八年级数学上册因式分解拔高题型
专题14.2因式分解(专项拔高卷)学生版
20232024学年人教版数学八年级上册同步专题热点难点专项练习专题14.2 因式分解(专项拔高30题)考试时间:90分钟试卷满分:120分难度:0.49姓名:___________班级:___________考号:___________题号一二三总分得分评卷人得分一.选择题(共11小题,满分22分,每小题2分)1.(2分)(2023春•电白区期中)下列从左到右的变形中,属于因式分解的是()A.3xy2=3x⋅y2B.x2﹣y2=(x+y)(x﹣y)C.x2+x+2=x(x+1)+2 D.(x+1)(x﹣1)=x2﹣12.(2分)(2022秋•高青县期末)已知甲、乙、丙均为含x的整式,且其一次项的系数皆为正整数.若甲与乙相乘的积为x2﹣4,乙与丙相乘的积为x2﹣2x,则甲与丙相乘的积为()A.2x+2 B.x2+2x C.2x﹣2 D.x2﹣2x3.(2分)(2022秋•沙坪坝区校级期末)已知a+b=﹣3,ab=7,则多项式a2b+ab2﹣a﹣b的值为()A.24 B.18 C.﹣24 D.﹣184.(2分)(2022秋•两江新区期末)将一个多项式分组后,可提公因式或运用公式继续分解的方法是分组分解法.例如:am+an+bm+bn=(am+an)+(bm+bn)=a(m+n)+b(m+n)=(a+b)(m+n).以下说法:①分解因式:x2y+x2﹣y﹣1=(x2﹣1)(y+1)=(x+1)(x﹣1)(y+1);②若a,b,c是△ABC的三边长,且满足a2+b2+c2=ac+ab+bc,则△ABC为等边三角形;③若a,b,c为实数且满足a2+2b2+c2+28=4a+8b+8c,则这三边能构成三角形;正确的有()个.A.3 B.2 C.1 D.05.(2分)(2023春•曲阳县期末)已知多项式x2+ax﹣6因式分解的结果为(x+2)(x+b),则a+b的值为()A.﹣4 B.﹣2 C.2 D.46.(2分)(2022秋•白云区期末)下列多项式能用完全平方公式进行因式分解的是()A.a2﹣2a+4 B.a2+2a﹣1 C.a2+a﹣1 D.a2﹣4a+47.(2分)(2023春•曲阳县期末)小明在抄分解因式的题目时,不小心漏抄了x的指数,他只知道该数为不大于10的正整数,并且能利用平方差公式分解因式,他抄在作业本上的式子是x□﹣4y2(“□”表示漏抄的指数),则这个指数可能的结果共有()A.2种B.3种C.4种D.5种8.(2分)(2022秋•林州市校级期末)王林是一位密码编译爱好者,在他的密码手册中有这样一条信息:x ﹣1,a﹣b,3,x2+1,a,x+1分别对应六个字:南,爱,我,数,学,河,现将3a(x2﹣1)﹣3b(x2﹣1)因式分解,结果呈现的密码信息可能是()A.我爱数学B.爱河南C.河南数学D.我爱河南9.(2分)(2022秋•南安市期末)已知a=﹣x+2021,b=﹣x+2022,c=﹣x+2023,那么,代数式a2+b2+c2﹣ab﹣bc﹣ac的值是()A.﹣2022 B.2022 C.﹣3 D.310.(2分)(2022秋•内江期末)已知d=x4﹣2x3+x2﹣12x﹣5,则当x2﹣2x﹣5=0时,d的值为()A.25 B.20 C.15 D.1011.(2分)(2022春•兰西县校级期末)已知长方形的周长为16cm,它两邻边长分别为xcm,ycm,且满足(x﹣y)2﹣2x+2y+1=0,则该长方形的面积为()cm2.A.B.C.15 D.16评卷人得分二.填空题(共9小题,满分18分,每小题2分)(2023春•汉寿县期中)已知4x2+2(k+1)x+1可以用完全平方公式进行因式分解,则k=.(2分)12.13.(2分)(2023春•新田县期中)已知x2﹣x﹣1=0,则代数式﹣x3+2x2+2022的值为.14.(2分)(2023春•新晃县期末)甲、乙两个同学分解因式x2+mx+n时,甲看错了m,分解结果为(x+9)(x﹣2);乙看错了n,分解结果为(x﹣5)(x+2),则正确的分解结果为.15.(2分)(2023春•双流区期中)已知:△ABC的三分别边为a、b、c;且满足a2+2b2+c2=2b(a+c),则△ABC的形状.16.(2分)(2022秋•合肥期末)若a+b=3,ab=﹣1,则代数式a3b+2a2b2+ab3的值为.17.(2分)(2022春•桃江县期末)已知a+b=3,ab=2,求代数式a3b+2a2b2+ab3的值.18.(2分)(2022秋•济宁期末)在日常生活中如取款、上网等都需要密码,有一种用“因式分解法”产生的密码,方便记忆,原理是对于多项x4﹣y4,因式分解的结果是(x﹣y)(x+y)(x2+y2),若取x=9,y =9时,则各个因式的值是:(x+y)=18,(x﹣y)=0,(x2+y2)=162,于是就可以把“180162”作为一个六位数的密码,对于多项式9x3﹣xy2,取x=10,y=10时,用上述方法产生的密码是(写出一个即可).19.(2分)(2021秋•龙凤区期末)已知a,b,c是△ABC的三边,b2+2ab=c2+2ac,则△ABC的形状是.20.(2分)(2018春•成都期中)若a=2009x+2007,b=2009x+2008,c=2009x+2009,则a2+b2+c2﹣ab﹣bc ﹣ca的值为.评卷人得分三.解答题(共10小题,满分80分)21.(6分)(2023春•成县期末)因式分解.(1)y+(y﹣4)(y﹣1);(2)9a2(x﹣y)+4b2(y﹣x).22.(6分)(2022秋•嘉峪关期末)整体思想是数学解题中常见的一种思想方法:下面是某同学对多项式(x2+2x)(x2+2x+2)+1进行因式分解的过程.将“x2+2x”看成一个整体,令x2+2x=y,则原式=y(y+2)+1=y2+2y+1=(y+1)2,再将“y”还原即可.解:设x2+2x=y.原式=y(y+2)+1=y2+2y+1=(y+1)2=(x2+2x+1)2.问题:(1)该同学完成因式分解了吗?如果没完成,请你直接写出最后的结果;(2)请你模仿以上方法尝试对多项式(x2﹣4x)(x2﹣4x+8)+16进行因式分解.23.(6分)(2022秋•宛城区校级期末)阅读以下文字并解决问题:【方法呈现】形如x2+2ax+a2这样的二次三项式,我们可以直接用公式法把它分解成(x+a)2的形式,但对于二次三项式x2+6x﹣27,就不能直接用公式法分解了,此时,我们可以在x2+6x﹣27中间先加上一项9,使它与x2+6x 的和构成一个完全平方式,然后再减去9,则整个多项式的值不变.即:x2+6x﹣27=(x2+6x+9)﹣9﹣27=(x+3)2﹣62=(x+3+6)(x+3﹣6)=(x+9)(x﹣3),像这样,把一个二次三项式变成含有完全平方式的形式的方法,叫做配方法.同样地,把一个多项式进行局部因式分解可以来解决代数式值的最小(或最大)问题.例如:x2+2x+3=(x2+2x+1)+2=(x+1)2+2,∵(x+1)2≥0,∴(x+1)2+2≥2.则这个代数式x2+2x+3的最小值是2,这时相应的x的值是﹣1.【尝试应用】(1)利用“配方法”因式分解:x2+2xy﹣3y2.(2)求代数式x2﹣14x+10的最小(或最大)值,并写出相应的x的值.24.(8分)(2023春•铁西区月考)我们把多项式a2+2ab+b2及a2﹣2ab+b2这样的式子叫做完全平方式.如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式子中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫做配方法,配方法是一种重要的解决问题的数学方法,不仅可以将一个看似不能分解的多项式分解因式,还能解决一些与非负数有关的问题或求代数式的最大值、最小值等.例如:分解因式x2+2x﹣3.原式=(x2+2x+1﹣1)﹣3=(x+1)2﹣4=(x+1+2)(x+1﹣2)=(x+3)(x﹣1).求代数式2x2+4x﹣6的最小值.2x2+4x﹣6=2(x2+2x+1﹣1)﹣6=2(x+1)2﹣8.可知当x=﹣1时,2x2+4x﹣6有最小值﹣8.根据阅读材料用配方法解决下列问题:(1)填空:x2﹣+49=(x﹣7)2;;(2)利用配方法分解因式:x2﹣2x﹣24(注意:用其它方法不给分);(3)当x为何值时,多项式﹣x2﹣4x+3有最大值,并求出这个最大值.25.(8分)(2023春•吉安县期末)常用的分解因式的方法有提取公因式法、公式法及到了高中还要学习的十字相乘法,但有更多的多项式只用上述方法就无法分解,x2﹣4y2﹣2x+4y,我们细心观察这个式子就会发现,前两项符合平方差公式,后两项可提取公因式,前后两部分分别分解因式后会产生公因式,然后提取公因式就可以完成整个式子的分解因式了.过程为:x2﹣4y2﹣2x+4y=(x+2y)(x﹣2y)﹣2(x﹣2y)=(x﹣2y)(x+2y﹣2)这种分解因式的方法叫分组分解法.利用这种方法解决下列问题:(1)分解因式:a2﹣4a﹣b2+4;(2)△ABC三边a,b,c满足a2﹣ab﹣ac+bc=0,判断△ABC的形状.26.(8分)(2023春•沭阳县期末)如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”如:4=22﹣02,12=42﹣22,20=62﹣42,因此4,12,20都是“神秘数”.(1)请说明28是否为“神秘数”;(2)下面是两个同学演算后的发现,请判断真假,并说明理由.①嘉嘉发现:两个连续偶数2k+2和2k(其中k取非负整数)构造的“神秘数”也是4的倍数.②洪淇发现:2024是“神秘数”.27.(8分)(2023春•滕州市期末)阅读下列材料,并解答相应问题:对于二次三项式x2+2ax+a2这样的完全平方式,可以用公式法将它分解成(x+a)2的形式,但是对于二次三项式x2+2ax﹣3a2,就不能直接应用完全平方式,我们可以在二次三项式x2+2ax﹣3a2中先加一项a2,使其一部分成为完全平方式,再减去a2项,使整个式子的值不变,于是有下面的因式分解:仔细领会上述的解决问题的思路、方法,认真分析完全平方式的构造,结合自己对完全平方式的理解,解决下列问题:(1)因式分解:①x2﹣4x+3;②(x2+2x)2﹣2(x2+2x)﹣3.(2)拓展:因式分解:x4+4.28.(10分)(2023春•贵州期末)【知识再现】在研究平方差公式时,我们在边长为a的正方形中剪掉一个边长为b的小正方形(如图1),把余下的阴影部分再剪拼成一个长方形(如图2),根据图1、图2阴影部分的面积关系,可以得到一个关于a,b的等式①;【知识迁移】在边长为a的正方体上挖去一个边长为b的小正方体后,余下的部分(如图3)再切割拼成一个几何体(如图4).根据它们的体积关系得到关于a,b的等式为②a3﹣b3=(结果写成整式的积的形式)【知识运用】已知a﹣b=4,ab=3,求a3﹣b3的值.29.(10分)(2023春•兴庆区期末)对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式.例如图1可以得到(a+b)2=a2+2ab+b2,请解答下列问题:(1)写出图2中所表示的数学等式.(2)利用(1)中得到的结论,解决下面的问题:若a+b+c=15,ab+ac+bc=35,则a2+b2+c2=.(3)小明同学用图3中x张边长为a的正方形,y张边长为b的正方形,z张边长分别为a、b的长方形纸片拼出一个面积为(2a+b)(a+2b)长方形图形,则x+y+z=.(4)如图4所示,将两个边长分别为a和b的正方形拼在一起,B,C,G三点在同一直线上,连接AG 和GE,若两正方形的边长满足a+b=12,ab=20,你能求出阴影部分的面积吗?30.(10分)(2022秋•平城区校级期末)综合与实践如图1所示,边长为a的正方形中有一个边长为b的小正方形,图2是由图1中阴影部分拼成的一个长方形,设图1中阴影部分面积为S1,图2中阴影部分面积为S2.(1)请直接用含a和b的代数式表示S1=,S2=;写出利用图形的面积关系所得到的公式:(用式子表达).(2)依据这个公式,康康展示了“计算:(2+1)(22+1)(24+1)(28+1)”的解题过程.解:原式=(2﹣1)(2+1)(22+1)(24+1)(28+1)=(22﹣1)(22+1)(24+1)(28+1)=(24﹣1)(24+1)(28+1)=(28﹣1)(28+1)=216﹣1.在数学学习中,要学会观察,尝试从不同角度分析问题,请仿照康康的解题过程计算:2(3+1)(32+1)(34+1)(38+1)(316+1)+1.(3)对数学知识要会举一反三,请用(1)中的公式证明任意两个相邻奇数的平方差必是8的倍数.。
组卷因式分解拔高题
因式分解拔高题一.选择题(共10小题)1.下列各式由左边到右边的变形,属于因式分解的是()A.18x2y=2x2•9y B.ab﹣ac+d2=a(b﹣c)+d2C.a(x+y)=ax+ay D.2x2﹣=2(x+)(x﹣)2.下列各式:①﹣x2﹣y2;②﹣a2b2+1;③a2+ab+b2;④﹣x2+2xy﹣y2;⑤﹣mn+m2n2,可以用公式法分解因式的有()A.2个B.3个C.4个D.5个3.若a,b,c是直角三角形ABC的三边长,且a2+b2+c2+200=12a+16b+20c,则△ABC三条角平分线的交点到一条边的距离为()A.1B.2C.3D.44.若多项式2x2+ax﹣6能分解成两个一次因式的积,且其中一个因式为2x﹣3,则a的值为()A.1B.5C.﹣1D.﹣55.已知m2=4n+a,n2=4m+a,m≠n,则m2+2mn+n2的值为()A.16B.12C.10D.无法确定6.已知a、b不同的两个实数,且满足ab>0、a2+b2=4﹣2ab,当a﹣b为整数时,ab的值为()A.或B.或1C.或1D.或7.在△ABC中,若三边长a,b,c满足a2+2ab+b2=c2+24,a+b﹣c=4,△ABC的周长是()A.12B.16C.8D.68.若a为整数,则a2+a一定能被()整除.A.2 B.3 C.4 D. 59.下列说法正确的是()①若a2+b2+c2﹣2(a+b+c)+3=0,则a=b=c;②a2+b2+c2=﹣2(ab+bc+ac),则a+b+c=0;③若x2+xy+y=14,y2+xy+x=28,则x+y=6;④实数x,y,z满足x2+y2+z2=4,则(2x﹣y)2+(2y﹣z)2+(2z﹣x)2的最大值是20.A.①②B.①③④C.①②③D.①②③④10.已知整数a,b满足2ab+4a=b+3,则a+b的值是()A.0或﹣3B.1C.2或3D.﹣2二.填空题(共12小题)11.已知非零实数x,y满足,则=.12.若m2=n+2021,n2=m+2021(m≠n),那么代数式m3﹣2mn+n3的值.13.计算:12﹣22﹣32+42+52﹣62﹣72+82+…+20132﹣20142﹣20152+20162=.14.若关于x的三次四项式x3+ax2+bx+3能分解成(x+1)(x2﹣2x+3),则a+b=.15.如图,矩形的周长为10,面积为6,则m2n+mn2的值是.16.若实数m,n满足m2+n2+m2n2+8mn+9=0,则(m﹣n)2的值为.17.若a+b+c=5,ab+bc+ca=4,则a2+b2+c2=.18.阅读材料:如果两个正数a、b,即a>0,b>0,则有下面的不等式≥,当且仅当a=b时取到等号.我们把叫做正数a、b算术平均数,把叫做正数a、b的几何平均数,于是上述不等式可表述为:两个正数的算术平均数不小于(即大于或等于)它们的几何平均数.它在数学中有广泛的应用,是解决最大(小)值问题的有力工具.根据上述材料,若y=2x+(x>0),则y的最小值为.19.已知m2=2n+1,4n2=m+1(m≠2n),那么m+2n=,4n3﹣mn+2n2=.20.若x2+x﹣1=0,则3x4+3x3+3x+2的值为.21.设M=2n+28+1,若M为某个有理数的平方,则n的取值为.22.如果x2+4y2﹣2x﹣4y+2=0,则(2x﹣3y)2﹣(3y+2x)2=.三.解答题(共6小题)23.求证:N=52×32n+1×2n﹣3n×6n+2能被13整除.24.(1)若(x2+3mx﹣)(x2﹣3x+n)的积中不含x和x3项,求m3﹣mn+n2的值;(2)已知关于x的多项式x2+kx﹣10能被x﹣2整除,试求k的值.25.如图,已知D是△ABC的边BC上的一点,AB=CD=a,AD=b,BD=c,且满足a2+2ab =c2+2bc,AE是△ABD的中线.(1)判断△ABD的形状,并说明理由;(2)求证:AD是∠EAC的平分线.26.下面是某同学对多项式(x2﹣3x+4)(x2﹣3x+6)+1进行因式分解的过程.解:设x2﹣3x=m原式=(m+4)(m+6)+1(第一步)=m2+10m+25(第二步)=(m+5)2(第三步)=(x2﹣3x+5)2(第四步)回答下列问题:(1)该同学第二步到第三步运用了因式分解的.A.提取公因式;B.平方差公式;C.完全平方公式(2)请你模仿以上方法尝试对多项式(x2+2x)(x2+2x+6)+9进行因式分解.(3)因式分解:(x2﹣4x+6)(x2﹣4x+2)+4=(在横线处直接写出因式分解的结果).27.教材中这样写道:“我们把多项式a2+2ab+b2及a2﹣2ab+b2叫做完全平方式”,如果关于某一字母的二次多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式子中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫做配方法.配方法是一种重要的解决问题的数学方法,不仅可以将一个看似不能分解的多项式分解因式,还能解决一些与非负数有关的问题或求代数式最大值,最小值等.例如:分解因式x2+2x﹣3.原式=(x2+2x+1)﹣4=(x+1)2﹣4=(x+1+2)(x+1﹣2)=(x+3)(x﹣1);例如:求代数式x2+4x+6的最小值.原式=x2+4x+4+2=(x+2)2+2.∵(x+2)2≥0,∴当x=﹣2时,x2+4x+6有最小值是2.根据阅读材料用配方法解决下列问题:(1)分解因式:m2﹣4m﹣5=;(2)求代数式x2﹣6x+12的最小值;(3)若y=﹣x2+2x﹣3,当x=时,y有最值(填“大”或“小”),这个值是;(4)当a,b,c分别为△ABC的三边时,且满足a2+b2+c2﹣6a﹣10b﹣8c+50=0时,判断△ABC的形状并说明理由.28.阅读下列文字:我们知道对于一个图形,通过不同的方法计算图形的面积,可以得到一个数学等式,例如由图1可以得到(a+2b)(a+b)=a2+3ab+2b2.请解答下列问题:(1)小明同学打算用x张边长为a的正方形纸片A和y张边长为b的正方形纸片B,z 张相邻两边长分别为a、b的长方形纸片C拼出了一个面积为(3a+5b)(4a+7b)的长方形,那么他总共需要张纸片A、张纸片B、张纸片C;(2)写出图2中所表示的数学等式;(3)利用(2)中所得到的结论,解决下面的问题:已知a+b+c=9,a2+b2+c2=23,求ab+bc+ac的值.参考答案与试题解析一.选择题(共10小题)1.D.2.B.3.B.4.A.5.已知m2=4n+a,n2=4m+a,m≠n,则m2+2mn+n2的值为()A.16B.12C.10D.无法确定【解答】解:将m2=4n+a与n2=4m+a相减得m2﹣n2=4n﹣4m,(m+n)(m﹣n)=﹣4(m﹣n),(m﹣n)(m+n+4)=0,∵m≠n,∴m+n+4=0,即m+n=﹣4,∴m2+2mn+n2=(m+n)2=(﹣4)2=16.A.6.已知a、b不同的两个实数,且满足ab>0、a2+b2=4﹣2ab,当a﹣b为整数时,ab的值为()A.或B.或1C.或1D.或【解答】解:∵a2+b2=4﹣2ab,∴(a+b)2=4.∵(a﹣b)2=(a+b)2﹣4ab,∴(a﹣b)2=4﹣4ab.∴a﹣b=±.∵a﹣b为整数,且ab>0.∴4﹣4ab为非负整数.∴4﹣4ab=0或4﹣4ab=1.∴ab=1或ab=.故选:C.7.D.8.A.9.下列说法正确的是()①若a2+b2+c2﹣2(a+b+c)+3=0,则a=b=c;②a2+b2+c2=﹣2(ab+bc+ac),则a+b+c=0;③若x2+xy+y=14,y2+xy+x=28,则x+y=6;④实数x,y,z满足x2+y2+z2=4,则(2x﹣y)2+(2y﹣z)2+(2z﹣x)2的最大值是20.A.①②B.①③④C.①②③D.①②③④【解答】解:∵a2+b2+c2﹣2(a+b+c)+3=0,∴a2﹣2a+1+b2﹣2b+1+c2﹣2c+1=0,即(a﹣1)2+(b﹣1)2+(c﹣1)2=0,∴a﹣1=0,b﹣1=0,c﹣1=0,∴a=1,b=1,c=1,∴a=b=c,∴①选项符合题意;∵a2+b2+c2=﹣2(ab+bc+ac),∴a2+b2+c2+2(ab+bc+ac)=0,∴(a+b+c)2=0,∴a+b+c=0,∴②选项符合题意;∵x2+xy+y=14,y2+xy+x=28,∴x2+y2+2xy+x+y=42,∴(x+y)2+(x+y)=42,解得x+y=6或x+y=﹣7,∴③选项不符合题意;∵实数x、y、z满足x2+y2+z2=4,∴(2x﹣y)2+(2y﹣z)2+(2z﹣x)2=4x2﹣4xy+y2+4y2﹣4yz+z2+4z2﹣4xz+x2=5(x2+y2+z2)﹣4(xy+yz+xz)=20﹣4(xy+yz+xz)=20﹣2(2xy+2yz+2xz)=20﹣2[(x+y+z)2﹣(x2+y2+z2)]20﹣2[(x+y+z)2﹣4]=28﹣2(x+y+z)2≤28,∴(2x﹣y)2+(2y﹣z)2+(2z﹣x)2的最大值是28,∴④选项不符合题意;故选:A.10.已知整数a,b满足2ab+4a=b+3,则a+b的值是()A.0或﹣3B.1C.2或3D.﹣2【解答】解:由2ab+4a=b+3,得:2ab+4a﹣b﹣2=1∴(2a﹣1)(b+2)=1,∵2a﹣1,b+2都为整数,∴或,解得或,∴a+b=0或﹣3.故选:A.二.填空题(共12小题)11.已知非零实数x,y满足,则=﹣1.【解答】解:方法1.取x=1,则y=0.5.则原式=﹣1.方法2.条件可以变为x﹣y=xy.原式=(xy﹣2xy)÷xy=﹣112.若m2=n+2021,n2=m+2021(m≠n),那么代数式m3﹣2mn+n3的值﹣2021.【解答】解:将两式m2=n+2021,n2=m+2021相减,得m2﹣n2=n﹣m,(m+n)(m﹣n)=n﹣m,(因为m≠n,所以m﹣n≠0),m+n=﹣1,∵m2=n+2021,n2=m+2021(m≠n),∴m2﹣n=2021,n2﹣m=2021(m≠n),∴m3﹣2mn+n3=m3﹣mn﹣mn+n3=m(m2﹣n)+n(n2﹣m)=2021m+2021n=2021(m+n)=﹣2021,故答案为﹣2021.13.计算:12﹣22﹣32+42+52﹣62﹣72+82+…+20132﹣20142﹣20152+20162=2016.解:∵12﹣22﹣32+42=4,52﹣62﹣72+82=4,…,20132﹣20142﹣20152+20162=4,将计算式依次分组,每4个数为一组,即n2﹣(n+1)2﹣(n+2)2+(n+3)2,=﹣(n+1﹣n)(n+1+n)+(n+3+n+2)(n+3﹣n﹣2),=﹣2n﹣1+2n+5,=4,∴每组都等于4,∴12﹣22﹣32+42+52﹣62﹣72+82+…+20132﹣20142﹣20152+20162=2016,故答案为:2016.14.0.15.30.16.若实数m,n满足m2+n2+m2n2+8mn+9=0,则(m﹣n)2的值为12.【解答】解:∵m2+n2+m2n2+8mn+9=0,∴m2+n2+2mn+m2n2+6mn+9=0,∴(m+n)2+(mn+3)2=0,∴m+n=0,mn+3=0,∴(m﹣n)2=(m+n)2﹣4mn=12,故(m﹣n)2的值为12,故答案为:12.17.17.18.阅读材料:如果两个正数a、b,即a>0,b>0,则有下面的不等式≥,当且仅当a=b时取到等号.我们把叫做正数a、b算术平均数,把叫做正数a、b 的几何平均数,于是上述不等式可表述为:两个正数的算术平均数不小于(即大于或等于)它们的几何平均数.它在数学中有广泛的应用,是解决最大(小)值问题的有力工具.根据上述材料,若y=2x+(x>0),则y的最小值为2.【解答】解:由得,.∴≥,即y≥2,∴y的最小值为2.故答案为:2.19.已知m2=2n+1,4n2=m+1(m≠2n),那么m+2n=﹣1,4n3﹣mn+2n2=0.【解答】解:∵m2=2n+1,4n2=m+1(m≠2n),∴m2﹣4n2=2n+1﹣m﹣1,∴m2﹣4n2=2n﹣m,∴(m+2n)(m﹣2n)=2n﹣m,∵m≠2n,∴m+2n=﹣1;∵4n2=m+1,∴4n3=mn+n,∴4n3﹣mn=n.∵4n2=m+1,∴n2=(m+1),∴2n2=(m+1).∵4n3﹣mn+2n2=(4n3﹣mn)+2n2=n+(m+1)=(2n+m+1)=(﹣1+1)=0.故答案是:﹣1;0.20.若x2+x﹣1=0,则3x4+3x3+3x+2的值为5.【解答】解:∵x2+x﹣1=0,∴x2+x=1.∴3x4++3x3+3x+2=3x2(x2+x)+3x+2=3x2+3x+2=3(x2+x)+2=3+2=5.故答案为:5.21.设M=2n+28+1,若M为某个有理数的平方,则n的取值为5或14或﹣10.【解答】解:当2n是乘积二倍项时,原式=28+2•24+1=(24+1)2,此时n=5;当28是乘积二倍项时,原式=2n+2•27+1=(27+1)2,此时n=14;当1是乘积二倍项时,原式=2n+2•24•2﹣5+28=(24+2﹣5)2,此时n=﹣10,综上所述,n的值为5或14或﹣10.22.如果x2+4y2﹣2x﹣4y+2=0,则(2x﹣3y)2﹣(3y+2x)2=﹣12.三.解答题(共6小题)23.求证:N=52×32n+1×2n﹣3n×6n+2能被13整除.【解答】解:52•32n+1•2n﹣3n•6n+2能被13整除.理由如下:∵52•32n+1•2n﹣3n•6n+2=52•(32n•3)•2n﹣3n•(6n•62)=75•32n•2n﹣36•3n•6n=75•18n﹣36•18n=39•18n=13×3•18n,又∵3•18n是整数,∴52•32n+1•2n﹣3n•6n+2能被13整除.24.(1)若(x2+3mx﹣)(x2﹣3x+n)的积中不含x和x3项,求m3﹣mn+n2的值;(2)已知关于x的多项式x2+kx﹣10能被x﹣2整除,试求k的值.【解答】解:(1)(x2+3mx﹣)(x2﹣3x+n)=x4+(3m﹣3)x3+(n﹣9m﹣)x2+(3mn+1)x﹣n,由积中不含x和x3项,得到3m﹣3=0,3mn+1=0,解得:m=1,n=﹣,m3﹣mn+n2=1++=;(2)由题意知,当x﹣2=0,即x=2时,x2+kx﹣10=0,∴4+2k﹣10=0,解得k=3.25.如图,已知D是△ABC的边BC上的一点,AB=CD=a,AD=b,BD=c,且满足a2+2ab=c2+2bc,AE是△ABD的中线.(1)判断△ABD的形状,并说明理由;(2)求证:AD是∠EAC的平分线.【解答】(1)解:△ABD是等腰三角形,理由如下,∵a2+2ab=c2+2bc,∴(a﹣c)(a+c+2b)=0,∵a+c+2b≠0,∴a=c,∴△ABD是等腰三角形.(2)证明:如图,取AB的中点F,连接DF,则由(1)得,a=c,∴AB=BD,∠F AD=∠EDA,∵点E是BD的中点,F是AB的中点,∴DE=BD,AF=AB,DF∥AC,∴DE=AF,∠ADF=∠DAC,在△ADF和△DAE中,,∴△ADF≌△DAE(SAS),∴∠ADF=∠DAE,∴∠DAE=∠DAC,∴AD是∠EAC的平分线.26.下面是某同学对多项式(x2﹣3x+4)(x2﹣3x+6)+1进行因式分解的过程.解:设x2﹣3x=m原式=(m+4)(m+6)+1(第一步)=m2+10m+25(第二步)=(m+5)2(第三步)=(x2﹣3x+5)2(第四步)回答下列问题:(1)该同学第二步到第三步运用了因式分解的C.A.提取公因式;B.平方差公式;C.完全平方公式(2)请你模仿以上方法尝试对多项式(x2+2x)(x2+2x+6)+9进行因式分解.(3)因式分解:(x2﹣4x+6)(x2﹣4x+2)+4=(x﹣2)4.(在横线处直接写出因式分解的结果).【解答】解:(1)该同学第二步到第三步运用了因式分解的完全平方公式.故答案为:C;(2)设x2+2x=y,原式=y(y+6)+9=y2+6y+9=(y+3)2=(x2+2x+3)2;(3)设x2﹣4x+2=z,原式=z(z+4)+4=z2+4z+4=(z+2)2=(x2﹣4x+2+2)2=(x2﹣4x+4)2=[(x﹣2)2]2=(x﹣2)4.故答案为:(x﹣2)4.27.例如:分解因式x2+2x﹣3.原式=(x2+2x+1)﹣4=(x+1)2﹣4=(x+1+2)(x+1﹣2)=(x+3)(x﹣1);例如:求代数式x2+4x+6的最小值.原式=x2+4x+4+2=(x+2)2+2.∵(x+2)2≥0,∴当x=﹣2时,x2+4x+6有最小值是2.根据阅读材料用配方法解决下列问题:(1)分解因式:m2﹣4m﹣5=(m+1)(m﹣5);(2)求代数式x2﹣6x+12的最小值;(3)若y=﹣x2+2x﹣3,当x=﹣1时,y有最大值(填“大”或“小”),这个值是﹣2;(4)当a,b,c分别为△ABC的三边时,且满足a2+b2+c2﹣6a﹣10b﹣8c+50=0时,判断△ABC的形状并说明理由.【解答】解:(1)m2﹣4m﹣5=m2﹣4m+4﹣4﹣5=(m﹣2)2﹣9=(m﹣2+3)(m﹣2﹣3)=(m+1)(m﹣5).故答案为:(m+1)(m﹣5).(2)x2﹣6x+12=x2﹣6x+9+3=(x﹣3)2+3;∴x2﹣6x+12的最小值是3.故答案为;3.(3)y=﹣x2+2x﹣3,y=﹣x2+2x﹣1﹣2,y=﹣(x+1)2﹣2,∴当x=﹣1的时候,y有最大值﹣2.故答案为:若y=﹣x2+2x﹣3,当x=﹣1时,y有最大值,这个值是﹣2.(4 a2+b2+c2﹣6a﹣10b﹣8c+50=0,a2﹣6a+9+b2﹣10b+25+c2﹣8c+16=0,(a﹣3)2+(b﹣5)2+(c﹣4)2=0,三个完全平方式子的和为0,所以三个完全平方式子分别等于0.a﹣3=0,b﹣5=0,c﹣4=0,得,a=3,b=5,c=4.∴△ABC是直角三角形.故答案为:△ABC是直角三角形.28.解:(1)∵(3a+5b)(4a+7b)=12a2+41ab+35b2,∴拼出了一个面积为(3a+5b)(4a+7b)的长方形,它总共需要12张纸片A、35张纸片B、41张纸片C.故答案为:12;35;41;(2)∵图2中的图片是边长为(a+b+c)的正方形,∴图2中的面积为:(a+b+c)2.又∵图2中由1个边长为a的正方形,1个边长为b的正方形,1个边长为c的正方形,2个长为a宽为b的长方形2个长为a宽为c的长方形,2个长为c宽为b的长方形组成,∴图2中的面积为:a2+b2+c2+2ab+2bc+2ac.∴图2中所表示的数学等式为:(a+b+c)2=a2+b2+c2+2ab+2bc+2ac.故答案为:(a+b+c)2=a2+b2+c2+2ab+2bc+2ac;(3)∵(a+b+c)2=a2+b2+c2+2ab+2bc+2ac,∴ab+bc+ac=.∵a+b+c=9,a2+b2+c2=23,∴ab+bc+ac ===29.第11页(共11页)。
2023-2024学年北师版八年级数学寒假专题拔高作业 第5节 因式分解1(含答案)
注意:
(1)分解的结果要以积的形式表示;
(2)每个因式必须是整式,且每个因式的次数都必须不高于原来多项式的次数;
(3)必须分解到每个多项式因式不能再分解为止
2.因式分解结果的要求
因式分解结果的标准形式 符合定义,结果一定是乘积的形式
不能含有中括号,大括号
常见错误或不规范模式 (x 1)(x 2)(x 3) 7 (x 1)[2(x 3) 1]
最后的因式不能再次分解
(x 1)(x2 1)
相同因式写成幂的形式 括号首项不能为负 因式中不含有分式
因式中不含无理数
x(x 1)(x 1)(x 1) x(x 1)(x 1) x(x 1)(x 1) x
x(x 2)(x 2)
单项式因式写在多项式因式前面 每个因式第一项系数一般不为分数
(x 1)x(x 1) x(1 x 1)(x 1)
(1)16 8(x y) (x y) 2
(2) (a b)2 6(a b) 9
8
(3) (x2 x)2 6(x2 x) 9
(4) 4(x y)2 5 20(x y 1)
例 3.已知 x y 2, xy a 4, x3 y 3 26 ,求 a 的值.
过关检测 1.(1) x3 x2 y3 y2
平方差公式法: a 2 b2 (a b)(a b)
形如 a 2 2ab b 2 的式子称为完全平方式。 用完全平方公式因式分解: a 2 2ab b 2 (a b)2
需要了解的几种类型: a3 b3 (a b)(a2 ab b2 ) (a b)3 a3 3a2b 3ab2 b3 (a b c)2 a2 b2 c2 2ab 2ac 2bc
(7) (x2 4)2 8x(x2 4) 16x2
专题14.3 因式分解的综合应用(专项拔高卷)学生版-2024-2025学年八年级数学上册真题汇编章
2024-2025学年人教版数学八年级上册同步专题热点难点专项练习专题14.3 因式分解的综合应用(专项拔高30题)考试时间:90分钟试卷满分:120分难度:0.53姓名:___________班级:___________考号:___________题号一二三总分得分评卷人得分一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2023春•佛山月考)已知a、b、c为△ABC的三边长,且a2+ac=b2+bc,则△ABC是()A.等腰直角三角形B.直角三角形C.等边三角形D.等腰三角形2.(2分)(2023•阜城县校级模拟)如图,把图1中的①部分剪下来,恰好能拼在②的位置处,构成图2中的图形,形成一个从边长为a的大正方形中剪掉一个边长为b的小正方形.根据图形的变化过程写出的一个正确的等式是()A.(a﹣b)=a2﹣2ab+b2B.a(a﹣b)=a2﹣abC.(a﹣b)2=a2﹣b2D.(a+b)(a﹣b)=a2﹣b23.(2分)(2023•赫山区校级一模)设n为某一自然数,代入代数式n3﹣n计算其值时,四个学生算出了下列四个结果.其中正确的结果是()A.5814 B.5841 C.8415 D.84514.(2分)(2023•路北区模拟)在探索因式分解的公式时,可以借助几何图形来解释某些公式.如图,从左图到右图的变化过程中,解释的因式分解公式是()A.(a+b)(a﹣b)=a2﹣b2B.a2﹣b2=(a+b)(a﹣b)C.a2+b2=(a+b)2D.(a﹣b)2=a2﹣2ab+b25.(2分)(2023春•蜀山区校级期中)如果一个正整数可以表示为两个连续奇数的平方差,那么称该正整数为“致真数”,如8=32﹣12,24=72﹣52,即8,24均为“致真数”,在不超过50的正整数中,所有的“致真数”之和为()A.160 B.164 C.168 D.1776.(2分)(2023春•金沙县期末)设a,b为自然数,定义aΔb=a2+b2﹣ab,则(3△4)+(﹣4△5)的值()A.34 B.58 C.74 D.987.(2分)(2022秋•大兴区校级期末)在日常生活中,如取款、上网等都需要密码,有一种利用“因式分解”法生成的密码,方便记忆.如:对于多项式x4﹣y4,因式分解的结果是(x﹣y)(x+y)(x2+y2),若取x=9,y=9时,则各个因式的值是:(x﹣y)=0,(x+y)=18,(x2+y2)=162,于是就可以把“018162”作为一个六位数的密码.对于多项式x3﹣9xy2,取x=10,y=1时,用上述方法生成的密码可以是()A.101001 B.1307 C.1370 D.101378.(2分)(2022秋•江北区校级期末)定义:对于确定顺序的三个数a,b,c,计算,,,将这三个计算结果的最大值称为a,b,c的“极数”:例如:1,﹣3,1,因为,,,所以1,2,3的“极数”为,下列说法正确的个数为()①3,1,﹣4的“极数”是36;②若x,y,0的“极数”为0,则x和y中至少有1个数是负数;③存在2个数m,使得m,﹣6,2的极数为.A.0个B.1个C.2个D.3个9.(2分)(2021秋•惠民县期末)已知a、b、c为△ABC的三条边边长,且满足等式a2+2b2+c2﹣2ab﹣2bc =0,则△ABC的形状为()A.等腰三角形B.等边三角形C.直角三角形D.钝角三角形10.(2分)(2022秋•内江期末)已知d=x4﹣2x3+x2﹣12x﹣5,则当x2﹣2x﹣5=0时,d的值为()A.25 B.20 C.15 D.10评卷人得分二.填空题(共10小题,满分20分,每小题2分)11.(2分)(2023春•岳阳期末)当a+b=2,ab=﹣3时,则a2b+ab2=.12.(2分)(2023•平江县模拟)若2a﹣3b=﹣1,则代数式4a2﹣6ab+3b的值为.13.(2分)(2022秋•万州区期末)若,则代数式m2+n2+k2+2mn﹣2mk﹣2nk 的值为.14.(2分)(2022秋•河口区期末)若一个整数能表示成a2+b2(a,b是正整数)的形式,则称这个数为“丰利数”.例如,2是“丰利数”,因为2=12+12,再如,M=x2+2xy+2y2=(x+y)2+y2(x+y,y是正整数),所以M也是“丰利数”.若p=4x2﹣mxy+2y2﹣6y+9(其中x>y>0)是“丰利数”,则m=.15.(2分)(2023春•淮安区期末)如图,将一张长方形纸板按图中虚线裁剪成九块,其中有两块是边长都为m的大正方形,两块是边长都为n的小正方形,五块是长为m,宽为n的全等小长方形,且m>n(以上长度单位:cm).观察图形,可以发现代数式2m2+5mn+2n2可以因式分解为.16.(2分)(2022秋•新泰市期中)如图,将一张大长方形纸板按图中虚线裁剪成9块,其中有2块是边长为a厘米的大正方形,2块是边长都为b厘米的小正方形,5块是长为a厘米,宽为b厘米的相同的小长方形,且a>b.观察图形,可以发现代数式2a2+5ab+2b2可以因式分解为.17.(2分)(2022秋•新泰市期中)已知a=2021x+2000,b=2021x+2001,c=2021x+2002,则多项式a2+b2+c2﹣ab﹣bc﹣ca的值为.18.(2分)(2021秋•云梦县期末)若m2=2n+2021,n2=2m+2021(m≠n),那么式子m3﹣4mn+n3值为.19.(2分)(2022秋•文登区期中)已知a=+18,b=+17,c=+16,那么代数式a2+b2+c2﹣ab﹣bc﹣ac的值是.20.(2分)(2018春•成都期中)若a=2009x+2007,b=2009x+2008,c=2009x+2009,则a2+b2+c2﹣ab﹣bc ﹣ca的值为.评卷人得分三.解答题(共9小题,满分80分)21.(8分)(2023春•高碑店市校级月考)发现:两个正整数之和与这两个正整数之差的平方差一定是4的倍数.验证:(1)(2+1)2﹣(2﹣1)2=;(2)设两个正整数为m,n,请验证“发现”中的结论正确;拓展:(1)已知(x+y)2=200,xy=48,求(x﹣y)2的值;(2)直接写出两个正整数之和与这两个正整数之差的平方和一定是几的倍数.22.(8分)(2023春•新晃县期末)“以形释数”是利用数形结合思想证明代数问题的一种体现,做整式的乘法运算时利用几何直观的方法获取结论,在解决整式运算问题时经常运用.例1:如图1,可得等式:a(b+c)=ab+ac;例2:由图2,可得等式:(a+2b)(a+b)=a2+3ab+2b2.(1)如图3,将几个面积不等的小正方形与小长方形拼成一个边长为a+b+c的正方形,从中你发现的结论用等式表示为;(2)利用(1)中所得到的结论,解决下面的问题:已知a+b+c=10,a2+b2+c2=36.求ab+bc+ac的值.(3)如图4,拼成AMGN为大长方形,记长方形ABCD的面积与长方形EFGH的面积差为S.设CD=x,若S的值与CD无关,求a与b之间的数量关系.23.(8分)(2022秋•交城县期末)在学习对复杂多项式进行因式分解时,老师示范了如下例题:例:因式分解:(x2+6x+5)(x2+6x﹣7)+36解:设x2+6x=y原式=(y+5)(y﹣7)+36第一步=y2﹣2y+1第二步=(y﹣1)2第三步=(x2+6x﹣1)2第四步完成下列任务:(1)例题中第二步到第三步运用了因式分解的;(填序号)①提取公因式;②平方差公式;③两数和的完全平方公式;④两数差的完全平方公式;(3)请你模仿以上例题分解因式:(a2﹣4a+2)(a2﹣4a+6)+4.24.(8分)(2022秋•前郭县期末)下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程解:设x2﹣4x=y原式=(y+2)(y+6)+4 (第一步)=y2+8y+16 (第二步)=(y+4)2(第三步)=(x2﹣4x+4)2(第四步)(1)该同学第二步到第三步运用了因式分解的.A.提取公因式B.平方差公式C.两数和的完全平方公式D.两数差的完全平方公式(2)该同学在第四步将y用所设中的x的代数式代换,这个结果是否分解到最后?.(填“是”或“否”)如果否,直接写出最后的结果.(3)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.25.(8分)(2022秋•邻水县期末)我们知道某些代数恒等式可用一些卡片拼成的图形面积来解释,例如:图1可以用来解释a2+2ab+b2=(a+b)2.现有足够多的正方形卡片1号、2号,长方形卡片3号,如图3.(1)根据图2完成因式分解:2a2+2ab=;(2)现有1号卡片1张、2号卡片4张,3号卡片4张,在不重叠的情况下可以紧密地拼成一个大正方形,求这个大正方形的边长;(3)图1中的两个正方形的面积之和为S1,两个长方形的面积之和为S2,S1与S2有何大小关系?请说明理由.26.(10分)(2023春•芗城区校级期中)常用的分解因式的方法有提取公因式法、公式法及十字相乘法.但有更多的多项式只用上述方法就无法分解,如x2﹣4y2﹣2x+4y,可以通过以下过程进行因式分解:x2﹣4y2﹣2x+4y=(x+2y)(x﹣2y)﹣2(x﹣2y)=(x﹣2y)(x+2y﹣2).这种分解因式的方法叫分组分解法.利用这种方法解决下列问题:(1)分解因式x2+2xy+y2﹣9;(2)已知:x+y=3,x﹣y=2.求:x2﹣y2+6y﹣6x的值.27.(10分)(2022秋•长春期末)我们知道,对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式.例如图①可以得到(a+2b)(a+b)=a2+3ab+2b2.请回答下列问题:(1)写出图②中所表示的数学等式;(2)猜测(a+b+c+d)2=.(3)利用(1)中得到的结论,解决下面的问题:已知a+b+c=12,ab+bc+ca=48,求a2+b2+c2的值;(4)在(3)的条件下,若a、b、c分别是一个三角形的三边长,请判断该三角形的形状,并说明理由.28.(10分)(2023春•新吴区期中)阅读材料:利用公式法,可以将一些形如ax2+bx+c(a≠0)的多项式变形为a(x+m)2+n的形式,我们把这样的变形方法叫做多项式ax2+bx+c(a≠0)的配方法,运用多项式的配方法及平方差公式能对一些多项式进行因式分解例如x2+4x﹣5=x2+4x+()2﹣()2﹣5=(x+2)2﹣9=(x+2+3)(x+2﹣3)=(x+3)(x ﹣1).根据以上材料,解答下列问题.(1)分解因式(利用公式法):x2+2x﹣8;(2)求多项式x2+4x﹣3的最小值;(3)已知a,b,c是△ABC的三边长,且满足a2+b2+c2+50=6a+8b+10c,求△ABC的周长.29.(10分)(2021秋•科尔沁区期末)阅读材料:利用公式法,可以将一些形如ax2+bx+c(a≠0)的多项式变形为a(x+m)2+n的形式,我们把这样的变形方法叫做多项式ax2+bx+c(a≠0)的配方法,运用多项式的配方法可以解决一些数学问题.比如运用多项式的配方法及平方差公式能对一些多项式进行因式分解.例:x2+4x﹣5=x2+4x+()2﹣()2﹣5=x2+4x+4﹣9=(x+2)2﹣9.=(x+2﹣3)(x+2+3)=(x﹣1)(x+5).根据以上材料,利用多项式的配方解答下列问题.(1)分解因式:x2+2x﹣3;(2)求多项式x2+6x﹣9的最小值;(3)已知a,b,c是△ABC的三边长,且满足a2+b2+c2﹣6a﹣8b﹣10c+50=0,求△ABC的周长.。
因式分解经典题及解析
因式分解经典题及解析因式分解拔高题1.在学习因式分解时,我们学习了提公因式法和公式法(平方差公式和完全平方公式),事实上,除了这两种方法外,还有其它方法可以用来因式分解,比如配方法.例如,如果要因式分解x2+2x﹣3时,显然既无法用提公因式法,也无法用公式法,怎么办呢?这时,我们可以采用下面的办法:x2+2x﹣3=x2+2×x×1+12﹣1﹣3﹣﹣﹣﹣﹣﹣①=(x+1)2﹣22﹣﹣﹣﹣﹣﹣②=…解决下列问题:(1)填空:在上述材料中,运用了_________的思想方法,使得原题变为可以继续用平方差公式因式分解,这种方法就是配方法;(2)显然所给材料中因式分解并未结束,请依照材料因式分解x2+2x﹣3;(3)请用上述方法因式分解x2﹣4x﹣5.2.请看下面的问题:把x4+4分解因式分析:这个二项式既无公因式可提,也不能直接利用公式,怎么办呢19世纪的法国数学家苏菲•热门抓住了该式只有两项,而且属于平方和(x2)2+(22)2的形式,要使用公式就必须添一项4x2,随即将此项4x2减去,即可得x4+4=x4+4x2+4﹣4x2=(x2+2)2﹣4x2=(x2+2)2﹣(2x)2=(x2+2x+2)(x2﹣2x+2)人们为了纪念苏菲•热门给出这一解法,就把它叫做“热门定理”,请你依照苏菲•热门的做法,将下列各式因式分解.(1)x4+4y4;(2)x2﹣2ax﹣b2﹣2ab.3.下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程.解:设x2﹣4x=y原式=(y+2)(y+6)+4(第一步)=y2+8y+16(第二步)=(y+4)2(第三步)=(x2﹣4x+4)2(第四步)回答下列问题:(1)该同学第二步到第三步运用了因式分解的_________.A、提取公因式B.平方差公式C、两数和的完全平方公式D.两数差的完全平方公式(2)该同学因式分解的结果是否彻底_________.(填“彻底”或“不彻底”)若不彻底,请直接写出因式分解的最后结果_________.(3)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.4.找出能使二次三项式x2+ax﹣6可以因式分解(在整数范围内)的整数值a,并且将其进行因式分解.5.利用因式分解说明:两个连续偶数的平方差一定是4的倍数.6.已知关于x的多项式3x2+x+m因式分解以后有一个因式为(3x﹣2),试求m的值并将多项式因式分解.7.已知多项式(a2+ka+25)﹣b2,在给定k的值的条件下可以因式分解.请给定一个k值并写出因式分解的过程.8.先阅读,后解题:要说明代数式2x2+8x+10的值恒大于0还是恒等于0或者恒小于0,我们可以将它配方成一个平方式加上一个常数的形式,再去考虑,具体过程如下:解:2x2+8x+10=2(x2+4x+5)(提公因式,得到一个二次项系数为1的二次多项式)=2(x2+4x+22﹣22+5)=2[(x+2)2+1](将二次多项式配方)=2(x+2)2+2 (去掉中括号)因为当x取任意实数时,代数式2(x+2)2的值一定是非负数,那么2(x+2)2+2的值一定为正数,所以,原式的值恒大于0,并且,当x=﹣2时,原式有最小值2.请仿照上例,说明代数式﹣2x2﹣8x﹣10的值恒大于0还是恒小于0,并且说明它的最大值或者最小值是什么.9.老师给学生一个多项式,甲、乙、丙、丁四位同学分别给了一个关于此多项式的描述:甲:这是一个三次三项式;乙:三次项系数为1;丙:这个多项式的各项有公因式;丁:这个多项式分解因式时要用到公式法;若已知这四位同学的描述都正确,请你构造一个同时满足这个描述的一个多项式.10.在对某二次三项式进行因式分解时,甲同学因看错了一次项系数而将其分解为2(x﹣1)(x ﹣9),而乙同学看错了常数项,而将其分解为2(x﹣2)(x﹣4),请你判断正确的二次三项式并进行正确的因式分解.11.观察李强同学把多项式(x2+6x+10)(x2+6x+8)+1分解因式的过程:解:设x2+6x=y,则原式=(y+10)(y+8)+1=y2+18y+81=(y+9)2=(x2+6x+9)2(1)回答问题:这位同学的因式分解是否彻底?若不彻底,请你直接写出因式分解的最后结果:_________.(2)仿照上题解法,分解因式:(x2+4x+1)(x2+4x ﹣3)+4.12.(1)写一个多项式,再把它分解因式(要求:多项式含有字母m和n,系数、次数不限,并能先用提取公因式法再用公式法分解).(2)阅读下列分解因式的过程,再回答所提出的问题:1+x+x(x+1)+x(x+1)2=(1+x)[1+x+x(x+1)]①=(1+x)2(1+x)②=(1+x)3③①上述分解因式的方法是_________,由②到③这一步的根据是_________;②若分解1+x+x(x+1)+x(x+1)2+…+x(x+1)2006,结果是_________;③分解因式:1+x+x(x+1)+x(x+1)2+…+x(x+1)n(n为正整数).13.阅读下面的材料并完成填空:因为(x+a)(x+b)=x2+(a+b)x+ab,所以,对于二次项系数为1的二次三项式x2+px+q的因式解,就是把常数项q分解成两个数的积且使这两数的和等于p,即如果有a,b两数满足a﹒b=a+b=p,则有x2+px+q=(x+a)(x+b).如分解因式x2+5x+6.解:因为2×3=6,2+3=5,所以x2+5x+6=(x+2)(x+3).再如分解因式x2﹣5x﹣6.解:因为﹣6×1=﹣6,﹣6+1=﹣5,所以x2﹣5x﹣6=(x﹣6)(x+1).同学们,阅读完上述文字后,你能完成下面的题目吗?试试看.因式分解:(1)x2+7x+12;(2)x2﹣7x+12;(3)x2+4x﹣12;(4)x2﹣x﹣12.答案1.请看下面的问题:把x4+4分解因式分析:这个二项式既无公因式可提,也不能直接利用公式,怎么办呢19世纪的法国数学家苏菲•热门抓住了该式只有两项,而且属于平方和(x2)2+(22)2的形式,要使用公式就必须添一项4x2,随即将此项4x2减去,即可得x4+4=x4+4x2+4﹣4x2=(x2+2)2﹣4x2=(x2+2)2﹣(2x)2=(x2+2x+2)(x2﹣2x+2)人们为了纪念苏菲•热门给出这一解法,就把它叫做“热门定理”,请你依照苏菲•热门的做法,将下列各式因式分解.(1)x4+4y4;(2)x2﹣2ax﹣b2﹣2ab.考点:因式分解-运用公式法.专题:阅读型.分析:这是要运用添项法因式分解,首先要看明白例题才可以尝试做以下题目.解答:解:(1)x4+4y4=x4+4x2y2+4y2﹣4x2y2,=(x2+2y2)2﹣4x2y2,=(x2+2y2+2xy)(x2+2y2﹣2xy);(2)x2﹣2ax﹣b2﹣2ab,=x2﹣2ax+a2﹣a2﹣b2﹣2ab,=(x﹣a)2﹣(a+b)2,=(x﹣a+a+b)(x﹣a﹣a﹣b),=(x+b)(x﹣2a﹣b).点本题考查了添项法因式分解,难度比较大.评:2.下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程.解:设x2﹣4x=y原式=(y+2)(y+6)+4(第一步)=y2+8y+16(第二步)=(y+4)2(第三步)=(x2﹣4x+4)2(第四步)回答下列问题:(1)该同学第二步到第三步运用了因式分解的C.A、提取公因式B.平方差公式C、两数和的完全平方公式D.两数差的完全平方公式(2)该同学因式分解的结果是否彻底不彻底.(填“彻底”或“不彻底”)若不彻底,请直接写出因式分解的最后结果(x ﹣2)4.(3)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.考点:提公因式法与公式法的综合运用.专题:阅读型.分析:(1)完全平方式是两数的平方和与这两个数积的两倍的和或差;(2)x2﹣4x+4还可以分解,所以是不彻底.(3)按照例题的分解方法进行分解即可.解答:解:(1)运用了C,两数和的完全平方公式;(2)x2﹣4x+4还可以分解,分解不彻底;(3)设x2﹣2x=y.(x2﹣2x)(x2﹣2x+2)+1,=y(y+2)+1,=y2+2y+1,=(y+1)2,=(x2﹣2x+1)2,=(x﹣1)4.点评:本题考查了运用公式法分解因式和学生的模仿理解能力,按照提供的方法和样式解答即可,难度中等.3.找出能使二次三项式x2+ax﹣6可以因式分解(在整数范围内)的整数值a,并且将其进行因式分解.考点:因式分解-十字相乘法等.分析:根据十字相乘法的分解方法和特点可知:a 是﹣6的两个因数的和,则﹣6可分成3×(﹣2),﹣3×2,6×(﹣1),﹣6×1,共4种,所以将x2+ax﹣6分解因式后有4种情况.解答:解:x2+x﹣6=(x+3)(x﹣2);x2﹣x﹣6=(x﹣3)(x+2);x2+5x﹣6=(x+6)(x﹣1);x2﹣5x﹣6=(x﹣6)(x+1).点评:本题考查十字相乘法分解因式,运用十字相乘法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程,常数﹣6的不同分解是本题的难点.4.利用因式分解说明:两个连续偶数的平方差一定是4的倍数.考点:因式分解的应用.分析:根据题意设出两个连续偶数为2n、2n+2,利用平方差公式进行因式分解,即可证出结论.解答:解:设两个连续偶数为2n,2n+2,则有(2n+2)2﹣(2n)2,=(2n+2+2n)(2n+2﹣2n),=(4n+2)×2,=4(2n+1),因为n为整数,所以4(2n+1)中的2n+1是正奇数,所以4(2n+1)是4的倍数,故两个连续正偶数的平方差一定能被4整除.点评:本题考查了因式分解的应用,解题的关键是正确设出两个连续正偶数,再用平方差公式对列出的式子进行整理,此题较简单.5.已知关于x的多项式3x2+x+m因式分解以后有一个因式为(3x﹣2),试求m的值并将多项式因式分解.考点:因式分解的意义.分析:由于x的多项式3x2+x+m分解因式后有一个因式是3x﹣2,所以当x=时多项式的值为0,由此得到关于m的方程,解方程即可求出m的值,再把m的值代入3x2+x+m进行因式分解,即可求出答案.解答:解:∵x的多项式3x2+x+m分解因式后有一个因式是3x﹣2,当x=时多项式的值为0,即3×=0,∴2+m=0,∴m=﹣2;∴3x2+x+m=3x2+x﹣2=(x+1)(3x﹣2);故答案为:m=﹣2,(x+1)(3x﹣2).点评:本题主要考查因式分解的意义,有公因式时,要先考虑提取公因式;注意运用整体代入法求解.6.已知多项式(a2+ka+25)﹣b2,在给定k的值的条件下可以因式分解.请给定一个k值并写出因式分解的过程.考点:因式分解-运用公式法.专题开放型.:分析:根据完全平方公式以及平方差公式进行分解因式即可.解答:解:k=±10,假设k=10,则有(a2+10a+25)﹣b2=(a+5)2﹣b2=(a+5+b)(a+5﹣b).点评:此题主要考查了运用公式法分解因式,正确掌握完全平方公式和平方差公式是解题关键.7.先阅读,后解题:要说明代数式2x2+8x+10的值恒大于0还是恒等于0或者恒小于0,我们可以将它配方成一个平方式加上一个常数的形式,再去考虑,具体过程如下:解:2x2+8x+10=2(x2+4x+5)(提公因式,得到一个二次项系数为1的二次多项式)=2(x2+4x+22﹣22+5)=2[(x+2)2+1](将二次多项式配方)=2(x+2)2+2 (去掉中括号)因为当x取任意实数时,代数式2(x+2)2的值一定是非负数,那么2(x+2)2+2的值一定为正数,所以,原式的值恒大于0,并且,当x=﹣2时,原式有最小值2.请仿照上例,说明代数式﹣2x2﹣8x﹣10的值恒大于0还是恒小于0,并且说明它的最大值或者最小值是什么.考点:配方法的应用;非负数的性质:偶次方.分析:按照题目提供的方法将二次三项式配方后即可得到答案.解答:解:﹣2x2﹣8x﹣10=﹣2(x2+4x+5)=﹣2(x2+4x+22﹣22+5)=﹣2[(x+2)2+1]=﹣2(x+2)2﹣2因为当x取任意实数时,代数式2(x+2)2的值一定是非负数,那么﹣2(x+2)2﹣2的值一定为负数,所以,原式的值恒小于0,并且,当x=﹣2时,原式有最大值﹣2.点评:此题考查了配方法与完全平方式的非负性的应用.注意解此题的关键是将原代数式准确配方.8.老师给学生一个多项式,甲、乙、丙、丁四位同学分别给了一个关于此多项式的描述:甲:这是一个三次三项式;乙:三次项系数为1;丙:这个多项式的各项有公因式;丁:这个多项式分解因式时要用到公式法;若已知这四位同学的描述都正确,请你构造一个同时满足这个描述的一个多项式.考点:提公因式法与公式法的综合运用.专题:开放型.分析:能用完全平方公式分解的式子的特点是:三项;两项平方项的符号需相同;有一项是两底数积的2倍.解答:解:由题意知,可以理解为:甲:这是一个关于x三次三项式;乙:三次项系数为1,即三次项为x3;丙:这个多项式的各项有公因式x;丁:这个多项式分解因式时要用到完全平方公式法.故多项式可以为x(x﹣1)2=x(x2﹣2x+1)=x3﹣2x2+x.点评:本题考查了提公因式法和公式法分解因式,是开放性题,根据描述按照要求列出这个多项式.答案不唯一.9.在对某二次三项式进行因式分解时,甲同学因看错了一次项系数而将其分解为2(x﹣1)(x ﹣9),而乙同学看错了常数项,而将其分解为2(x﹣2)(x﹣4),请你判断正确的二次三项式并进行正确的因式分解.考点:因式分解的应用.分此题可以先将两个分解过的式子还原,再根析:据两个同学的错误得出正确的二次三项式,最后进行因式分解即可.解答:解:2(x﹣1)(x﹣9)=2x2﹣20x+18,2(x ﹣2)(x﹣4)=2x2﹣12x+16;由于甲同学因看错了一次项系数,乙同学看错了常数项,则正确的二次三项式为:2x2﹣12x+18;再对其进行因式分解:2x2﹣12x+18=2(x﹣3)2.点评:本题考查了因式分解的应用,题目较为新颖,同学们要细心对待.10.观察李强同学把多项式(x2+6x+10)(x2+6x+8)+1分解因式的过程:解:设x2+6x=y,则原式=(y+10)(y+8)+1=y2+18y+81=(y+9)2=(x2+6x+9)2(1)回答问题:这位同学的因式分解是否彻底?若不彻底,请你直接写出因式分解的最后结果:(x+3)4.(2)仿照上题解法,分解因式:(x2+4x+1)(x2+4x ﹣3)+4.考点:因式分解-十字相乘法等.专题:换元法.分析:(1)根据x2+6x+9=(x+3)2,进而分解因式得出答案即可;(2)仿照例题整理多项式进而分解因式得出答案即可.解答:解:(1)这位同学的因式分解不彻底,原式=(y+10)(y+8)+1=y2+18y+81=(y+9)2=(x2+6x+9)2=(x+3)4.故答案为:(x+3)4;(2)设x2+4x=y,则原式=(y+1)(y﹣3)+4 =y2﹣2y+1=(y﹣1)2=(x2+4x﹣1)2.点评:此题主要考查了因式分解法的应用,正确分解因式以及注意分解因式要彻底是解题关键.11.(1)写一个多项式,再把它分解因式(要求:多项式含有字母m和n,系数、次数不限,并能先用提取公因式法再用公式法分解).(2)阅读下列分解因式的过程,再回答所提出的问题:1+x+x(x+1)+x(x+1)2=(1+x)[1+x+x(x+1)]①=(1+x)2(1+x)②=(1+x)3③①上述分解因式的方法是提公因式法分解因式,由②到③这一步的根据是同底数幂的乘法法则;②若分解1+x+x(x+1)+x(x+1)2+…+x(x+1)2006,结果是(1+x)2007;③分解因式:1+x+x(x+1)+x(x+1)2+…+x(x+1)n(n为正整数).考点:因式分解-提公因式法.分析:(1)根据题目要求可以编出先提公因式后用平方差的式子,答案不唯一;(2)首先通过分解因式,可发现①中的式子与结果之间的关系,根据所发现的结论可直接得到答案.解答:解:(1)m3﹣mn2=m(m2﹣n2)=m(m﹣n)(m+n),(2)①提公因式法,同底数幂的乘法法则;②根据①中可发现结论:(1+x)2007;③(1+x)n+1.点评:此题主要考查了因式分解法中的提公因式法分解因式,公式法分解因式以及分解因式得根据,考查同学们的观察能力与归纳能力.12.阅读下面的材料并完成填空:因为(x+a)(x+b)=x2+(a+b)x+ab,所以,对于二次项系数为1的二次三项式x2+px+q的因式解,就是把常数项q分解成两个数的积且使这两数的和等于p,即如果有a,b两数满足a﹒b=a+b=p,则有x2+px+q=(x+a)(x+b).如分解因式x2+5x+6.解:因为2×3=6,2+3=5,所以x2+5x+6=(x+2)(x+3).再如分解因式x2﹣5x﹣6.解:因为﹣6×1=﹣6,﹣6+1=﹣5,所以x2﹣5x﹣6=(x﹣6)(x+1).同学们,阅读完上述文字后,你能完成下面的题目吗?试试看.因式分解:(1)x2+7x+12;(2)x2﹣7x+12;(3)x2+4x﹣12;(4)x2﹣x﹣12.因式分解-十字相乘法等.考点:专阅读型.题:分析:发现规律:二次项系数为1的二次三项式x2+px+q的因式解,就是把常数项q分解成两个数的积且使这两数的和等于p,则x2+px+q=(x+a)(x+b).解答:解:(1)x2+7x+12=(x+3)(x+4);(2)x2﹣7x+12=(x﹣3)(x﹣4);(3)x2+4x﹣12=(x+6)(x﹣2);(4)x2﹣x﹣12=(x﹣4)(x+3).点评:本题考查十字相乘法分解因式,是x2+(p+q)x+pq型式子的因式分解的应用,应识记:x2+(p+q)x+pq=(x+p)(x+q).。
第14章整式的乘法与因式分解(拔高卷)学生版
20232024学年人教版数学八年级上册章节真题汇编检测卷(拔高)第14章整式的乘法与因式分解考试时间:120分钟试卷满分:100分难度系数:0.47姓名:___________班级:___________考号:___________题号一二三总分得分评卷人得分一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2022秋•南平期末)下列各式变形中,是因式分解的是()A.x2﹣2x﹣1=x(x﹣2)﹣1 B.C.(x+2)(x﹣2)=x2﹣4 D.x2﹣1=(x+1)(x﹣1)2.(2分)(2022秋•天河区校级期末)有足够多张如图所示的A类、B类正方形卡片和C类长方形卡片,若要拼一个长为(3a+2b)、宽为(a+b)的大长方形,则需要C类卡片的张数为()A.3 B.4 C.5 D.63.(2分)(2023春•滕州市校级期末)若x2﹣2(m﹣3)x+16是完全平方式,则m的值是()A.3 B.﹣5 C.7 D.7或﹣14.(2分)(2022秋•南关区校级期末)若△ABC的三边a,b,c满足(a﹣b)(b2﹣2bc+c2)=0,那么△ABC 的形状是()A.等腰三角形B.直角三角形C.等边三角形D.锐角三角形5.(2分)(2023春•海港区校级期中)若c=(﹣)2022×()2023,则下列结果正确的是()A.1 B.﹣1 C.D.﹣6.(2分)(2022秋•西山区期末)如图,正方形中阴影部分的面积为()A.a2﹣b2B.a2+b2C.ab D.2ab7.(2分)(2022秋•西岗区校级期末)若a﹣2b=10,ab=5,则a2+4b2的值是()A.125 B.120 C.110 D.1008.(2分)(2022秋•合川区校级期末)已知2x﹣y=3,则代数式x2﹣xy+y2+的值为()A.B.C.3 D.49.(2分)(2022秋•和平区校级期末)已知a=2020m+2021n+2020,b=2020m+2021n+2021,c=2020m+2021n+2022,那么a2+b2+c2﹣ab﹣bc﹣ca的值为()A.1 B.3 C.6 D.101010.(2分)(2022秋•新泰市期中)在多项式①﹣m4﹣n4,②a2+b2,③﹣16x2+y2,④9(a﹣b)2﹣4,⑤﹣4a2+b2中,能用平方差公式分解因式的有()A.1个B.2个C.3个D.4个评卷人得分二.填空题(共10小题,满分20分,每小题2分)11.(2分)(2022秋•前郭县期末)已知2m=a,32n=b,m,n为正整数,则25m+10n=.12.(2分)(2022春•洪泽区期中)一个长、宽分别为m、n的长方形的周长为16,面积为6,则m2n+mn2的值为.13.(2分)(2022秋•长沙月考)x是实数,若1+x+x2+x3+x4+x5=0,则x6=.14.(2分)(2021秋•巴彦县期末)如果(x+m)(x﹣3)的乘积中不含x的一次项,则m的值为.15.(2分)(2021秋•冷水滩区校级期中)已知(x﹣3)x+4=1,则整数x的值是.16.(2分)(2019秋•雁江区期末)当a=,b=时,多项式a2+b2﹣4a+6b+18有最小值.17.(2分)(2022秋•任城区校级月考)已知m、n满足mn=4,m﹣n=﹣1,则2m3n﹣4m2n2+2mn3=.18.(2分)(2021•寻乌县模拟)如图,点C是线段AB上的一点,以AC,BC为边向两边作正方形,设AB=9,两正方形的面积和S1+S2=51,则图中阴影部分面积为.19.(2分)(2020•武侯区校级开学)计算:(2b﹣3c+4)(3c﹣2b+4)﹣2(b﹣c)2=.20.(2分)(2018秋•晋江市期末)如图①,是一个棱长为a的正方体中挖去一个棱长为b的小正方体(a >b)(1)如图①所示的几何体的体积是.(2)用另一种方法表示图①的体积:把图①分成如图②所示的三块长方体,将这三块长方体的体积相加后得到的多项式进行因式分解.比较这两种方法,可以得出一个代数恒等式.评卷人得分三.解答题(共7小题,满分60分)21.(8分)(2022秋•抚顺县期末)分解因式:(1)a3﹣a;(2)1﹣x2+2xy﹣y2.22.(8分)(2022春•渭滨区期末)如图1在一个长为2a,宽为2b的长方形图中,沿着虚线用剪刀均分成4块小长方形,然后按图2的形状拼成一个正方形.(1)图2中阴影部分的正方形边长为.(2)请你用两种不同的方法表示图2中阴影部分的面积,并用等式表示.(3)如图3,点C是线段AB上的一点,以AC,BC为边向两边作正方形,面积分别是S1和S2,设AB=8,两正方形的面积和S1+S2=34,求图中阴影部分面积.23.(8分)(2022秋•铁西区期中)规定两数a,b之间的一种运算,记作(a,b),如果a c=b,那么(a,b)=c.例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:(4,64)=,(3,1)=,(2,)=;(2)小明在研究这种运算时发现一个特征:(3n,4n)=(3,4),并作出了如下的证明:∵设(3,4)=x,则3x=4,∴(3x)n=4n,即(3n)x=4n,∴(3n,4n)=x∴(3n,4n)=(3,4).试参照小明的证明过程,解决下列问题:①计算(8,1000)﹣(32,100000);②请你尝试运用这种方法,写出(7,45),(7,9),(7,5)之间的等量关系.并给予证明.24.(8分)(2021秋•坡头区校级期末)数学课上,我们知道可以用图形的面积来解释一些代数恒等式,如图1可以解释完全平方公式:(a+b)2=a2+2ab+b2.(1)如图2(图中各小长方形大小均相等),请用两种不同的方法求图2中阴影部分的面积(不化简):方法1:S阴影=;方法2:S阴影=.(2)由(1)中两种不同的方法,你能得到怎样的等式?(3)①已知(m+n)2=16,mn=3,请利用(2)中的等式,求m﹣n的值.②已知(2m+n)2=13,(2m ﹣n)2=5,请利用(2)中的等式,求mn的值.25.(8分)(2022秋•祁东县校级期中)一个长方形的长和宽分别为x厘米和y厘米(x,y为正整数),如果将长方形的长和宽各增加5厘米得到新的长方形,面积记为S1,将长方形的长和宽各减少2厘米得到新的长方形,面积记为S2.(1)请说明:S1与S2的差一定是7的倍数.(2)如果S1比S2大196cm2,求原长方形的周长.(3)如果一个面积为S1的长方形和原长方形能够没有缝隙没有重叠的拼成一个新的长方形,请找出x 与y的关系,并说明理由.26.(10分)(2022秋•西湖区校级期末)当我们利用两种不同的方法计算同一图形的面积时,可以得到一个等式,由图1,可得等式:(a+2b)(a+b)=a2+3ab+2b2.(1)由图2可得等式:.(2)利用(1)中所得到的结论,解决下面的问题:已知a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值;(3)利用图3中的纸片(足够多),画出一种拼图,使该拼图可用来验证等式:2a2+5ab+2b2=(2a+b)(a+2b).27.(10分)(2022春•榕城区期末)阅读材料:若m2﹣2mn+2n2﹣8n+16=0,求m、n的值.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0∴(m﹣n)2+(n﹣4)2=0,∴(m﹣n)2=0,(n﹣4)2=0,∴n=4,m=4.根据你的观察,探究下面的问题:(1)已知x2﹣2xy+2y2+6y+9=0,求xy的值;(2)已知△ABC的三边长a、b、c都是正整数,且满足a2+b2﹣10a﹣12b+61=0,求△ABC的最大边c的值;(3)已知a﹣b=8,ab+c2﹣16c+80=0,求a+b+c的值.。
初二因式分解难题 (附答案及解析)
数学(因式分解难题)一.填空题(共10小题)1.已知x+y=10,xy=16,则x2y+xy2的值为.2.两位同学将一个二次三项式分解因式,一位同学因看错了一次项系数而分解成2(x﹣1)(x﹣9);另一位同学因看错了常数项分解成2(x﹣2)(x﹣4),请你将原多项式因式分解正确的结果写出来:.3.若多项式x2+mx+4能用完全平方公式分解因式,则m的值是.4.分解因式:4x2﹣4x﹣3=.5.利用因式分解计算:2022+202×196+982=.6.△ABC三边a,b,c满足a2+b2+c2=ab+bc+ca,则△ABC的形状是.7.计算:12﹣22+32﹣42+52﹣62+…﹣1002+1012=.8.定义运算a★b=(1﹣a)b,下面给出了关于这种运算的四个结论:①2★(﹣2)=3②a★b=b★a③若a+b=0,则(a★a)+(b★b)=2ab④若a★b=0,则a=1或b=0.其中正确结论的序号是(填上你认为正确的所有结论的序号).9.如果1+a+a2+a3=0,代数式a+a2+a3+a4+a5+a6+a7+a8=.10.若多项式x2﹣6x﹣b可化为(x+a)2﹣1,则b的值是.二.解答题(共20小题)11.已知n为整数,试说明(n+7)2﹣(n﹣3)2的值一定能被20整除.12.因式分解:4x2y﹣4xy+y.13.因式分解(1)a3﹣ab2(2)(x﹣y)2+4xy.14.先阅读下面的内容,再解决问题,例题:若m2+2mn+2n2﹣6n+9=0,求m和n的值.解:∵m2+2mn+2n2﹣6n+9=0∴m2+2mn+n2+n2﹣6n+9=0∴(m+n)2+(n﹣3)2=0∴m+n=0,n﹣3=0∴m=﹣3,n=3问题:(1)若x2+2y2﹣2xy+4y+4=0,求x y的值.(2)已知△ABC的三边长a,b,c都是正整数,且满足a2+b2﹣6a﹣6b+18+|3﹣c|=0,请问△ABC是怎样形状的三角形?15.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“和谐数”.如4=22﹣02,12=42﹣22,20=62﹣42,因此4,12,20这三个数都是和谐数.(1)36和2016这两个数是和谐数吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的和谐数是4的倍数吗?为什么?(3)介于1到200之间的所有“和谐数”之和为.16.如图1,有若干张边长为a的小正方形①、长为b宽为a的长方形②以及边长为b的大正方形③的纸片.(1)如果现有小正方形①1张,大正方形③2张,长方形②3张,请你将它们拼成一个大长方形(在图2虚线框中画出图形),并运用面积之间的关系,将多项式a2+3ab+2b2分解因式.(2)已知小正方形①与大正方形③的面积之和为169,长方形②的周长为34,求长方形②的面积.(3)现有三种纸片各8张,从其中取出若干张纸片,每种纸片至少取一张,把取出的这些纸片拼成一个正方形(按原纸张进行无空隙、无重叠拼接),求可以拼成多少种边长不同的正方形.17.(1)有若干块长方形和正方形硬纸片如图1所示,用若干块这样的硬纸片拼成一个新的长方形,如图2.①用两种不同的方法,计算图2中长方形的面积;②由此,你可以得出的一个等式为:.(2)有若干块长方形和正方形硬纸片如图3所示.①请你用拼图等方法推出一个完全平方公式,画出你的拼图;②请你用拼图等方法推出2a2+5ab+2b2因式分解的结果,画出你的拼图.18.已知a+b=1,ab=﹣1,设s1=a+b,s2=a2+b2,s3=a3+b3,…,s n=a n+b n(1)计算s2;(2)请阅读下面计算s3的过程:因为a+b=1,ab=﹣1,所以s3=a3+b3=(a+b)(a2+b2)﹣ab(a+b)=1×s2﹣(﹣1)=s2+1=你读懂了吗?请你先填空完成(2)中s3的计算结果,再用你学到的方法计算s4.(3)试写出s n﹣2,s n﹣1,s n三者之间的关系式;(4)根据(3)得出的结论,计算s6.19.(1)利用因式分解简算:9.82+0.4×9.8+0.04(2)分解因式:4a(a﹣1)2﹣(1﹣a)20.阅读材料:若m2﹣2mn+2n2﹣8n+16=0,求m、n的值.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0∴(m﹣n)2+(n﹣4)2=0,∴(m﹣n)2=0,(n﹣4)2=0,∴n=4,m=4.根据你的观察,探究下面的问题:(1)已知x2+2xy+2y2+2y+1=0,求x﹣y的值.(2)已知△ABC的三边长a、b、c都是正整数,且满足a2+b2﹣6a﹣8b+25=0,求△ABC的最大边c的值.(3)已知a﹣b=4,ab+c2﹣6c+13=0,则a﹣b+c=.21.仔细阅读下面例题,解答问题:例题:已知二次三项式x2﹣4x+m有一个因式是(x+3),求另一个因式以及m的值.解:设另一个因式为(x+n),得x2﹣4x+m=(x+3)(x+n),则x2﹣4x+m=x2+(n+3)x+3n∴n+3=﹣4m=3n 解得:n=﹣7,m=﹣21∴另一个因式为(x﹣7),m的值为﹣21.问题:(1)若二次三项式x2﹣5x+6可分解为(x﹣2)(x+a),则a=;(2)若二次三项式2x2+bx﹣5可分解为(2x﹣1)(x+5),则b=;(3)仿照以上方法解答下面问题:已知二次三项式2x2+5x﹣k有一个因式是(2x ﹣3),求另一个因式以及k的值.22.分解因式:(1)2x2﹣x;(2)16x2﹣1;(3)6xy2﹣9x2y﹣y3;(4)4+12(x﹣y)+9(x﹣y)2.23.已知a,b,c是三角形的三边,且满足(a+b+c)2=3(a2+b2+c2),试确定三角形的形状.24.分解因式(1)2x4﹣4x2y2+2y4(2)2a3﹣4a2b+2ab2.25.图①是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)图②中的阴影部分的面积为;(2)观察图②请你写出三个代数式(m+n)2、(m﹣n)2、mn之间的等量关系是.(3)若x+y=7,xy=10,则(x﹣y)2=.(4)实际上有许多代数恒等式可以用图形的面积来表示.如图③,它表示了.(5)试画出一个几何图形,使它的面积能表示(m+n)(m+3n)=m2+4mn+3n2.26.已知a、b、c满足a﹣b=8,ab+c2+16=0,求2a+b+c的值.27.已知:一个长方体的长、宽、高分别为正整数a、b、c,且满足a+b+c+ab+bc+ac+abc=2006,求:这个长方体的体积.28.(x2﹣4x)2﹣2(x2﹣4x)﹣15.29.阅读下列因式分解的过程,再回答所提出的问题:1+x+x(x+1)+x(x+1)2=(1+x)[1+x+x(x+1)]=(1+x)2(1+x)=(1+x)3(1)上述分解因式的方法是,共应用了次.(2)若分解1+x+x(x+1)+x(x+1)2+…+x(x+1)2004,则需应用上述方法次,结果是.(3)分解因式:1+x+x(x+1)+x(x+1)2+…+x(x+1)n(n为正整数).30.对于多项式x3﹣5x2+x+10,如果我们把x=2代入此多项式,发现多项式x3﹣5x2+x+10=0,这时可以断定多项式中有因式(x﹣2)(注:把x=a代入多项式能使多项式的值为0,则多项式含有因式(x﹣a)),于是我们可以把多项式写成:x3﹣5x2+x+10=(x﹣2)(x2+mx+n),(1)求式子中m、n的值;(2)以上这种因式分解的方法叫试根法,用试根法分解多项式x3﹣2x2﹣13x﹣10的因式.2017年05月21日数学(因式分解难题)2参考答案与试题解析一.填空题(共10小题)1.(2016秋•望谟县期末)已知x+y=10,xy=16,则x2y+xy2的值为160.【分析】首先提取公因式xy,进而将已知代入求出即可.【解答】解:∵x+y=10,xy=16,∴x2y+xy2=xy(x+y)=10×16=160.故答案为:160.【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.2.(2016秋•新宾县期末)两位同学将一个二次三项式分解因式,一位同学因看错了一次项系数而分解成2(x﹣1)(x﹣9);另一位同学因看错了常数项分解成2(x﹣2)(x﹣4),请你将原多项式因式分解正确的结果写出来:2(x﹣3)2.【分析】根据多项式的乘法将2(x﹣1)(x﹣9)展开得到二次项、常数项;将2(x﹣2)(x﹣4)展开得到二次项、一次项.从而得到原多项式,再对该多项式提取公因式2后利用完全平方公式分解因式.【解答】解:∵2(x﹣1)(x﹣9)=2x2﹣20x+18;2(x﹣2)(x﹣4)=2x2﹣12x+16;∴原多项式为2x2﹣12x+18.2x2﹣12x+18=2(x2﹣6x+9)=2(x﹣3)2.【点评】根据错误解法得到原多项式是解答本题的关键.二次三项式分解因式,看错了一次项系数,但二次项、常数项正确;看错了常数项,但二次项、一次项正确.3.(2015春•昌邑市期末)若多项式x2+mx+4能用完全平方公式分解因式,则m 的值是±4.【分析】利用完全平方公式(a+b)2=(a﹣b)2+4ab、(a﹣b)2=(a+b)2﹣4ab计算即可.【解答】解:∵x2+mx+4=(x±2)2,即x2+mx+4=x2±4x+4,∴m=±4.故答案为:±4.【点评】此题主要考查了公式法分解因式,熟记有关完全平方的几个变形公式是解题关键.4.(2015秋•利川市期末)分解因式:4x2﹣4x﹣3=(2x﹣3)(2x+1).【分析】ax2+bx+c(a≠0)型的式子的因式分解,这种方法的关键是把二次项系数a分解成两个因数a1,a2的积a1•a2,把常数项c分解成两个因数c1,c2的积c1•c2,并使a1c2+a2c1正好是一次项b,那么可以直接写成结果:ax2+bx+c=(a1x+c1)(a2x+c2),进而得出答案.【解答】解:4x2﹣4x﹣3=(2x﹣3)(2x+1).故答案为:(2x﹣3)(2x+1).【点评】此题主要考查了十字相乘法分解因式,正确分解各项系数是解题关键.5.(2015春•东阳市期末)利用因式分解计算:2022+202×196+982=90000.【分析】通过观察,显然符合完全平方公式.【解答】解:原式=2022+2x202x98+982=(202+98)2=3002=90000.【点评】运用公式法可以简便计算一些式子的值.6.(2015秋•浮梁县校级期末)△ABC三边a,b,c满足a2+b2+c2=ab+bc+ca,则△ABC的形状是等边三角形.【分析】分析题目所给的式子,将等号两边均乘以2,再化简得(a﹣b)2+(a ﹣c)2+(b﹣c)2=0,得出:a=b=c,即选出答案.【解答】解:等式a2+b2+c2=ab+bc+ac等号两边均乘以2得:2a2+2b2+2c2=2ab+2bc+2ac,即a2﹣2ab+b2+a2﹣2ac+c2+b2﹣2bc+c2=0,即(a﹣b)2+(a﹣c)2+(b﹣c)2=0,解得:a=b=c,所以,△ABC是等边三角形.故答案为:等边三角形.【点评】此题考查了因式分解的应用;利用等边三角形的判定,化简式子得a=b=c,由三边相等判定△ABC是等边三角形.7.(2015秋•鄂托克旗校级期末)计算:12﹣22+32﹣42+52﹣62+…﹣1002+1012= 5151.【分析】通过观察,原式变为1+(32﹣22)+(52﹣42)+(1012﹣1002),进一步运用高斯求和公式即可解决.【解答】解:12﹣22+32﹣42+52﹣62+…﹣1002+1012=1+(32﹣22)+(52﹣42)+(1012﹣1002)=1+(3+2)+(5+4)+(7+6)+…+(101+100)=(1+101)×101÷2=5151.故答案为:5151.【点评】此题考查因式分解的实际运用,分组分解,利用平方差公式解决问题.8.(2015秋•乐至县期末)定义运算a★b=(1﹣a)b,下面给出了关于这种运算的四个结论:①2★(﹣2)=3②a★b=b★a③若a+b=0,则(a★a)+(b★b)=2ab④若a★b=0,则a=1或b=0.其中正确结论的序号是③④(填上你认为正确的所有结论的序号).【分析】根据题中的新定义计算得到结果,即可作出判断.【解答】解:①2★(﹣2)=(1﹣2)×(﹣2)=2,本选项错误;②a★b=(1﹣a)b,b★a=(1﹣b)a,故a★b不一定等于b★a,本选项错误;③若a+b=0,则(a★a)+(b★b)=(1﹣a)a+(1﹣b)b=a﹣a2+b﹣b2=﹣a2﹣b2=﹣2a2=2ab,本选项正确;④若a★b=0,即(1﹣a)b=0,则a=1或b=0,本选项正确,其中正确的有③④.故答案为③④.【点评】此题考查了整式的混合运算,以及有理数的混合运算,弄清题中的新定义是解本题的关键.9.(2015春•张掖校级期末)如果1+a+a2+a3=0,代数式a+a2+a3+a4+a5+a6+a7+a8= 0.【分析】4项为一组,分成2组,再进一步分解因式求得答案即可.【解答】解:∵1+a+a2+a3=0,∴a+a2+a3+a4+a5+a6+a7+a8,=a(1+a+a2+a3)+a5(1+a+a2+a3),=0+0,=0.故答案是:0.【点评】此题考查利用因式分解法求代数式的值,注意合理分组解决问题.10.(2015春•昆山市期末)若多项式x2﹣6x﹣b可化为(x+a)2﹣1,则b的值是﹣8.【分析】利用配方法进而将原式变形得出即可.【解答】解:∵x2﹣6x﹣b=(x﹣3)2﹣9﹣b=(x+a)2﹣1,∴a=﹣3,﹣9﹣b=﹣1,解得:a=﹣3,b=﹣8.故答案为:﹣8.【点评】此题主要考查了配方法的应用,根据题意正确配方是解题关键.二.解答题(共20小题)11.已知n为整数,试说明(n+7)2﹣(n﹣3)2的值一定能被20整除.【分析】用平方差公式展开(n+7)2﹣(n﹣3)2,看因式中有没有20即可.【解答】解:(n+7)2﹣(n﹣3)2=(n+7+n﹣3)(n+7﹣n+3)=20(n+2),∴(n+7)2﹣(n﹣3)2的值一定能被20整除.【点评】主要考查利用平方差公式分解因式.公式:a2﹣b2=(a+b)(a﹣b).12.(2016秋•农安县校级期末)因式分解:4x2y﹣4xy+y.【分析】先提取公因式y,再对余下的多项式利用完全平方公式继续分解.【解答】解:4x2y﹣4xy+y=y(4x2﹣4x+1)=y(2x﹣1)2.【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.13.(2015秋•成都校级期末)因式分解(1)a3﹣ab2(2)(x﹣y)2+4xy.【分析】(1)原式提取a,再利用平方差公式分解即可;(2)原式利用完全平方公式分解即可.【解答】解:(1)原式=a(a2﹣b2)=a(a+b)(a﹣b);(2)原式=x2﹣2xy+y2+4xy=x2+2xy+y2=(x+y)2.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.14.(2015春•甘肃校级期末)先阅读下面的内容,再解决问题,例题:若m2+2mn+2n2﹣6n+9=0,求m和n的值.解:∵m2+2mn+2n2﹣6n+9=0∴m2+2mn+n2+n2﹣6n+9=0∴(m+n)2+(n﹣3)2=0∴m+n=0,n﹣3=0∴m=﹣3,n=3问题:(1)若x2+2y2﹣2xy+4y+4=0,求x y的值.(2)已知△ABC的三边长a,b,c都是正整数,且满足a2+b2﹣6a﹣6b+18+|3﹣c|=0,请问△ABC是怎样形状的三角形?【分析】(1)首先把x2+2y2﹣2xy+4y+4=0,配方得到(x﹣y)2+(y+2)2=0,再根据非负数的性质得到x=y=﹣2,代入求得数值即可;(2)先把a2+b2﹣6a﹣6b+18+|3﹣c|=0,配方得到(a﹣3)2+(b﹣3)2+|3﹣c|=0,根据非负数的性质得到a=b=c=3,得出三角形的形状即可.【解答】解:(1)∵x2+2y2﹣2xy+4y+4=0∴x2+y2﹣2xy+y2+4y+4=0,∴(x﹣y)2+(y+2)2=0∴x=y=﹣2∴;(2)∵a2+b2﹣6a﹣6b+18+|3﹣c|=0,∴a2﹣6a+9+b2﹣6b+9+|3﹣c|=0,∴(a﹣3)2+(b﹣3)2+|3﹣c|=0∴a=b=c=3∴三角形ABC是等边三角形.【点评】此题考查了配方法的应用:通过配方,把已知条件变形为几个非负数的和的形式,然后利用非负数的性质得到几个等量关系,建立方程求得数值解决问题.15.(2015秋•太和县期末)如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“和谐数”.如4=22﹣02,12=42﹣22,20=62﹣42,因此4,12,20这三个数都是和谐数.(1)36和2016这两个数是和谐数吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的和谐数是4的倍数吗?为什么?(3)介于1到200之间的所有“和谐数”之和为2500.【分析】(1)利用36=102﹣82;2016=5052﹣5032说明36是“和谐数”,2016不是“和谐数”;(2)设两个连续偶数为2n,2n+2(n为自然数),则“和谐数”=(2n+2)2﹣(2n)2,利用平方差公式展开得到(2n+2+2n)(2n+2﹣2n)=4(2n+1),然后利用整除性可说明“和谐数”一定是4的倍数;(3)介于1到200之间的所有“和谐数”中,最小的为:22﹣02=4,最大的为:502﹣482=196,将它们全部列出不难求出他们的和.【解答】解:(1)36是“和谐数”,2016不是“和谐数”.理由如下:36=102﹣82;2016=5052﹣5032;(2)设两个连续偶数为2k+2和2k(n为自然数),∵(2k+2)2﹣(2k)2=(2k+2+2k)(2k+2﹣2k)=(4k+2)×2=4(2k+1),∵4(2k+1)能被4整除,∴“和谐数”一定是4的倍数;(3)介于1到200之间的所有“和谐数”之和,S=(22﹣02)+(42﹣22)+(62﹣42)+…+(502﹣482)=502=2500.故答案是:2500.【点评】本题考查了因式分解的应用:利用因式分解把所求的代数式进行变形,从而达到使计算简化.16.(2015春•兴化市校级期末)如图1,有若干张边长为a的小正方形①、长为b宽为a的长方形②以及边长为b的大正方形③的纸片.(1)如果现有小正方形①1张,大正方形③2张,长方形②3张,请你将它们拼成一个大长方形(在图2虚线框中画出图形),并运用面积之间的关系,将多项式a2+3ab+2b2分解因式.(2)已知小正方形①与大正方形③的面积之和为169,长方形②的周长为34,求长方形②的面积.(3)现有三种纸片各8张,从其中取出若干张纸片,每种纸片至少取一张,把取出的这些纸片拼成一个正方形(按原纸张进行无空隙、无重叠拼接),求可以拼成多少种边长不同的正方形.【分析】(1)根据小正方形①1张,大正方形③2张,长方形②3张,直接画出图形,利用图形分解因式即可;(2)由长方形②的周长为34,得出a+b=17,由题意可知:小正方形①与大正方形③的面积之和为a2+b2=169,将a+b=17两边同时平方,可求得ab的值,从而可求得长方形②的面积;(3)设正方形的边长为(na+mb),其中(n、m为正整数)由完全平方公式可知:(na+mb)2=n2a2+2nmab+m2b2.因为现有三种纸片各8张,n2≤8,m2≤8,2mn≤8(n、m为正整数)从而可知n≤2,m≤2,从而可得出答案.【解答】解:(1)如图:拼成边为(a+2b)和(a+b)的长方形∴a2+3ab+2b2=(a+2b)(a+b);(2)∵长方形②的周长为34,∴a+b=17.∵小正方形①与大正方形③的面积之和为169,∴a2+b2=169.将a+b=17两边同时平方得:(a+b)2=172,整理得:a2+2ab+b2=289,∴2ab=289﹣169,∴ab=60.∴长方形②的面积为60.(3)设正方形的边长为(na+mb),其中(n、m为正整数)∴正方形的面积=(na+mb)2=n2a2+2nmab+m2b2.∵现有三种纸片各8张,∴n2≤8,m2≤8,2mn≤8(n、m为正整数)∴n≤2,m≤2.∴共有以下四种情况;①n=1,m=1,正方形的边长为a+b;②n=1,m=2,正方形的边长为a+2b;③n=2,m=1,正方形的边长为2a+b;④n=2,m=2,正方形的边长为2a+2b.【点评】此题考查因式分解的运用,要注意结合图形解决问题,解题的关键是灵活运用完全平方公式.17.(2014秋•莱城区校级期中)(1)有若干块长方形和正方形硬纸片如图1所示,用若干块这样的硬纸片拼成一个新的长方形,如图2.①用两种不同的方法,计算图2中长方形的面积;②由此,你可以得出的一个等式为:a2+2a+1=(a+1)2.(2)有若干块长方形和正方形硬纸片如图3所示.①请你用拼图等方法推出一个完全平方公式,画出你的拼图;②请你用拼图等方法推出2a2+5ab+2b2因式分解的结果,画出你的拼图.【分析】(1)要能根据所给拼图运用不同的计算面积的方法,来推导公式;(2)要能根据等式画出合适的拼图.【解答】解:(1)①长方形的面积=a2+2a+1;长方形的面积=(a+1)2;②a2+2a+1=(a+1)2;(2)①如图,可推导出(a+b)2=a2+2ab+b2;②2a2+5ab+2b2=(2a+b)(a+2b).【点评】本题考查运用正方形或长方形的面积计算推导相关的一些等式;运用图形的面积计算的不同方法得到多项式的因式分解.18.(2013秋•海淀区校级期末)已知a+b=1,ab=﹣1,设s1=a+b,s2=a2+b2,s3=a3+b3,…,s n=a n+b n(1)计算s2;(2)请阅读下面计算s3的过程:因为a+b=1,ab=﹣1,所以s3=a3+b3=(a+b)(a2+b2)﹣ab(a+b)=1×s2﹣(﹣1)=s2+1=4你读懂了吗?请你先填空完成(2)中s3的计算结果,再用你学到的方法计算s4.(3)试写出s n﹣2,s n﹣1,s n三者之间的关系式;(4)根据(3)得出的结论,计算s6.【分析】(1)(2)利用完全平方公式进行化简,然后代入a+b,ab的值,即可推出结论;(3)根据(1)所推出的结论,即可推出S n﹣2+S n﹣1=S n;(4)根据(3)的结论,即可推出a6+b6=S6=S4+S5=2S4+S3.【解答】解:(1)S2=a2+b2=(a+b)2﹣2ab=3;(2)∵(a2+b2)(a+b)=a3+ab2+a2b+b3=a3+b3+ab(a+b),∴3×1=a3+b3﹣1,∴a3+b3=4,即S3=4;∵S4=(a2+b2)2﹣2(ab)2=7,∴S4=7;(3)∵S2=3,S3=4,S4=7,∴S2+S3=S4,∴S n﹣2+S n﹣1=S n;(3)∵S n﹣2+S n﹣1=S n,S2=3,S3=4,S4=7,∴S5=4+7=11,∴S6=7+11=18.【点评】本题主要考查整式的混合运算、完全平方公式的运用,关键在于根据题意推出S2=3,S3=4,S4=7,分析归纳出规律:S n﹣2+S n﹣1=S n.19.(2013春•重庆校级期末)(1)利用因式分解简算:9.82+0.4×9.8+0.04(2)分解因式:4a(a﹣1)2﹣(1﹣a)【分析】(1)利用完全平方公式因式分解计算即可;(2)先利用提取公因式法,再利用完全平方公式因式分解即可.【解答】解:(1)原式=9.82+2×0.2×9.8+0.22=(9.8+0.2)2=100;(2)4a(a﹣1)2﹣(1﹣a)=(a﹣1)(4a2﹣4a+1)=(a﹣1)(2a﹣1)2.【点评】此题考查因式分解的实际运用,掌握平方差公式和完全平方公式是解决问题的关键.20.(2013春•惠山区校级期末)阅读材料:若m2﹣2mn+2n2﹣8n+16=0,求m、n的值.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0∴(m﹣n)2+(n﹣4)2=0,∴(m﹣n)2=0,(n﹣4)2=0,∴n=4,m=4.根据你的观察,探究下面的问题:(1)已知x2+2xy+2y2+2y+1=0,求x﹣y的值.(2)已知△ABC的三边长a、b、c都是正整数,且满足a2+b2﹣6a﹣8b+25=0,求△ABC的最大边c的值.(3)已知a﹣b=4,ab+c2﹣6c+13=0,则a﹣b+c=7.【分析】(1)将多项式第三项分项后,结合并利用完全平方公式化简,根据两个非负数之和为0,两非负数分别为0求出x与y的值,即可求出x﹣y的值;(2)将已知等式25分为9+16,重新结合后,利用完全平方公式化简,根据两个非负数之和为0,两非负数分别为0求出a与b的值,根据边长为正整数且三角形三边关系即可求出c的长;(3)由a﹣b=4,得到a=b+4,代入已知的等式中重新结合后,利用完全平方公式化简,根据两个非负数之和为0,两非负数分别为0求出b与c的值,进而求出a的值,即可求出a﹣b+c的值.【解答】解:(1)∵x2+2xy+2y2+2y+1=0∴(x2+2xy+y2)+(y2+2y+1)=0∴(x+y)2+(y+1)2=0∴x+y=0 y+1=0解得x=1,y=﹣1∴x﹣y=2;(2)∵a2+b2﹣6a﹣8b+25=0∴(a2﹣6a+9)+(b2﹣8b+16)=0∴(a﹣3)2+(b﹣4)2=0∴a﹣3=0,b﹣4=0解得a=3,b=4∵三角形两边之和>第三边∴c<a+b,c<3+4∴c<7,又c是正整数,∴c最大为6;(3)∵a﹣b=4,即a=b+4,代入得:(b+4)b+c2﹣6c+13=0,整理得:(b2+4b+4)+(c2﹣6c+9)=(b+2)2+(c﹣3)2=0,∴b+2=0,且c﹣3=0,即b=﹣2,c=3,a=2,则a﹣b+c=2﹣(﹣2)+3=7.故答案为:7.【点评】此题考查了因式分解的应用,以及非负数的性质,熟练掌握完全平方公式是解本题的关键.21.(2012秋•温岭市校级期末)仔细阅读下面例题,解答问题:例题:已知二次三项式x2﹣4x+m有一个因式是(x+3),求另一个因式以及m的值.解:设另一个因式为(x+n),得x2﹣4x+m=(x+3)(x+n),则x2﹣4x+m=x2+(n+3)x+3n∴n+3=﹣4m=3n 解得:n=﹣7,m=﹣21∴另一个因式为(x﹣7),m的值为﹣21.问题:(1)若二次三项式x2﹣5x+6可分解为(x﹣2)(x+a),则a=﹣3;(2)若二次三项式2x2+bx﹣5可分解为(2x﹣1)(x+5),则b=9;(3)仿照以上方法解答下面问题:已知二次三项式2x2+5x﹣k有一个因式是(2x ﹣3),求另一个因式以及k的值.【分析】(1)将(x﹣2)(x+a)展开,根据所给出的二次三项式即可求出a的值;(2)(2x﹣1)(x+5)展开,可得出一次项的系数,继而即可求出b的值;(3)设另一个因式为(x+n),得2x2+5x﹣k=(2x﹣3)(x+n)=2x2+(2n﹣3)x ﹣3n,可知2n﹣3=5,k=3n,继而求出n和k的值及另一个因式.【解答】解:(1)∵(x﹣2)(x+a)=x2+(a﹣2)x﹣2a=x2﹣5x+6,∴a﹣2=﹣5,解得:a=﹣3;(2)∵(2x﹣1)(x+5)=2x2+9x﹣5=2x2+bx﹣5,∴b=9;(3)设另一个因式为(x+n),得2x2+5x﹣k=(2x﹣3)(x+n)=2x2+(2n﹣3)x ﹣3n,则2n﹣3=5,k=3n,解得:n=4,k=12,故另一个因式为(x+4),k的值为12.故答案为:(1)﹣3;(2分)(2)9;(2分)(3)另一个因式是x+4,k=12(6分).【点评】本题考查因式分解的意义,解题关键是对题中所给解题思路的理解,同时要掌握因式分解与整式乘法是相反方向的变形,即互逆运算,二者是一个式子的不同表现形式.22.(2012春•郯城县期末)分解因式:(1)2x2﹣x;(2)16x2﹣1;(3)6xy2﹣9x2y﹣y3;(4)4+12(x﹣y)+9(x﹣y)2.【分析】(1)直接提取公因式x即可;(2)利用平方差公式进行因式分解;(3)先提取公因式﹣y,再对余下的多项式利用完全平方公式继续分解;(4)把(x﹣y)看作整体,利用完全平方公式分解因式即可.【解答】解:(1)2x2﹣x=x(2x﹣1);(2)16x2﹣1=(4x+1)(4x﹣1);(3)6xy2﹣9x2y﹣y3,=﹣y(9x2﹣6xy+y2),=﹣y(3x﹣y)2;(4)4+12(x﹣y)+9(x﹣y)2,=[2+3(x﹣y)]2,=(3x﹣3y+2)2.【点评】本题考查了提公因式法与公式法分解因式,是因式分解的常用方法,难点在(3),提取公因式﹣y后,需要继续利用完全平方公式进行二次因式分解.23.(2012春•碑林区校级期末)已知a,b,c是三角形的三边,且满足(a+b+c)2=3(a2+b2+c2),试确定三角形的形状.【分析】将已知等式利用配方法变形,利用非负数的性质解题.【解答】解:∵(a+b+c)2=3(a2+b2+c2),∴a2+b2+c2+2ab+2bc+2ac,=3a2+3b2+3c2,a2+b2﹣2ab+b2+c2﹣2bc+a2+c2﹣2ac=0,即(a﹣b)2+(b﹣c)2+(c﹣a)2=0,∴a﹣b=0,b﹣c=0,c﹣a=0,∴a=b=c,故△ABC为等边三角形.【点评】本题考查了配方法的运用,非负数的性质,等边三角形的判断.关键是将已知等式利用配方法变形,利用非负数的性质解题.24.(2011秋•北辰区校级期末)分解因式(1)2x4﹣4x2y2+2y4(2)2a3﹣4a2b+2ab2.【分析】(1)原式提取公因式后,利用平方差公式分解即可;(2)原式提取公因式,利用完全平方公式分解即可.【解答】解:(1)2x4﹣4x2y2+2y4=2(x4﹣2x2y2+y4)=2(x2﹣y2)2=2(x+y)2(x﹣y)2;(2)2a3﹣4a2b+2ab2=2a(a2﹣2ab+b2)=2a(a﹣b)2.【点评】此题考查了提公因式法与公式法的综合运用,提取公因式后利用公式进行二次分解,注意分解要彻底.25.(2011秋•苏州期末)图①是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)图②中的阴影部分的面积为(m﹣n)2;(2)观察图②请你写出三个代数式(m+n)2、(m﹣n)2、mn之间的等量关系是(m+n)2﹣(m﹣n)2=4mn.(3)若x+y=7,xy=10,则(x﹣y)2=9.(4)实际上有许多代数恒等式可以用图形的面积来表示.如图③,它表示了(m+n)(2m+n)=2m2+3mn+n2.(5)试画出一个几何图形,使它的面积能表示(m+n)(m+3n)=m2+4mn+3n2.【分析】(1)可直接用正方形的面积公式得到.(2)掌握完全平方公式,并掌握和与差的区别.(3)此题可参照第(2)题.(4)可利用各部分面积和=长方形面积列出恒等式.(5)可参照第(4)题画图.【解答】解:(1)阴影部分的边长为(m﹣n),阴影部分的面积为(m﹣n)2;(2)(m+n)2﹣(m﹣n)2=4mn;(3)(x﹣y)2=(x+y)2﹣4xy=72﹣40=9;(4)(m+n)(2m+n)=2m2+3mn+n2;(5)答案不唯一:例如:.【点评】本题考查了因式分解的应用,解题关键是认真观察题中给出的图示,用不同的形式去表示面积,熟练掌握完全平方公式,并能进行变形.26.(2009秋•海淀区期末)已知a、b、c满足a﹣b=8,ab+c2+16=0,求2a+b+c 的值.【分析】本题乍看下无法代数求值,也无法进行因式分解;但是将已知的两个式子进行适当变形后,即可找到本题的突破口.由a﹣b=8可得a=b+8;将其代入ab+c2+16=0得:b2+8b+c2+16=0;此时可发现b2+8b+16正好符合完全平方公式,因此可用非负数的性质求出b、c的值,进而可求得a的值;然后代值运算即可.【解答】解:因为a﹣b=8,所以a=b+8.(1分)又ab+c2+16=0,所以(b+8)b+c2+16=0.(2分)即(b+4)2+c2=0.又(b+4)2≥0,c2≥0,则b=﹣4,c=0.(4分)所以a=4,(5分)所以2a+b+c=4.(6分)【点评】本题既考查了对因式分解方法的掌握,又考查了非负数的性质以及代数式求值的方法.27.(2010春•北京期末)已知:一个长方体的长、宽、高分别为正整数a、b、c,且满足a+b+c+ab+bc+ac+abc=2006,求:这个长方体的体积.【分析】我们可先将a+b+c+ab+bc+ac+abc分解因式可变为(a+1)(b+1)(c+1)﹣1,就得(1+b)(c+1)(a+1)=2007,由于a、b、c均为正整数,所以(a+1)、(b+1)、(c+1)也为正整数,而2007只可分解为3×3×223,可得(a+1)、(b+1)、(c+1)的值分别为3、3、223,所以a、b、c值为2、2、222.就可求出长方体体积abc了.【解答】解:原式可化为:a+ab+c+ac+ab+abc+b+1﹣1=2006,a(1+b)+c(1+b)+ac(1+b)+(1+b)﹣1=2006,(1+b)(a+c+ac)+(1+b)=2007,(1+b)(c+1+a+ac)=2007,(1+b)(c+1)(a+1)=2007,2007只能分解为3×3×223∴(a+1)、(b+1)、(c+1)也只能分别为3、3、223∴a、b、c也只能分别为2、2、222∴长方体的体积abc=888.【点评】本题考查了三次的分解因式,做题当中用加减项的方法,使式子满足分解因式.28.(2007秋•普陀区校级期末)(x2﹣4x)2﹣2(x2﹣4x)﹣15.【分析】把(x2﹣4x)看作一个整体,先把﹣15写成3×(﹣5),利用十字相乘法分解因式,再把3写成(﹣1)×(﹣3),﹣5写成1×(﹣5),分别利用十字相乘法分解因式即可.【解答】解:(x2﹣4x)2﹣2(x2﹣4x)﹣15,=(x2﹣4x+3)(x2﹣4x﹣5),=(x﹣1)(x﹣3)(x+1)(x﹣5).【点评】本题考查了十字相乘法分解因式,运用十字相乘法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程,本题需要进行多次因式分解,分解因式一定要彻底.29.(2007春•镇海区期末)阅读下列因式分解的过程,再回答所提出的问题:1+x+x(x+1)+x(x+1)2=(1+x)[1+x+x(x+1)]=(1+x)2(1+x)=(1+x)3(1)上述分解因式的方法是提公因式法,共应用了2次.(2)若分解1+x+x(x+1)+x(x+1)2+…+x(x+1)2004,则需应用上述方法2004次,结果是(1+x)2005.(3)分解因式:1+x+x(x+1)+x(x+1)2+…+x(x+1)n(n为正整数).【分析】此题由特殊推广到一般,要善于观察思考,注意结果和指数之间的关系.【解答】解:(1)上述分解因式的方法是提公因式法,共应用了2次.(2)需应用上述方法2004次,结果是(1+x)2005.(3)解:原式=(1+x)[1+x+x(x+1)]+x(x+1)3+…+x(x+1)n,=(1+x)2(1+x)+x(x+1)3+…+x(x+1)n,=(1+x)3+x(x+1)3+…+x(x+1)n,=(x+1)n+x(x+1)n,=(x+1)n+1.【点评】本题考查了提公因式法分解因式的推广,要认真观察已知所给的过程,弄清每一步的理由,就可进一步推广.30.(2007春•射洪县校级期末)对于多项式x3﹣5x2+x+10,如果我们把x=2代入此多项式,发现多项式x3﹣5x2+x+10=0,这时可以断定多项式中有因式(x﹣2)(注:把x=a代入多项式能使多项式的值为0,则多项式含有因式(x﹣a)),于是我们可以把多项式写成:x3﹣5x2+x+10=(x﹣2)(x2+mx+n),(1)求式子中m、n的值;(2)以上这种因式分解的方法叫试根法,用试根法分解多项式x3﹣2x2﹣13x﹣10的因式.【分析】(1)根据(x﹣2)(x2+mx+n)=x3+(m﹣2)x2+(n﹣2m)x﹣2n,得出有关m,n的方程组求出即可;(2)由把x=﹣1代入x3﹣2x2﹣13x﹣10,得其值为0,则多项式可分解为(x+1)(x2+ax+b)的形式,进而将多项式分解得出答案.【解答】解:(1)方法一:因(x﹣2)(x2+mx+n)=x3+(m﹣2)x2+(n﹣2m)x ﹣2n,=x3﹣5x2+x+10,(2分)所以,解得:m=﹣3,n=﹣5(5分),方法二:在等式x3﹣5x2+x+10=(x﹣2)(x2+mx+n)中,分别令x=0,x=1,即可求出:m=﹣3,n=﹣5(注:不同方法可根据上面标准酌情给分)(2)把x=﹣1代入x3﹣2x2﹣13x﹣10,得其值为0,则多项式可分解为(x+1)(x2+ax+b)的形式,(7分)用上述方法可求得:a=﹣3,b=﹣10,(8分)所以x3﹣2x2﹣13x﹣10=(x+1)(x2﹣3x﹣10),(9分)=(x+1)(x+2)(x﹣5).(10分)【点评】此题主要考查了因式分解的应用,根据已知获取正确的信息,是近几年中考中热点题型同学们应熟练掌握获取正确信息的方法.。
八年级数学上册因式分解拔高题型
八年级数学上册因式分解拔高题型一、知识点梳理:1、因式分解:因式分解就是把一个多项式变成几个整式的积的形式。
2、因式分解的方法:(1)提公因式法;即 ma+mb+mc=m(a+b+c);a 22( 2)运用公式法;平方差公式:b a b a b ;完整平方公式: a22ab b 2= a b2和a22ab b2 a b2(3)十字相乘法:关于二次三项式x2Pxa b p, q ;若能找到两个数 a 、 b ;使b q,a则就有 x2Px q x2(a b) x ab( x a)( x b) .注:若 q 为正;则 a;b 同号;若 q 为负;则 a;b 异号;二、典型例题:(1)假如9 x 2kx25 是一个完整平方式;那么k 的值是()A、 15B、±5C、30 D ±30(2)若x2mx15( x3)( x n)则 m=_____; n=______。
(3)计算 2998 2+2998×4+4=。
(4)若x24x 4 的值为0;则 3x 212x 5 的值是________。
例 2:分解因式:224a2(x- y)+9b2 (y- x)2a x 8axy8a y例 3:已知 a –b = 1;a2b 225求ab和a+b的值。
三、加强训练:1、已知 x+y=6; xy=4;则 x2y+xy2的值为.2、察看图形;依据图形面积的关系;不需要连其余的线;便能够获得一个用来分解因式的公式;这个公式是 ______________________。
3、分解因式:(2a- b)2-(a +b)2- 3ma3+6ma2- 3ma a2(m- n)+b2(n- m)m416n4(8)16a472a 2b 281b44、已知: a=2999;b=2995;求a22ab b 25a 5b 6 的值。
5、利用因式分解计算11111111 (11)2232 4 252n26;已知 a 为随意整数;且 a 13 2a2的值总能够被n 整除 (n 为自然数;且n 不等于 1);则 n 的值为。
部编数学八年级上册专题09因式分解之八大题型(解析版)含答案
专题09因式分解之八大题型判断是否是因式分解【变式训练】1.(2023下·浙江温州·七年级校考期末)下列变形是因式分解的是( )已知因式分解的结果求参数【变式训练】已知二次三项式22x x k +-有一个因式是6x -,求另一个因式以及k 的值.【答案】8x +,48k =【分析】设另一根因式为x n +,可得()()()222666x x k x x n x n x n +-=-+=+--,再建立方程组626n n k-=ìí-=-î,再解方程组即可得到答案.【详解】解:∵二次三项式22x x k +-有一个因式是6x -,∴设另一根因式为x n +,∴()()()222666x x k x x n x n x n +-=-+=+--,∴626n n k -=ìí-=-î,解得:848n k =ìí=î,∴另一根因式为:8x +.【点睛】本题考查的是因式分解的含义,二元一次方程组的解法,熟练的利用待定系数法建立方程组是解本题的关键.公因式例题:(2023上·福建厦门·八年级校考期末)单项式33a b 与239a b 的公因式是( )A .23a bB .333a bC .abD .339a b 【答案】A【分析】根据公因式的概念分别求得系数的最大公因数,相同字母的次数的最低次数即可.【详解】解:单项式33a b 与单项式239a b 的公因式是23a b .故选:A .【点睛】此题考查公因式,掌握由几个单项式的各系数最大公约数与各相同字母最小次幂的乘积,组成的式子叫这几个单项式的公因式是解决此题的关键.【变式训练】【变式训练】综合提公因式法和公式法分解因式(2)()()22a x y b y x -+-()()22x y a b =--()()()x y a b a b =-+-.【点睛】本题考查了提公因式法与公式法的综合运用,一定要注意如果多项式的各项含有公因式,必须先提公因式,掌握平方差公式()()22a b a b a b +-=-和完全平方公式()2222a b a ab b ±=±+.【变式训练】1.(2023下·江苏扬州·七年级统考期末)分解因式:(1)228m -;(2)()()244x y x y +-++.【答案】(1)()()222m m +-(2)()22x y +-【分析】(1)先提取公因式2,再用平方差公式进行因式分解即可;(2)将x y +看做一个整体,利用完全平方公式进行因式分解即可.【详解】(1)解:原式()()()224222m m m =-=+-;(2)解:原式()()22222x y x y =+-´++()22x y =+-.【点睛】本题主要考查了因式分解,解题的关键是熟练掌握平方差公式()()22a b a b a b +-=-和完全平方公式()222a b a ab b ±=±+.2.(2023下·江苏盐城·七年级统考期中)分解因式:(1)2273x -+;(2)22344xy x y y --;(3)()()2221619y y ---+.【答案】(1)()()333x x +-(2)()22y x y --(3)()()2222+-y y【分析】(1)利用提公因式法及平方差公式,即可分解因式;(2)利用提公因式法及完全平方公式,即可分解因式;(3)利用完全平方公式及平方差公式,即可分解因式.【详解】(1)解:2273x -+2327x =-()239x =-()()333x x =+-(2)解:22344xy x y y --()2244y x xy y =--+()22y x y =--(3)解:()()2221619y y ---+()()2221619y y =---+()2213y éù=--ëû()224y =-()()222y y =+-éùëû()()2222y y =+-【点睛】本题考查了分解因式的方法,熟练掌握和运用分解因式的方法是解决本题的关键.十字相乘法分解因式例题:(2023下·四川达州·八年级校考期末)将多项式234--x x 分解因式后正确的是( )A .()()223x x x+--B .()34x x --C .()()14x x -+D .()()14x x +-【答案】D【分析】利用十字相乘法进行因式分解即可.【详解】解:()()23414.x x x x --=+-故选:D .【点睛】本题考查了十字相乘法分解因式,运用十字相乘法分解因式,要注意观察,尝试,并体会它实质是二项式乘法的逆过程.【变式训练】【点睛】本题考查了因式分解,熟练掌握十字相乘法进行因式分解是解题的关键.分组分解法分解因式例题:(2023下·山东青岛·八年级统考期末)【问题提出】:分解因式:(1)23355x xy x y +-- (2)2244a b a b-+-【问题探究】:某数学“探究学习”小组对以上因式分解题目进行了如下探究:探究1:分解因式:(1)23355x xy x y+--分析:甲发现该多项式前两项有公因式3x ,后两项有公因式5-,分别把它们提出来,剩下的是相同因式()x y +,可以继续用提公因式法分解.解:()22335533(55)3()5()()(35)x xy x y x xy x y x x y x y x y x +--=+-+=+-+=+-另:乙发现该多项式的第二项和第四项含有公因式y ,第一项和第三项含有公因式x ,把y ,x 提出来,剩下的是相同因式(35)x -,可以继续用提公因式法分解.解:()22335535(35)(35)(35)(35)()x xy x y x x xy y x x y x x x y +--=-+-=-+-=-+探究2:分解因式:(2)2266a b a b-+-分析:甲发现先将22a b -看作一组应用平方差公式,其余两项看作一组,提出公因式6,则可继续再提出因式,从而达到分解因式的目的.解:()222266(66)()()6()()(6)a b a b a b a b a b a b a b a b a b -+-=-+-=+-+-=-++【方法总结】:对不能直接使用提取公因式法,公式法进行分解因式的多项式,我们可把被分解的多项式分成若干组,分别按“基本方法”即提取公因式法和公式法进行分解,然后,再从总体上按“基本方法”继续进行分解,直到分解出最后结果.这种分解因式的方法叫做分组分解法:【学以致用】:尝试运用分组分解法解答下列问题;(1)分解因式:3244x x x +--;(2)分解因式:22229y yz z x ++-;【拓展提升】:(3)分解因式:2815m m -+.【答案】(1)()()()122x x x ++-;(2)()()33y z x y z x +++-;(3)()()53m m --.【分析】(1)把前面两个和后面两个分别组成两组,提公因式()1x +后再利用平方差公式继续分解;(2)把前面三个和后面一个组成两组,利用公式分解即可;(3)把15分解成161-,再把前面三个和后面一个组成两组,利用公式分解即可.【详解】解:(1)3244x x x +--()()3241x x x =+-+()()2141x x x =+-+()()214x x =+-()()()122x x x =++-;(2)22229y yz z x ++-()22229y yz z x =++-()()223y z x =+-()()33y z x y z x =+++-;(3)2815m m -+()28161m m =-+-()241m =--()()4141m m =-+--()()53m m =--.【点睛】解答本题的关键是注意用分组分解法时,一定要考虑分组后能否提取公因式,运用公式.【变式训练】1.(2023上·河南南阳·八年级统考期末)常用的分解因式的方法有提取公因式法、公式法等,但有的多项式则不能直接用上述两种方法进行分解,比如多项式22424x y x y -++.这样我们就需要结合式子特点,探究新的分解方法.仔细观察这个四项式,会发现:若把它的前两项结合为一组符合平方差公式特点,把它的后两项结合为一组可提取公因式,而且对前后两组分别进行因式分解后会出现新的公因式,提取新的公因式就可以完成对整个式子的因式分解.具体过程如下:例1:22424x y x y-++()()22424x y x y =--- 分成两组()()()2222x y x y x y =+--- 分别分解()()222x y x y =-+- 提取公因式完成分解像这种将一个多项式适当分组后,再分解因式的方法叫做分组分解法.分组分解法一般是针对四项或四项以上的多项式,关键在恰当分组,分组须有“预见性”,预见下一步能继续分解,直到完成分解.(1)关于以上方法中“分组”目的的以下说法中所有正确的序号是______.①分组后组内能出现公因式;②分组后组内能运用公式;③分组后组间能继续分解.(2)若要将以下多项式进行因式分解,怎样分组比较合适?①22x y x y -++=______.②22222a a b ab b +--+=______.(3)利用分组分解法进行因式分解:22441x x y +-+.【答案】(1)①②③(2)①()()22x y x y -++,②()()22222a b a ab b -+-+;(3)()()2121x y x y ++-+【分析】(1)根据阅读材料解答即可;(2)运用分组分解法直接作答即可;(3)运用分组分解法直接作答即可.【详解】(1)解:从材料可知:“分组”的目的是:①分组后组内能出现公因式;②分组后组内能运用公式;③分组后组间能继续分解;故正确的序号是①②③,故答案为:①②③;(2)解:①()()2222x y x y x y x y -++=-++,②()()2222222222a a b ab b a b a ab b +--+=-+-+,故答案为:①()()22x y x y -++,②()()22222a b a ab b -+-+;(3)解:22441x x y +-+()22441x x y =++-()2221x y =+-()()2121x y x y =++-+【点睛】本题考查了因式分解,能够灵活运用分组分解法进行因式分解是解答本题的关键.因式分解的应用例题:(2023下·辽宁丹东·八年级统考期末)已知a ,b ,c 是三角形的三边,且满足()2222333a b c a b c ++=++则ABC V 的形状为( )A .直角三角形B .等腰三角形C .等边三角形D .等腰直角三角形【答案】C【分析】将()2222333a b c a b c ++=++进行变形得2222222220a b c ab ac bc ++---=,根据完全平方公式得222()()()0a b b c a c -+-+-=,即可得a b c ==,即可得.【详解】解:()2222333a b c a b c ++=++,222222222333a b c ab ac bc a b c +++++=++,2222222220a b c ab ac bc ++---=,222()()()0a b b c a c -+-+-=,0a b -=,0b c -=,0a c -=,a b =,b c =,a c =,∴a b c ==,∴三角形ABC 为等边三角形,故选:C .【点睛】本题考查了因式分解,完全平方公式,等边三角形的判定,解题的关键是掌握因式分解,完全平方公式,等边三角形的判定.【变式训练】(2)14【分析】(1)①仿照例题的方法,根据分组分解法分解因式;②仿照例题的方法,根据拆项法分解因式;(2)仿照例题的方法,根据分组分解法分解因式,根据非负数的性质,求得,,a b c 的值,即可求解.【详解】(1)①()()()222222961961313131x x y x x y x y x y x y +-+=++-=+-=+++-;②()()()()()2226869131313124x x x x x x x x x -+=-+-=--=-+--=--(2)a ,b ,c 为ABC V 的三条边,22254610340a b c ab b c --++-=+,∴2222446910250a b ab b b c c +-+-++-+=,∴()()()2222350a b b c -++-=-,∴20a b -=,30b -=,50c -=,∴6a =,3b =,5c =,∴ABC V 的周长为63514++=.【点睛】本题考查了因式分解以及因式分解的应用,仿照例题的方法因式分解是解题的关键.一、单选题1.(2023下·云南昭通·八年级校联考期末)在多项式323124a b a bc -中,各项的公因式是( )A .34a bcB .34a bC .24abD .224a b 【答案】B【分析】根据多项式的公因式来进行求解即可.【详解】解: ()323312443a b a bc a b b c =--Q ,34a b \是多项式323124a b a bc -中各项的公因式.故选:B .【点睛】本题主要考查了多项式的公因式,理解多项式的公因式是解答关键.2.(2023下·陕西渭南·八年级统考期末)下列因式分解正确的是( )A .()1ax ay a x y +=++B .()ma mb m a b -=-C .()22444x x x ++=+D .()2211x x -=-【答案】B【分析】根据因式分解的定义和方法逐项判断即可.【详解】A 、()ax ay a x y +=+,因式分解错误,该选项不符合题意;B 、因式分解正确,该选项符合题意;C 、()22442x x x ++=+,因式分解错误,该选项不符合题意;D 、()()2111x x x -=-+,因式分解错误,该选项不符合题意.故选:B .【点睛】本题主要考查因式分解,牢记因式分解的定义(把一个多项式化成几个整式的积的形式叫做因式分解)和方法(提公因式法和公式法)是解题的关键.3.(2023上·河南许昌·八年级统考期末)如果()()21052x kx x x ++=--,则k 应为( )A .3-B .3C .7D .7-【答案】D 【分析】先利用整式乘法化简等式的左边代数式,再根据对应系数相等求解k 值即可.【详解】解:∵()()22525210710x x x x x x x --=--+=-+,∴2210710x kx x x ++=-+,∴7k =-,故选:D .【点睛】本题考查因式分解,熟知因式分解和整式乘法是互为逆运算是解答的关键.4.(2023上·福建厦门·八年级统考期末)要使多项式22x M x ++能运用平方差公式进行分解因式,整式M 可以是( )A .1B .1-C .24x -+D .24x --【答案】D【分析】利用平方差公式的结构特征判断即可.【详解】解:A .()22211x x x ++=+是完全平方公式因式分解,不合题意;B .221x x +-不能用平方差公式因式分解,故该选项不正确,不符合题意;C .222424x x x x x -++=+,不能用平方差公式因式分解,故该选项不正确,不符合题意;D . ()()22242422x x x x x x --+=-=+-,能用平方差公式因式分解,故该选项正确,符合题意;故选:D .【点睛】此题考查了因式分解-运用公式法,熟练掌握平方差公式是解本题的关键.5.(2023下·安徽宿州·八年级校考期末)已知ABC V 的三边长分别为a ,b ,c ,且满足22a ac b bc -=-,则ABC V 一定是( )A .直角三角形B .等边三角形C .锐角三角形D .等腰三角形【答案】D 【分析】依据题意,由22a ac b bc -=-得220a b ac bc --+=,从而()()0a b a b c -+-=,由两边之和大于第三边可得a b c +>,即0a b c +->,进而0a b -=,故可得解.【详解】解:由题意,∵22a ac b bc -=-,∴220a b ac bc --+=.∴()()0a b a b c -+-=.又∵a b c +>,即0a b c +->,∴0a b -=,即a b =.∴ABC V 是等腰三角形.故选:D .【点睛】本题主要考查了因式分解的应用,解题时需要熟练掌握并能理解.二、填空题【点睛】本题主要考查了因式分解的应用,正确理解题意是解题的关键.三、解答题11.(2023下·四川达州·八年级校考期末)分解因式:(1)32231212a a b ab -+-;(2)229()()m n m n +--.【答案】(1)23(2)a a b --(2)()()422m n m n ++【分析】(1)原式提取公因式,再利用完全平方公式分解即可;(2)原式利用平方差公式分解即可.【详解】(1)原式()22344a a ab b =--+23(2)a a b =--;(2)()2原式()()()()33m n m n m n m n =++-+--éùéùëûëû()()422m n m n =++.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12.(2023下·四川达州·八年级校考期末)因式分解:(1)()()42a x y b y x ---;(2)22168x xy y -+;【答案】(1)()()22x y a b -+(2)2(4)x y -【分析】(1)利用提公因式法进行分解,即可解答;(2)利用完全平方公式进行分解,即可解答.【详解】(1)解:()()42a x y b y x ---【答案】(1)(3)(3)+++-a b a b (2)ABC V 是等腰三角形,理由见解析【分析】(1)运用完全平方公式分解222a ab b ++,再运用平方差公式进行分解即可;(2)运用乘法公式进行分组分解法分解因式即可.【详解】(1)解:2229a ab b ++-2()9a b =+-(3)(3)a b a b =+++-.(2)解:20a ab ac bc -+-=,因式分解为:()2()0a ab ac bc -+-=,()()0a a b c a b -+-=,()()0a b a c -+=,0a b \-=,即a b =,∴ABC V 是等腰三角形.【点睛】本题主要考查因式分解的知识,掌握乘法公式的运用,因式分解的方法是解题的关键.15.(2023下·甘肃陇南·八年级统考期末)阅读与思考请仔细阅读并完成相应任务.生活中我们经常用到密码,例如用支付宝或微信支付时.有一种用“因式分解”法产生的密码,方便记忆,其原理是:将一个多项式分解因式,如多项式:3222x x x +--可以因式分解为()()()112x x x -++,当29x =时,128x -=,130x +=,231x +=,此时可以得到数字密码283031.任务:(1)根据上述方法,当15x =,5y =时,对于多项式32x xy -分解因式后可以形成哪些数字密码?(2)已知一个直角三角形的周长是24,斜边长为11,其中两条直角边分别为x ,y ,求出一个由多项式33x y xy +分解因式后得到的密码(只需一个即可).【答案】(1)可得数字密码是151020;也可以是152010;101520;102015,201510,201015(2)24121(或12124)【分析】(1)先将32x xy -进行因式分解,再根据题意代入15x =,5y =计算,即可求解;(2)根据勾股定理和三角形周长公式得2213121x y x y +=ìí+=î,解得24xy =,再将多项式33x y xy +分解因式后,代入24xy =,22121x y +=进行计算即可求解.【详解】(1)解:()()32x xy x x y x y -=-+,当15x =,5y =时,10x y -=,20x y +=,可得数字密码是151020;也可以是152010;101520;102015,201510,201015.(2)由题意得:2213121x y x y +=ìí+=î,解得24xy =,而()3322x y xy xy x y +=+,所以可得数字密码为24121(或12124).【点睛】本题考查因式分解和因式分解的应用,解题的关键是掌握因式分解的方法以及题目中数字密码的计算方法.16.(2023下·辽宁锦州·八年级统考期末)数形结合是解决数学问题的重要思想方法,借助图形可以对很多数学问题进行直观推导和解释.如图1,有足够多的A ,B ,C 三种纸片:A 种是边长为m 的正方形,B 种是边长为n 的正方形,C 种是宽为m ,长为n 的长方形.用A 种纸片1张,B 种纸片1张,C 种纸片2张可以拼出(不重不漏)如图2所示的正方形.根据正方形的面积,可以用来解释整式乘法()()222m n m n m mn n ++=++,反过来也可以解释多项式222m mn n ++,因式分解的结果为2222()m mn n m n ++=+,依据上述积累的数与形对应关系的经验,解答下列问题:(1)若多项式2223m n mn ++表示分别由1,2,3张A ,B ,C 三种纸片拼出如图3所示的大长方形的面积,请根据图形求出这个长方形的长和宽,并对多项式2232m mn n ++进行因式分解;(2)我们可以借助图3再拼出一个更长方形,使该长方形刚好由3张A 种纸片,2张B 种纸片,7张C 种纸片拼成,那么这个长方形的面积可以表示为多项式______,据此可得到该多项式因式分解的结果为______.【答案】(1)长是2m n +,宽是m n +,因式分解结果是()()2m n m n ++(2)22372m mn n ++,()()23m n m n ++【分析】(1)根据A ,B ,C 三种纸片的边长即可求出图2中长方形的长和宽,根据长方形的面积等于长乘宽即可进行因式分解;(2)根据长方形由3张A 种纸片,2张B 种纸片,7张C 种纸片拼成,即可求出这个长方形的面积,然后进行因式分解即可.【详解】(1)解:根据图形可知这个长方形的长是2m n +,宽是m n +,2232(2)()m mn n m n m n \++=++;(2)根据长方形刚好由3张A 种纸片,2张B 种纸片,7张C 种纸片拼成,则这个长方形的面积可以表示为多项式22372m mn n ++,22372(2)(3)m mn n m n m n \++=++,故答案为:22372m mn n ++,(2)(3)m n m n ++.【点睛】本题主要考查了因式分解的应用,多项式乘多项式,利用数形结合思想与长方形的面积解答是解题的关键.。
初中数学八年级(上)因式分解100道疯狂训练题
因式分解100道疯狂训练1.判断下列各式从左到右的变形是否是分解因式,并说明理由.⑴22()()x y x y x y +-=-;⑵322()x x x x x x +-=+⑶232(3)2x x x x +-=+-;⑷1(1)(1)xy x y x y +++=++2.观察下列从左到右的变形:⑴()()3322623a b a b ab -=-;⑵()ma mb c m a b c -+=-+⑶()22261266x xy y x y ++=+;⑷()()22323294a b a b a b +-=-其中是因式分解的有(填括号)3.分解因式:ad bd d -+;4.分解因式:4325286x y z x y -5.分解因式:322618m m m -+-6.分解因式:23229632x y x y xy ++7.分解因式:2222224x y x z y z z --+8.分解因式:232232a b abc d ab cd c d -+-9.分解因式:22(1)1a b b b b -+-+-10.分解因式:2244a a b -+-11.分解因式:23361412abc a b a b --+12.分解因式:32461512a a a -+-13.分解因式:22224()x a x a x +--14.分解因式:3222524261352xy z xy z x y z -++15.不解方程组2631x y x y +=⎧⎨-=⎩,求代数式()()237323y x y y x ---的值.16.分解因式:2121()()m m p q q p +--+-17.分解因式:212312n n x y xy z +-(n 为大于1的自然数).18.把下列各式进行因式分解:3223224612x y x y x y -+-19.分解因式:()()23262x a b xy a b +-+20.分解因式23423232545224()20()8()x y z a b x y z a b x y z a b ---+-21.分解因式:346()12()m n n m -+-22.分解因式:55()()m m n n n m -+-23.分解因式:()()()2a ab a b a a b +--+24.分解因式:2316()56()m m n n m -+-25.分解因式:(23)(2)(32)(2)a b a b a b b a +--+-26.化简下列多项式:()()()()23200611111x x x x x x x x x ++++++++++27.分解因式:()()2121510n na ab ab b a +---(n 为正整数)28.分解因式:212146n m n m a b a b ++--(m 、n 为大于1的自然数)29.分解因式:2122()()()2()()n n n x y x z x y y x y z +----+--,n 为正整数.30.先化简再求值,()()()2y x y x y x y x +++--,其中2x =-,12y =.31.求代数式的值:22(32)(21)(32)(21)(21)(23)x x x x x x x -+--+++-,其中23x =-.32.已知:2b c a +-=-,求22221()()(222)33333a abc b c a c b c a --+-+++-的值.33.分解因式:322()()()()()x x y z y z a x z z x y x y z x y x z a +-+-+--+----.34.若a 、b 、c 为ABC ∆的三边长,且()()()()a b b a b a a c a b a c -+-=-+-,则ABC ∆按边分类,应是什么三角形?35.因式分解:a ab ab +-22,结果正确的是()A .)2(-b aB .2)1(-b a C .2)1(+b a D .)2(-b ab 36.分解因式:44a b -37.分解因式:2249()16()m n m n +--38.分解因式:22()()a b c d a b c d +++--+-39.分解因式:()()22114m n mn --+40.分解因式:()()4(1)x y x y y +-+-41.分解因式:34xy xy -;42.分解因式:22()()a x y b y x -+-43.因式分解:22()a b c +-44.因式分解:224(2)y z x --45.分解因式:481y -46.分解因式:229()4()m n m n --+47.分解因式:22122x y -+48.分解因式:22(32)16x y y --49.分解因式:44()()a x a x +--50.分解因式:4232y -51.分解因式:81644x -52.分解因式:75()()a b b a -+-53.分解因式:2243()27()x x y y x ---54.利用分解因式证明:712255-能被120整除.55.证明:两个连续奇数的平方差能被8整除56.分解因式:2242x x -+=;57.分解因式:244ax ax a -+=;58.分解因式:2844a a --=;59.分解因式:2292416x xy y -+=60.分解因式:3269x x x -+61.分解因式:2363x x -+62.已知 3.43 3.14x y ==,,求221222x xy y ---值63.分解因式:22224946a b c d ac bd -+-++64.分解因式2222_________________a ab b c -+-=.65.分解因式:22222()4x y x y +-66.分解因式:222224()a b a b -+67.分解因式:2222()4()4()m n m n m n +--+-;68.分解因式:22(5)2(5)(3)(3)m n n m n m n m +-+-+-;69.分解因式:44222()4p q p q +-70.分解因式:222()4()4x x x x +-++;71.分解因式:24()520(1)x y x y ++-+-72.分解因式:()()222248416x x x x ++++73.已知2244241a ab b a b ++--+=2m ,试用含a 、b 的代数式表示m .74.化简:22()()()()()()a b b c a c a b a b a b c a b c ++-+-+-+++-75.在实数范围内分解因式:224x -;76.在实数范围内分解因式:264m m -+26a -+78.在实数范围内分解因式:42514a a --79.分解因式:66a b -80.分解因式:523972x x y -81.分解因式:66a b +82.若a ,b ,c 是三角形三边的长,则代数式2222a b c ab +--的值().A.大于零B.小于零C 大于或等于零D .小于或等于零83.分解因式:()()()3232332125x y x y x y -+---84.分解因式:22(23)9(1)x x +--85.分解因式:22222223(2)273(2)(3)a a b a b a a b b ⎡⎤+-=+-⎣⎦86.分解因式:222222(35)(53)a b a b --+-87.分解因式:2222x y z yz---88.分解因式:2222(3)2(3)(3)(3)x x x x -+--+-;89.分解因式:22229()6()()a b a b a b ++-+-.90.已知()222410a b a b +--+=,求()20062a b +的值.91.分解因式:22222(91)36a b a b +--92.若a ,b ,c 为正数,且满足444222222a b c a b b c c a ++=++,那么,,a b c 之间有什么关系?93.a ,b ,c 是三角形ABC 的三条边,且2220,a b c ab bc ac ++---=则三角形ABC 是怎样的三角形?94.分解因式:33b-a 95.分解因式:1xy x y --+96.分解因式:ax by bx ay --+97.分解因式:27321x y xy x -+-98.分解因式:4321x x x ++-99.分解因式:22abx bxy axy y +--100.分解因式:()()x x z y y z +-+。
初二因式分解经典题35题
初二因式分解经典题35题一、提取公因式法相关(10题)1. 分解因式:6ab + 3ac- 你看这里面每一项都有个3a呢。
就像大家都有个共同的小秘密一样。
那我们就把3a提出来呀,提出来之后就变成3a(2b + c)啦。
2. 分解因式:15x^2y−5xy^2- 哟,这里面5xy是公共的部分哦。
把5xy提出来,就剩下5xy(3x - y)啦,是不是很简单呢?3. 分解因式:4m^3n - 16m^2n^2+8mn^3- 仔细瞧瞧,8mn是都能提出来的。
提出来后就变成8mn(m^2 - 2mn + n^2)啦。
4. 分解因式:−3x^2y+6xy^2−9xy- 这里面−3xy是公因式哦。
把它提出来,就得到−3xy(x - 2y+3)啦。
5. 分解因式:2a(x - y)-3b(x - y)- 看呀,(x - y)是公共的部分呢。
提出来就变成(x - y)(2a - 3b)啦。
6. 分解因式:a(x - y)^2 - b(y - x)^2- 注意哦,(y - x)^2=(x - y)^2。
那这里面(x - y)^2是公因式,提出来就得到(x - y)^2(a - b)啦。
7. 分解因式:x(x - y)+y(y - x)- 先把y(y - x)变成-y(x - y),这样公因式就是(x - y)啦,提出来就是(x - y)(x - y)=(x - y)^2。
8. 分解因式:3a(a - b)+b(b - a)- 把b(b - a)变成-b(a - b),公因式(a - b)提出来,就得到(a - b)(3a - b)啦。
9. 分解因式:2x(x + y)-3(x + y)^2- 公因式是(x + y),提出来就变成(x + y)[2x-3(x + y)]=(x + y)(2x - 3x - 3y)=(x + y)(-x - 3y)=-(x + y)(x + 3y)。
10. 分解因式:5(x - y)^3+10(y - x)^2- 把(y - x)^2变成(x - y)^2,公因式5(x - y)^2提出来,得到5(x - y)^2[(x -y)+2]=5(x - y)^2(x - y + 2)。
八年级上册数学因式分解专题训练(附答案)
14.3 因式分解专题训练(附答案)1.因式分解:(1)a4﹣1;(2)x3﹣2x2y+xy2.2.因式分解:(1)(a﹣b)(x﹣y)﹣(b﹣a)(x+y);(2)(x2+1)2﹣4x2.3.分解因式:(1)mn﹣2n;(2)4x2﹣36;(3)(a2+b2)2﹣4a2b2.4.分解因式:(1)8m2n+2mn;(2)2a2﹣4a+2;(3)3m(2x﹣y)2﹣3mn2;(4)x4﹣2x2+1.5.因式分解:(1)9x2﹣81.(2)m3﹣8m2+16m.6.分解因式:(1)x2(m﹣n)+y2(n﹣m);(2)3x2﹣18xy+27y2.7.计算与因式分解:(1)a3﹣4a2+4a;(2)x4﹣16.8.把下列各式进行因式分解:(1)2(x﹣y)﹣(x﹣y)2;(2)﹣x2+8x﹣15;(3)8m3n+40m2n2+50mn3;(4)a4﹣b4.(1)2m2﹣2n2;(2)a3b﹣4a2b+4ab.10.分解因式:(1)12ab2﹣6ab;(2)a2﹣6ab+9b2;(3)x4﹣1;(4)n2(m﹣2)+(2﹣m).11.分解因式:(1)4x2﹣(x2+1)2;(2)3(x﹣1)2﹣18(x﹣1)+27.12.在实数范围内因式分解:(1)4y2+4y﹣2;(2)3x2﹣5xy﹣y2.13.分解因式:(1)3ab3﹣30a2b2+75a3b;(2)a2(x﹣y)+16(y﹣x).14.因式分解:(1)9abc﹣6a2b2+12abc2.(2)3x2(x﹣y)+6x(y﹣x).15.分解因式:(1)16x2﹣8xy+y2;(2)a2(x﹣y)+b2(y﹣x).16.分解因式:(1)(x+3)2﹣25;(2)﹣x3y+6x2y﹣9xy.17.分解因式:(1)8a﹣2a3;(2)(x2+1)2﹣4x2.(1)(x﹣y)m﹣(y﹣x).(2)2x3y﹣4x2y2+2xy3.19.分解因式:(1)2x2﹣12x+18;(2)a3﹣a;(3)4ab2﹣4a2b﹣b3;(4)m3(a﹣2)+m(2﹣a).20.把下面各式分解因式(1)x2﹣4xy+4y2;(2)4x2(x﹣y)+(y﹣x).21.因式分解:(1)x3y﹣2x2y2+xy3;(2)2a3﹣18a.22.因式分解:(1)x2﹣4;(2)6ab2﹣9a2b﹣b3.23.因式分解:(1)12m3n﹣3mn;(2)(x+y)2﹣2(x+y)+1.24.把下列各式分解因式:(1)a2b﹣4ab+4b;(2)x4﹣8x2y2+16y4.25.把下列多项式因式分解.(1)m(m﹣2)﹣3(2﹣m);(2)n4﹣2n2+1.26.分解因式:(1)m3(x﹣2)+m(2﹣x);(2)4(a﹣b)2+1+4(a﹣b).27.因式分解:(1)2(x+2)2+8(x+2)+8;(2)﹣2m4+32m².28.因式分解:(1)﹣a2+2a3﹣a4;(2)(m2﹣5)2+8(m2﹣5)+16.29.分解因式:(1)a3﹣2a2+a;(2)(2x+y)2﹣(x+2y)2.30.因式分解:(1)x2y﹣2xy2+y3;(2)(x²+y2)2﹣4x2y2.参考答案1.解:(1)原式=(a2+1)(a2﹣1)=(a2+1)(a+1)(a﹣1);(2)原式=x(x2﹣2xy+y2)=x(x﹣y)2.2.解:(1)原式=(a﹣b)(x﹣y)+(a﹣b)(x+y)=(a﹣b)[(x﹣y)+(x+y)]=2x(a﹣b),(2)原式=(x2+1)2﹣(2x)2=(x2+1+2x)(x2+1﹣2x)=(x+1)2(x﹣1)2.3.解:(1)mn﹣2n=n(m﹣2);(2)4x2﹣36=4(x2﹣9)=4(x+3)(x﹣3);(3)(a2+b2)2﹣4a2b2=(a2+b2+2ab)(a2+b2﹣2ab)=(a+b)2(a﹣b)2.4.解:①原式=2mn(4m+1);②原式=2(a2﹣2a+1)=2(a﹣1)2;③原式=3m[(2x﹣y)2﹣n2]=3m(2x﹣y+n)(2x﹣y﹣n);④原式=(x2﹣1)2=(x+1)2(x﹣1)2.5.解:(1)9x2﹣81=9(x2﹣9)=9(x+3)(x﹣3);(2)m3﹣8m2+16m=m(m2﹣8m+16)=m(m﹣4)2.6.解:(1)x2(m﹣n)+y2(n﹣m)=(m﹣n)(x2﹣y2)=(m﹣n)(x+y)(x﹣y);(2)3x2﹣18xy+27y2=3(x2﹣6xy+9y2)=3(x﹣3y)2.7.解:(1)原式=(x+y)2﹣12=x2+2xy+y2﹣1;(2)原式=a(a2﹣4a+4)=a(a﹣2)2;(3)原式=(x2+4)(x2﹣4)=(x2+4)(x+2)(x﹣2).8.解:(1)2(x﹣y)﹣(x﹣y)2=(x﹣y)[2﹣(x﹣y)]=(x﹣y)(2﹣x+y);(2)﹣x2+8x﹣15=﹣(x2﹣8x+15)=﹣(x﹣5)(x﹣3);(3)8m3n+40m2n2+50mn3=2mn(4m2+20mn+25n2)=2mn(2m+5n)2;(4)a4﹣b4=(a2+b2)(a2﹣b2)=(a2+b2)(a+b)(a﹣b).9.解:(1)2m2﹣2n2=2(m2﹣n2)=2(m+n)(m﹣n);(2)a3b﹣4a2b+4ab=ab(a2﹣4a+4)=ab(a﹣2)2.10.解:(1)12ab2﹣6ab=6ab(2b﹣1);(2)a2﹣6ab+9b2=(a﹣3b)2;(3)x4﹣1=(x2+1)(x2﹣1)=(x2+1)(x﹣1)(x+1);(4)n2(m﹣2)+(2﹣m)=n2(m﹣2)﹣(m﹣2)=(m﹣2)(n2﹣1)=(m﹣2)(n+1)(n﹣1).11.解:(1)原式=(2x)2﹣(x2+1)2=(2x+x2+1)(2x﹣x2﹣1)=﹣(x+1)2(x﹣1)2;(2)原式=3[(x﹣1)2﹣6(x﹣1)+9]=3[(x﹣1)﹣3]2=3(x﹣4)2.12.解:(1)原式=(2y)2+2•2y•1+12﹣3=(2y+1)2﹣()2=(2y+1+)(2y+1﹣);(2)=3(x﹣y)(x﹣y).13.解:(1)3ab3﹣30a2b2+75a3b=3ab(b2﹣10ab+25a2)=3ab(b﹣5a)2;(2)原式=a2(x﹣y)﹣16(x﹣y)=(x﹣y)(a2﹣16)=(x﹣y)(a+4)(a﹣4).14.解:(1)9abc﹣6a2b2+12abc2=3ab(3c﹣2ab+4c2);(2)3x2(x﹣y)+6x(y﹣x)=3x2(x﹣y)﹣6x(x﹣y)=3x(x﹣y)(x﹣2).15.解:(1)原式=(4x﹣y)2;(2)原式=a2(x﹣y)﹣b2(x﹣y)=(x﹣y)(a2﹣b2)=(a+b)(a﹣b)(x﹣y).16.解:(1)原式=(x+3﹣5)(x+3+5)=(x+8)(x﹣2);(2)原式=﹣xy(x2﹣6x+9)=﹣xy(x﹣3)2.17.解:(1)原式=2a(4﹣a2)=2a(2+a)(2﹣a);(2)原式=(x2+1﹣2x)(x2+1+2x)=(x﹣1)2(x+1)2.18.解:(1)原式=(x﹣y)m+(x﹣y)=(x﹣y)(m+1);(2)原式=2xy(x2﹣2xy+y2)=2xy(x﹣y)2.19.解:(1)原式=2(x2﹣6x+9)=2(x﹣3)2;(2)原式=a(a2﹣1)=a(a+1)(a﹣1);(3)原式=﹣b(b2﹣4ab+4a2)=﹣b(b﹣2a)2;(4)原式=m(a﹣2)(m2﹣1)=m(a﹣2)(m﹣1)(m+1).20.解:(1)原式=x2﹣2×x×2y+(2y)2=(x﹣2y)2;(2)原式=4x2(x﹣y)﹣(x﹣y)=(x﹣y)(4x2﹣1)=(x﹣y)(2x+1)(2x﹣1).21.解:(1)原式=xy(x2﹣2xy+y2)=xy(x﹣y)2;(2)原式=2a(a2﹣9)=2a(a+3)(a﹣3).22.解:(1)x2﹣4=(x+2)(x﹣2);(2)6ab2﹣9a2b﹣b3=﹣b(9a2﹣6ab+b2)=﹣b(3a﹣b)2.23.解:(1)12m3n﹣3mn=3mn(4m2﹣1)=3mn(2m﹣1)(2m+1);(2)(x+y)2﹣2(x+y)+1=(x+y﹣1)2.24.解:(1)原式=b(a2﹣4a+4)=b(a﹣2)2;(2)原式=(x2﹣4y2)2=[(x+2y)(x﹣2y)]2=(x+2y)2(x﹣2y)2.25.解:(1)原式=m(m﹣2)+3(m﹣2)=(m﹣2)(m+3);(2)原式=(n2﹣1)2=(n+1)2(n﹣1)2.26.解:(1)m3(x﹣2)+m(2﹣x)=m3(x﹣2)﹣m(x﹣2)=m(x﹣2)(m2﹣1)=m(m+1)(m﹣1)(x﹣2);(2)4(a﹣b)2+1+4(a﹣b)=[2(a﹣b)+1]2=(2a﹣2b+1)2.27.解:(1)2(x+2)2+8(x+2)+8=2[(x+2)2+4(x+2)+4]=2(x+2+2)2=2(x+4)2;(2)﹣2m4+32m2=﹣2m2(m2﹣16)=﹣2m2(m+4)(m﹣4).28.解:(1)原式=﹣a2(1﹣2a+a2)=﹣a2(1﹣a)2;(2)原式=[(m2﹣5)+4]2=(m2﹣1)2=(m+1)2(m﹣1)2.29.(1)原式=a(a2﹣2a+1)=a(a﹣1)2;(2)原式=(2x+y+x+2y)(2x+y﹣x﹣2y)=(3x+3y)(x﹣y)=3(x+y)(x﹣y).30.解:(1)原式=y(x2﹣2xy+y2)=y(x﹣y)2;(2)原式=(x2+y2+2xy)(x2+y2﹣2xy)=(x+y)2(x﹣y)2.。
因式分解顺利通关(基础+拔高+真题演练)(Word版+答案)
因式分解精华1.分解因式:把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式.2.分解因式的一般方法: (1)提公共因式法. (2)运用公式法.①平方差公式:()()22a b a b a b -=+- ②完全平方公式:()2222a ab b a b ±+=±(3)十字相乘法。
利用十字交叉线来分解系数,把二次三项式分解因式的方法叫做十字相乘法.①对于二次三项式,若存在 ,则 ②首项系数不为1的十字相乘法在二次三项式(≠0)中,如果二次项系数可以分解成两个因数之积,即,常数项可以分解成两个因数之积,即,把排列如下:按斜线交叉相乘,再相加,得到,若它正好等于二次三项式的一次项系数,即,那么二次三项式就可以分解为两个因式与之积,即.(4)分组分解法对于一个多项式的整体,若不能直接运用提公因式法和公式法进行因式分解时,可考虑分步处理的方法,即把这个多项式分成几组,先对各组分别分解因式,然后再对整体作因式分解——分组分解法.即先对题目进行分组,然后再分解因式. 3.分解因式的步骤:2x bx c ++pq c p q b=⎧⎨+=⎩()()2x bx c x p x q ++=++2ax bx c ++a a 12a a a =c 12c c c =1212a a c c ,,,1221a c a c +2ax bx c ++b 1221a c a c b +=11a x c +22a x c +()()21122ax bx c a x c a x c ++=++ 专题知识回顾(1)先看各项有没有公因式,若有,则先提取公因式; (2)再看能否使用公式法;(3)用分组分解法,即通过分组后提取各组公因式或运用公式法来达到分解的目的; (4)因式分解的最后结果必须是几个整式的乘积,否则不是因式分解; (5)因式分解的结果必须进行到每个因式在有理数范围内不能再分解为止.若有公因式,先提公因式;然后再考虑用公式法(平方差公式:a 2-b 2=(a +b )(a -b ),完全平方公式:a 2±2ab +b 2=(a ±b )2)或其它方法分解;直到每个因式都不能再分解为止.【例题1】(2019•江苏无锡)分解因式4x 2-y 2的结果是( ) A .(4x +y )(4x ﹣y ) B .4(x +y )(x ﹣y ) C .(2x +y )(2x ﹣y ) D .2(x +y )(x ﹣y )【例题2】(2019贵州省毕节市) 分解因式:x 4﹣16= . 【例题3】(2019广东深圳)分解因式:ab 2-a=____________.【例题4】(2019黑龙江哈尔滨)分解因式:22396ab b a a +-= . 【例题5】(经典题)把下列各式分解因式:(1)1522--x x ; (2)2265y xy x +-.【例题6】(2019山东东营)因式分解:x (x -3)-x+3=____________.【例题7】(2019湖北咸宁)若整式x 2+my 2(m 为常数,且m ≠0)能在有理数范围内分解因式,则m 的值可以多少(写一个即可).【例题8】(经典题)把ab ﹣a ﹣b+1分解因式。
因式分解精选经典拔高培优习题(含详细答案解析)
因式分解精选经典培优习题1、多项式xyz y z x y z x x z z y y x 2222222-++-+-因式分解后的结果是( ).A .(y -z)(x+y)(x -z)B .(y -z)(x -y)(x +z)C . (y+z)(x 一y)(x+z)D .(y 十z)(x+y)(x 一z)2、把下列各式分解因式:(1)(x+1)(x +2)(x+3)(x+6)+ x 2;(2)1999x 2一(19992一1)x 一1999;(3)(x+y -2xy)(x+y -2)+(xy -1)2;(4)(2x -3y)3十(3x -2y)3-125(x -y)3.3、分解因式(1)(x 2+4x+8)2+3x(x 2+4x+8)+2x 2;(2)(2x 2-3x+1)2一22x 2+33x -1;(3)x 4+2001x 2+2000x+2001;(4)(6x -1)(2 x -1)(3 x -1)( x -1)+x 2;(5)bc ac ab c b a 54332222+++++;(6)613622-++-+y x y xy x .4、分解因式:22635y y x xy x ++++5、分解因式91)72)(9)(52(2---+a a a6、2)1()21(2)3()1(-+-++-+++y x y x xy xy xy因式分解详细答案解析1、多项式xyz y z x y z x x z z y y x 2222222-++-+-因式分解后的结果是( ).A .(y -z)(x+y)(x -z)B .(y -z)(x -y)(x +z)C . (y+z)(x 一y)(x+z)D .(y 十z)(x+y)(x 一z)解析:原式是一个复杂的三元三次多项式,直接分解有一定困难,把原式整理成关于某个字母按降幂排列的多项式,改变其结构,寻找分解的突破口.2、把下列各式分解因式:(1)(x+1)(x +2)(x+3)(x+6)+ x 2;(2)1999x 2一(19992一1)x 一1999;(3)(x+y -2xy)(x+y -2)+(xy -1)2;(4)(2x -3y)3十(3x -2y)3-125(x -y)3.解析: (1)是形如abcd+e 型的多项式,分解这类多项式时,可适当把4个因式两两分组,使得分组相乘后所得的有相同的部分;(2)式中系数较大,不妨把数用字母表示;(3)式中x+y ;xy 多次出现,可引入两个新字母,突出式子特点;(4)式前两项与后一项有密切联系.3、分解因式(1)(x 2+4x+8)2+3x(x 2+4x+8)+2x 2;(2)(2x 2-3x+1)2一22x 2+33x -1;(3)x 4+2001x 2+2000x+2001;(4)(6x -1)(2 x -1)(3 x -1)( x -1)+x 2;(5)bc ac ab c b a 54332222+++++;(6)613622-++-+y x y xy x . 解析:4、分解因式:22635y y x xy x ++++ 解析:5、分解因式 91)72)(9)(52(2---+a a a 解析:6、2)1()21(2)3()1(-+-++-+++y x y x xy xy xy 解析:。
(完整)初二数学因式分解提高版(附答案)
初二数学因式分解提高版(附答案)1. 有一个因式是 , 另一个因式是( )A. B. C. D.2、把a4-2a2b2+b4分解因式, 结果是( )A.a2(a2-2b2)+b4B.(a2-b2)2C.(a -b)4D.(a +b)2(a -b)23.若a2-3ab-4b2=0,则 的值为( )A.1B.-1C.4或-1D.- 4或14.已知 为任意整数, 且 的值总可以被 整除, 则 的值为( )A. 13B. 26C. 13或26D. 13的倍数5.把代数式 分解因式, 结果正确的是A. B.C. D.6.把x2-y2-2y -1分解因式结果正确的是( )。
A. (x +y +1)(x -y -1)B. (x +y -1)(x -y -1)C. (x +y -1)(x +y +1)D. (x -y +1)(x +y +1)7、分解因式: 的结果是( )A.B. C. D. 8、因式分解: 9x2-y2-4y -4=__________.9、若 = , 则m=_______, n=_________。
10、已知,01200520042=+++++x x x x 则.________2006=x11.若 则 ___。
12.计算 的值是( )13、22414y xy x +--14、811824+-x x15.16、24)4)(3)(2)(1(-++++x x x x17、1235-+-x x x18、)()()(23m n n m n m +--+19、3)2(2)2(222-+-+a a a a20、已知 , , 求 的值。
21.已知 , 求 的值22.已知 , 求 的值;23.已知 , 求 的值;24.已知 , , 求(1) ;(2)25、已知 , 求x+y 的值;26、2222224)(b a b a c ---27、先分解因式, 然后计算求值: (本题6分)(a2+b2-2ab )-6(a -b )+9, 其中a=10000, b=9999。
八年级上册因式分解分类练习题(经典全面)
因式分解练习题(提取公因式)专项训练一:确定下列各多项式的公因式。
1、ay ax +2、36mx my -3、2410a ab +4、2155a a + 5、22x y xy - 6、22129xyz x y - 7、()()m x y n x y -+- 8、()()2x m n y m n +++ 9、3()()abc m n ab m n --- 10、2312()9()x a b m b a --- 专项训练二:利用乘法分配律的逆运算填空。
1、22____()R r R r ππ+=+2、222(______)R r πππ+=3、2222121211___()22gt gt t t +=+ 4、2215255(_______)a ab a +=专项训练三、在下列各式左边的括号前填上“+”或“-”,使等式成立。
1、__()x y x y +=+ 2、__()b a a b -=- 3、__()z y y z -+=- 4、()22___()y x x y -=- 5、33()__()y x x y -=- 6、44()__()x y y x --=- 7、22()___()()nna b b a n -=-为自然数 8、2121()___()()n n a b b a n ++-=-为自然数9、()1(2)___(1)(2)x y x y --=-- 10、()1(2)___(1)(2)x y x y --=-- 11、23()()___()a b b a a b --=- 12、246()()___()a b b a a b --=- 专项训练四、把下列各式分解因式。
1、nx ny -2、2a ab +3、3246x x -4、282m n mn +5、23222515x y x y -6、22129xyz x y -7、2336a y ay y -+8、259a b ab b -+ 9、2x xy xz -+- 10、223241228x y xy y --+11、323612ma ma ma -+- 12、32222561421x yz x y z xy z +-13、3222315520x y x y x y +- 14、432163256x x x --+专项训练五:把下列各式分解因式。
人教版八年级数学上《提公因式法》拔高练习
《提公因式法》拔高练习一、选择题(本大题共5小题,共25.0分)1.(5分)计算(﹣2)2018+(﹣2)2017所得的结果是()A.﹣22017B.﹣1C.﹣2D.22017 2.(5分)计算(﹣2)100+(﹣2)99的结果是()A.2B.﹣2C.﹣299D.299 3.(5分)已知x﹣y=3,xy=2,则x2y﹣xy2的值为()A.6B.5C.1.5D.1 4.(5分)分解因式﹣4x2y+2xy2﹣2xy的结果是()A.﹣2xy(2x﹣y+1)B.2xy(﹣2x+y)C.2xy(﹣2xy+y﹣1)D.﹣2xy(2x+y﹣1)5.(5分)(﹣2)10+(﹣2)11的值等于()A.﹣2B.﹣210C.210D.(﹣2)21二、填空题(本大题共5小题,共25.0分)6.(5分)因式分解:2x2﹣4x═.7.(5分)把多项式3mx﹣6my分解因式的结果是.8.(5分)因式分解:8a2﹣2a=.9.(5分)分解因式:3x2yz+15xz2﹣9xy2z=.10.(5分)将多项式﹣5a2+3ab提出公因式﹣a后,另一个因式是.三、解答题(本大题共5小题,共50.0分)11.(10分)(1)分解因式x(x﹣a)+y(a﹣x)(2)分解因式x3y﹣10x2y+25xy12.(10分)把下列各式因式分解(1)a(x﹣y)+b(x﹣y)(2)(x+1)(x﹣1)﹣313.(10分)因式分解:﹣24m2x﹣16n2x.14.(10分)因式分解:(1)x2﹣10x(2)﹣8ax2+16axy﹣8ay215.(10分)在三个整式x2+2xy,y2+2xy,x2中,请你任意选出两个进行加(或减)运算,使所得整式可以因式分解,并进行因式分解.《提公因式法》拔高练习参考答案与试题解析一、选择题(本大题共5小题,共25.0分)1.(5分)计算(﹣2)2018+(﹣2)2017所得的结果是()A.﹣22017B.﹣1C.﹣2D.22017【分析】直接提取公因式(﹣2)2017,进而计算得出答案.【解答】解:(﹣2)2018+(﹣2)2017=(﹣2)2017×(﹣2+1)=22017.故选:D.【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.2.(5分)计算(﹣2)100+(﹣2)99的结果是()A.2B.﹣2C.﹣299D.299【分析】根据提公因式法,可得负数的奇数次幂,根据负数的奇数次幂是负数,可得答案.【解答】解:原式=(﹣2)99[(﹣2)+1]=﹣(﹣2)99=299,故选:D.【点评】本题考查了因式分解,提公因式法是解题关键,注意负数的奇数次幂是负数,负数的偶数次幂是正数.3.(5分)已知x﹣y=3,xy=2,则x2y﹣xy2的值为()A.6B.5C.1.5D.1【分析】直接提取公因式xy,进而分解因式,再把已知代入得出答案.【解答】解:∵x﹣y=3,xy=2,∴x2y﹣xy2=xy(x﹣y)=2×3=6.故选:A.【点评】此题主要考查了提取公因式法分解因式,正确提取公因式是解题关键.4.(5分)分解因式﹣4x2y+2xy2﹣2xy的结果是()A.﹣2xy(2x﹣y+1)B.2xy(﹣2x+y)C.2xy(﹣2xy+y﹣1)D.﹣2xy(2x+y﹣1)【分析】直接找出公因式﹣2xy,进而提取得出答案.【解答】解:﹣4x2y+2xy2﹣2xy=﹣2xy(2x﹣y+1).故选:A.【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.5.(5分)(﹣2)10+(﹣2)11的值等于()A.﹣2B.﹣210C.210D.(﹣2)21【分析】直接找出公因式(﹣2)10,进而提取计算得出答案.【解答】解:(﹣2)10+(﹣2)11=(﹣2)10×(1﹣2)=﹣210.故选:B.【点评】此题主要考查了提取公因式法,正确找出公因式是解题关键.二、填空题(本大题共5小题,共25.0分)6.(5分)因式分解:2x2﹣4x═2x(x﹣2).【分析】直接提取公因式2x,进而分解因式即可.【解答】解:2x2﹣4x=2x(x﹣2).故答案为:2x(x﹣2).【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.7.(5分)把多项式3mx﹣6my分解因式的结果是3m(x﹣2y).【分析】直接提取公因式3m,进而分解因式即可.【解答】解:3mx﹣6my=3m(x﹣2y).故答案为:3m(x﹣2y).【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.8.(5分)因式分解:8a2﹣2a=2a(4a﹣1).【分析】直接找出公因式2a,进而提取公因式得出答案.【解答】解:8a2﹣2a=2a(4a﹣1).故答案为:2a(4a﹣1).【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.9.(5分)分解因式:3x2yz+15xz2﹣9xy2z=3xz(xy+5z﹣3y2).【分析】直接找出公因式3xz,进而提取3xz分解因式得出答案.【解答】解:3x2yz+15xz2﹣9xy2z=3xz(xy+5z﹣3y2).故答案为:3xz(xy+5z﹣3y2).【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.10.(5分)将多项式﹣5a2+3ab提出公因式﹣a后,另一个因式是5a﹣3b.【分析】直接利用提取公因式法分解因式得出答案.【解答】解:多项式﹣5a2+3ab提出公因式﹣a后,另一个因式是:5a﹣3b.故答案为:5a﹣3b.【点评】此题主要考查了提取公因式法分解因式,正确提取公因式是解题关键.三、解答题(本大题共5小题,共50.0分)11.(10分)(1)分解因式x(x﹣a)+y(a﹣x)(2)分解因式x3y﹣10x2y+25xy【分析】(1)直接提取公因式(x﹣a)分解因式即可.(2)先提取公因式xy,然后利用完全平方公式进一步进行因式分解.【解答】(1)解:x(x﹣a)+y(a﹣x)=x(x﹣a)﹣y(x﹣a)=(x﹣a)(x﹣y);(2)解:x3y﹣10x2y+25xy=xy(x2﹣10x+25)=xy(x﹣5)2.【点评】考查了因式分解﹣提公因式法.当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的.12.(10分)把下列各式因式分解(1)a(x﹣y)+b(x﹣y)(2)(x+1)(x﹣1)﹣3【分析】(1)直接提取公因式(x﹣y),进而分解因式即可;(2)直接去括号进而利用平方差公式分解因式即可.【解答】解:(1)a(x﹣y)+b(x﹣y)=(x﹣y)(a+b);(2)(x+1)(x﹣1)﹣3=x2﹣1﹣3=(x+2)(x﹣2).【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.13.(10分)因式分解:﹣24m2x﹣16n2x.【分析】直接找出公因式﹣8x,进而提取公因式得出答案.【解答】解:原式=﹣8x(3m2+2n2).【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.14.(10分)因式分解:(1)x2﹣10x(2)﹣8ax2+16axy﹣8ay2【分析】(1)直接提取公因式x,进而分解因式即可;(2)直接提取公因式﹣8a,进而利用完全平方公式分解因式即可.【解答】解:(1)x2﹣10x=x(x﹣10);(2)﹣8ax2+16axy﹣8ay2=﹣8a(x2﹣2xy+y2)=﹣8a(x﹣y)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,正确找出公因式是解题关键.15.(10分)在三个整式x2+2xy,y2+2xy,x2中,请你任意选出两个进行加(或减)运算,使所得整式可以因式分解,并进行因式分解.【分析】选择第一、三项相加,利用提取公因式法分解即可.【解答】解:x2+2xy+x2=2x2+2xy=2x(x+y)(答案不唯一).【点评】此题考查了因式分解﹣提公因式法,熟练掌握提取公因式的方法是解本题的关键.。
专题10 因式分解重难点题型分类(原卷版)八年级数学上册重难点题型分类高分必刷题(人教版)
专题10 因式分解重难点题型分类-高分必刷题(原卷版)专题简介:本份资料包含《因式分解》这一在各次期中期末中常考的主流题型,所选题目源自各名校期中、 期末试题中的典型考题,具体包含六类题型:因式分解的概念、提公因式法、用平方差公式分解因式、用完全平方公式分解因式、用十字相乘法分解因式、分组分解法,本专题资料适合于培训机构的老师给学生作复习培训时使用或者学生月考、期末考前刷题时使用。
题型一:因式分解的概念因式分解的概念(1)定义:把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解.(2)原则:①分解必须要彻底(即分解之后因式均不能再做分解);②结果最后只留下小括号 ③结果的多项式首项为正。
1.(2022·福建泉州)下列各式由左边到右边的变形中,正确因式分解的是( )A .232(3)2a a a a -+=-+B .2(1)a x a a ax -=-C .()22393x x x ++=+D .()()2141414a a a -=+-2.(2021·江西)下列因式分解中,正确的是( )A .()211x x x +=+B .()()2222x x x -=+-C .()22693x x x -+=-D .()()21644x x x x x +-=+-+3.(2022·上海)下列四个式子从左到右的变形是因式分解的为( )A .()()22x y x y y x --=--B .23231226a b a b ⋅=C .()()()442281933x y x y x y x y -++-=D .()()()()222222*********a a a a a a a a +-++++-+= 题型二:提公因式法提公因式法的定义(1)定义:一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成 因式乘积的形式,这种分解因式的方法叫做提公因式法.(2)理论依据:乘法分配律的逆运算)(c b a ac ab +=+.4.(2022·甘肃)已知a −b =3,ab =2,则22a b ab -的值为____________.5.(2022·河北邯郸)分解因式:x (x -3)-x +3=_______________________.6.(2022·辽宁)因式分解:()()26a x y b y x ---=________.题型三:用平方差公式分解因式公式法(1)公式法的定义:逆用乘法公式将一个多项式分解因式的方法叫做公式法.(2)方法归纳:①平分差公式))((22b a b a b a -+=-;②完全平方公式222)(2b a b ab a ±=+±.7.(2022·河北邯郸)下列多项式中,既能用提取公因式又能用平方差公式进行因式分解的是( ) A .22a b -- B .24a -+ C .34a a - D .24a a +8.(2022·辽宁沈阳)在下列各式中,能用平方差公式因式分解的是( )A .24a +B .24a -C .24a --D .22a m +9.(2022·广西贺州)在实数范围内分解因式:425x -=________________________________. 10.(2022·陕西汉中)分解因式:()2249a b +-=________.11.(2022·辽宁葫芦岛)因式分解:2()25()x m n n m -+-.12.(2022·山东济宁)因式分解:()()2222x y x y +-+.13.(2022·湖南永州)因式分解(1)336m m - (2)()222224m n m n +-14.(2022·山东菏泽)分解因式:(1)2()4()x a b b a -+- (2)22(2)(2)a b a b +--题型四:用完全平方公式分解因式15.(2022·陕西榆林)下列各式中,能用完全平方公式分解因式的是( ) A .241x - B .221x x +- C .221x x ++ D .22x xy y -+16.(2022·山东滨州)下列各式:①22x y --;②22114a b -+;③22a ab b ++;④222x xy y -+-;⑤2214mn m n -+,能用公式法分解因式的有( ) A .2个 B .3个 C .4个 D .5个17.(2022·山东济南)下列各式能用完全平方公式进行分解因式的是( ) A .21x + B .221x x -- C .239x x ++ D .214x x -+ 18.(2021·湖北·十堰)分解因式:3222a a b ab -+=_________________. 19.(2022·辽宁)已知多项式29(6)4x m x -++可以按完全平方公式进行因式分解,则m =________________.20.(2022·湖南岳阳)若多项式29x kx ++可以用完全平方公式进行因式分解,则k =_________.21.(2022·吉林)分解因式:am 2﹣2amn +an 2=_____.22.(2022·辽宁营口·八年级期末)分解因式:﹣8a 3b +8a 2b 2﹣2ab 3=_____.23.(2022·陕西渭南)分解因式:﹣x 2y +6xy ﹣9y =___.24.(2021·四川达州)分解因式24(21)x x +-=________.题型五:用十字相乘法分解因式十字相乘法(一)二次项系数为1的二次三项式直接利用公式——))(()(2q x p x pq x q p x ++=+++进行分解. 特点:(1)二次项系数是1;(2)常数项是两个数的乘积;(3)一次项系数是常数项的两因数的和.(二)二次项系数不为1的二次三项式——c bx ax ++2条件:(1)21a a a = 1a 1c(2)21c c c = 2a 2c(3)1221c a c a b += 1221c a c a b +=分解结果:c bx ax ++2=))((2211c x a c x a ++25.(2022·辽宁抚顺)分解因式:2-2-8a a =______.26.(2022·吉林长春)分解因式:x 2﹣5x ﹣6=_____.27.(2022·上海浦东)因式分解:2412x x --=_______.28.(2021·上海虹口)因式分解:2a 2-4a -6=________.29.(2022·黑龙江)把多项式2412ab ab a --分解因式的结果是_________.30.(2022·上海)在实数范围内分解因式:2252x x -+=________.31.(2022·山东淄博)分解因式:3243a a a -+=__________.32.(2020·上海浦东)分解因式:32514x x x --=__________.33.(2018·黑龙江)在实数范围内分解因式:x 4﹣2x 2﹣3=_____.题型六:分组分解法34.(2022·黑龙江)分解因式:2224a ab b -+-=________________.35.(2021·江苏常州)因式分解:22421x y y ---=__________.36.已知a 、b 、c 为ABC ∆的三边,且满足222244a c b c a b -=-,试判断ABC ∆的形状( )A .直角三角形B .等腰三角形C .直角或等腰三角形D .直角或等边三角形37.分解因式:22424x xy y x y --++= .38.已知2226100a b a b ++-+=,求ab 的值.39.已知a ,b ,c 是ABC ∆的三边,且满足222222a b c ab ac ++=+,试判断ABC ∆的形状,并说明理由.40.已知a ,b ,c 为ABC ∆的三边,若2222220a b c ac bc ++--=,判断ABC ∆的形状?41.三角形ABC 的三条边长a ,b ,c 满足222166100a b c ab bc --++=,求证:2a c b +=.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学(上)周末辅导资料
一、知识点梳理:
1、因式分解:因式分解就是把一个多项式变为几个整式的积的形式。
2、因式分解的方法:
(1)提公因式法,即ma+mb+mc=m(a+b+c);
(2)运用公式法,平方差公式:()()b a b a b a -+=-22;
完全平方公式:222b ab a ++=()2b a +和)(b a b ab a -=+-2222
(3)十字相乘法:对于二次三项式2x Px q ++,若能找到两个数a 、b ,使,
,a b p a b q +=⎧⎨⋅=⎩
则就有22()()()x Px q x a b x ab x a x b ++=+++=++.
注:若q 为正,则a ,b 同号;若q 为负,则a ,b 异号;
二、典型例题:
(1)如果2592++kx x 是一个完全平方式,那么k 的值是( )
A 、 15
B 、 ±5
C 、 30 D
±
30 (2)若215(3)()x mx x x n --=++ 则m=_____,n=______。
(3)计算 29982+2998×4+4= 。
(4)若442-+x x 的值为0,则51232-+x x 的值是________。
例2:分解因式:
22288a axy a y x -+ 4a 2(x -y )+9b 2(y -x )
例3:已知a –b = 1 ,2522=+b a 求ab 和a+b 的值。
三、强化训练:
1、已知x +y =6,xy =4,则x 2y +xy 2的值为 .
2、观察图形,根据图形面积的关系,不需要连其他的线,便可以得到一个用来分解因式的公式,这个公式是______________________。
3、分解因式:
(2a -b )2-(a +b )2 -3ma 3+6ma 2-3ma a 2(m -n )+b 2(n -m )
4416n m - (8)4224817216b b a a +-
4、已知:a=2999,b=2995,求655222-+-+-b a b ab a 的值。
5、利用因式分解计算
⎪⎭
⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-2222211......511411311211n
6,已知a 为任意整数,且()22
13a a -+的值总可以被n 整除(n 为自然数,且n 不等于1),则n 的值为 。