概率的基本性质教案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《概率的基本性质》教案

使用教材:人教版数学必修3

教学内容:1、事件间的关系及运算 2、概率的基本性质

教学目标:1、了解事件间各种关系的概念,会判断事件间的关系;

2、了解两个互斥事件的概率加法公式,知道对立事件的公式,会用公式进行简

单的概率计算;

3、通过学习,进一步体会概率思想方法应用于实际问题的重要性。

教学的重点:事件间的关系,概率的加法公式。

教学的难点:互斥事件与对立事件的区别与联系。

教学的具体过程:

引入:上一次课我们学习了概率的意义,举了生活中与概率知识有关的许多实例。今天我们要来研究概率的基本性质。在研究性质之前,我们先来一起研究一下事件之间有什么关系。

一、事件的关系与运算

老师做掷骰子的实验,学生思考,回答该试验包含了哪些事件(即可能出现的结果) 学生可能回答:﹛出现的点数=1﹜记为C 1, ﹛出现的点数=2﹜记为C 2, ﹛出现的点数=3﹜记为C 3, ﹛出现的点数=4﹜记为C 4, ﹛出现的点数=5﹜记为C 5, ﹛出现的点数=6﹜记为C 6.

老师:是不是只有这6个事件呢?请大家思考,﹛出现的点数不大于1﹜(记为D 1)是不是该试验的事件?(学生回答:是)类似的,﹛出现的点数大于3﹜记为D 2,﹛出现的点数小于5﹜记为D 3,﹛出现的点数小于7﹜记为E ,﹛出现的点数大于6﹜记为F ,﹛出现的点数为偶数﹜记为G ,﹛出现的点数为奇数﹜记为H ,等等都是该试验的事件。 那么大家思考一下这些事件之间有什么样的关系呢?

1、 学生思考若事件C 1发生(即出现点数为1),那么事件H 是否一定也发生?

学生回答:是,因为1是奇数

我们把这种两个事件中如果一事件发生,则另一事件一定发生的关系,称为包含关系。具体说:一般地,对于事件A 和事件B ,如果事件A 发生,则事件B 一定发生,称事件B 包含事件A (或事件A 包含于事件B ),记作B A ⊇(或A B ⊆)

特殊地,不可能事件记为 ∅,任何事件都包含 ∅。

练习:写出 D 3与E 的包含关系(D 3 ⊆E )

2、再来看一下C 1和D 1间的关系:先考虑一下它们之间有没有包含关系?即若C 1发生,D 1 是否发生?(是,即C 1 ⊆D 1);又若D 1发生,C 1是否发生?(是,即D 1⊆ C 1)

两个事件A ,B 中,若A B B A ⊇⊇,且,那么称事件A 与事件B 相等,记作A =B 。所以C 1 和D 1相等。

“下面有同学已经发现了,事件的包含关系和相等关系与集合的这两种关系很相似,很好,下面我们就一起来考虑一下能不能把事件与集合做对比。”

试验的可能结果的全体 ←→ 全集

↓ ↓

每一个事件 ←→ 子集

这样我们就把事件和集合对应起来了,用已有的集合间关系来分析事件间的关系。

3、集合之间除了有包含和相等的关系以外,还有集合的并,由此可以推出相应的,事件A 和事件B 的并事件,记作A ∪B ,从运算的角度说,并事件也叫做和事件,可以记为A+B 。我们知道并集A ∪B 中的任一个元素或者属于集合A 或者属于集合B ,类似的事件A ∪B 发生等

价于或者事件A发生或者事件B发生。

练习:G∪D3=?G=﹛2,4,6﹜,D3=﹛1,2,3,4﹜,所以G∪D3=﹛1,2,3,4,6﹜。若出现的点数为1,则D3发生,G不发生;若出现的点数为4,则D3和G均发生;若出现的点数为6,则D3不发生,G发生。

由此我们可以推出事件A+B发生有三种情况:A发生,B不发生;A不发生,B发生;A 和B都发生。

4、集合之间的交集A∩B,类似地有事件A和事件B的交事件,记为A∩B,从运算的角度说,交事件也叫做积事件,记作AB。我们知道交集A∩B中的任意元素属于集合A且属于集合B,类似地,事件A∩B发生等价于事件A发生且事件B发生。

练习:D2∩H=?(﹛大于3的奇数﹜=C5)

5、事件A与事件B的交事件的特殊情况,当A∩B=∅(不可能事件)时,称事件A与事件B互斥。(即两事件不能同时发生)

6、在两事件互斥的条件上,再加上事件A∪事件B为必然事件,则称事件A与事件B为对立事件。(即事件A和事件B有且只有一个发生)

练习:⑴请在掷骰子试验的事件中,找到两个事件互为对立事件。(G,H)

⑵不可能事件的对立事件

7、集合间的关系可以用Venn图来表示,类似事件间的关系我们也可以用图形来表示。⊇:A=B:

B A

A∪B: A∩B:

A、B互斥: A、B对立:

8、区别互斥事件与对立事件:从图像上我们也可以看出对立事件是互斥事件的特例,但互斥事件并非都是对立事件。

练习:⑴书P121练习题目4、5

⑵判断下列事件是不是互斥事件?是不是对立事件?

①某射手射击一次,命中的环数大于8与命中的环数小于8;

②统计一个班级数学期末考试成绩,平均分不低于75分与平均分不高于75分;

③从装有3个红球和3个白球的口袋内任取2个球,至少有一个白球和都是红球。

答案:①是互斥事件但不是对立事件;②既不是互斥事件也不是对立事件

③既是互斥事件有是对立事件。

二、概率的基本性质:

提问:频率=频数\试验的次数。

我们知道当试验次数足够大时,用频率来估计概率,由于频率在0~1之间,所以,可以得到概率的基本性质:

1、任何事件的概率P(A),0≦P(A)≦1

2、那大家思考,什么事件发生的概率为1,对,记必然事件为E ,P(E)=1

3、记不可能事件为F ,P(F)=0

4、当A 与B 互斥时,A ∪B 发生的频数等于A 发生的频数加上B 发生的频数,所以 A f =A f +B f ,所以P (A ∪B )=P(A)+P(B)。

5、特别地,若A 与B 为对立事件,则A ∪B 为必然事件,P(A ∪B)=1=P(A)+P(B)→P(A)=1-P(B)。

例题:教材P121例 练习:由经验得知,在某建设银行营业窗口排队等候存取款的人数及其概率如下: 排队人数

0 ~ 10 人 11 ~ 20 人 21 ~ 30 人 31 ~ 40 人 41人以上 概率 0.12 0.27 0.30 0.23 0.08 计算:(1)至多20人排队的概率;

(2)至少11人排队的概率。

三、课堂小结:

1、把事件与集合对应起来,掌握事件间的关系,总结如下表

符号

Venn 图 概率论 集合论 Ω

必然事件

全集 ∅ 不可能事件

空集 A

事件

子集 A B ⊆

事件B 包含事件A

(事件A 发生,则B 一定发生)

集合B 包含集合A

A = B

事件A 与事件B 相等 集合A 与集合B 相等 A ∪B

(A+B )

事件A 与事件B 的并事件 (或者事件A 发生,或者事件B 发生) 集合A 与集合B 的并 A ∩B

(AB )

事件A 与事件B 的交事件 (事件A 发生,且事件B 发生) 集合A 与集合B 的交

A ∩

B =∅

事件A 与事件B 互斥 (事件A 和事件B 不能同时发生) 集合A 与集合B 不相交 A ∩B =∅

A ∪

B =Ω

事件A 与事件B 对立 (事件A 与事件B 有且仅有一个发生) 集合A 与集合B 不相交 2、概率的基本性质:(1)0≦P(A)≦1 (2)概率的加法公式

四、课后思考:概率的基本性质4,若把互斥条件去掉,即任意事件A 、B ,则P (A ∪B )=P(A)+P(B)-P (AB )

相关文档
最新文档