o1m=4U d/π=1.27U d●基波的有效值U o1=2√2U d/π=0.9U d3.带中心抽头变压器的逆变电路与全桥电路的比较:●比全桥电路少用一半开关器件●器件承受的电压为2U d,比全桥电路高一倍●必须有一个变压器五.三相电压型逆变电路1.三个单相逆变电路可组合成一个三相逆变电路2.基本工作方式:180°导电方式●每桥臂导电180°,同一相上下两臂交替导电,各相开始导电的角度差120°●任一瞬间有三个桥臂同时导通●每次换流都是在同一相上下两臂之间进行,也称为纵向换流3.负载各相到电源中点N'的电压:U相,1通,u UN'=U d/2,4通,u UN'=-U d/24.负载线电压:●u UV=u UN'-u VN'●u VW=u VN'-u WN'●u WU=u WN'-u UN'5.负载相电压:●u UN=u UN'-u NN'●u VW=u VN'-u NN'●u WU=u WN'-u NN'6.负载中点和电源中点间电压7.负载三相对称时有u UN+u VN+u WN=08.输出线电压有效值U UV=0.816U d●其中基波幅值U UV1m=2√3U d/π=1.1U d●基波有效值U UV1=U UV1m/√2=√6/πU d=0.78U d9.输出线电压有效值U UN=0.471U d●其中基波幅值U UN1m=2U d/π=0.637U d●基波有效值U UN1=U UV1m/√2==0.45U d六.电流型逆变电路1.电流型逆变电路主要特点●直流侧串大电感,电流基本无脉动,相当于电流源●交流输出电流为矩形波,与负载阻抗角无关输出电压波形和相位因负载不同而不同●直流侧电感起缓冲无功能量的作用,不必给开关器件反并联二极管●换流方式有负载换流、强迫换流七.单相电流型逆变电路1.工作方式为负载换相2.工作分析:一个周期内有两个导通阶段和两个换流阶段●基波电流有效值I ol=4I d/√2π=0.9I d●负载电压有效值U o和直流电压U d的关系Uo=1.11Ud/cosφ3.自励方式:工作过程中,感应线圈参数随时间变化,必须使工作频率适应负载的变化而自动调整4.固定工作频率的控制方式称为他励方式七.三相电流型逆变电路1.电路分析:基本工作方式是120°导电方式,每个臂一周期内导电120°,每个时刻上下桥臂组各有一个臂导通,换流方式为横向换流2.输出电流波形和负载性质无关,正负脉冲各120°的矩形3.串联二极管式晶闸管逆变电路●主要用于中大功率交流电动机调速系统●是电流型三相桥式逆变电路●各桥臂的晶闸管和二极管串联使用●120°导电工作方式●强迫换流方式,电容C1~C6为换流电容●换流阶段分为恒流放电和二极管换流两个阶段八.多重逆变电路1.电压型逆变电路输出电压是矩形波,●电流型逆变电路输出电流是矩形波,含有较多谐波●多重逆变电路把几个矩形波组合起来,接近正弦●多电平逆变电路输出较多电平,使输出接近正弦2.两个单相全桥逆变电路组成,输出通过变压器T1和T2串联起来●输出波形:两个单相的输出u1和u2是180°矩形波3.多重逆变电路有串联多重和并联多重两种●串联多重——把几个逆变电路的输出串联起来,多用于电压型●并联多重——把几个逆变电路的输出并联起来,多用于电流型4.三相电压型二重逆变电路的工作原理●由两个三相桥式逆变电路构成,输出通过变压器串联合成●两个逆变电路均为180°导通方式,逆变桥II的相位逆变桥I滞后30°●T1为Δ/Y联结,线电压变比为1:√3,T2一次侧Δ联结,二次侧两绕组曲折星形接法,其二次电压相对于一次电压而言,比T1的接法超前30°,以抵消逆变桥II比逆变桥I滞后的30°这样,u U2和u U1的基波相位就相同●如果T2和T1,一次侧匝数相同,为了使U u2和U u1基波幅值相同,T2和T1二次侧间的匝比就应为1/√35.以N’为参考点,输出相电压有U d/2和-U d/2两种电平,称为两电平逆变电路6.三电平逆变电路也称中点钳位型逆变电路:每桥臂由两个全控器件串联构成,两者中点通过钳位二极管和直流侧中点相连7.线电压的电平:●相电压相减得到线电压●两电平逆变电路的输出线电压有±Ud和0三种电平●三电平逆变电路的输出线电压有±U d、±U d/2和0五种电平●三电平逆变电路输出电压谐波可大大少于两电平逆变电路●三电平逆变电路每个主开关器件承受电压为直流侧电压的一半。