第二章《对称图形—圆》综合测试题(一)含答案

合集下载

完整版苏科版九年级上册数学第2章 对称图形——圆含答案

完整版苏科版九年级上册数学第2章 对称图形——圆含答案

苏科版九年级上册数学第2章对称图形——圆含答案一、单选题(共15题,共计45分)1、在中,,,根据以下圆规作图的痕迹,只用无刻度直尺能符合题意找到的外心的是()A. B. C.D.2、如图,四边形ABCD内接于⊙O,如果它的一个外角∠DCE=64°,那么∠BOD=()A.128°B.100°C.64°D.32°3、如图,已知圆O的半径为10,AB⊥CD,垂足为P,且AB=CD=16,则OP的长为()A.6B.6C.8D.84、如图,在⊙O中,∠BOC=100°,则∠A等于()A.100°B.50°C.40°D.25°5、圆外切等腰梯形的中位线等于8,则一腰长等于()A.4B.6C.8D.106、如图,AC,BC是两个半圆的直径,∠ACP=30°,若AB=2a,则 PQ的值为()A.aB.1.5aC.D.7、如图,在⊙中,是直径,是弦,,垂足为,连接,,,则下列说法中正确的是().A. B. C. D.8、已知圆锥的底面半径为3cm,母线长为5cm,则它的侧面积为()A.60πcm 2B.45πcm 2C.30πcm 2D.15πcm 29、下列说法正确的是()A.等弧所对的圆周角相等B.平分弦的直径垂直于弦C.相等的圆心角所对的弧相等D.圆是轴对称图形,任何一条直径都是它的对称轴10、如图,在△ABC中,BC=4,以点A为圆心,2为半径的⊙A与BC相切于点D,交AB于点E,交AC于点F.P是⊙A上一点,且∠EPF=40°,则图中阴影部分的面积是()A.4-B.4-C.8-D.8-11、如图,点P为⊙O外一点,PA为⊙O的切线,A为切点,PO交⊙0于点B,∠P=30°,OB=3,则线段BP的长为().A.3B.C.6D.912、如图,A、B、C、D四点在同一个圆上.下列判断正确的是()A.∠C+∠D=180°B.当E为圆心时,∠C=∠D=90°C.若E是AB的中点,则E一定是此圆的圆心D.∠COD=2∠CAD13、如图,过半径为6的圆O上一点A作圆O的切线l,P为圆O的一个动点,作PH⊥l于点H,连接PA.如果PA=x,AH=y,那么下列图象中,能大致表示y 与x的函数关系的是()A. B. C.D.14、如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC,若∠ABC=120°,OC=3,则弧BC的长为()A.πB.2πC.3πD.5π15、已知⊙O是以坐标原点O为圆心,5为半径的圆,点M的坐标为(﹣3,4),则点M与⊙O的位置关系为()A.M在⊙O上B.M在⊙O内C.M在⊙O外D.M在⊙O右上方二、填空题(共10题,共计30分)16、若扇形的圆心角为,半径为6,则扇形的面积为________.17、如图,⊙O中,已知弧AB=弧BC,且弧AB:弧AmC=3:4,则∠AOC=________度.18、一圆锥的侧面展开后是扇形,该扇形的圆心角为120°,半径为6cm,则此圆锥的表面积为________cm2.19、如图,是的弦,于点H,点P是所对的优弧上一点,若,,则________.20、如图,AB与⊙O相切于点B,线段OA与弦BC垂直,垂足为D,AB=BC=2,则∠AOB=________°.21、如图,Rt△ABC中,∠C=90°,AC=BC=1,将其放人平面直角坐标系,使A 点与原点重合,AB在x轴上,△ABC沿x轴顺时针无滑动的滚动,点A再次落在x轴时停止滚动,则点A经过的路线与x轴围成图形的面积为________22、如图,已知A为⊙O外一点,连结OA交⊙O于P,AB为⊙O的切线,B为切点,AP=5㎝,AB=㎝,则劣弧与AB,AP所围成的阴影的面积是________.23、如图,在中,,.以点B为圆心,为半径作弧,交的延长线于点E,线段沿方向平移至.若四边形的面积为,则阴影部分面积为________.24、如图,AB为⊙O直径,点C、D在⊙O上,已知∠AOD=50°,AD∥OC,则∠BOC= ________度.25、如图,P是⊙O的直径BA延长线上一点,PD交⊙O于点C,且PC=OD,如果∠P=24°,则∠DOB=________.三、解答题(共5题,共计25分)26、如图,AB、CD是⊙O的直径,弦CE∥AB,弧的度数为50°,求∠AOC 的度数.27、设圆锥的侧面展开图是一个半径为18cm,圆心角为240°的扇形,求圆锥的底面积和高.28、如图,有两条公路OM,ON相交成30°,沿公路OM方向离两条公路的交叉处O点80米的A处有一所希望小学,当拖拉机沿ON方向行驶时,路两旁50米内会受到噪音影响,已知有两台相距30米的拖拉机正沿ON方向行驶,它们的速度均为5米/秒,问这两台拖拉机沿ON方向行驶时给小学带来噪音影响的时间是多少?29、如图,在半径为13的⊙O中,OC垂直弦AB于点D,交⊙O于点C,AB=24,求CD的长.30、如图,BC为⊙O的直径,A为⊙O上的点,以BC、AB为边作▱ABCD,⊙O交AD于点E,连结BE,点P为过点B的⊙O的切线上一点,连结PE,且满足∠PEA=∠ABE.(1)求证:PB=PE;(2)若sin∠P=,求的值.参考答案一、单选题(共15题,共计45分)1、C2、A3、B4、B5、C6、C7、D8、D9、A10、B11、A12、B13、C14、B15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、24、25、三、解答题(共5题,共计25分)26、27、30、。

第2章对称图形—圆常考单元综合测评 2021-2022学年苏科版九年级数学上册(word版含答案)

第2章对称图形—圆常考单元综合测评 2021-2022学年苏科版九年级数学上册(word版含答案)

2021-2022学年苏科版九年级数学上册《第2章对称图形—圆》常考热点单元综合测评(附答案)一.选择题(共10小题,满分30分)1.如图,AB是⊙O的直径,点D在⊙O上,若∠AOC=120°,则∠D的度数是()A.20°B.30°C.40°D.45°2.如图,AB是⊙O的直径,P A切⊙O于点A,连接PO并延长交⊙O于点C,连接AC,若AB=8,∠P=30°,则AC=()A.4B.4C.4D.33.正六边形的半径与边心距之比为()A.B.C.D.4.如图,在扇形OAB中,∠AOB=110°,将扇形OAB沿过点B的直线折叠,点O恰好落在上的点D处,折痕交OA于点C,则的度数为()A.40°B.50°C.60°D.70°5.如图,AB是半圆O的直径,点C在半圆O上,把半圆沿弦AC折叠,恰好经过点O,则与的关系是()A.=B.=C.=D.不能确定6.如图,点A的坐标为(﹣3,﹣2),⊙A的半径为1,P为x轴上一动点,PQ切⊙A于点Q,则当PQ最小值时,点P的坐标为()A.(﹣4,0)B.(﹣2,0)C.(﹣4,0)或(﹣2,0)D.(﹣3,0)7.在Rt△ABC中,∠C=90°,AC=10,BC=12,点D为线段BC上一动点.以CD为⊙O 直径,作AD交⊙O于点E,连BE,则BE的最小值为()A.6B.8C.10D.128.在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,以C为圆心,2.4cm长为半径的圆与AB的位置关系是()A.相切B.相交C.相离D.不能确定9.如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠P AB=∠PBC,则线段CP长的最小值为()A.B.2C.D.10.如图,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分别与⊙O相切于E,F,G 三点,过点D作⊙O的切线交BC于点M,切点为N,则DM的长为()A.B.C.D.2二.填空题(共10小题,满分30分)11.如图,△ABC中,∠A=70°,⊙O截△ABC的三条边所截得弦长相等,则∠BOC =.12.如图,⊙O的直径AB为10cm,弦AC为6cm,∠ACB的平分线交AB于E,交⊙O于D.则弦AD的长是cm.13.已知圆锥的底面半径为5cm,侧面积为65πcm2,圆锥的母线是cm.14.如图,已知AD是∠BAC的平分线,以线段AB为直径作圆,交∠BAC和角平分线于C,D两点.过D向AC作垂线DE垂足为点E.若DE=2CE=4,则直径AB=.15.如图,在Rt△ABC中,∠ACB=90°,BC=2,将Rt△ABC绕点C顺时针旋转60°后得Rt△DEC,此时点B恰好在线段DE上,其中点A经过的路径为弧AD,则图中阴影部分的面积是.16.如图,△ABC内接于⊙O,∠CAB=30°,∠CBA=45°,CD⊥AB于点D,若⊙O的半径为2,则CD的长为.17.点O是△ABC的外心,若∠BOC=80°,则∠BAC的度数为.18.在直径为200cm的圆柱形油箱内装入一些油以后,截面如图(油面在圆心下):若油面的宽AB=160cm,则油的最大深度为.19.⊙O的直径为10cm,弦AB∥CD,AB=8cm,CD=6cm,则AB和CD的距离是cm.20.如图,⊙O的半径OD⊥弦AB于点C,连接AO并延长交⊙O于点E,连接EC.若AB =8,CD=2,则EC的长为.三.解答题(共6小题,满分60分)21.如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC.(1)求证:P A是⊙O的切线;(2)若PD=,求⊙O的直径.22.如图,AB是⊙O的直径,C是的中点,CE⊥AB于点E,BD交CE于点F.(1)求证:CF=BF;(2)若CD=6,AC=8,求⊙O的半径及CE的长.23.如图,⊙C经过坐标原点,且与两坐标轴分别交于点A与点B,点A的坐标为(0,4),M是圆上一点,∠BMO=120°.(1)求证:AB为⊙C直径.(2)求⊙C的半径及圆心C的坐标.24.如图,⊙O中,直径CD⊥弦AB于E,AM⊥BC于M,交CD于N,连AD.(1)求证:AD=AN;(2)若AB=4,ON=1,求⊙O的半径.25.如图,以△ABC的BC边上一点O为圆心的圆,经过A、B两点,且与BC边交于点E,D为BE的下半圆弧的中点,连接AD交BC于F,若AC=FC.(1)求证:AC是⊙O的切线:(2)若BF=8,DF=,求⊙O的半径;(3)若∠ADB=60°,BD=1,求阴影部分的面积.(结果保留根号)26.如图,在⊙O中,直径AB垂直弦CD于E,过点A作∠DAF=∠DAB,过点D作AF 的垂线,垂足为F,交AB的延长线于点P,连接CO并延长交⊙O于点G,连接EG.(1)求证:DF是⊙O的切线;(2)若AD=DP,OB=3,求的长度;(3)若DE=4,AE=8,求线段EG的长.参考答案一.选择题(共10小题,满分30分)1.解:∵∠AOC=120°,∴∠BOC=180°﹣∠AOC=60°,∴∠BDC=∠BOC=30°.故选:B.2.解:∵P A切⊙O于点A,∴OA⊥P A,∴∠OAP=90°,在Rt△OAP中,∵∠P=30°,∴∠AOP=60°,AP=OA=4,∵∠AOP=∠C+∠OAC=60°,而∠C=∠OAC,∴∠C=30°,∴AC=AP=4.故选:A.3.解:∵正六边形的半径为R,∴边心距r=R,∴R:r=1:=2:,故选:D.4.解:连接OD,如图,∵扇形OAB沿过点B的直线折叠,点O恰好落在上的点D处,折痕交OA于点C,∴BC垂直平分OD,∴BD=BO,∵OB=OD,∴BD=BO=DO,∴△OBD为等边三角形,∴∠DOB=60°,∴∠AOD=∠AOB﹣∠DOB=110°﹣60°=50°,∴的度数为50°,故选:B.5.解:如图,连接OC,BC,过O作OE⊥AC于D交圆O于E,∵把半圆沿弦AC折叠,恰好经过点O,∴OD=OE,∵AB是半圆O的直径,∴∠ACB=90°,∴OD∥BC,∵OA=OB,∴OD=BC,∴BC=OE=OB=OC,∴∠COB=60°,∴∠AOC=120°,∴=,故选:A.6.解:连接AQ,AP.根据切线的性质定理,得AQ⊥PQ;要使PQ最小,只需AP最小,根据垂线段最短,可知当AP⊥x轴时,AP最短,∴P点的坐标是(﹣3,0).故选:D.7.解:如图,连接CE,∴∠CED=∠CEA=90°,∴点E在以AC为直径的⊙Q上,∵AC=10,∴QC=QE=5,当点Q、E、B共线时BE最小,∵BC=12,∴QB==13,∴BE=QB﹣QE=8,故选:B.8.解:过C作CD⊥AB于D,在Rt△ACB中,由勾股定理得:AB==5,由三角形面积公式得:×3×4=×5×CD,CD=2.4,即C到AB的距离等于⊙C的半径长,∴⊙C和AB的位置关系是相切,故选:A.9.解:∵∠ABC=90°,∴∠ABP+∠PBC=90°,∵∠P AB=∠PBC,∴∠BAP+∠ABP=90°,∴∠APB=90°,∴OP=OA=OB(直角三角形斜边中线等于斜边一半),∴点P在以AB为直径的⊙O上,连接OC交⊙O于点P,此时PC最小,在RT△BCO中,∵∠OBC=90°,BC=4,OB=3,∴OC==5,∴PC=OC﹣OP=5﹣3=2.∴PC最小值为2.故选:B.10.解:连接OE,OF,ON,OG,在矩形ABCD中,∵∠A=∠B=90°,CD=AB=4,∵AD,AB,BC分别与⊙O相切于E,F,G三点,∴∠AEO=∠AFO=∠OFB=∠BGO=90°,∴四边形AFOE,FBGO是正方形,∴AF=BF=AE=BG=2,∴DE=3,∵DM是⊙O的切线,∴DN=DE=3,MN=MG,∴CM=5﹣2﹣MN=3﹣MN,在Rt△DMC中,DM2=CD2+CM2,∴(3+NM)2=(3﹣NM)2+42,∴NM=,∴DM=3=,故选:A.二.填空题(共10小题,满分30分)11.解:过O作OM⊥AB于M,ON⊥BC于N,OQ⊥AC于Q,连接OK、OD、OF、OB、OC,设AB,AC,BC与⊙O的另一个交点分别为E,H,G.由垂径定理得:DM=DE,KQ=KH,FN=FG,∵DE=FG=HK,∴DM=KQ=FN,∵OD=OK=OF,∴由勾股定理得:OM=ON=OQ,即O到三角形ABC三边的距离相等,∴O是△ABC的内心,∴∠OBC+∠OCB=(180°﹣70°)=55°,∴∠BOC=125°,故答案为125°.12.解:连接BD,∵AB为⊙O的直径,∴∠BCA=90°,∵CD平分∠ACB,∴∠ACD=45°,∴∠ABD=45°,∴△ABD为等腰直角三角形,∴AD2+BD2=AB2,∵AB=10cm,∴AD=5cm.故答案为5.13.解:设母线长为R,则:65π=π×5R,解得R=13cm.14.解:连接CD,BD,OD,过点D作DP⊥AB于点P,∵DE⊥AC,DE=2CE=4,∴CE=2,∴CD==2,∵AD是∠BAC的平分线,DP⊥AB,DE⊥AC,∴∠BAD=∠DAC,DP=DE=4,∴BD=CD=2,∴PB==2,在Rt△ODP中,设OD=r,则OP=r﹣2,∴r2=(r﹣2)2+42,解得:r=5,∴AB=2r=10.故答案为:10.15.解:过点B作BF⊥EC于点F,由题意可得:BC=CE=2,∠ACD=∠BCE=60°,故△BCE是等边三角形,∴∠ABC=60°,∴AC=BC tan60°=2,∵EC=2,∴FC=EF=1,则BF=,∴图中阴影部分的面积是:S扇形ACD+S△DCE﹣S△ACB﹣S△BCE=﹣=2π﹣.故答案为:2π﹣.16.解:连接CO,OB,则∠O=2∠A=60°,∵OC=OB,∴△BOC是等边三角形,∵⊙O的半径为2,∴BC=2,∵CD⊥AB,∠CBA=45°,∴CD=BC=,故答案为:.17.解:如图所示:∵O是△ABC的外心,∠BOC=80°,∴∠A=40°,∠A′=180°﹣∠A=140°,故∠BAC的度数为:40°或140°故答案为:40°或140°.18.40cm解:连接OA,过点O作OE⊥AB,交AB于点M,∵直径为200cm,AB=160cm,∴OA=OE=100cm,AM=80cm,∴OM===60cm,∴ME=OE﹣OM=100﹣60=40cm.故答案为40cm.19.解:分两种情况考虑:当两条弦位于圆心O一侧时,如图1所示,过O作OF⊥AB,交AB于点F,交CD于点E,连接OA,OC,∵AB∥CD,∴OE⊥CD,∴F、E分别为AB、CD的中点,∴AF=BF=AB=4,CE=DE=CD=3,在Rt△COE中,∵OC=5,CE=3,∴OE==4,在Rt△AOF中,OA=5,AF=4,∴OF==3,∴EF=OE﹣OF=4﹣3=1;当两条弦位于圆心O两侧时,如图2所示,同理可得EF=4+3=7,综上,弦AB与CD的距离为7或1.故答案为:7或1.20.解:连接BE,设⊙O的半径为R,如图,∵OD⊥AB,∴AC=BC=AB=×8=4,在Rt△AOC中,OA=R,OC=R﹣CD=R﹣2,∵OC2+AC2=OA2,∴(R﹣2)2+42=R2,解得R=5,∴OC=5﹣2=3,∴BE=2OC=6,∵AE为直径,∴∠ABE=90°,在Rt△BCE中,CE===2.故答案为:2.三.解答题(共6小题,满分60分)21.解:(1)证明:连接OA,∵∠B=60°,∴∠AOC=2∠B=120°,又∵OA=OC,∴∠OAC=∠OCA=30°,又∵AP=AC,∴∠P=∠ACP=30°,∴∠OAP=∠AOC﹣∠P=90°,∴OA⊥P A,∴P A是⊙O的切线.(2)在Rt△OAP中,∵∠P=30°,∴PO=2OA=OD+PD,又∵OA=OD,∴PD=OA,∵PD=,∴2OA=2PD=2.∴⊙O的直径为2.22.(1)证明:∵AB是⊙O的直径,∴∠ACB=90°,∴∠A=90°﹣∠ABC.∵CE⊥AB,∴∠CEB=90°,∴∠ECB=90°﹣∠ABC,∴∠ECB=∠A.又∵C是的中点,∴=,∴∠DBC=∠A,∴∠ECB=∠DBC,∴CF=BF;(2)解:∵=,∴BC=CD=6,∵∠ACB=90°,∴AB===10,∴⊙O的半径为5,∵S△ABC=AB•CE=BC•AC,∴CE===.23.解:(1)∵⊙C经过坐标原点,∴∠AOB=90°,∴AB是⊙C的直径.(2)∵四边形AOMB是圆内接四边形,∠BMO=120°,根据圆内接四边形的对角互补得到∠OAB=60°,∴∠ABO=30°,∵点A的坐标为(0,4),∴OA=4,∴AB=2OA=8,⊙C的半径AC==4;∵C在第二象限,∴C点横坐标小于0,设C点坐标为(x,y),由半径AC=OC=4,即=,则==4,解得,y=2,x=﹣2或x=2(舍去),故⊙C的半径为4、圆心C的坐标分别为(﹣2,2).24.(1)证明:∵∠BAD与∠BCD是同弧所对的圆周角,∴∠BAD=∠BCD,∵AE⊥CD,AM⊥BC,∴∠AMC=∠AEN=90°,∵∠ANE=∠CNM,∴∠BCD=∠BAM,∴∠BAM=BAD,在△ANE与△ADE中,∵,∴△ANE≌△ADE,∴AD=AN;(2)解:∵AB=4,AE⊥CD,∴AE=2,又∵ON=1,∴设NE=x,则OE=x﹣1,NE=ED=x,r=OD=OE+ED=2x﹣1连接AO,则AO=OD=2x﹣1,∵△AOE是直角三角形,AE=2,OE=x﹣1,AO=2x﹣1,∴(2)2+(x﹣1)2=(2x﹣1)2,解得x=2,∴r=2x﹣1=3.25.(1)证明:连接OA、OD,如图,∵D为BE的下半圆弧的中点,∴OD⊥BE,∴∠ODF+∠OFD=90°,∵CA=CF,∴∠CAF=∠CF A,而∠CF A=∠OFD,∴∠ODF+∠CAF=90°,∵OA=OD,∴∠ODA=∠OAD,∴∠OAD+∠CAF=90°,即∠OAC=90°,∴OA⊥AC,∴AC是⊙O的切线;(2)解:设⊙O的半径为r,则OF=8﹣r,在Rt△ODF中,(8﹣r)2+r2=()2,解得r1=6,r2=2(舍去),即⊙O的半径为6;(3)解:∵∠BOD=90°,OB=OD,∴△BOD为等腰直角三角形,∴OB=BD=,∴OA=,∵∠AOB=2∠ADB=120°,∴∠AOE=60°,在Rt△OAC中,AC=OA=,∴阴影部分的面积=••﹣=.26.(1)证明:连接OD,如图1,∵OA=OD,∴∠DAB=∠ADO,∵∠DAF=∠DAB,∴∠ADO=∠DAF,∴OD∥AF,又∵DF⊥AF,∴DF⊥OD,∴DF是⊙O的切线;(2)∵AD=DP∴∠P=∠DAF=∠DAB,而∠P+∠DAF+∠DAB=90°,∴∠P=30°,∴∠POD=60°,∴的长度==π;(3)解:连接DG,如图2,∵AB⊥CD,∴DE=CE=4,∴CD=DE+CE=8,设OD=OA=x,则OE=8﹣x,在Rt△ODE中,∵OE2+DE2=OD2,∴(8﹣x)2+42=x2,解得:x=5,∴CG=2OA=10,∵CG是⊙O的直径,∴∠CDG=90°,在Rt△DCG中,DG==6,在Rt△DEG中,EG==2.。

2022-2023学年苏科版九年级数学上册第2章对称图形——圆 单元测试题含答案

2022-2023学年苏科版九年级数学上册第2章对称图形——圆 单元测试题含答案

2022-2023学年苏科版九年级数学上册《第2章对称图形——圆》单元测试题(附答案)一.选择题(共8小题,满分40分)1.如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,若BE=CD=8,则⊙O的半径的长是()A.5B.4C.3D.22.如图,点P是半径为4的⊙O上一点,OC⊥AB于点D.若∠P=30°,则OD等于()A.B.C.2D.33.如图,AB是⊙O的弦,OC⊥AB,垂足为C,OD∥AB,OC=OD,则∠ABD的度数为()A.90°B.95°C.100°D.105°4.如图,CD是⊙O的直径,⊙O上的两点A,B分别在直径CD的两侧,且∠ABC=78°,则∠AOD的度数为()A.12°B.22°C.24°D.44°5.如图,从一张直径是2的圆形纸片上剪出一个圆心角为90°的扇形,若剪出的扇形恰好可以围成一个圆锥,则该圆锥底面圆的面积是()A.πB.C.D.6.已知三角形ABE为直角三角形,∠ABE=90°,BC为圆O切线,C为切点,CA=CD,则△ABC和△CDE面积之比为()A.1:3B.1:2C.:2D.(﹣1):1 7.如图,在⊙O中,直径AB=10,CD⊥AB于点E,CD=8.点F是弧BC上动点,且与点B、C不重合,P是直径AB上的动点,设m=PC+PF,则m的取值范围是()A.8<m≤4B.4<m≤10C.8<m≤10D.6<m<108.如图,AB是圆O的直径,弦AD平分∠BAC,过点D的切线交AC于点E,∠EAD=25°,则下列结论错误的是()A.AE⊥DE B.AE∥OD C.DE=OD D.∠BOD=50°二.填空题(共8小题,满分40分)9.如图是一个隧道的横截面,它的形状是以点O为圆心的圆的一部分,如果C是⊙O中弦AB的中点,CD经过圆心O交⊙O于点D,并且AB=4m,CD=6m,则⊙O的半径长为m.10.如图,AB、AC是⊙O的弦,过点A的切线交CB的延长线于点D,若∠BAD=35°,则∠C=°.11.如图,从一个腰长为60cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,则此扇形的弧长为cm.12.如图,四边形ABCD是边长为的正方形,曲线DA1B1C1D1A2…是由多段90°的圆心角所对的弧组成的.其中,弧DA1的圆心为A,半径为AD;弧A1B1的圆心为B,半径为BA1;弧B1C1的圆心为C,半径为CB1;弧C1D1的圆心为D,半径为DC1….弧DA1、弧A1B1、弧B1C1、弧C1D1…的圆心依次按点A、B、C、D循环,则弧C2022D2022的长是(结果保留π).13.如图,将⊙O沿弦AB折叠,恰经过圆心O,若AB=2,则阴影部分的面积为.14.如图,已知AB是⊙O的弦,∠AOB=120°,OC⊥AB,垂足为C,OC的延长线交⊙O 于点D.若∠APD是所对的圆周角,则∠APD的度数是.15.如图,矩形ABCD与圆心在AB上的⊙O交于点G,B,F,E,GB=5,EF=4,那么AD=.16.如图,在平面直角坐标系中,B(0,4),A(3,0),⊙A的半径为2,P为⊙A上任意一点,C是BP的中点,则OC的最大值是.三.解答题(共6小题,满分40分)17.如图,四边形ABCD是⊙O的内接四边形,且对角线BD为直径,过点A作⊙O的切线AE,与CD的延长线交于点E,已知DA平分∠BDE.(1)求证:AE⊥DE;(2)若⊙O的半径为5,CD=6,求AD的长.18.如图,在△ABC中,AB=AC.以AB为直径的⊙O与线段BC交于点D,过点D作DE ⊥AC,垂足为E,ED的延长线与AB的延长线交于点P.(1)求证:直线PE是⊙O的切线;(2)若⊙O的半径为6,∠P=30°,求CE的长.19.如图,点O是△ABC的边AC上一点,以点O为圆心,OA为半径作⊙O,与BC相切于点E,交AB于点D,连接OE,连接OD并延长交CB的延长线于点F,∠AOD=∠EOD.(1)连接AF,求证:AF是⊙O的切线;(2)若FC=10,AC=6,求FD的长.20.如图,AB是⊙O的切线,B为切点,直线AO交⊙O于C,D两点,连接BC,BD.过圆心O作BC的平行线,分别交AB的延长线、⊙O及BD于点E,F,G.(1)求证:∠D=∠E;(2)若F是OE的中点,⊙O的半径为3,求阴影部分的面积.21.已知AB为⊙O的直径,C为⊙O上一点,D为BA的延长线上一点,连接CD.(1)如图1,若CO⊥AB,∠D=30°,OA=1,求AD的长;(2)如图2,若DC与⊙O相切,E为OA上一点,且∠ACD=∠ACE.求证:CE⊥AB.22.如图①,在△ABC中,CA=CB,D是△ABC外接圆⊙O上一点,连接CD,过点B作BE∥CD,交AD的延长线于点E,交⊙O于点F.(1)求证:四边形DEFC是平行四边形;(2)如图②,若AB为⊙O直径,AB=7,BF=1,求CD的长.参考答案一.选择题(共8小题,满分40分)1.解:连接OC,设⊙O的半径为R,则OE=8﹣R,∵CD⊥AB,AB过圆心O,CD=8,∴∠OEC=90°,CE=DE=4,由勾股定理得:OC2=CE2+OE2,R2=42+(8﹣R)2,解得:R=5,即⊙O的半径长是5,故选:A.2.解:连接OA,∵∠P=30°,∴∠AOD=60°,∵OC⊥AB,∴∠ADO=90°,∴∠OAD=30°,∵OA=4,∴OD=OA=2.故选:C.3.解:如图:连接OB,则OB=OD,∵OC=OD,∴OC=OB,∵OC⊥AB,∴∠OBC=30°,∵OD∥AB,∴∠BOD=∠OBC=30°,∴∠OBD=∠ODB=75°,∠ABD=30°+75°=105°.故选:D.4.解:∵∠AOC=2∠ABC,∠ABC=78°,∴∠AOC=156°,∴∠AOD=180°﹣∠AOC=24°,故选:C.5.解:∵∠BAC=90°,∴BC为⊙O的直径,BC=2,∴AB=AC=,设该圆锥底面圆的半径为r,∴2πr=,解得r=,即该圆锥底面圆的半径为,∴底面圆的面积为.故选:C.6.解:如图,连接OC,∵BC是⊙O的切线,OC为半径,∴OC⊥BC,即∠OCB=90°,∴∠COD+∠OBC=90°,又∵∠ABE=90°,即∠ABC+∠OBC=90°,∴∠ABC=∠COD,∵DE是⊙O的直径,∴∠DCE=90°,即∠OCE+∠OCD=90°,又∠A+∠E=90°,而∠E=∠OCE,∴∠A=∠OCD,在△ABC和△COD中,,∴△ABC≌△COD(AAS),又∵BO=DO,∴S△COD=S△COE=S△DCE,∴S△ABC=S△DCE,即△ABC和△CDE面积之比为1:2,故选:B.7.解:连接PD,DF,OC,BD,如图,∵CD⊥AB,BA为⊙O的直径,∴CE=ED=CD=4,∵OC=AB=5,∴OE==3,∴BE=OE+OB=8.∴BD==4.∵P是直径AB上的动点,CD⊥AB,∴AB是CD的垂直平分线,∴PC=PD.∵m=PC+PF,∴m=PD+PF,由图形可知:PD+PF≥DF(当D,P,F在一条直线上时取等号),∵点F是弧BC上动点,且与点B、C不重合,∴DC<DF≤直径,∴8<m≤10.故选:C.8.解:∵弦AD平分∠BAC,∠EAD=25°,∴∠OAD=∠ODA=25°.∴∠BOD=2∠OAD=50°.故选项D不符合题意;∵∠OAD=∠CAD,∴∠CAD=∠ODA,∴OD∥AC,即AE∥OD,故选项B不符合题意;∵DE是⊙O的切线,∴OD⊥DE.∴DE⊥AE.故选项A不符合题意;如图,过点O作OF⊥AC于F,则四边形OFED是矩形,∴OF=DE.在直角△AFO中,OA>OF.∵OD=OA,∴DE<OD.故选项C符合题意.故选:C.二.填空题(共8小题,满分40分)9.解:连接OA,如图,设⊙O的半径为rm,∵C是⊙O中弦AB的中点,CD过圆心,∴CD⊥AB,AC=BC=AB=2m,在Rt△AOC中,∵OA=rcm,OC=(6﹣r)m,∴22+(6﹣r)2=r2,解得r=,即⊙O的半径长为m.故答案为:.10.解:连接OA并延长交⊙O于点E,连接BE,∵AD与⊙O相切于点A,∴∠OAD=90°,∵∠BAD=35°,∴∠BAE=∠OAD﹣∠BAD=55°,∵AE是⊙O的直径,∴∠ABE=90°,∴∠E=90°﹣∠BAE=35°,∴∠C=∠E=35°,故答案为:35.11.解:过O作OE⊥AB于E,当扇形的半径为OE时扇形OCD最大,∵OA=OB=60cm,∠AOB=120°,∴∠A=∠B=30°,∴OE=OA=30cm,∴弧CD的长==20πcm,故答案为:20π.12.解:根据题意可得,的半径AA1=;的半径BB1=AB+AA1=;的半径CC1=CB+BB1=;的半径DD1==CD+CC1=;的半径AA2=AD+DD1=;的半径BB2=AB+AA2=;的半径CC2=BC+BB2=;的半径DD2=CD+CC2=;•以此类推可知,弧∁n D n的半径为=2n,即弧C2022D2022的半径为DD2022=2n=2×2022=4044,∴弧C2022D2022的长l===2022π.故答案为:2022π.13.解:如图,过点O作AB的垂线并延长,垂足为C,交⊙O于点D,连结AO,AD,根据垂径定理得:AC=BC=AB=,∵将⊙O沿弦AB折叠,恰经过圆心O,∴OC=CD=r,∴OC=OA,∴∠OAC=30°,∴∠AOD=60°,∵OA=OD,∴△AOD是等边三角形,∴∠D=60°,在Rt△AOC中,AC2+OC2=OA2,∴()2+(r)2=r2,解得:r=2,∵AC=BC,∠OCB=∠ACD=90°,OC=CD,∴△ACD≌△BCO(SAS),∴阴影部分的面积=S扇形ADO=×π×22=.故答案为:.14.解:∵OC⊥AB,∴,∴∠AOD=∠BOD,∵∠AOB=120°,∴∠AOD=∠BOD=∠AOB=60°,∴∠APD=∠AOD=×60°=30°,故答案为:30°.15.解:过O作OM⊥EF于M,连接OE,则∠OMD=90°,∵四边形ABCD是矩形,∴∠A=∠D=90°,∴四边形AOMD是矩形,∴OM=AD,∵OM⊥EF,OM过圆心O,EF=4,∴EM=FM=2,∵OG=OB,BG=5,∴OB=OG=2.5=OE,在Rt△OME中,由勾股定理得:OM===1.5,∴AD=OM=1.5,故答案为:1.5.16.解:如图,连接AB,取AB的中点H,连接CH,OH.∵BC=CP,BH=AH,∴CH=P A=1,∴点C的运动轨迹是以H为圆心半径为1的圆,∵B(0,4),A(3,0),∴H(1.5,2),∴OH==2.5,∴OC的最大值=OH+CH=2.5+1=3.5,故答案为:3.5.三.解答题(共6小题,满分40分)17.(1)证明:连接OA,∵AE是⊙O的切线,∴∠OAE=90°,∵OA=OD,∴∠OAD=∠ODA,∵DA平分∠BDE,∴∠ODA=∠ADE,∴∠ADE=∠OAD,∴OA∥CE,∴∠E=180°﹣∠OAE=90°,∴AE⊥DE;(2)解:过点O作OF⊥DC,垂足为F,∴∠OFD=90°,∵∠OAE=∠E=90°,∴四边形OAEF是矩形,∴OA=EF=5,AE=OF,∵OF⊥CD,∴DF=CD=3,∴DE=EF﹣DF=5﹣3=2,∴OF===4,∵AE=OF=4,∴AD===2,∴AD的长为2.18.(1)证明:连接OD,如图:∵AB=AC,∴∠ABC=∠ACB,∵OB=OD,∴∠ABC=∠ODB,∴∠ACB=∠ODB,∴OD∥AC,∵DE⊥AC,∴DE⊥OD,即PE⊥OD,∵OD是⊙O的半径,∴PE是⊙O的切线;(2)解:连接AD,连接OD,如图:∵DE⊥AC,∴∠AEP=90°,∵∠P=30°,∴∠P AE=60°,∵AB=AC,∴△ABC是等边三角形,∵⊙O的半径为6,∴BC=AB=12,∠C=60°,∵AB是⊙O的直径,∴∠ADB=90°,∴BD=CD=BC=6,在Rt△CDE中,CE=CD•cos C=6×cos60°=3,答:CE的长是3.19.(1)证明:在△AOF和△EOF中,,∴△AOF≌△EOF(SAS),∴∠OAF=∠OEF,∵BC与⊙O相切,∴OE⊥FC,∴∠OAF=∠OEF=90°,即OA⊥AF,∵OA是⊙O的半径,∴AF是⊙O的切线;(2)解:在Rt△CAF中,∠CAF=90°,FC=10,AC=6,∴AF==8,∵∠OCE=∠FCA,∠OEC=∠F AC=90°,设⊙O的半径为r,则,解得r=,在Rt△F AO中,∠F AO=90°,AF=8,AO=,∴OF==,∴FD=OF﹣OD=﹣,即FD的长为﹣.20.(1)证明:连接OB,∵AB是⊙O的切线,∴∠OBE=90°,∴∠E+∠BOE=90°,∵CD为⊙O的直径,∴∠CBD=90°,∴∠D+∠DCB=90°,∵OE∥BC,∴∠BOE=∠OBC,∵OB=OC,∴∠OBC=∠OCB,∴∠BOE=∠OCB,∴∠D=∠E;(2)解:∵F为OE的中点,OB=OF,∴OF=EF=3,∴OE=6,∴BO=OE,∵∠OBE=90°,∴∠E=30°,∴∠BOG=60°,∵OE∥BC,∠DBC=90°,∴∠OGB=90°,∴OG=,BG=,∴S△BOG=OG•BG==,S扇形BOF==π,∴S阴影部分=S扇形BOF﹣S△BOG=.21.解:(1)∵OA=1=OC,CO⊥AB,∠D=30°,∴OD=•OC=,∴AD=OD﹣OA=﹣1;(2)∵DC与⊙O相切,∴OC⊥CD,即∠ACD+∠OCA=90°,∵OA=OC,∴∠OCA=∠OAC,∵∠ACD=∠ACE,∴∠OAC+∠ACE=90°,∴∠AEC=90°,即CE⊥AB.22.(1)证明:∵BE∥CD,∴∠ADC=∠E,∵AC=BC,∴=,∴∠ADC=∠BFC,∴∠BFC=∠E,∴ED∥FC,∴四边形DEFC是平行四边形;(2)解:如图②,连接AF,∵AB是⊙O的直径,∴∠ACB=∠AFB=∠AFE=90°,∵AB=7,BF=1,∴AF===4,∵AC=BC,∠ACB=90°,∴∠BAC=45°,∴∠BFC=∠BAC=45°,∵DE∥CF,∴∠E=∠BFC=45°,∴△AFE是等腰直角三角形,∴EF=AF=4,∵四边形DEFC是平行四边形,∴CD=EF=4.。

初三数学第二单元《对称图形—圆》测试卷及参考答案

初三数学第二单元《对称图形—圆》测试卷及参考答案

2016-2017学年第一学期初三数学第二单元【对称图形—圆】测试卷.;命题:汤志良;审核:王栋彪;分值130分;知识涵盖:九年级上第二章;;一、选择题:(本题共10小题,每小题3分,共30分)1.已知⊙O的半径是6,点O到直线l的距离为5,则直线l与⊙O的位置关系是………()A.相离;B.相切;C.相交;D.无法判断;2.已知圆锥的底面半径为4cm,母线长为5cm,则这个圆锥的侧面积是…………………()A.20π㎝2;B.20㎝2;C.40π㎝2;D.40㎝2;3.如图,已知经过原点的⊙P与x、y轴分别交于A、B两点,点C是劣弧OB上一点,则∠ACB=…………()A.80°;B.90°;C.100°;D.无法确定;4.(2015•常德)如图,四边形ABCD为⊙O的内接四边形,已知∠BOD=100°,则∠BCD的度数为……()A.50°B.80°C.100°D.130°第6题图第3题图第4题图5.下列命题:①直径是弦;②经过三个点一定可以作圆;③三角形的内心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧;⑤对角线互相垂直的四边形各边中点在同一个圆上.其中正确结论的个数有…………………………………………………………()A.1个;B.2个;C.3个;D.4个;6.(2016•邵阳)如图所示,AB是⊙O的直径,点C为⊙O外一点,CA,CD是⊙O的切线,A,D为切点,连接BD,AD.若∠ACD=30°,则∠DBA的大小是…………………………()A.15°;B.30°;C.60°;D.75°;7.(2015•福建)在半径为6的⊙O中,60°圆心角所对的弧长是…………………()A.π;B.2π;C.4π;D.6π;118.如图,点O是△ABC的内切圆的圆心,若∠BAC=80°,则∠BOC=……………………()A.130°;B.100°;C.50°;D.65°;9.(2015•苏州)如图,AB为⊙O的切线,切点为B,连接AO,AO与⊙O交于点C,BD为⊙O的直径,连接CD.若∠A=30°,⊙O的半径为2,则图中阴影部分的面积为……………()A.4342π-3;B.π-23;C.π-3;D.π-3;3310.(2015•乐山)如图,已知直线y=34x-3与x轴、y轴分别交于A、B两点,P是以C (0,)为圆心,为半径的圆上一动点,连结PA、PB.则△PAB面积的最大值是………()A.8;B.12;C.21217;D.;2第10题图第8题图第9题图二、填空题:(本题共8小题,每小题3分,共24分)11.已知弦AB把圆周分成1:5的两部分,则弦AB所对的圆心角的度数为.12.边长为2的正六边形的内切圆的半径为.13.若直角三角形的两条直角边的长分别为6和8,则它的内切圆的半径为.14.如图,在△ABC中,AB=AC,∠C=67.5°,以AB为直径的半圆画与BC、AC分别相交于点D、E,则AE的度数是.第14题图第16题图第17题图15.(2016.南通)用一个圆心角为150°、半径为2cm的扇形作一个圆锥的侧面,则这个圆锥的底面圆的半径为cm.16.如图,在△R t ABO中,∠AOB=90°,OA=OB=4,⊙O的半径为1,点P是AB边上的动点,过点P作⊙O的一条切线PQ(点Q为切点),则切线长PQ的最小值是.17.如图,在扇形OAB中,∠AOB=110°,半径OA=18,将扇形OAB沿过点B的直线折叠,点O恰好落在AB上的点D处,折痕交OA于点C,则AD的长为.18.(2016.无锡)如图,△AOB中,∠O=90°,AO=8cm,BO=6cm,点C从A点出发,在边AO上以2cm/s的速度向O点运动,与此同时,点D从点B出发,在边BO上以1.5cm/s的速度向O点运动,过OC的中点E作CD的垂线EF,则当点C运动了s时,以C点为圆心,1.5cm为半径的圆与直线EF相切.三、解答题:(本大题共10大题题,满分76分)19.(本题满分5分)如图⊙O中,AB、CD是两条直径,弦CE∥AB,弧EC的度数是40°,求∠BOD的度数.第18题图20.(本题满分6分)(2015•南京)如图,四边形ABCD是⊙O的内接四边形,BC的延长线与AD的延长线交于点E,且DC=DE.(1)求证:∠A=∠AEB;(2)连接OE,交CD于点F,OE⊥△C D,求证:ABE是等边三角形.21.(本题满分6分)如图AB是⊙O的直径,⊙O过BC的中点D,且DE⊥AC于点E.(1)求证:DE是⊙O的切线;(2)若∠C=30°,CD=3,求⊙O的半径.22.(本题满分6分)如图所示,正方形网格中,△ABC为格点三角形(即三角形的顶点都在格点上).(△1)把ABC沿BA方向平移后,点A移到点A,在网格中画出平移后得到的A B C;1111(2)把A B C绕点A按逆时针方向旋转90°,在网格中画出旋转后的A B C;1111122(3)如果网格中小正方形的边长为1,求点B经过(1)、(2)变换的路径总长.23.(本题满6分)如图,已知点I是△ABC的内心,AI交BC于D,交外接圆O于E,求证:(1)IE=EC;(2)IE2ED EA.24.(本题满7分)如图所示,已知圆锥底面半径r=10cm,母线长为40cm.(1)求它的侧面展开图的圆心角和表面积.(2)若一甲虫从A点出发沿着圆锥侧面行到母线SA的中点B,请你动脑筋想一想它所走的最短路线是多少?为什么?25.(本题满7分)如图,在△ABC中,∠C=90°,AC=8,AB=10,点P在AC上,AP=2,若⊙O的圆心在线段BP上,且⊙O与AB、AC都相切,试求⊙O的半径.26.(本题满分9分)如图,已知△ABC内接于⊙O,且AB=AC,直径AD交BC于点E,F是OE上的一点,使CF∥BD.(1)求证:BE=CE;(2)试判断四边形BFCD的形状,并说明理由;(3)若BC=8,AD=10,求CD的长.27.(本题满分10分)如图,△ABC是⊙O的内接三角形,AD是⊙O的直径,∠ABC=60°,∠ACB=50°,请解答下列问题:(1)∠CAD的度数;(2)设AD、BC相交于E,AB、CD的延长线相交于F,求∠AEC、∠AFC的度数;(3)若AD=6,求图中阴影部分的面积.28.(本题满分12分)如图,AB是⊙O的直径,过点A作⊙O的切线并在其上取一点C,连接OC交⊙O于点D.(1)如图1,连接BD并延长BD交AC于点E,连接AD.①证明:△CDE∽△CAD;②若AB=2,AC=22.求CD和CE的长;(2)如图2,过点C作⊙O的另一条切线,切点为F,连结AF、BF,若OC=值.9CABF,求的2BF2016-2017学年第一学期初三数学第二单元【对称图形—圆】测试卷参考答案一、选择题:1.C;2.A;3.B;4.D;5.D;6.D;7.B;8.A;9.A;10.C;二、填空题:11.60°;12.3;13.2;14.90°;15.2.5;16.7;17.5;18.17;8三、解答题:19.110°;20.略;21.(1)略;(2)1;22.(1)、(2)略;(3)72;223.略;24.解:(1)nπ⨯40=2π⨯10解得n=90.180圆锥侧面展开图的表面积=π×10×40=400πcm2.(2)如右图,由圆锥的侧面展开图可见,甲虫从A点出发沿着圆锥侧面绕行到母线SA的中点B所走的最短路线是线段AB的长.在Rt△ASB中,SA=40,SB=20,∴AB=205(cm).∴甲虫走的最短路线的长度是205cm.25.解:设AC与⊙O相切于点D,连接OD,AO,⊙O的半径是r,∵∠C=90°,AC=8,AB=10,∴BC=6,∵PC=8-2=6,∴BC=PC;∴∠BPC=45°,∴S△APB=S△APO+S△AOB=S△ABC-S△BCP,1×2r+1×10r=1×6×8-1×6×6;解得2r+10r=12,2222解得r=1.26.(1)略;(2)略;(3)25;27.解:(1)∵弧AC=弧AC,∴∠ADC=∠ABC=60°,∵AD是直径,∴∠ACD=90°,∴∠CAD=180°-∠ACD-∠ADC=30°,答:∠CAD的度数是30°.(2)∵∠BAC=180°-∠ABC-∠ACB=70°,∴∠BAD=∠BAC-∠CAD=70°-30°=40°,∴∠BCD=∠BAD=40°,∴∠AEC=∠A DC+∠B CD=100°,∵∠AFC=∠A BC-∠B CF=60°-40°=20°,答:∠AEC=100°,∠AFC=20°.(3)连接OC,过O作OQ⊥AC于Q,∵∠CAD=30°,AO=3,∴OQ=1OA=3,22由勾股定理得:AQ=33,由垂径定理得:AC=2AQ=33,∵∠AOC=2∠2ABC=120°,∴阴影部分的面积是S扇形OAC-S AOC=120π⨯32-1⨯33⨯3=3π-93,360224答:图中阴影部分的面积是3π-93.428.。

苏科版九年级上册数学第2章 对称图形——圆 含答案

苏科版九年级上册数学第2章 对称图形——圆 含答案

苏科版九年级上册数学第2章对称图形——圆含答案一、单选题(共15题,共计45分)1、如图,I是△ABC的内心,AI的延长线和△ABC的外接圆相交于点D,连接BI、BD、DC.下列说法中错误的一项是()A.线段DB绕点D顺时针旋转一定能与线段DC重合B.线段DB绕点D顺时针旋转一定能与线段DI重合C.∠CAD绕点A顺时针旋转一定能与∠DAB 重合D.线段ID绕点I顺时针旋转一定能与线段IB重合2、如图,∠AOB是⊙0的圆心角,∠AOB=80°,则弧AB所对圆周角∠ACB的度数是( )A.30°B.40°C.50°D.80°3、如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,边B1C1与CD交于点O,则图中阴影部分的面积是()A. B. C. D.4、如图,点A是量角器直径的一个端点,点B在半圆周上,点P在上,点Q在AB上,且PB=PQ.若点P对应140°(40°),则∠PQB的度数为()A.65°B.70°C.75°D.80°5、如图,在矩形ABCD中,CD=1,∠DBC=30°.若将BD绕点B旋转后,点D落在DC延长线上的点E处,点D经过的路径,则图中阴影部分的面积是()A. B. C. D.6、如图,点A、O、D以及点B、O、C分别在一条直线上,则圆中弦的条数是()A.2条B.3条C.4条D.5条7、如图,⊙O是△ABC的外接圆,∠BAC=60°,若⊙O的半径OC为2,则弦BC 的长为()A.1B.C.2D.28、若等腰直角三角形的外接圆半径的长为2,则其内切圆半径的长为()A.2 ﹣2B.2﹣C. ﹣1D.9、在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm.给出下列三个结论:①以点C为圆心,2.3cm长为半径的圆与AB相离;②以点C为圆心,2.4cm长为半径的圆与AB相切;③以点C为圆心,2.5cm长为半径的圆与AB相交;则上述结论中正确的个数是()A.0个B.1个C.2个D.3个10、圆的直径为10cm,如果点P到圆心O的距离是d,则()A.当d=8 cm时,点P在⊙O外B.当d=10 cm时,点P在⊙O上C.当d=5 cm时,点P在⊙O内D.当d=0 cm时,点P在⊙O上11、如图,半径为3的扇形AOB,∠AOB=120°,以AB为边作矩形ABCD交弧AB 于点E,F,且点E,F为弧AB的四等分点,矩形ABCD与弧AB形成如图所示的三个阴影区域,其面积分别为,,,则为()(取)A. B. C. D.12、如图,在△ABC中,∠A=90°,AB=AC=3,现将△ABC绕点B逆时针旋转一定角度,点C′恰落在边BC上的高所在的直线上,则边BC在旋转过程中所扫过的面积为()A.πB.2πC.3πD.4π13、如图, A,B,C三点均在⊙O上,∠BAC=37°,则∠BOC的度数为()A.37°B.53°C.74°D.127°14、如图,将半径为R的半圆铁皮卷成一个圆锥侧面(接缝无重叠),则此圆锥的底面半径是()A. B. C. D.R15、如图,AB是⊙O的直径,弦CD与AB相交于点E,AM⊥CD,BN⊥CD,垂足分别为M、N.已知CD=5,MN=,则线段DN的长为()A. B. C.1 D.二、填空题(共10题,共计30分)16、已知圆锥的底面半径为3,高为4,则这个圆锥的母线长为________.17、如图,是某立体图形的三视图,则这个立体图形的侧面展开图的面积是________.(结果保留π)18、如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,将Rt△ABC绕点A逆时针旋转30°后得到Rt△ADE,点B经过的路径为弧BD,则图中阴影部分的面积为________.19、如图,△ABC中,∠BAC=60°,∠ABC=45°,AB= ,D是线段BC上的一个动点,以AD为直径画⊙O分别交AB、AC于E、F,连接EF,则线段EF长度的最小值为________.20、如图,一张扇形纸片OAB中,半径OA为2,点C是的中点,现将这张扇形纸片沿着弦AB折叠,点C恰好与圆心O重合,则图中阴影部分的面积为________.21、如图,在正十边形A1A2A3A4A5A6A7A8A9A10中,连接A1A4、A1A7,则∠A 4A1A7=________°.22、如图,四边形ABCD内接于⊙O,AB是⊙O的直径,过点C的切线与AB的延长线交于点P,如∠P=50°,则∠D的度数为________23、如图,边长为的正六边形在足够长的桌面上滚动(没有滑动)一周,则它的中心点所经过的路径长为________.24、圆的一条弦分圆成4:5两部分,则此弦所对的圆心角等于________ .25、圆锥的底面半径长为5,将其侧面展开后得到一个半圆,则该半圆的半径长是________.三、解答题(共5题,共计25分)26、如图,A、B、C、D均为⊙O上的点,其中A、B两点的连线经过圆心O,线段AB、CD的延长线交于点E,已知AB=2DE,∠E=18°,求∠AOC的度数.27、如图,在△ABC中,∠C=90°,AB=5,BC=4,以A为圆心,3为半径作圆.试判断:①点C与⊙A的位置关系;②点B与⊙A的位置关系;③AB中的D点与⊙A的位置关系.28、如图,公路MN与公路PQ在点P处交汇,且∠QPN=30°,点A处有一所中学,AP=160m.假设拖拉机行驶时,周围100m以内会受到噪音的影响,那么拖拉机在公路MN上沿PN方向行驶时,学校是否受到噪音影响?说明理由;如果受影响,且知拖拉机的速度为18km/h,那么学校受影响的时间是多少秒?29、如图,⊙O中,圆心角∠BOA=120°,求∠BCA的度数.30、九年级学生小刚是一个喜欢看书的好学生,他在学习完第二十四章圆后,在家里突然看到爸爸的初中数学书上居然还有一个相交弦定理(圆内的两条相交弦,被交点分成的两条线段长的积相等),非常好奇,仔细阅读原来就是:PA•PB=PC•PD,小刚很想知道是如何证明的,可异证明部分污损看不清了,只看到辅助线的做法,分别连结AC、BD.聪明的你一定能帮他证出,请在图1中做出辅助线,并写出详细的证明过程.小刚又看到一道课后习题,如图2,AB是⊙O弦,P是AB上一点,AB=10cm,PA=4cm,OP=5cm,求⊙O的半径,愁坏了小刚,乐于助人的你肯定会帮助他,请写出详细的证明过程.参考答案一、单选题(共15题,共计45分)1、D2、B3、B4、B5、B6、B7、D8、A9、D10、A11、A12、C13、C14、C15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、29、。

苏科版九年级上册数学第2章 对称图形——圆 含答案

苏科版九年级上册数学第2章 对称图形——圆 含答案

苏科版九年级上册数学第2章对称图形——圆含答案一、单选题(共15题,共计45分)1、如图,已知圆的半径是5,弦AB的长是6,则圆心O到弦AB的距离弦心距是A.3B.4C.5D.82、如图,AB是⊙O的直径,PA切⊙O于点A,OP交⊙O于点C,连接BC.若∠P=20°,则∠B的度数是()A.20°B.25°C.30°D.35°3、如图,PA是⊙O的切线,切点为A,PO的延长线交⊙O于点B,若∠P=40°,则∠B的度数为()A.20°B.25°C.40°D.50°4、如图,AB是⊙O的直径,直线PA与⊙O相切于点A,PO交⊙O于点C,连接BC.若∠P=40°,则∠ABC的度数为()A.20°B.25°C.40°D.50°5、如图,MN是半径为1的⊙O的直径,点A在⊙O上,∠AMN=30°,点B为劣弧AN的中点.P是直径MN上一动点,则PA+PB的最小值为()A. B.1 C.2 D.26、如图,等边三角形ABC内接于⊙O,若边长为cm,则⊙O的半径为( )A.6cmB.4cmC.2cmD.7、的半径,点P与圆心O的距离,则点P与的位置关系是()A.点在外B.点在上C.点在内D.不确定8、已知圆O的半径为R,AB是圆O的直径,D是AB延长线上一点,DC是圆O 的切线,C是切点,连结AC,若,则BD的长为()A.2RB.C.RD.9、如图,AB是半圆O的直径,点C是的中点,点D是的中点,连接AC,BD交于点E,则=()A. B. C.1﹣ D.10、如图,一圆内切四边形ABCD,且AB=16,CD=10,则四边形的周长为()A.50B.52C.54D.5611、如图,⊙O的外切正六边形ABCDEF的边长为2,则图中阴影部分的面积为()A. B. C.   D.12、已知⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=8cm,则AC的长为()A. cmB. cmC. cm或cmD. cm或cm13、过圆内一点可以做圆的最长弦()A.1条B.2条C.3条D.4条14、如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为( )A.2cmB.2 cmC. cmD.2 cm15、用半径为5的半圆围成一个圆锥的侧面,则该圆锥的底面半径等于( )A.3B.5C.D.二、填空题(共10题,共计30分)16、如图,⊙O是正五边形ABCDE的外接圆,则∠CAD=________°.17、圆锥的底面半径长为5,将其侧面展开后得到一个半圆,则该半圆的半径长是________.18、若直角三角形的两边a、b是方程的两个根,则该直角三角形的内切圆的半径r =________.19、如图,半径为3的A经过原点O和点C(0,2),B是y轴左侧A优弧上一点,则sin∠OBC=________.20、已知点A、B、C、D均在圆上,AD∥BC,AC 平分∠BCD,∠ADC=120°,四边形的周长为10cm.,则∠ABC的度数为________.21、已知的半径为,,则点与的位置关系是点在________.22、如图,两同心圆的大圆半径长为5cm,小圆半径长为3cm,大圆的弦AB与小圆相切,切点为C,则弦AB的长是________.23、圆的周长公式C=________;圆的面积公式S=________.24、如图,小明想用图中所示的扇形纸片围成一个圆锥,已知扇形的半径为5cm,弧长是cm,那么围成的圆锥的高度是________cm.25、阅读下面材料:在数学课上,老师请同学思考如下问题:小轩的主要作法如下:老师说:“小轩的作法正确.”请回答:⊙P与BC相切的依据是________.三、解答题(共5题,共计25分)26、如图1,一个圆球放置在V型架中.图2是它的平面示意图,CA、CB都是⊙O的切线,切点分别是A、B,如果⊙O的半径为cm,且AB=6cm,求∠ACB.27、如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠CBF=∠CAB.(1)求证:直线BF是⊙O的切线;(2)若AB=5,sin∠CBF=,求BC和BF的长.28、如图,O是等边△ABC的外心,BO的延长线和⊙O相交于点D,连接DC,DA,OA,OC.(1)求证:△BOC≌△CDA;(2)若AB=,求阴影部分的面积.29、如图,已知A、B、C、D是⊙O上的四点,延长DC、AB相交于点E.若BC=BE.求证:△ADE是等腰三角形.30、已知AB为圆O直径,M、N分别为OA、OB中点,CM⊥AB,DN⊥AB。

苏科版九年级数学上册 第二章 对称图形——圆 测试卷1(有答案)

苏科版九年级数学上册 第二章 对称图形——圆 测试卷1(有答案)

第二章对称图形-----圆测试卷(1)班级________姓名________得分________一、选择题(每题3分,共30分)1.下列说法正确的是( )A.相等的圆心角所对的孤相等B.90°的角所对的弦是直径C.等弧所对的弦相等D.圆的切线垂直于半径2.在⊙O中,AB是弦,圆心到AB的距离为1,若⊙O的半径为2,则弦AB的长为( ) A.5B.25C.3D.253.如图,已知PA切⊙O于A,⊙O的半径为3,OP=5,则切线长PA为( ) A.34B.8 C. 44.设⊙O的半径为R,圆心到点A的距离为d,且R,d分别是方程x2-6x+8=0的两根,则点A与⊙O的位置关系是( )A.点A在⊙O内部B.点A在⊙O上C.最A在⊙O外部D.点A不在⊙O上5.如图,AB是⊙O的直径,C,D是⊙O上的两点,若∠ABC=70°,则∠BDC的度数为( ) A.50°B.40°C.30°D.20°6.已知正三角形的边长为a,其内切圆的半径为r,外接圆的半径为R,则r:a:R等于( ) A.1:23:2 B.1:3:2 C.1:2:3D.1:3:237.图中实线部分是半径为9m的两条等弧组成的游泳池,若每条弧所在的圆都经过另一个圆的圆心,则游泳池的周长为( )A.12π m B.18π m C.20π m D.24π8.如图,将半径为2的圆形纸片,沿半径OA,OB将其裁成1:3两个部分,用所得扇形围成圆锥的侧面,则圆锥的底面半径为( )A.12B.1 C.1或3 D.12或329.已知矩形的边,,以点为圆心作圆,使,,三点至少有一点在内,且至少有一点在外,则的半径的取值范围是()A. B.C. D.10.如图,中,,,,是的外接圆,是优弧上任意一点(不包括,),记四边形的周长为,的长为,则关于的函数关系式是()A. B. C. D.二、填空题(每题3分,共24分)11.已知两直角边是5和12的直角三角形,则其内切圆的半径是_______.12.已知弦AB的长等于⊙O的半径,则弦AB所对的圆周角是_______.13.已知圆锥底面半径是2,母线长是4,则圆锥的侧面展开的扇形圆心角是_______.14. 已知:内一点到圆的最大距离是,最小距离是,则这个圆的半径是________.第16题第17题第18题15.在△ABC中,∠A=50°,若O为△ABC的外心,∠BOC=_______;若I为△ABC 的内心,∠BIC=_______.16.如图,OC是⊙O的半径,AB是弦,且OC⊥AB,点P在⊙O上,∠APC=26°,则∠BOC=_______.17.如图,已知为的切线,的直径是,弦,则______度.18.如图,过、、三点的圆的圆心为,过、、三点的圆的圆心为,如果,那么________.三、解答题(共46分)19.(8分)已知⊙O的直径AB的长为4 cm,C是⊙O上一点,∠BAC=30°,过点C作⊙O的切线交AB的延长线于点P,求BP的长.20.如图,已知直线交于、两点,是的直径,为的切线,为切点,且,垂足为.若,求的度数;若,的直径为,求的长度.21.26.如图,为的直径,是上一点,过点的直线交的延长线于点,,垂足为,是与的交点,平分.求证:是的切线;若,,求图中阴影部分的面积.22.如图13所示,⊙O是△ABC的外接圆,AB为直径,∠BAC的平分线交⊙O于点D,过点D的切线分别交AB,AC的延长线于点E,F.(1)求证:AF⊥EF;(2)小强同学通过探究发现:AF+CF=AB,请你帮助小强同学证明这一结论.23.(12分)如图,已知AB是⊙O的直径,PB为⊙O的切线,B为切点,OP⊥弦BC于点D且交⊙O于点E.(1)求证:∠OPB=∠AEC;(2)若点C为半圆ACB弧的三等分点,请你判断四边形AOEC为哪种特殊四边形?并说明理由.24.在等腰梯形中,,,且.以为直径作交于点,过点作于点.建立如图所示的平面直角坐标系,已知、两点坐标分别为、.求、两点的坐标;求证:为的切线;将梯形绕点旋转到,直线上是否存在点,使以点为圆心,为半径的与直线相切?如果存在,请求出点坐标;如果不存在,请说明理由.参考答案1.C 2.D 3.C 4.D 5.D 6.A 7.D 8.D 9.B 10.D11.212.45°或135°13.180°14.0.215.100°115°16.52°17.8<AB≤1018.319.13 8m20.2(cm).21.(1)60°.(2)略(3)8 322.(1)△OBC是直角三角形.(2)10.(3)OF=24 523.(1)略(2)是菱形24.解:连接,如图,∵是的直径,∴轴,∵四边形为等腰梯形,∵,,∴,∴;证明:连接,如图,在中,∵,∴,在等腰梯形中,∴∴又∵∴∴为的切线.存在.理由如下:过作于,且交于∵梯形与梯形关于点成中心对称∴,∴且,在中,,,∴在中,•,∴.设点存在,则,作轴于点,∴,,①若点在的延长线上,∴,∴.②若点在的延长线上,∴,∴.∴在直线上存在点和,使以点为圆心,为半径的与直线相切.。

苏科版九年级数学上册《第二章对称图形—圆》单元检测卷及答案

苏科版九年级数学上册《第二章对称图形—圆》单元检测卷及答案

苏科版九年级数学上册《第二章对称图形—圆》单元检测卷及答案一、单选题1.如图,四边形ABCD 内接于O .若108B ∠=︒,则D ∠的大小为( )A .54︒B .62︒C .72︒D .82︒2.下列命题中,是真命题的有( )①相等的角是对顶角②三角形的外心是它的三条角平分线的交点 ③四边相等的四边形是菱形④线段垂直平分线上的点与这条线段两个端点的距离相等 A .①③B .①④C .②③D .③④3.如图,△ABC 内接于△O ,△A =30°,则△BOC 的度数为( )A .30°B .60°C .75°D .120°4.如图,BC 是△O 的直径,点A ,D 在△O 上,若△ADC =48°,则△ACB 等于( )度.A .42B .48C .46D .505.已知圆锥的底面直径是12 cm ,母线长为8 cm ,则这个圆锥的侧面积是( )A .48 cm 2B .48 cm 2C .96 cm 2D .96 cm 26.如图, EM 经过圆心 O , EM CD ⊥ 于 M ,若 4CD = , EN=6 ,则 CED 所在圆的半径为( )A.103B.83C.3D.47.如图,圆内接正六边形ABCDEF的周长为12cm,则该正六边形的内切圆半径为()A3cm B.2cm C.3cm D5cm8.如图,△O中,弦AC= 23,沿AC折叠劣弧AC交直径AB于D,DB=2,则直径AB=()A.4B.154C.32D.59.已知△O的半径为13cm,弦AB△CD,AB=24cm,CD=10cm,则AB,CD之间的距离为()A.17cm B.7cm C.12cm D.17cm或7cm10.如图,已知△O的半径为5cm,弦AB=6cm,则圆心O到弦AB的距离是()A.1cm B.2cm C.3cm D.4cm11.如图,BC是△O的直径,AD是△O的切线,切点为D,AD与CB的延长线交于点A,△C=30°,给出下面四个结论:①AD=DC ;②AB=BD ;③AB=12BC ;④BD=CD , 其中正确的个数为( )A .4个B .3个C .2个D .1个12.如图,点16P P ~是O 的六等分点.若156PP P ,235P P P 的周长分别为1C 和2C ,面积分别为1S 和2S ,则下列正确的是( )A .12C C =B .212C C = C .12S S =D .212S S =二、填空题13.圆周角的度数等于它所对弧上的圆心角度数的 .14.已知直角三角形的两条直角边长分别为 6 和 8 ,那么这个三角形的外接圆半径等于 . 15.已知:如图,半圆O 的直径AB =12cm ,点C ,D 是这个半圆的三等分点,则弦AC ,AD 和CD 围成的图形(图中阴影部分)的面积S 是 .16.如图,在矩形ABCD 中,AB =3,AD =4,点E 是AD 边上一动点,将△ABE 沿BE 折叠,使点A 的对应点A′恰好落在矩形ABCD 的对角线上,则AE 的长为 .17.在平面直角坐标系xOy 中,A 为y 轴正半轴上一点.已知点()10B , ()50C , P 是ABC 的外接圆.△点P 的横坐标为 ;△若BAC ∠最大时,则点A 的坐标为 .三、解答题18.如图,AB 与△O 相切于点B ,AO 及AO 的延长线分别交△O 于D 、C 两点,若△A=40°,求△C 的度数.19.如图3-1所示,O 的直径AB 垂直于弦CD ,垂足P 是OB 的中点 6cm CD =,求直径AB 的长.20.如图,已知△O 分别切△ABC 的三条边AB 、BC 、CA 于点D 、E 、F 210ABCScm = C △ABC =10cm且△C=60°.求: (1)△O 的半径r ;(2)扇形OEF 的面积(结果保留π); (3)扇形OEF 的周长(结果保留π)21.如图,以△ABC 的一边AB 为直径的半圆与其它两边AC ,BC 的交点分别为D 、E ,且=.(1)试判断△ABC 的形状,并说明理由.(2)已知半圆的半径为5,BC=12,求sin△ABD 的值.22.如图,O 为Rt ABC 的外接圆 90ACB ∠=︒ BC =3,4AC = 点D 是O 上的动点,且点C 、D 分别位于AB 的两侧.(1)求O 的半径;(2)当42CD =时,求ACD ∠的度数;(3)设AD 的中点为M ,在点D 的运动过程中,线段CM 是否存在最大值?若存在,求出CM 的最大值;若不存在,请说明理由.参考答案与解析1.【答案】C【解析】【解答】解:因为,四边形ABCD 内接于O 108B ∠=︒所以,D ∠=180°-18010872B ∠=︒-︒=︒ 故答案为:C【分析】根据题意求出108B ∠=︒,再计算求解即可。

苏科版九年级(上册)数学第二章 对称图形—圆 单元综合检测卷【含答案】

苏科版九年级(上册)数学第二章 对称图形—圆  单元综合检测卷【含答案】

苏科版九年级(上册)数学第二章 对称图形—圆 单元综合检测卷一、选择题(本大题共10小题,每小题3分,共30分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填在相应位置上)1.(本题3分)如图,AB 为⊙O 的直径,点C 在⊙O 上,若50OCA ∠=︒,4AB =,则BC 的长为( )A .103πB .109πC .59π D .518π 2.(本题3分)在一个圆中任意画4条半径,则这个圆中有扇形( )A .4个B .8个C .12个D .16个3.(本题3分)如图,半径为5的⊙A 中,弦BC ED ,所对的圆心角分别是BAC ∠,EAD ∠.已知6DE =,180BAC EAD ∠+∠=︒,则弦BC 的弦心距等于( )A B C .4 D .34.(本题3分)如图所示,AB 是O 的直径,PA 切O 于点A ,线段PO 交O 于点C ,连接BC ,若36P ∠=︒,则B 等于( )A .27︒B .32︒C .36︒D .54︒5.(本题3分)如图,半圆的圆心为0,直径AB 的长为12,C 为半圆上一点,⊙CAB =30°,AC 的长是( )A .12πB .6πC .5πD .4π6.(本题3分)如图,一块直角三角板ABC 的斜边AB 与量角器的直径重合,点D 对应54°,则⊙BCD 的度数为( )A .54°B .27°C .63°D .36°7.(本题3分)如图,半径为3的⊙O 内有一点A ,OA P 在⊙O 上,当⊙OP A 最大时,S ⊙OP A 等于( )A .32BCD .18.(本题3分)如图,点A 、B 、C 在O 上,,CD OA CE OB ⊥⊥ ,垂足分别为D 、E ,若40DCE ∠=︒,则ACB ∠的度数为( )A .140︒B .70︒C .110︒D .80︒9.(本题3分)如图是某几何体的三视图及相关数据,则下面判断正确的是( )A .a >cB .b >cC .a 2+4b 2=c 2D .a 2+b 2=c 2 10.(本题3分)O 的半径为5,同一个平面内有一点P ,且OP =7,则P 与O 的位置关系是( ) A .P 在圆内 B .P 在圆上 C .P 在圆外 D .无法确定二、填空题(本大题共10小题,每小题3分,共30分,不需写出解答过程,请把答案直接填写在相应位置上)11.(本题3分)如图,将长为8cm 的铁丝首尾相接围成半径为2cm 的扇形.则S =扇形________2cm .12.(本题3分)如图,在O 中,半径OC 垂直AB 于,8,2D AB CD ==,则O 的半径是_____.13.(本题3分)如图,四边形ABCD 内接于⊙O ,且四边形OABC 是平行四边形,则⊙D =______.14.(本题3分)如图,AB 是⊙O 的弦,点C 在过点B 的切线上,且OC ⊙OA ,OC 交AB 于点P ,已知⊙OAB =22°,则⊙OCB =__________.15.(本题3分)已知圆心角为120的扇形的面积为212cm π,则扇形的弧长是________cm .16.(本题3分)如图,在矩形ABCD 中,AB=4,AD=3,以顶点D 为圆心作半径为r 的圆,若要求另外三个顶点A ,B ,C 中至少有一个点在圆内,且至少有一个点在圆外,则r 的取值范围是__________.17.(本题3分)在一个圆中,有个圆心角为160°的扇形,则这个扇形的面积是整个圆面积的________. 18.(本题3分)如图,⊙ABC 内接于⊙O ,若⊙OBC=25°,则⊙A=_____.19.(本题3分)如图,Rt ABC △中,90C ∠=︒,30ABC ∠=︒,6AB =.点D 在AB 边上,点E 是BC 边上一点(不与点B 、C 重合),且DA DE =,则AD 的取值范围是______.20.(本题3分)如图是一个圆锥的主视图,根据图中标出的数据(单位:cm ),计算这个圆锥侧面展开图圆心角的度数为_______.三、解答题(本大题共10小题,共60分,请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)21.(本题5分)如图所示是一个纸杯,它的母线延长后形成的立体图形是圆锥,该圆锥的侧面展开图是扇形OAB,经测量,纸杯开口圆的直径为6cm,下底面直径为4cm,母线长EF=9cm,求扇形OAB的圆心角及这个纸杯的表面积.(结果保留根号和π)22.(本题5分)如图,大正方形的边长为8厘米,求阴影部分的周长和面积(结果保留π)23.(本题5分)如图所示,⊙B=⊙OAF=90°,BO=3 cm,AB=4 cm,AF=12 cm,求图中半圆的面积.24.(本题5分)某地出土一个明代残破圆形瓷盘,为复制该瓷盘需确定其圆心和半径,请在图中用直尺和圆规画出瓷盘的圆心(不要求写作法、证明和讨论,但要保留作图痕迹)25.(本题5分)如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为216cm,求半圆的半径.26.(本题5分)如图,某工厂要选一块矩形铁皮加工成一个底面半径为20 cm,高为的圆锥形漏斗,要求只能有一条接缝(接缝忽略不计),请问:选长、宽分别为多少厘米的矩形铁皮,才能使所用材料最省?=,以AB为直径的O分别交BC,AC于点D,27.(本题6分)已知:如图,在ABC中,AB ACE,连结EB,交OD于点F.⊥.(1)求证:OD BE(2)若DE =,5AB =,求AE 的长.28.(本题6分)如图,O 的两条弦//AB CD (AB 不是直径),点E 为AB 中点,连接EC ,ED . (1)直线EO 与AB 垂直吗?请说明理由;(2)求证:EC ED =.29.(本题8分)如图,在Rt⊙ABC 中,90C ∠=︒,AD 平分⊙BAC ,交BC 于点D ,点O 在AB 上,⊙O 经过A 、D 两点,交AC 于点E ,交AB 于点F .(1)求证:BC 是⊙O 的切线;(2)若⊙O 的半径是2cm ,E 是弧AD 的中点,求阴影部分的面积(结果保留π和根号)30.(本题10分)如图,在Rt ⊙ABC 中,⊙C =90°,以BC 为直径的⊙O 交斜边AB 于点M ,若H 是AC 的中点,连接MH .(1)求证:MH 为⊙O 的切线.(2)若MH =32,AC BC =34,求⊙O 的半径. (3)在(2)的条件下分别过点A 、B 作⊙O 的切线,两切线交于点D ,AD 与⊙O 相切于N 点,过N 点作NQ ⊙BC ,垂足为E ,且交⊙O 于Q 点,求线段NQ 的长度.答案1.B解:⊙⊙OCA=50°,OA=OC,⊙⊙A=50°,⊙⊙BOC=2⊙A=100°,⊙AB=4,⊙BO=2,⊙BC的长为:10021819ππ⨯=故选B.2.C解:图中有四条半径,以其中一条半径为始边,可以找到3个扇形, 所以可以把这个图分成4×3=12个扇形,故选C.3.D解:作AH⊙BC于H,作直径CF,连结BF,如图,⊙⊙BAC+⊙EAD=180°,⊙BAC+⊙BAF=180°,⊙⊙DAE=⊙BAF,⊙DE BF=,⊙DE=BF=6,⊙AH⊙BC,⊙CH=BH,而CA=AF,⊙AH为⊙CBF的中位线,⊙AH=12BF=3,故选:D.4.A⊙PA 切O 于点A ,⊙90PAO ∠=︒,⊙36P ∠=︒,⊙903654POA ∠=︒-︒=︒, ⊙1272B POA ∠=∠=︒, 故A .5.D解:如图,连接OC ,⊙OA =OC ,⊙CAB =30°,⊙⊙C =⊙CAB =30°,⊙⊙AOC =120°,⊙弧AC 的长度l =12064180ππ⨯=. 故选:D .6.C⊙一块直角三角板ABC 的斜边AB 与量角器的直径重合, ⊙点A. B. C. D 都在以AB 为直径的圆上,⊙点D 对应54°,即⊙AOD=54°, ⊙⊙ACD=12⊙AOD=27°, ⊙⊙BCD=90°−⊙ACD=63°.故选C.7.B解:如图所示:OA 、OP 是定值,PA OA ∴⊥时,OPA ∠最大,在直角三角形OPA 中,OA =3OP =,PA ∴=12OPA S OA AP ∆∴=⋅12==. 故选:B .8.C解:在优弧AB 上取一点F ,连接AF ,BF .⊙,CD OA CE OB ⊥⊥ ,⊙⊙CDO=⊙CEO=90°.⊙40DCE ∠=︒,⊙⊙O=140°,⊙⊙F=70°,⊙⊙ACB=180°-70°=110°.故选C .9.D由题意可知该几何体是圆锥,根据勾股定理得,a 2+b 2=c 2故选:D .10.C解:因为75OP =>,所以点P 与圆O 的位置关系是点在圆外,故选:C11.4⊙扇形周长等于铁丝的长为8 cm ,扇形的半径是2 cm ,⊙扇形弧长是4 cm ,⊙12S lr=扇形214242cm=⨯⨯=.故4.12.5设⊙O的半径为r,则OD=r-2,⊙OC⊙AB,⊙AD=BD=12AB=4,在Rt⊙AOD中,⊙OD2+AD2=OA2,⊙(r-2)2+42=r2,解得r=5,即⊙O的半径为5.故5.13.60°⊙四边形ABCD内接于⊙O,⊙⊙D+⊙B=180°,由圆周角定理得,⊙D=12⊙AOC,⊙四边形OABC为平行四边形,⊙⊙AOC=⊙B,⊙2⊙D=180°−⊙D,解得,⊙D=60°,故60.14.44°连接OB,⊙BC是⊙O的切线,⊙OB⊙BC,⊙⊙OBA+⊙CBP=90°,⊙OC⊙OA,⊙OA=OB ,⊙OAB=22°,⊙⊙OAB=⊙OBA=22°,⊙⊙APO=⊙CBP=68°,⊙⊙APO=⊙CPB ,⊙⊙CPB=⊙ABP=68°,⊙⊙OCB=180°-68°-68°=44°,故答案为44°15.4π令扇形的半径和弧长分别为R 和l ,则S=2120360R π=12π, ⊙R=6cm , ⊙l=0208161π⨯=4πcm . ⊙扇形的弧长为4πcm .16.35r <<.根据勾股定理可求得BD=5,三个顶点A 、B 、C 中至少有一个点在圆内,点A 与点D 的距离最近,点A 应该在圆内,所以r>3,三个顶点A 、B 、C 中至少有一个点在圆外,点B 与点D 的距离最远,点B 应该在圆外,所以r<5,所以r 的取值范围是35r <<.17.49160°÷360°=49 故答案为.4918.65°.连接OC .⊙OB=OC ,⊙OBC=25°⊙⊙BOC=130°, ⊙⊙A=12⊙BOC=65°. 故答案是:65°.19.23AD ≤<以D 为圆心,AD 的长为半径画圆,当圆与BC 相切,如图⊙,DE BC ⊥时,30ABC =︒∠, ⊙12DE BD =, ⊙DA DE =⊙2DB DA =6AB =,2AD DE ∴==⊙DE 到BC 的最短距离为2⊙2AD ≥当圆与BC 相交时,如图⊙,若交点为B 和C ,则132AD AB ==, ⊙3AD < AD ∴的取值范围是23AD ≤<.20.120⊙圆锥的底面半径为1,⊙圆锥的底面周长为2π,⊙圆锥的高是⊙圆锥的母线长为3,设扇形的圆心角为n°, ⊙32180n ππ⨯==2π,解得n=120.即圆锥的侧面展开图中扇形的圆心角为120°.故答案为120°.21.40度 49π2cm解:由题意可知:BA =6πcm , CD =4π,设⊙AOB=n ,AO=R ,则CO=R ﹣9,由弧长公式得:l =180n R π,⊙618041809n nR nR ⨯=⎧⎨⨯=-⎩,解得:n=40,R=27,故扇形OAB 的圆心角是40度.⊙R=27,R ﹣9=18,⊙S 扇形OCD = 12×4π×18=36π(cm 2),S 扇形OAB = 12×6π×27=81π(cm 2),纸杯侧面积=S 扇形OAB ﹣S 扇形OCD =81π﹣36π=45π(cm 2),纸杯底面积=π•22=4π(cm 2)纸杯表面积=45π+4π=49π(cm 2).22.(16)4π+厘米;(32)8π+平方厘米解:周长:π×8×14×2+8×12×4 =8π×12+16=4π+16(厘米);面积:8×8×12+π×282÷()×12=32+8π(平方厘米).答:阴影部分的周长是4π+16厘米,面积是32+8π平方厘米.23.图中半圆的面积是169π8cm 2. 解:如图,⊙在直角⊙ABO 中,⊙B =90°,BO =3 cm ,AB =4 cm ,⊙AO 5 cm.则在直角⊙AFO 中,由勾股定理,得到FO 13 cm ,⊙图中半圆的面积=12π×2FO ⎛⎫ ⎪⎝⎭2=12π×169π169π88=(cm 2). 答:图中半圆的面积是169π8cm 2. 24.作图见解析. 在圆上取两个弦,根据垂径定理,垂直平分弦的直线一定过圆心,所以作出两弦的垂直平分线即可.25.R =.如下图所示,圆心为A ,设大正方形的边长为2x ,圆的半径为R ,⊙正方形有两个顶点在半圆上,另外两个顶点在圆心两侧,⊙AE BC x ==,2CE x =,⊙小正方形的面积为216cm ,⊙小正方形的边长4cm EF DF ==,由勾股定理得,22222R AE CE AF DF =+=+,即()2222444x x x +=++,解得4x =,⊙R =.26.选长为90 cm,宽为60 cm的矩形铁皮,才能使所用材料最省.⊙圆锥形漏斗的底面半径为20cm,高为,⊙圆锥的母线长为R==60(cm).设圆锥的侧面展开图的圆心角为n°,则有60180nπ⨯=2π×20,解得:n=120.方案一:如图⊙,扇形的半径为60 cm,矩形的宽为60 cm,易求得矩形的长为cm.此时矩形的面积为60⨯(cm2).方案二:如图⊙,扇形与矩形的两边相切,有一边重合,易求得矩形的宽为60 cm,长为30+60=90(cm),此时矩形的面积为90×60=5 400(cm2).⊙>5400,⊙方案二所用材料最省,即选长为90 cm,宽为60 cm的矩形铁皮,才能使所用材料最省.27.(1)见解析;(2)3(1)证明:⊙AB为⊙O的直径,⊙⊙AEB=90°,⊙AB=AC,⊙⊙C=⊙ABC.⊙BO=OD,⊙⊙ODB=⊙ABC,⊙⊙C=⊙ODB,⊙OD//AC,⊙OD⊙BE;(2)解:⊙OD⊙BE,⊙弧BD=弧DE,⊙AB=5,则OB=OD=52,设OF=x,则DF=52-x,⊙BF2=BD2-DF2=OB2-OF2,即2-(52-x)2=(52)2-x 2, 解得x=32, ⊙OF//AE ,OA=OB , ⊙AE=2OF=2×32=3. 28.(1)直线EO 与AB 垂直.理由见解析;(2)证明见解析.解:(1)直线EO 与AB 垂直.理由如下:如图,连接EO ,并延长交CD 于F .⊙ EO 过点O ,E 为AB 的中点,EO AB ∴⊥.(2)EO AB ⊥,//AB CD ,EF CD ∴⊥.⊙ EF 过点O ,CF DF ∴=,EF ∴垂直平分CD ,EC ED ∴=.29.(1)证明见解析 (2)23π(1)连接OD .⊙OA =OD ,⊙⊙OAD =⊙ODA .⊙⊙OAD =⊙DAC ,⊙⊙ODA =⊙DAC ,⊙OD ⊙AC ,⊙⊙ODB =⊙C =90°,⊙OD ⊙BC ,⊙BC 是⊙O 的切线. (2)连接OE ,OE 交AD 于K .⊙AE DE =,⊙OE ⊙AD .⊙⊙OAK =⊙EAK ,AK =AK ,⊙AKO =⊙AKE =90°,⊙⊙AKO ⊙⊙AKE ,⊙AO =AE =OE ,⊙⊙AOE 是等边三角形,⊙⊙AOE =60°,⊙S 阴=S 扇形OAE ﹣S ⊙AOE 2602360π⋅⋅=2223π=- 30.(1)证明见解析;(2)2;(3)4813. 解:(1)连接OH 、OM ,⊙H 是AC 的中点,O 是BC 的中点⊙OH 是⊙ABC 的中位线 ,⊙OH ⊙AB ,⊙⊙COH =⊙ABC ,⊙MOH =⊙OMB又⊙OB =OM ,⊙⊙OMB =⊙MBO ,⊙⊙COH =⊙MOH ,在⊙COH 与⊙MOH 中,⊙OC =OM ,⊙COH =⊙MOH ,OH =OH⊙⊙COH ⊙⊙MOH (SAS ),⊙⊙HCO =⊙HMO =90°,⊙MH 是⊙O 的切线;(2)⊙MH 、AC 是⊙O 的切线,⊙HC =MH =32, ⊙AC =2HC =3, ⊙AC BC =34, ⊙BC =4 ,⊙⊙O 的半径为2;(3)连接OA 、CN 、ON ,OA 与CN 相交于点I , ⊙AC 与AN 都是⊙O 的切线 ,⊙AC =AN ,AO 平分⊙CAD ,⊙AO ⊙CN ,⊙AC =3,OC =2 ,⊙由勾股定理可求得:A O ⊙12AC •OC =12AO •CI ,⊙CI ,⊙由垂径定理可求得:C N =13, 设OE =x ,由勾股定理可得:2222CN CE ON OE -=-, ⊙22144(2)413x x -+=-, ⊙x =1013, ⊙CE =1013, 由勾股定理可求得:EN =2413, ⊙由垂径定理可知:NQ =2EN =4813.。

苏科版九年级上册数学第2章 对称图形——圆 含答案

苏科版九年级上册数学第2章 对称图形——圆 含答案

苏科版九年级上册数学第2章对称图形——圆含答案一、单选题(共15题,共计45分)1、一个圆锥的主视图如图所示,根据图中数据,计算这个圆锥的侧面积是()A. B. C. D.2、如图,O的直径AB=2,点D在AB的延长线上,DC与O相切于点C,连接AC.若∠A=30°,则CD长为( )A. B. C. D.3、如图,在⊙O中,圆心角∠AOB=48°,则圆周角∠ACB的度数是()A.48°B.24°C.36°D.96°4、如图,⊙O的直径AB=4,BC切⊙O于点B,OC平行于弦AD,OC=5,则AD的长为()A. B. C. D.5、在平面直角坐标系中,以点(3,-5)为圆心,r为半径的圆上有且仅有两点到x轴所在直线的距离等于1,则圆的半径r的取值范围是()A.r>4B.0<r<6C.4≤r<6D.4<r<66、如图,⊙O是四边形ABCD的内切圆,下列结论一定正确的有()个:①AF=BG;②CG=CH;③AB+CD=AD+BC;④BG<CG.A.1B.2C.3D.47、如图,四边形ABCD是⊙O的内接四边形,AB为⊙O直径,点C为劣弧BD的中点,若∠DAB=40°,则∠ABC=().A.140°B.40°C.70°D.50°8、如图,以AB为直径的半⊙O上有两点D,E,ED与BA的延长线交于点C,且有DC=OE,若∠EOB=72°,则∠C的度数是()A.24°B.30°C.36°D.60°9、如图,AB与⊙O相切于点C,OA=OB,⊙O的直径为6cm,AB=6 cm,则阴影部分的面积为()A. cm 2B. cm 2C. cm 2D.cm 210、一个扇形的弧长是20πcm,面积是240πcm2,那么扇形的圆心角是( )A.120°B.150°C.210°D.240°11、如图,在△ABC中,BC=4,以点A为圆心,2为半径的⊙A与BC相切于点D,交AB于E,交AC于F,点P是⊙A上一点,且∠EPF=40°,则图中阴影部分的面积是()A. B. C. D.12、已知正六边形的边长为12cm,则这个正六边形的边心距是()A.6cmB.12cmC. cmD.12 cm13、在直角坐标系中,O为坐标原点,已知A(1,1),在坐标轴上确定点P,使△AOP为等三角形,则符合条件的点P的个数共有()A.10个B.8个C.4个D.6个14、如图,在平面直角坐标系xOy中,以原点O为圆心的圆过点A(13,0)直线y=kx-3k+4与交于B、C两点,则弦BC的长的最小值为( )A.22B.24C.D.15、如图在△ABC中∠A=60°,BM⊥AC于点M,CN⊥AC于点N,P为BC边的中点,连接PM,PN,则下列结论:①PM=PN;② ;③△PMN为等边三角形;④当∠ABC=45°时,BN=BC,其中正确的是()A.①②③B.①②④C.①③④D.②③④二、填空题(共10题,共计30分)16、如图,AB是⊙O的弦,OC⊥AB于C.若AB= ,OC=1,则半径OB的长为________.17、如图,⊙O是正三角形ABC的外接圆,点P在劣弧AB上,∠ABP=22°,则∠BCP的度数为________度.18、如图,正八边形ABCDEFGH的边长为a,I、J、K、L分别是各自所在边的中点,且四边形IJKL是正方形,则正方形IJKL的边长为________(用含a的代数式表示).19、将两边长分别是和的矩形以其一边所在的直线为轴旋转一周,所得的几何体的侧面积是________ .20、若直角三角形的两条直角边长分别是6和8,则它的外接圆半径为________ ,内切圆半径为________ .21、同圆中,已知弧AB所对的圆心角是100°,则弧AB所对的圆周角是________.22、如图,在平面直角坐标系中,⊙P经过点A(0,)、O(0,0)、B (1,0),点C在第一象限的上,则∠BCO的度数为________.23、如图,AD是⊙O的直径,C是⊙O上的点,过点C作⊙O的切线交AD的延长线于点B.若∠A=32°,则∠B=________°.24、如图,圆心角为120°,半径为4的弧,则这条弧的长度为是________.25、已知△ABC中,AB=AC,点O为△ABC的外心,且∠BOC=90°,则∠BAC度数为________.三、解答题(共5题,共计25分)26、如图,A,D是半圆上的两点,O为圆心,BC是直径,∠D=35°,求∠OAC 的度数.27、如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上.将△ABC绕点A顺时针旋转90°得到△AB1C1.(1)在网格中画出△AB1C1;(2)计算点B旋转到B1的过程中所经过的路径长.(结果保留π)28、如图,AB为⊙O的弦,AB=8,OC⊥AB于点D,交⊙O于点C,且CD=l ,求⊙O的半径.29、如图,直线与轴交于点A,直线交于点B,点C在线段AB上,⊙C与轴相切于点P,与OB切于点Q.求:(1)A点的坐标;(2)OB的长;(3)C点的坐标.30、如图,⊙O是△ABC的外接圆,D是弧ACB的中点,DE//BC交AC的延长线于点E,若AE=10,∠ACB=60°,求BC的长.参考答案一、单选题(共15题,共计45分)1、B2、D3、B4、B5、D6、B7、C8、A9、C10、B11、A12、C13、B14、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、29、30、。

苏科版九年级上册数学第2章 对称图形——圆 含答案(往年考题)

苏科版九年级上册数学第2章 对称图形——圆 含答案(往年考题)

苏科版九年级上册数学第2章对称图形——圆含答案一、单选题(共15题,共计45分)1、如图,AD为⊙O的直径,作⊙O的内接正三角形ABC,甲、乙两人的作法分别是:甲:①、作OD的中垂线,交⊙O于B,C两点,②、连接AB,AC,△ABC即为所求的三角形乙:①、以D为圆心,OD长为半径作圆弧,交⊙O于B,C两点.②、连接AB,BC,CA.△ABC即为所求的三角形.对于甲、乙两人的作法,可判断()A.甲、乙均正确B.甲、乙均错误C.甲正确、乙错误D.甲错误,乙正确2、如图,⊙O的半径OC=5cm,直线l⊥OC,垂足为H,且交⊙O于A、B两点,AB=8cm,则l沿OC所在直线平移后与⊙O相切,则平移的距离是()A.2cm或8cmB.2cmC.1cm 或8cmD.1cm3、如图,⊙O是△ABC的外接圆,已知∠ABO=50°,则∠ACB的大小为()A.30°B.40°C.45°D.50°4、如图,是的外接圆,则点是的().A.三条边的垂直平分线的交点B.三条角平分线的交点C.三条中线的交点D.三条高的交点5、点P在⊙O内,OP = 2cm,若⊙O的半径是3cm,则过点P的最短弦的长度为()A.1cmB.2cmC. cmD.2 cm6、如图,△ABC内接于⊙O,∠BAC=120°,AB=AC=4,BD为⊙O的直径,则⊙O的半径为()A.4B.6C.8D.127、如图,在中,,点O为的内心,则的度数为()A. B. C. D.8、如图,在中,为直径,,点D为弦的中点,点E 为上任意一点,则的大小可能是()A. B. C. D.9、若⊙O所在平面内一点P到⊙O上的点的最大距离为a,最小距离为b(a>b),则此圆的半径为()A. B. C. 或 D.a+b或a﹣b10、如图,AB是⊙O 的直径,点D是半径OA的中点,过点D作CD⊥AB,交⊙O 于点C,点E为弧BC的中点,连结ED并延长ED交⊙O于点F,连结AF、BF,则()A.sin∠AFE=B.cos∠BFE=C.tan∠EDB=D.tan∠BAF=11、如图,⊙O是△ABC的外接圆,AC=4,∠ABC=∠DAC,则直径AD的长为()A.4B.6C.D.812、下列命题中,①直径是弦;②平分弦的直径必垂直于弦;③相等的圆心角所对的弧相等;④等弧所对的弦相等.⑤经过半径的一端并垂直于半径的直线是圆的切线.正确的个数为()A.1个B.2个C.3个D.4个13、如图,AB是⊙O的直径,弦CD⊥AB于点G.点F是CD上一点,且满足,连接AF并延长交⊙O于点E.连接AD、DE,若CF=2,AF=3.给出下列结论:①△ADF∽△AED;②FG=2;③tan∠E= ;④S=4 .△DEF其中正确的是()A.①②④B.①②③C.②③④D.①③④14、如图是一个横放的油桶的横截面图,油的最大深度为30cm,油面宽度为60cm,则油面的面积为()cm2.A.2400π﹣1800B.2400π﹣900C.1200π﹣900D.π﹣180015、如图,AB是半圆的直径,AB=2r,C、D为半圆的三等分点,则图中阴影部分的面积是()。

苏科版九年级上册数学第2章 对称图形——圆 含答案

苏科版九年级上册数学第2章 对称图形——圆 含答案

苏科版九年级上册数学第2章对称图形——圆含答案一、单选题(共15题,共计45分)1、如图,是直径,是的切线,连接交于点,连接,,则的度数是().A. B. C. D.2、如图,AC是⊙O的切线,切点为C,BC是⊙O的直径,AB交⊙O于点D,连接OD.若∠BAC=55°,则∠COD的大小为()A.70°B.60°C.55°D.35°3、如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则AD的长为()A. B. C. D.4、如图,已知△ABC,AB=BC,以AB为直径的圆交AC于点D,过点D的⊙O的切线交BC于点E.若CD=5,CE=4,则⊙O的半径是()A.3B.4C.D.5、在半径为18的圆中,120°的圆心角所对的弧长是( )A.12πB.10πC.6πD.3π6、如图,已知⊙O的半径OD与弦AB互相垂直,垂足为点C,若AB=16cm,CD=6cm,则⊙O的半径为()A. cmB.10cmC.8cmD. cm7、如图将△ABC沿着直线DE折叠,点A恰好与△ABC的内心I重合,若∠DIB+∠EIC=195°,则∠BAC的大小是()A.40°B.50°C.60°D.70°8、如图,等边三角形内接于,点P在弧BC上,PA与BC相交于点D,若PB=3,PC=6,则PD=( )A.1.5B.C.2D.9、⊙O与直线l有两个交点,且圆的半径为3,则圆心O到直线l的距离不可能是()A.0B.1C.2D.310、如图,⊙O的半径为1,A,B,C是圆周上的三点,∠BAC=36°,则劣弧BC 的长是()A. B. C. D.11、已知圆的半径为3,扇形的圆心角为,则扇形的面积为()A. B. C. D.12、如图,已知▱ABCD,∠A=45°,AD=4,以AD为直径的半圆O与BC相切于点B,则图中阴影部分的面积为()A.4B.π+2C.4D.213、如图,⊙O的直径CD=20,AB是⊙O的弦,AB⊥CD,垂足为M,OM:OD=3:5,则AB的长为()A.8B.12C.16D.214、若⊙O的半径为5cm,点A到圆心O的距离为6cm,那么点A与⊙O的位置关系是 ( )A.点A在圆外B.点A在圆上C.点A在圆内D.不能确定15、下列说法中,正确的是()A.弦是直径B.相等的弦所对的弧相等C.圆内接四边形的对角互补D.三个点确定一个圆二、填空题(共10题,共计30分)16、如图,在的正方形网格中,两条网格线的交点叫做格点,每个小正方形的边长均为1.以点为圆心,5为半径画圆,共经过图中________个格点(包括图中网格边界上的点).17、如图,正六边形硬纸片ABCDEF在桌面上由图1的起始位置沿直线l不滑行地翻滚一周后到图2位置.若正六边形的边长为2cm,则正六边形的中心O运动的路程为________cm.18、如图,矩形ABCD中,E是BC上一点,连接AE,将矩形沿AE翻折,使点B 落在CD边F处,连接AF,在AF上取点O,以O为圆心,OF长为半径作⊙O与AD相切于点P.若AB=6,BC=3 ,则下列结论:①F是CD的中点;②⊙O的= .其中正确结论的序号是________.半径是2;③AE= CE;④S阴影19、如图,△ABC是⊙O的内接正三角形,⊙O的半径为2,则图中阴影部的面积是________.20、如图,在半径AC为2,圆心角为90°的扇形内,以BC为直径作半圆,交弦AB于点D,连接CD,则图中阴影部分的面积是________.21、已知⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=8cm,则AC的长为________.22、如图,半径为5的⊙A中,弦BC,ED所对的圆心角分别是∠BAC,∠EAD.已知DE=6,∠BAC+∠EAD=180°,则弦BC的弦心距等于________.23、已知:在⊙O中,直径AB=4,点P、Q均在⊙O上,且∠BAP=60°,∠BAQ=30°,则弦PQ的长为________.24、设两直角边分别为3、4的直角三角形的外接圆和内切圆的半径长分别为R 和r,则R—r =________.25、如图,A、B、C、D依次为一直线上4个点,BC=2,△BCE为等边三角形,⊙O过A、D、E3点,且∠AOD=120°.设AB=x,CD=y,则y与x的函数关系式为________.三、解答题(共5题,共计25分)26、我们知道,长方形绕着它的一边旋转形成圆柱体,圆柱体的侧面展开图为长方形,现将一个长、宽分别为4cm和3cm的长方形绕着它的宽旋转一周,求形成的圆柱体的表面积.27、已知:如图,⊙O内切于△ABC,∠BOC=105°,∠ACB=90°,AB=20cm.求BC、AC的长.28、试比较图中两个几何图形的异同,请分别写出它们的两个相同点和两个不同点。

苏科版数学九年级上第二章《对称图形-圆》单元测试(含解析答案)

苏科版数学九年级上第二章《对称图形-圆》单元测试(含解析答案)

苏科版数学九年级上第二章《圆》单元测试一.选择题(共12小题)1.已知AB是半径为5的圆的一条弦,则AB的长不可能是()A.4B.8C.10D.122.下列说法中,不正确的是()A.圆既是轴对称图形又是中心对称图形B.圆有无数条对称轴C.圆的每一条直径都是它的对称轴D.圆的对称中心是它的圆心3.如图,⊙O的直径BA的延长线与弦DC的延长线交于点E,且CE=OB,已知∠DOB=72°,则∠E等于()A.36°B.30°C.18°D.24°4.⊙O中,直径AB=a,弦CD=b,则a与b大小为()A.a>b B.a≥b C.a<b D.a≤b5.如图,⊙O是△ABC的外接圆,半径为R,∠A=45°,连接OB、OC,则边BC的长为()A .R B .R C .R D .6.如图,已知△ABC内接于⊙O,点P在⊙O内,点O在△PAB内,若∠C=50°,则∠P的度数可以为()A.20°B.50°C.110°D.80°7.如图所示,在Rt△ABC中∠A=25°,∠ACB=90°,以点C为圆心,BC为半径的圆交AB于一点D,交AC于点E,则∠DCE的度数为()A.30°B.25°C.40°D.50°8.如图,四边形ABCD是⊙O 的内接四边形,.若∠BAC=45°,∠B=105°,则下列等式成立的是()A.AB =CD B.AB=CD C.AB=CD D.AB =CD9.如图,⊙O的直径AB垂直于弦CD,垂足是E,∠A=22.5°,OC=3,则CD的长为()A.3B.C.6D.10.如图,直线l与⊙O相切于点A,直径BC的延长线与切线l交于点D,连接AB.且∠BDA=3∠DBA,则∠DBA 的度数为()A.15°B.20°C.18°D.22°题号一二三四五总分第分11.如图,用八根长为4cm的铁丝,首尾相接围成一个正八边形(接点不固定)要将它的四边按图中的方式向内等距离移动acm,同时去掉另外四根长为4cm的铁丝(虚线部分)得到一个正方形,则a 的值为()A.4cm B.2cm C.2cm D .cm12.如图,在Rt△ACB中,∠ACB=90°,AC=1,将Rt△ACB绕点C顺时针旋转90°后得到Rt△DCE,点B 经过的路径为,将线段AB绕点A顺时针旋转60°后,点B恰好落在CE上的点F处,点B 经过的路径为,则图中阴影部分的面积是()A .B .C .D .二.填空题(共8小题)13.点A、B在⊙O上,若∠AOB=40°,则∠OAB=.14.如图,圆O的周长为4π,B是弦CD上任意一点(与C,D不重合),过B作OC的平行线交OD 于点E,则EO+EB=.(用数字表示)15.如图,AB是半圆O的直径,AB=12,AC为弦,OD⊥AC于D,OE∥AC交半圆O于点E,EF⊥AB于F,若BF=3,则AC的长为.16.如图,已知⊙O的半径为6cm,两弦AB与CD垂直相交于点E,若CE=3cm,DE=9cm,则AB=.17.如图,已知⊙O为四边形ABCD的外接圆,O为圆心,若∠BCD=120°,AB=AD=2,则⊙O的半径长为.18.如图,A,B,C,D是⊙O上的四点,且点B 是的中点,BD交OC于点E,∠AOC=100°,∠OCD=35°,那么∠OED=.19.如图,⊙O的半径为2,正八边形ABCDEFGH内接于⊙O,对角线CE、DF相交于点M,则△MEF的面积是.20.如图,若从一块半径是6cm的圆形纸片圆O上剪出一个圆心角为60°的扇形(点A、B、C在圆O上),再将剪下的扇形围成一个圆锥,则该圆锥的底面圆半径是cm.三.解答题(共7小题)21.已知:如图,AB是⊙O的直径,点C、D在⊙O上,CE⊥AB于E,DF⊥AB于F,且AE=BF,AC 与BD相等吗?为什么?22.如图,已知⊙O是△ABC的外接圆,圆心O在△ABC的外部,AB=AC=4,BC=4,求⊙O的半径.23.如图,⊙O中,弦AB与CD相交于点E,AB=CD,连接AD、BC.求证:(1)=;(2)AE=CE.24.如图,△ABC内接于⊙O,AD为⊙O的直径,AD与BC相交于点E,且BE=CE.(1)请判断AD与BC的位置关系,并说明理由;(2)若BC=6,ED=2,求AE的长.25.已知AB是⊙O的直径,C是圆上的点,D是优弧ABC的中点.(1)若∠AOC=100°,则∠D的度数为,∠A的度数为;(2)求证:∠ADC=2∠DAB.26.如图,AB为⊙O直径,OE⊥BC垂足为E,AB⊥CD垂足为F.(1)求证:AD=2OE;(2)若∠ABC=30°,⊙O的半径为2,求两阴影部分面积的和.27.如图,AB是⊙O的直径,点C 为的中点,CF为⊙O的弦,且CF⊥AB,垂足为E,连接BD交CF于点G,连接CD,AD,BF.(1)求证:△BFG≌△CDG;(2)若AD=BE=2,求BF的长.参考答案与试题解析一.选择题(共12小题)1.已知AB是半径为5的圆的一条弦,则AB的长不可能是()A.4B.8C.10D.12【分析】根据圆中最长的弦为直径求解.【解答】解:因为圆中最长的弦为直径,所以弦长L≤10.故选:D.【点评】考查了圆的认识,在本题中,圆的弦长的取值范围0<L≤10.2.下列说法中,不正确的是()A.圆既是轴对称图形又是中心对称图形B.圆有无数条对称轴C.圆的每一条直径都是它的对称轴D.圆的对称中心是它的圆心【分析】利用圆的对称性质逐一求解可得.【解答】解:A.圆既是轴对称图形又是中心对称图形,正确;B.圆有无数条对称轴,正确;C.圆的每一条直径所在直线都是它的对称轴,此选项错误;D.圆的对称中心是它的圆心,正确;故选:C.【点评】本题主要考查圆的认识,解题的关键是掌握圆的对称性.3.如图,⊙O的直径BA的延长线与弦DC的延长线交于点E,且CE=OB,已知∠DOB=72°,则∠E等于()A.36°B.30°C.18°D.24°【分析】根据圆的半径相等,可得等腰三角形;根据三角形的外角的性质,可得关于∠E 的方程,根据解方程,可得答案.【解答】解:如图:CE=OB=CO,得∠E=∠1.由∠2是△EOC的外角,得∠2=∠E+∠1=2∠E.由OC=OD,得∠D=∠2=2∠E.由∠3是三角形△ODE的外角,得∠3=E+∠D=∠E+2∠E=3∠E.由∠3=72°,得3∠E=72°.解得∠E=24°.故选:D.【点评】本题考查了圆的认识,利用圆的半径相等得出等腰三角形是解题关键,又利用了三角形外角的性质.4.⊙O中,直径AB=a,弦CD=b,则a与b大小为()A.a>b B.a≥b C.a<b D.a≤b【分析】根据直径是弦,且是最长的弦,即可求解.【解答】解:直径是圆中最长的弦,因而有a≥b.故选:B.【点评】注意理解直径和弦之间的关系.5.如图,⊙O是△ABC的外接圆,半径为R,∠A=45°,连接OB、OC,则边BC的长为()A.R B.R C.R D.【分析】根据圆周角定理得到∠BOC=90°,根据等腰直角三角形的性质即可得到结论BC=OB=R,【解答】解:∵∠A=45°,∴∠BOC=90°,∵半径为R,∴OB=OC=R,∴BC=OB=R,故选:A.【点评】此题考查了三角形的外接圆与外心,圆周角定理、勾股定理,等腰直角三角形的性质,熟练正确圆周角定理是解决本题的关键.6.如图,已知△ABC内接于⊙O,点P在⊙O内,点O在△PAB内,若∠C=50°,则∠P 的度数可以为()A.20°B.50°C.110°D.80°【分析】延长AP交圆O于D,连接BD,根据三角形的外角的性质得到∠APB>∠ADB >50°,于是得到结论.【解答】解:延长AP交圆O于D,连接BD,则∠ADB=∠C=50°,∴∠APB>∠ADB>50°,∵点O在△PAB内,∴∠APB<90°,∴∠P的度数可以为80°,故选:D.【点评】本题考查了三角形的外接圆与外心,三角形的外角的性质,圆周角定理,熟练掌握圆周角定理是解题的关键.7.如图所示,在Rt△ABC中∠A=25°,∠ACB=90°,以点C为圆心,BC为半径的圆交AB于一点D,交AC于点E,则∠DCE的度数为()A.30°B.25°C.40°D.50°【分析】求出∠BCD即可解决问题.【解答】解:∵∠ACB=90°,∠A=25°,∴∠B=90°﹣25°=65°,∵CB=CD,∴∠B=∠CDB=65°,∴∠BCD=180°﹣65°﹣65°=50°,∴∠DCE=90°﹣50°=40°,故选:C.【点评】本题考查圆周角定理,等腰三角形的性质,三角形内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.8.如图,四边形ABCD是⊙O的内接四边形,.若∠BAC=45°,∠B=105°,则下列等式成立的是()A.AB=CD B.AB=CD C.AB=CD D.AB=CD 【分析】如图设AC交BD于K.首先证明△CBK的Rt△,∠BCK=30°,推出KC=BK,再利用相似三角形的性质解决问题即可.【解答】解:如图设AC交BD于K.∵=,∴∠ACD=∠BDC=∠BAC=45°,∴∠DKC=90°,∵∠BAC=∠DCK=45°,∴AB∥CD,∴∠ABC+∠BCD=180°,∵∠ABC=105°,∴∠DCB=75°,∠ACB=30°,∵∠CKB=90°,∴CK=BK,∵∠KAB=∠KDC,∠AKB=∠DKC,∴△AKB∽△DKC,∴=,∴AB=AB,故选:B.【点评】本题考查圆内接四边形,圆周角定理,相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.9.如图,⊙O的直径AB垂直于弦CD,垂足是E,∠A=22.5°,OC=3,则CD的长为()A.3B.C.6D.【分析】由垂径定理可得出CD=2CE,∠CEO=90°,由∠A=22.5°,利用圆周角定理可求出∠COE=45°,进而可得出△CEO为等腰直角三角形,再利用等腰直角三角形的性质及OC=3可求出CE的长(或通过解直角三角形求出CE的长),结合CD=2CE 可求出CD的长.【解答】解:∵⊙O的直径AB垂直于弦CD,∴CD=2CE,∠CEO=90°,又∵∠COE=2∠A=45°,∴△CEO为等腰直角三角形,∴CE=OC=,∴CD=2CE=3.故选:B.【点评】本题考查了圆周角定理、垂径定理以及等腰直角三角形,利用等腰直角三角形的性质求出CE的长是解题的关键.10.如图,直线l与⊙O相切于点A,直径BC的延长线与切线l交于点D,连接AB.且∠BDA=3∠DBA,则∠DBA的度数为()A.15°B.20°C.18°D.22°【分析】连接OA.根据等腰三角形的性质得到∠OBA=∠OAB,由三角形的外角的性质得到∠DOA=2∠B,设∠DBA=α,根据三角形的没机会即可得到结论.【解答】解:连接OA.∵OB=OA,∴∠OBA=∠OAB,∴∠DOA=2∠B,∵∠BDA=3∠DBA,∴设∠DBA=α,∴∠DOA=2α,∠ADB=3α,∵AD是⊙的切线,∴∠OAD=90°.∴2α+3α=90°,∴α=18°.∴∠DBA=18°,故选:C.【点评】本题主要考查的是切线的性质、等腰三角形的性质、三角形的外角的性质、三角形的内角和定理,求得∠DOC和∠OCD的度数是解题的关键.11.如图,用八根长为4cm的铁丝,首尾相接围成一个正八边形(接点不固定)要将它的四边按图中的方式向内等距离移动acm,同时去掉另外四根长为4cm的铁丝(虚线部分)得到一个正方形,则a的值为()A.4cm B.2cm C.2cm D.cm【分析】由题意可知△ABC是等腰直角三角形,AB=4,AC=BC=a.利用勾股定理列出方程,解方程即可得出结果.【解答】解:如图,由题意可知:△ABC是等腰直角三角形,AB=4,AC=BC=a.则有:a2+a2=42,解得:a=2或﹣2(舍去),故选:C.【点评】本题考查正多边形与圆、勾股定理、等腰直角三角形的性质等知识,解题的关键是理解题意,学会利用参数构建方程解决问题.12.如图,在Rt△ACB中,∠ACB=90°,AC=1,将Rt△ACB绕点C顺时针旋转90°后得到Rt△DCE,点B经过的路径为,将线段AB绕点A顺时针旋转60°后,点B恰好落在CE上的点F处,点B经过的路径为,则图中阴影部分的面积是()A.B.C.D.【分析】根据S阴=S△ACB+S扇形CBE﹣S扇形ABF计算即可.【解答】解:S阴=S△ACB+S扇形CBE﹣S扇形ABF=•1•+﹣=+,故选:A.【点评】本题考查扇形的面积公式,旋转变换等知识,解题的关键是学会用分割法求阴影部分的面积.二.填空题(共8小题)13.点A、B在⊙O上,若∠AOB=40°,则∠OAB=70°.【分析】由∠AOB=40°,OA=OB知∠OAB=∠OBA=,代入计算可得.【解答】解:如图,∵∠AOB=40°,OA=OB,∴∠OAB=∠OBA==70°,故答案为:70°.【点评】本题主要考查圆的基本性质,解题的关键是掌握圆的所有半径都相等及等腰三角形的性质.14.如图,圆O的周长为4π,B是弦CD上任意一点(与C,D不重合),过B作OC的平行线交OD于点E,则EO+EB=2.(用数字表示)【分析】根据圆的周长公式得到OD=2,根据等腰三角形的判定和性质定理即可得到结论.【解答】解:∵⊙O的周长为4π,∴OD=2,∵OC=OD,∴∠C=∠D,∵BE∥OC,∴∠EBD=∠C,∴∠EBD=∠D,∴BE=DE,∴EO+EB=OD=2,故答案为:2.【点评】本题考查了圆的认识,圆周长公式,平行线的性质,等腰三角形的性质,熟练掌握等边三角形的性质是解题的关键.15.如图,AB是半圆O的直径,AB=12,AC为弦,OD⊥AC于D,OE∥AC交半圆O于点E,EF⊥AB于F,若BF=3,则AC的长为6.【分析】根据垂径定理得出AD=CD,再证△ADO≌△OFE,推出OF=AD=1,即可求出答案.【解答】解:AB是半圆O的直径,AB=12,∴OB=OA=6,∵BF=3,∴OF=OB﹣BF=3,∵OD⊥AC,∴AD=CD,∵OD⊥AC,EF⊥AB,∴∠ADO=∠OFE=90°,∵OE∥AC,∴∠DAO=∠EOF,在△ADO和△OFE中,,∴△ADO≌△OFE(AAS),∴AD=OF=1,∴AC=2AD=6;故答案为:6.【点评】本题考查了垂径定理、全等三角形的性质和判定、平行线的性质等知识;熟练掌握垂径定理,证明三角形全等是解题的关键.16.如图,已知⊙O的半径为6cm,两弦AB与CD垂直相交于点E,若CE=3cm,DE=9cm,则AB=6cm.【分析】连接OA,根据已知条件得到CD是⊙O的直径,根据垂径定理得到AE=BE,OE=3,OA=6,由勾股定理得到AE==3,于是得到结论.【解答】解:连接OA,∵⊙O的半径为6cm,CE+DE=12cm,∴CD是⊙O的直径,∵CD⊥AB,∴AE=BE,OE=3,OA=6,∴AE==3,∴AB=2AE=6,故答案为:6cm.【点评】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.17.如图,已知⊙O为四边形ABCD的外接圆,O为圆心,若∠BCD=120°,AB=AD=2,则⊙O的半径长为.【分析】连接BD,作OE⊥AD,连接OD,先由圆内接四边形的性质求出∠BAD的度数,再由AD=AB可得出△ABD是等边三角形,则DE=AD,∠ODE=∠ADB=30°,根据锐角三角函数的定义即可得出结论.【解答】解:连接BD,作OE⊥AD,连接OD,∵⊙O为四边形ABCD的外接圆,∠BCD=120°,∴∠BAD=60°.∵AD=AB=2,∴△ABD是等边三角形.∴DE=AD=1,∠ODE=∠ADB=30°,∴OD==.故答案为【点评】本题考查的是圆内接四边形的性质,熟知圆内接四边形对角互补是解答此题的关键.18.如图,A,B,C,D是⊙O上的四点,且点B是的中点,BD交OC于点E,∠AOC =100°,∠OCD=35°,那么∠OED=60°.【分析】连接OB,求出∠D,利用三角形的外角的性质解决问题即可.【解答】解:连接OB.∵=,∴∠AOB=∠BOC=50°,∴∠BDC=∠BOC=25°,∵∠OED=∠ECD+∠CDB,∠ECD=35°,∴∠OED=60°,故答案为60°.【点评】本题考查圆周角定理,圆心角,弧,弦之间的关系等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.19.如图,⊙O的半径为2,正八边形ABCDEFGH内接于⊙O,对角线CE、DF相交于点M,则△MEF的面积是2﹣.【分析】设OE交DF于N,由正八边形的性质得出DE=FE,∠EOF==45°,,由垂径定理得出∠OEF=∠OFE=∠OED,OE⊥DF,得出△ONF是等腰直角三角形,因此ON=FN=OF=,∠OFM=45°,得出EN=OE﹣OM=2﹣,证出△EMN是等腰直角三角形,得出MN=EN,得出MF=OE=2,由三角形面积公式即可得出结果.【解答】解:设OE交DF于N,如图所示:∵正八边形ABCDEFGH内接于⊙O,∴DE=FE,∠EOF==45°,,∴∠OEF=∠OFE=∠OED,OE⊥DF,∴△ONF是等腰直角三角形,∴ON=FN=OF=,∠OFM=45°,∴EN=OE﹣OM=2﹣,∠OEF=∠OFE=∠OED=67.5°,∴∠CED=∠DFE=67.5°﹣45°=22.5°,∴∠MEN=45°,∴△EMN是等腰直角三角形,∴MN=EN,∴MF=MN+FN=ON+EN=OE=2,∴△MEF的面积=MF×EN=×2×(2﹣)=2﹣;故答案为:2﹣.【点评】本题考查了正多边形和圆、垂径定理、正八边形的性质、等腰直角三角形的判定与性质、等腰三角形的性质等知识;熟练掌握正八边形的性质,证明△ONF和△ENM 是等腰直角三角形是解题的关键.20.如图,若从一块半径是6cm的圆形纸片圆O上剪出一个圆心角为60°的扇形(点A、B、C在圆O上),再将剪下的扇形围成一个圆锥,则该圆锥的底面圆半径是cm.【分析】连接OA,作OD⊥AB于点D,利用三角函数即可求得AD的长,则AB的长可以求得,然后利用弧长公式即可求得弧长,即底面圆的周长,再利用圆的周长公式即可求得半径.【解答】解:连接OA,作OD⊥AB于点D.在直角△OAD中,OA=6,∠OAD=∠BAC=30°,则AD=OA•cos30°=3.则AB=2AD=6,则扇形的弧长是:=2π,设底面圆的半径是r,则2π×1=2π,解得:r=.故答案为:.【点评】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.三.解答题(共7小题)21.已知:如图,AB是⊙O的直径,点C、D在⊙O上,CE⊥AB于E,DF⊥AB于F,且AE=BF,AC与BD相等吗?为什么?【分析】连结OC、OD,由OA=OB,AE=BF,得到OE=OF,由CE⊥AB,DF⊥AB 得到∠OEC=∠OFD=90°,再根据“HL”可判断Rt△OEC≌Rt△OFD,则∠COE=∠DOF,所以AC弧=BD弧,AC=BD.【解答】解:AC与BD相等.理由如下:连结OC、OD,如图,∵OA=OB,AE=BF,∴OE=OF,∵CE⊥AB,DF⊥AB,∴∠OEC=∠OFD=90°,在Rt△OEC和Rt△OFD中,,∴Rt△OEC≌Rt△OFD(HL),∴∠COE=∠DOF,∴AC弧=BD弧,∴AC=BD.【点评】本题考查了圆的认识:掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).也考查了直角三角形全等的判定与性质.22.如图,已知⊙O是△ABC的外接圆,圆心O在△ABC的外部,AB=AC=4,BC=4,求⊙O的半径.【分析】连接AO,交BC于点D,连接BO,由垂径可求AO⊥BC,BD=CD,即可求BD=2,由勾股定理可求AD的长,圆的半径.【解答】解:如图,连接AO,交BC于点D,连接BO∵AB=AC,∴又AO是半径,∴AO⊥BC,BD=CD∵,∴∴在Rt△ABD中,∠ADB=90°,∴BD2+AD2=AB2又∵AB=4,∴AD=2设半径为r.在Rt△BDO中,∵BD2+DO2=BO2∴∴r=4∴⊙O的半径为4.【点评】本题考查了三角形的外接圆与外心,等腰三角形的性质,勾股定理,熟练运用勾股定理求线段的长是本题的关键.23.如图,⊙O中,弦AB与CD相交于点E,AB=CD,连接AD、BC.求证:(1)=;(2)AE=CE.【分析】(1)由AB=CD知=,即+=+,据此可得答案;(2)由=知AD=BC,结合∠ADE=∠CBE,∠DAE=∠BCE可证△ADE≌△CBE,从而得出答案.【解答】证明(1)∵AB=CD,∴=,即+=+,∴=;(2)∵=,∴AD=BC,又∵∠ADE=∠CBE,∠DAE=∠BCE,∴△ADE≌△CBE(ASA),∴AE=CE.【点评】本题主要考查圆心角、弧、弦的关系,圆心角、弧、弦三者的关系可理解为:在同圆或等圆中,①圆心角相等,②所对的弧相等,③所对的弦相等,三项“知一推二”,一项相等,其余二项皆相等.24.如图,△ABC内接于⊙O,AD为⊙O的直径,AD与BC相交于点E,且BE=CE.(1)请判断AD与BC的位置关系,并说明理由;(2)若BC=6,ED=2,求AE的长.【分析】(1)如图,连接OB、OC,根据全等三角形的性质即可得到结论;(2)设半径OC=r,根据勾股定理即可得到结论..【解答】解:(1)AD⊥BC,理由:如图,连接OB、OC,在△BOE与△COE中,,∴△BOE≌△COE(SSS),∴∠BEO=∠CEO=90°,∴AD⊥BC;(2)设半径OC=r,∵BC=6,DE=2,∴CE=3,OE=r﹣2,∵CE2+OE2=OC2,∴32+(r﹣2)2=r2,解得r=,∴AD=,∵AE=AD﹣DE,∴AE=﹣2=.【点评】本题考查了三角形的外接圆与外心,全等三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.25.已知AB是⊙O的直径,C是圆上的点,D是优弧ABC的中点.(1)若∠AOC=100°,则∠D的度数为50°,∠A的度数为25°;(2)求证:∠ADC=2∠DAB.【分析】(1)连接OD.证明△AOD≌△COD即可解决问题.(2)利用全等三角形的性质,等腰三角形的性质解决问题即可.【解答】(1)解:连接OD.∵=,∴AD=CD,∵OD=OD,OA=OC,∴△AOD≌△COD(SSS),∴∠A=∠C,∵∠A=∠ODA,∠C=∠ODC,∴∠A =∠C =∠ADO =∠CDO ,∵∠ADC =∠AOC =50°,∴∠A =∠ADO =∠ADC =25°,故答案为50°,25°.(2)证明:∵△AOD ≌△COD (SSS ),∴∠A =∠C ,∵∠A =∠ODA ,∠C =∠ODC ,∴∠A =∠C =∠ADO =∠CDO ,∴∠ADC =2∠DAB .【点评】本题考查圆周角定理,等腰三角形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.26.如图,AB 为⊙O 直径,OE ⊥BC 垂足为E ,AB ⊥CD 垂足为F .(1)求证:AD =2OE ;(2)若∠ABC =30°,⊙O 的半径为2,求两阴影部分面积的和.【分析】(1)证明:连接AC ,因为AB ⊥CD ,所以,AC =BD ,又OE ⊥BC ,则E 为BC 的中点,OE =AC ,OE =AD ,即AD =2OE ;(2)S 半圆=π•OB 2==2π,S △ABC =AC •BC ==2,S 阴影=S 半圆﹣S △ABC =2π﹣2.【解答】解:(1)证明:连接AC ,∵AB ⊥CD ,∴,∴AC =BD ,∵OE⊥BC,∴E为BC的中点,∵O为AB的中点,∴OE为△ABC的中位线,∴OE=AC,∴OE=AD,即AD=2OE;(2)S半圆=π•OB2==2π,∵AB为⊙O直径,∴∠ACB=90°,∵∠ABC=30°,AB=4,∴AC=AB=,BC=,S△ABC=AC•BC==2,∵AB⊥CD,∴拱形AD的面积=弓形AC的面积,∴S阴影=S半圆﹣S△ABC=2π﹣2.【点评】本题是圆的综合题,熟练运用垂径定理、特殊直角三角形的性质以及扇形面积公式是解题的关键.27.如图,AB是⊙O的直径,点C为的中点,CF为⊙O的弦,且CF⊥AB,垂足为E,连接BD交CF于点G,连接CD,AD,BF.(1)求证:△BFG≌△CDG;(2)若AD=BE=2,求BF的长.【分析】(1)根据AAS证明:△BFG≌△CDG;(2)解法一:连接OF,设⊙O的半径为r,由CF=BD列出关于r的勾股方程就能求解;解法二:如图,作辅助线,构建角平分线和全等三角形,证明Rt△AHC≌Rt△AEC(HL),得AE=AH,再证明Rt△CDH≌Rt△CBE(HL),得DH=BE=2,计算AE和AB的长,证明△BEC∽△BCA,列比例式可得BC的长,就是BF的长.解法三:连接OC,根据垂径定理和三角形的中位线定理可得OH=1,证明△COE≌△BOH,并利用勾股定理可得结论.【解答】证明:(1)∵C是的中点,∴,∵AB是⊙O的直径,且CF⊥AB,∴,∴,∴CD=BF,在△BFG和△CDG中,∵,∴△BFG≌△CDG(AAS);(2)解法一:如图,连接OF,设⊙O的半径为r,Rt△ADB中,BD2=AB2﹣AD2,即BD2=(2r)2﹣22,Rt△OEF中,OF2=OE2+EF2,即EF2=r2﹣(r﹣2)2,∵,∴,∴BD=CF,∴BD2=CF2=(2EF)2=4EF2,即(2r)2﹣22=4[r2﹣(r﹣2)2],解得:r=1(舍)或3,∴BF2=EF2+BE2=32﹣(3﹣2)2+22=12,∴BF=2;解法二:如图,过C作CH⊥AD于H,连接AC、BC,∵,∴∠HAC=∠BAC,∵CE⊥AB,∴CH=CE,∵AC=AC,∴Rt△AHC≌Rt△AEC(HL),∴AE=AH,∵CH=CE,CD=CB,∴Rt△CDH≌Rt△CBE(HL),∴DH=BE=2,∴AE=AH=2+2=4,∴AB=4+2=6,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACB=∠BEC=90°,∵∠EBC=∠ABC,∴△BEC∽△BCA,∴,∴BC2=AB•BE=6×2=12,∴BF=BC=2.解法三:如图,连接OC,交BD于H,∵C是的中点,∴OC⊥BD,∴DH=BH,∵OA=OB,∴OH=AD=1,∵OC=OB,∠COE=∠BOH,∠OHB=∠OEC=90°,∴△COE≌△BOH(AAS),∴OH=OE=1,∴CE=EF==2,∴BF===2.【点评】此题考查了相似三角形的判定与性质、圆周角定理、垂径定理、三角形全等的性质和判定以及勾股定理.第二问有难度,注意掌握辅助线的作法,注意掌握数形结合思想的应用.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章《对称图形—圆》综合测试题(一)
(时间:100分钟 满分:120分)
一、选择题(本大题共10小题,每小题3分,共30分)
1.已知⊙O 的半径6,90OA AOB =∠=︒,则AOB ∠所对的弧AB 的长为( )
A.2π
B.3π
C.6π
D.12π
2.在同圆中,下列四个命题:①圆心角是顶点在圆心的角;②两个圆心角相等,它们所对的弦也相等;③两条弦相等,它们所对的弧也相等;④等弧所对的圆心角相等.其中真命题有( )
A.4个
B.3个
C.2个
D.1个
3.如图1, ,AB AC 是圆的两条弦,AD 是圆的一条直径,且AD 平分BAC ∠,下列结论中不一定正确的是( )
A. »»AB DB
= B. »»BD CD = C. BC AD ⊥ D. B C ∠=∠
4.一条排水管的截面如图2所示,已知排水管的半径OB = 10,水面宽AB = 16,则截面圆心O 到水面的距离OC 是( )
A.4
B.5
C.6
D.8
5.如图3 , ABC ∆的顶点,,A B C 均在⊙O 上,若90ABC AOC ∠+∠=︒,则AOC ∠的大小是( )
A.30°
B.45°
C.60°
D.70°
6.如图4,在ABC ∆中,90,25C A ∠=︒∠=︒,以点C 为圆心,BC 为半径的圆交AB
于点D ,交AC 于点E ,则»BD
的度数为( ) A.25° B.30° C.50° D.65°
7.如图5, AB 为⊙O 的直径,弦CD AB ⊥与E ,已知CD = 12, BE =2,则⊙O 的直
径为( )
A.8
B.10
C.16
D.20
8.在⊙O 中,弦AB 的长为8 cm ,圆心O 到AB 的距离为3 cm.那么⊙O 的半径是( ) A.3 cm B.4 cm C.5 cm D.8 cm
9.如图6,在⊙O 中,P 是弦AB 的中点,CD 是过点P 的直径,则下列结论中不正确的是( )
A. AB CD ⊥
B. 4AOB ACD ∠=∠
C. »»AD BD
= D. PO PD = 10.已知⊙O 的直径AB =40,弦CD AB ⊥于E ,且CD =32,则AE 的长为( )
A.12
B.8
C.12或28
D.8或32 二、填空题(本大题共6小题,每小题3分,共18分) 11.在⊙O 中,若»AB 的长为⊙O 周长的
m
n
,则AOB ∠= 度. 12.如图7,在⊙O 中,已知»»2AB AC =,那么线段AB 与2AC 的大小关系是 .
13.如图8,已知AB 和CD 是⊙O 的两条弦,»»AD BC
=,AB =3,那么CD 的长为 .
14.如图9, ,OE OF 分别为⊙O 的弦,AB CD 的弦心距,如果OE OF =,那么 .(只需写一个正确的结论)
15.某居民小区一处圆形下水管道破裂,维修人员准备更换一段新管道,如图10,污水水面宽度为60 cm ,水面到管道顶部距离为10 cm ,则修理人员应准备 cm 内径的管道(内径指内部直径).
16.如图11, AB 是⊙O 弦,AB 的长为8, P 是⊙O 上一个动点(不与,A B 重合),过点
O 作OC AP ⊥于C ,OD PB ⊥于D ,则CD 的长为 .
三、解答题(本大题共7小题,共72分)
17.(8分)已知:如图12, ,,,A B C D 在⊙O 上,AB CD =.求证:AOC DOB ∠=∠.
18.(9分)已知:如图13, P 是AOB ∠的角平分线OC 上的一点,⊙P 与OA 相交于,E F 两点,与OB 相交于,G H 两点,试确定线段EF 与GH 之间的大小关系,并证明你的结论.
19. (10分)如图14,某窗户由矩形和弓形组成,已知弓形的跨度AB =3 m ,弓形的高
EF =1m ,现计划安装玻璃,请帮工人师傅求出»
AB 所在圆的半径r .
20. (10分)如图15, ,,AB BC AC 都是⊙O 的弦,且AOB BOC ∠=∠.
求证:(1) BAC BCA ∠=∠; (2) ABO CBO ∠=∠.
21. (11分)如图16, ,,A B C 为⊙O 上的三点,且有»»»AB BC AC ==,
连接,,AB BC CA . (1)试确定ABC ∆的形状;
(2)若AB =a ,求⊙O 的半径.
22. (12分)已知:如图17,,A B 是半圆O 上的两点,CD 是⊙O 上的直径,
80,AOD B ∠=︒是»
AD 的中点. (1)在CD 上求作一点P ,使得AP PB +最短;
(2)若CD =4 cm ,求AP PB +的最小值.
23. (12分)如图18,射线PG 平EPF ∠, O 为射线PG 上一点,以O 为圆心,10为半径作⊙O ,分别与EPF ∠的两边相交于,A B 和,C D ,连接OA ,此时有//OA PE . (1)求证: AP AO =;
(2)若弦AB = 10,求点O 到直线PF 的距离.
参考答案
1.B
2.A
3.A
4.C
5.C
6.C
7.D
8.C
9.D 10.D
11. 360m
n
12. 2AB AC <
13. 3
14. 答案不唯一,如»»AB CD
=,AB CD =等. 15. 100
16. 4
17. AB CD =Q ,
»»AB CD
∴=, »»»»AB BC CD BC ∴-=-,即»»AC DB
=, AOC DOB ∴∠=∠.
18. EF GH =
19. »AB 所在圆的半径r =13
8
m.
20.(1) AOB BOC ∠=∠Q , AB BC ∴=,
BAC BCA ∴∠=∠. (2) OB OA =Q ,
ABO BAO ∴∠=∠,
同理得,,CBO BCO CAO ACO ∠=∠∠=∠, 又BAC BCA ∠=∠,
CAO BAC ACO BCA ∴∠+∠=∠+∠,即BAO BCO ∠=∠. ABO CBO ∴∠=∠.
21. (1)ABC ∆的形状为等边三角形;
(2)⊙O 的半径. 22. (1)如图5,
作法:①作弦BB CD '⊥;
②连接AB ',交CD 于点P ,连接PB .
则点P 即为所求.
(2) 23.(1) PG Q 平分EPF ∠, DPO BPO ∴∠=∠,
//OA PE Q ,
DPO POA ∴∠=∠, BPO POA ∴∠=∠, AP AO ∴=.
(2)。

相关文档
最新文档