线性代数(孙玲琍)第一章行列式习题

合集下载

(完整word版)线性代数习题集(带答案)

(完整word版)线性代数习题集(带答案)

第一部分 专项同步练习第一章 行列式一、单项选择题1.下列排列是5阶偶排列的是 ( ).(A) 24315 (B) 14325 (C ) 41523 (D)24351 2.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A )k (B )k n - (C)k n -2! (D)k n n --2)1(3. n 阶行列式的展开式中含1211a a 的项共有( )项。

(A) 0 (B )2-n (C ) )!2(-n (D) )!1(-n4.=0001001001001000( )。

(A ) 0 (B)1- (C) 1 (D) 25. =0001100000100100( ).(A) 0 (B)1- (C ) 1 (D) 26.在函数100323211112)(x x x x x f ----=中3x 项的系数是( ).(A) 0 (B )1- (C) 1 (D) 27。

若21333231232221131211==a a a a a a a a a D ,则=---=323133312221232112111311122222 2a a a a a a a a a a a a D ( ). (A ) 4 (B) 4- (C) 2 (D ) 2-8.若a a a a a =22211211,则=21112212ka a ka a ( )。

(A)ka (B)ka - (C )a k 2 (D)a k 2-9. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为x ,1,5,2-, 则=x ( )。

(A) 0 (B)3- (C) 3 (D) 210. 若5734111113263478----=D ,则D 中第一行元的代数余子式的和为( ). (A )1- (B )2- (C )3- (D )011. 若2235001011110403--=D ,则D 中第四行元的余子式的和为( )。

第一章 行列式答案详解

第一章 行列式答案详解

第一章行列式习题1.1二阶和三阶行列式1.计算下列二阶行列式.()12112-=4(1)5--=()222111x x x x -++22(1)(1)x x x x =-++-321x x =--【分析】考查二阶行列式的计算公式2.计算下列三阶行列式.()1251312204--1301113113123024204===()2a bcb c a c a b 11()1()011b c b ca b c c a a b c c b a ca b a b b c=++=++----333()3c b a c a b c abc a b c a b b c --=++=-----【分析】考查三阶行列式的计算公式或者行列式性质计算三阶行列式3.当x 取何值时,3140010x x x¹.【解析】31210214040(24)0241010x x x x x x xxxx x且===-【分析】考查三阶行列式的计算公式或者行列式性质计算三阶行列式习题1.2排列1.求下列排列的逆序数,并确定它们的奇偶性.()14132;()41324t =,为偶排列()2542316;()5423169t =,为奇排列()3()()246213521n n -L L .()()()(1)2462135212n n n n t +-=L L ,4142443n k k n k k =++⎧⎨=+⎩或时,为奇排列或时,为偶排列【分析】考查逆序数的计算及奇偶排列的概念*2.设排列12n i i i L 的逆序数为k ,求排列121n n i i i i -L 的逆序数.【解析】考虑第m 个数(m=1,2,...,n-1),它与后面n-m 个数的每一个数都有一个“序”,这个序要么是“顺序”,要么是“逆序”。

这样全部的“序”共有:(n-1)+(n-2)+...+2+1=n(n-1)/2个。

12n i i i L 逆序数是k ,那么排列121n n i i i i -L 的逆序是n(n-1)/2-k 【分析】考查逆序概念习题1.3n 阶行列式1.写出四阶行列式中含有因子1123a a 的项.【解析】1123344211233244;a a a a a a a a +-【分析】行列式的定义2.在5阶行列式中,下列各项应取什么符号?()11523314254a a a a a ;()152********,+a a a a a 取“”t =()22132441355a a a a a ;()21324413552,+a a a a a 取“”t =()34153122435a a a a a .()41531224355,a a a a a 取“-”t =【分析】行列式的定义3.设一个n 阶行列式中等于零的元素的个数大于2n n -,试证明该行列式为零.【解析】N 阶行列式共有2n 个元素,等于零的元素的个数大于2n n -,则非零元素个数小于n 个,即一定出现一个0行,则行列式值为0.【分析】行列式的定义4.用行列式的定义计算下列行列式.()1010000200001000n n -L LM M M LML L (23(1)1)112231,11(1)(1)!n n n n n a a a a n τ----=-=- ()2()()1111121211000n n n n a a a a a a --L L MLM M L(1)((1)21)212(1)112(1)1(1)(1)n n n n n n n n n n a a a a a a τ----=-=- 【分析】行列式的定义和主次对角线行列式的结论5.设()11121314212223243132333441424344x a a a a a x a a a f x a a x a a a a a x a --=--,求()f x 中3x 的系数.【解析】根据行列式的定义,3x 系数只能来自于一项11223344()()()()x a x a x a x a ----,即11223344()a a a a -+++【分析】行列式的定义习题1.4n 阶行列式的性质1.用行列式的性质计算下列行列式.()1a x x x x b x xx x c x+++000000a x x x x x x b x xb x x x b x x a x b xc xx c x x x c x x c +=+++=++++2()()()a b x c x x bcx abc ab ac bc x=++-+=+++【分析】各行或各列元素之和相等的行列式+展开定理+三角化方法()22464273271014543443342721621-1321122331299001003279001003270100327190010044310000116100001169001006210029400294c c r r c c c c r r +----===121000011601003272940000000294r r «=-=-【分析】行列式性质+行列式性质+三角化方法()3ab ac aebd cd debf cf ef---1111111111110020204111020002abcdef abcdef abcdef abcdef---=-==-=-【分析】各行或各列元素之和相等的行列式+行列式性质+三角化方法2.将下列行列式化为上三角形行列式,并计算其值.()1111111111111022281111002211110002-==-----【分析】三角化方法的计算()222401120112011204135413505550111221031233123048304832051205102110211----------=-=-=---------112011201120111011101111010102500047001800180031003100025---------=-=-=-=----------【分析】三角化方法的计算3.计算下列行列式.()111100[(1)][(1)]100x a a aa a a a x a x a x a x n a x n a a a x ax x a-=+-=+--L LL L L L M M L M M M L M M M L M L LL 1[(1)]()n x n a x a -=+--10111011120201600022002200220004----=-=-=-----()33312()02()2()0x y x y y x yx yy x y x x y x y x y x y x y xx yxy x yx++-+=+-=+=-+--+--【分析】各行或各列元素之和相等的行列式的计算4.计算下列行列式()112311110010010na a a a L L LM M M LM L ,其中0,2,3,,.i a i n ¹=L 122123211111000110000nn n n a a a a a a a a a a a ---ç==---ççL L L L L LM M M LML 【分析】箭型行列式计算()212111111111111na a a +++L LM M M LML ,其中0,1,2,,.i a i n ¹=L 111121211212211111111100000100000n n n nna aa a a a a a a a a a a a a a a a a +++++-ç===++++çç-L LL L L L L M M M LMM M M L M L L 【分析】利用性质变换为箭型行列式计算5.证明()33by az bz ax bx ayx y z bx ayby az bz ax a b zx y bz ax bx ay by azyzx++++++=++++.【证明】左边by az bz ax bx ayby bz ax bx ay azbz ax bx aybx ayby az bz ax bx by az bz ax ay by az bz axbz ax bx ay by az bz bx ay by az ax bx ay by az+++++++=+++=++++++++++++y bz ax bx ay zbz ax bx ayb x by az bz ax a y by az bz axzbx ay by azx bx ay by az ++++=+++++++++22y bz ax bx zax bx ay y bz ax x z x bx ay b x by az bz a yazbz ax b x by azz a yz bz ax zbx ay by x ay by az z bx ay y xy by az++++=+++=+++++++()223333y bz x z x ay y z x z x y x y z b x byz a y z ax b xy z a yz x a b zx y z bx y x y az z xyxyzy zx=+=+=+【分析】拆项性质+行列式性质6.证明121211221100001000000001n n n n nn n x x x a x a x a x a xa a a a a -------=++++-L L L L M M M L M M LL .【证明】11c n n nD xD a 展开-=+()22121n n n n n n x xD a a x D a x a ----=++=++()3232123232312312121n n n n n n n n n n n n n nx D a x a x a x D a x a x a x a a x a a x a x a x a ----------=+++==+++=++++=++++L L L L 【分析】展开定理+递推发习题1.5行列式的展开1.求行列式30453221--中元素2和2-的代数余子式.【解析】2的代数余子式:313104(1)003A +=-=;2-的代数余子式:323234(1)2953A +-=-=【分析】余子式、代数余子式的概念2.用降阶法计算下列行列式【分析】拉普拉斯展开定理()211122200000000000000=0000000111111231n n na a a a a a a a a nn ------+L L LL MM M L M M MM M L M M L L LL12(1)(1)n nn a a a =+- 【分析】行列式性质+展开定理3.计算下面行列式222244441111a b c d a b c d a b c d .【解析】4D 中各列元素均缺少3次方幂的元素,在4D 中添加3次方幂的一行元素,则产生5阶范德蒙行列式,再适当添加一列得:22222333334444411111()ab c d x f x a b c d x a b c d x a b c d x =按最后一列展开,得2341525354555()f x A xA x A x A x A =++++,因为()()()()0f a f b f c f d ====,所以,,,a b c d 为()f x 的四个根,则()()()()()f x k x a x b x c x d =----由根与系数关系有4555Aa b c d A +++=-,而4545(1)A D D +=-=-,55()()()()()()A b a c a d a c b d b d c =------,则()()()()()()()D a b c d b a c a d a c b d b d c =+++------.【分析】克莱姆法则+展开定理4.已知四阶行列式D 中第1行的元素分别为1,2,0,4-,第3行的元素的余子式依次为6,,19,2x ,试求x 的值.【解析】313233346,,19,2A A x A A ==-==-,由展开定理得:162()019(4)(2)0x ⨯+⨯-+⨯+-⨯-=,解得7x =【分析】代数余子式、余子式+展开定理求11121314及11213141.【解析】1112131411111111016110500164241313042463524130635A A A A -----+++===----------1201048428(1)(1)46136313+--=-=--=---11213141112131411521110513131413M M M M A A A A ---+++=-+-=----152142412000424812812081291210912-----==-=-=------【分析】代数余子式、余子式+展开定理的逆运用习题1.6克莱姆法则1.用克莱姆法则求解下列方程组的解12341234123412342326223832242328x x x x x x x x x x x x x x x x ì++-=ïïïï---=ïíï+-+=ïïï-++=-ïî.【解析】1234324,324,648,324,648D D D D D ====-=-,则12341,2,1,2x x x x ===-=-【分析】克莱姆法则2.设1a ,2a ,3a 互不相同,证明方程组123112233222112233000x x x a x a x a x a x a x a x ì++=ïïï++=íïï++=ïïî只有零解.【解析】系数行列式时范德蒙行列式,因为1a ,2a ,3a 互不相同,则系数行列式非零;再由克莱姆法则可知,该齐次方程组只有零解.【分析】克莱姆法则3.当l 为何值时,齐次线性方程组123122334000x x x x x x x l l ì++=ïïï-+=íïï+=ïïî()1只有零解;()2有非零解.当11λλ≠≠-且时,只有零解;当=1=1λλ-或时,有非零解【分析】克莱姆法则自测题1.填空题(每小题10分,共20分)()1行列式103100204199200395301300600=___2000____.()2已知11111111111111D x---=---,则D 中x 的系数是___4-____.2.计算下列行列式:(每小题15分,共30分)()11(1)(1)(2)220000(1)(1)000000n n n n c nn n D αβαββααββα---==-+-展开()212312323411341(1)3452145221211121n n n n n D n n n +==--(1)(1)1231111101111111101111(1)(1)2211110111111111111n n n n n n nnn n n n n n n n-⨯------++==----(1)(2)1122(1)(1)100100(1)(1)(1)(1)(1)221001000n n n n n n n nn n n n n n n ------⨯-++=⋅-=⋅-⋅-⋅(1)12(1)(1)2n n n n n n --+=-⋅⋅(本题15分)已知2231122D yx=,且1112133M M M +-=,1112131A A A ++=,其中ij M 是D 中元素ij a 的余子式,(1)i j ij ij A M +=-,试求D 的值.【解析】1112133235M M M x y +-=⇒-=111213114A A A y x ++=⇒=⇒=则行列式的值为14.(本题15分)解线性方程组231234231234231234231234x ax a x a x e x bx b x b x ex cx c x c x e x dx d x d x e⎧+++=⎪+++=⎪⎨+++=⎪⎪+++=⎩,其中,,,a b c d 互异.【解析】系数行列式非零,由克莱姆法则可知1234,0,0,0x e x x x ====5.(本题20分)证明:11000100,010001n n a b ab a b ab a b a b a b a ba b++++-=¹+-+L L L M M M L M M L .【解析】上课做为例题已讲过。

线性代数第1章行列式试卷及答案

线性代数第1章行列式试卷及答案

第一章 行列式一、单项选择题1.行列式D 非零的充分条件是( D )(A) D 的所有元素非零 (B) D 至少有n 个元素非零 (C) D 的任何两行元素不成比例(D)以D 为系数矩阵的非齐次线性方程组有唯一解 2.二阶行列式1221--k k ≠0的充分必要条件是( C )A .k ≠-1B .k ≠3C .k ≠-1且k ≠3D .k ≠-1或≠3 3.已知2阶行列式2211b a b a =m ,2211c b c b =n ,则222111c a b c a b ++=( B )+n (m+n )4.设行列式==1111034222,1111304z y x zy x 则行列式( A ) A.32D.38 5.下列行列式等于零的是(D )A .100123123- B. 031010300- C . 100003010- D . 261422613-6.行列式111101111011110------第二行第一列元素的代数余子式21A =( B )A .-2B .-1C .1D .28.如果方程组⎪⎩⎪⎨⎧=+=-=-+0404033232321kx x x x x kx x 有非零解,则 k =( B )9.(考研题)行列式0000000a b abc d c d=( B ) A.()2ad bc -B.()2ad bc --C.2222a d b c -D.2222b c a d -二、填空题1.四阶行列式中带负号且含有因子12a 和21a 的项为 44332112a a a a 。

2. 行列式1112344916中(3,2)元素的代数余子式A 32=___-2___.3. 设7343690211118751----=D ,则5A 14+A24+A 44=_______。

解答:5A 14+A 24+A 44=1501343090211115751-=---4.已知行列式011103212=-a ,则数a =____3______.5.若a ,b 是实数,则当a =___且b =___时,有=---10100a b b a 0。

线性代数章节练习题

线性代数章节练习题
bc
b b2 ac
c
a
c2 a2
ab abc
b b2 abc
c c2 abc
abc
111
(a b c) a2 b2 c2 (a b c) a b c
111
a2 b2 c2
(a b c)(b a)(c a)(c b)
246 427 327 1000 427 327 1000 100 327 (2) 1014 543 443 2000 543 443 2000 100 443
D 2 0
2 7
2 0
2 0
5 3 2 2
求第四行各元素的余子式之和的值。
8 计算 n 阶行列式
x y 00 0 0 x y0 0 Dn 0 0 0x y y 0 00 x
3 1 1 9 计算行列式 D 1 5 1 。
1 1 3
3 2 2 10 计算三阶行列式 D k 1 k 。
(C) C PT AP
(D) C PAPT
13 计算
0 1 0 2007 1 2 3 0 1 0 2006 1 0 0 4 5 61 0 0 0 0 1 7 8 9 0 0 1
14 设 A 为 n 阶可逆阵,交换 A 的第 i 行与第 j 行后得到 B。 (1)证明 B 可逆;(2)求 AB-1
(C)当 n m 时,必有 AB 0
(D)当 n m 时,必有 AB 0 18 证明 R( A B) R( A) R(B)
4 1 41 则
R(BA 2A)
19 A 为 m p 矩阵,B 为 p n 矩阵,若 AB=0 证明: R( A) R(B) P
20 设 A 为 n 阶矩阵,且 A2=A,若 R( A) . 证明 R( A E) n r ,其中 E 为 n 阶单位阵

(完整版)《线性代数》第一章行列式测试卷

(完整版)《线性代数》第一章行列式测试卷

《线性代数》第一章行列式测试卷班级 学号 姓名一、单项选择题(本大题共10 题,每小题2分,共20分)1、下列排列是5阶偶排列的是 ( ).(A) 24315 (B) 14325 (C) 41523 (D)24351 2、如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A)k (B)k n (C)k n 2! (D)k n n 2)1(3、 n 阶行列式的展开式中含1211a a 的项共有( )项.(A) 0 (B)2 n (C) )!2( n (D) )!1( n4、0001001001001000( ).(A) 0 (B)1 (C) 1 (D) 25、001100000100100( ).(A) 0 (B)1 (C) 1 (D) 26、在函数1323211112)(x x xxx f 中3x 项的系数是( ).(A) 0 (B)1 (C) 1 (D) 27、若21333231232221131211a a a a a a a a a D ,则 323133312221232112111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B) 4 (C) 2 (D) 28、若a a a a a 22211211,则21112212ka a ka a ( ).(A)ka (B)ka (C)a k 2 (D)a k 29、已知4阶行列式中第1行元依次是3,1,0,4 , 第3行元的余子式依次为x ,1,5,2 , 则 x ( ).(A) 0 (B)3 (C) 3 (D) 210、若5734111113263478D ,则D 中第一行元的代数余子式的和为( ). (A)1 (B)2 (C)3 (D)0二、填空题(本大题共4 题,每小题3分,共12分)1、n 2阶排列)12(13)2(24 n n 的逆序数是2、若一个n 阶行列式中至少有12 n n 个元素等于0, 则这个行列式的值等于.3、如果M a a a a a a a a a D 333231232221131211 ,则 323233312222232112121311133333 3a a a a a a a a a a a a D4、已知某5阶行列式的值为5,将其第一行与第5行交换并转置,再用2乘所有元素,则所得的新行列式的值为三、计算题(本大题共9题,1-7题每小题6 分,8-9题 每小题8 分,共58 分)1、解方程0011011101110 x x x x2、设1111131111311113D,求111213143A A A A3、计算四阶行列式cb a db a dc a dc bd c b a d c b a d c b a 333322224、计算四阶行列式0123111111111111a a a a (1,0,1,2,3j a j );5、 计算四阶行列式21001210012100126、设311211342311114D,求12223242M M M M7、计算四阶行列式0123000000a a a a x x x x xx8、设1abcd,计算22222222111111111111 a aaab bbbc cccd ddd9、计算四阶行列式33332222(1)(2)(3)(1)(2)(3)1231111a a a aa a a aa a a a四、证明题(本大题共1题,每小题10分,共10分)1、设cba,,两两不等,证明0111333cbacba的充要条件是0cba.。

扬州大学线性代数习题册第一章

扬州大学线性代数习题册第一章

线性代数第一章行列式--电商1201一、填空题1.排列631254的逆序数τ(631254)= 8 . 解: τ(631254)=5+2+1=82.行列式213132321= -18 .解:D=1⨯3⨯2+2×1×3+2×1×3-3⨯3⨯3-1⨯1⨯1-2⨯2⨯2=-18(陈冲)3、4阶行列式中含1224a a 且带正号的项为_______ 答案:12243341a a a a分析:4阶行列式中含1224a a 的项有12243341a a a a 和12243143a a a a 而 12243341a a a a 的系数:()(1234)(2431)41(1)1ττ+-=-=12243143a a a a 的系数:()(1234)(2413)31(1)1ττ+-=-=-因此,符合条件的项是12243341a a a a4、222111a a b b c c (,,a b c 互不相等)=_______答案:()()()b a c a c b ---分析:222111a a b b c c =222222()()()bc ab a c b c ac ba b a c a c b ++---=---(陈思宇)5.行列式1136104204710501λ--中元素λ的代数余子式的值为 42解析: 元素λ的代数余子式的值为642071001-341+-⨯)(=(-1) ×7×6×(-1)=426.设31-20312223=D ,则代数余子式之和232221A A A ++=0解析:232221A A A ++=1×21A +1×22A +1×23A =312111222-=0(崔宇轩) 二、 单项选择题1、设xxx x xx f 111123111212)(-=,则x 3的系数为(C )A. 1B. 0C. -1D. 2解:x 3的系数为)()()(1-21341234 +=-12、 设333231232221131211aa a a a a a a a =m ≠0,则333231312322212113121111423423423a a a a a a a a a a a a ---=(B )A.12mB. -12mC.24mD. -24m 解:333231232221131211aa a a a a a a a)4(2-⨯j →3332312322211312114-4-4-aa a a a a a a a =-4m212j j +⨯→3332313123222121131211114-24-24-2aa a a a a a a a a a a =-4m31⨯j →3332313123222121131211114-234-234-23aa a a a a a a a a a a =-12m(耿佳丽) 3.行列式k-122k-1≠0的充分必要条件是(C )(A.)k ≠-1 (B)k ≠3 (C)k ≠-1且k ≠3(D)k ≠-1或k ≠3 因为原式=(k-1)(k-1)-4≠0 所以k-1≠2且k-1≠-2 所以k ≠-1且k ≠3 所以答案为C 4.行列式0000000a b c d e f gh中元素g 的代数余子式的值为(B )(A )bcf-bde (B)bde-bcf (C)acf-ade (D)ade-acf41A =4+1(1-)0000b c d ef=-(bcf-bde)=bde-bcf所以答案为B (郭雅芝)5.设D=, (2)12222111211nnn n n n a a a a a a a a a 则nnn n n n ka ka ka ka ka ka ka ka ka --------- (2)12222111211=( )(A)-kD (B)-k n D (C)k n D (D)(-k)n D 答案:D解:由行列式性质3:将nnn n n n ka ka ka ka ka ka ka ka ka --------- (2)12222111211的每行提出一个-k,得到(-k)n D,即为选项D.6.行列式D10=1000 (00)000...09000...80..................002 (000)1 (00)=( ) (A)50 (B)-(10!) (C)10! (D)9! 答案:C解:由行列式的定义,每个因式的元素取自不同行不同列,且不为零,则每行依次取出1,2,…,10,得到10!.又因为=)09876543211(τ36为偶数,所以结果为正数.最终结果为10!(何玲玲)三、计算题 1、计算行列式123411231101205D =---.解D=11332012-3110-4205-=10002270--32103---42129---=1*())(111+-270--2103---2129---=-6100131153=24-2、计算行列式1111120010301004D =.解、D=1111120010301004=10001111--1121--1113--=1*()()111+-111--121--113--=2-(黄天恒)3.计算行列式1114113112111111D =解1114113112111111D ==0003002001001111= -64.计算行列式1234234134124123D =解1234234134124123D =111023410234103410113(2,3,4)(2,3,4)104120044101234i i c c i r r i -+=-=--=160 (解心悦) 5. 计算n 阶行列式nD i c n i +==1c ),...,3,2(x a a a n x aa x a n x aa a an x ...)1(..................)1(...)1(-+-+-+=[x+(n-1)a]x a a aa x a a a ...1..................1...1i x x n i +-⨯==)1(),...,3,2(1[x+(n-1)a]ax a x a a a-- (00)...... 000...1=[x+(n-1)a] 1)(--n a x6.当k为何值时,方程组⎪⎩⎪⎨⎧=+-=-+=-+02027023321321321x x x x x kx x x x 有非零解.解由题知D=2131)2(r 331-22-7k1-23r r r +-⨯+⨯=0511036123--k =51136)1()1(31--•-+k =-5(k-6)+33=0得k=563 (康慧敏)四.解答题1.写出D=111214012---中第3列元素的余子式和代数余子式的值,并求出D 的值。

大学线性代数 第一章 行列式 答案

大学线性代数 第一章  行列式 答案

第一章 行列式一、利用对角线法则计算下列行列式 1. 22sin cos 1θθ=+= 2.1(1)(5)21(3)3223(1)(3)211(5)22=⨯-⨯-+⨯⨯-+⨯⨯-⨯-⨯--⨯⨯--⨯⨯5612922020=-+--+= 3. -14 二、1.解:210210231031218204206x x x x x x =-=--+=-解得x =2.范德蒙德 x=2 x=33. x=1 x=2 x=3三、1 解:(341782659)2233111τ=++++=2解:(987654321)8765432136τ=+++++++=3解: (1)(2)((1)321)(2)212n n n n τ---=-+++=4. 13(21)2(22)2n n n --解: (13(21)2(22)2)24...(22)(1)n n n n n n τ--=+++-=-四、计算行列式1.解:02002000001001002134243000003000040004==⨯⨯⨯=2.解:12301230002030451220621230450020300100010001=-=-=⨯=3.解:2141124112413121132105620123221320350562562562--------=-=-=-------4. (b-a )(b-a )(b-a )5.解:12431111111111112314231401120112101010160413241320312004434213421112004--====-------6解:11111111102041112ab ac ae b c e bd cd de adf b c e abcdef abcdef abcdef bfcfefbce----=-=-=-=---- 7.解:1(1)(1)(1)111[(1)]11100[(1)]()[(1)]n x a a x n ax n ax n aa x a axaa x a x n a a axaa xa axx a x n a x a x n a x a-+-+-+-==+--=+-=-+-- 8.解:1(1)(1)100000000000000(1)00000000000(1)n n n n n nx y x y y x y xyxyx yx y x y y yxxxyx y +--+=+-=+-9.解:11111345(54)(53)(51)(43)(41)(31)1241324819162512764125=------=⨯⨯⨯⨯⨯= 10.解:10010010010011001001001010*******10011101100110001x x xx x y y y y y z y z z z zzz --====----------11.解:6666618238232331000800203111111111549549499100050040985690321210210166766767710006006071234012319869868661000900806397606431111111*********01230123210210210032100410004100643068150--==⨯=⨯=⨯=⨯=⨯-------7410605=-⨯12.n 210000121000I 0001210012= 解:1111100001100001100001021000121000021000000121000121000121000012000012121100002100000110001210001000011000121000112n n n I I --++==+=+=+12,....,21,1112n n I I I I I --=+=+=1n I n =+13.此题有问题不做14.此题太难,感兴趣的同学下课后参考我练习册。

线性代数第一章习题参考答案

线性代数第一章习题参考答案

解:4234231142342311)1342(4432231144322311)1324()1()1(a a a a a a a a a a a a a a a a =--=-ττ4.计算abcdef abcdef abcdef abcdef efcf bfde cd bdae ac ab r r r r c c c r f r d r a c ec c c b 420020111111111111111111111)1(12133213213211,1,11,1,1-=--=--=---=-----++5.求解下列方程10132301311113230121111112121)1(12322+-++-++=+-++-+=+-+-+++x x x x x x x x x x x x c c r r 1132104201)3(113210111)3(21+-+--++=+-+-++=-x x x x x x x x x r r 3,3,30)3)(3(11421)3(3212-==-==-+=+---++=x x x x x x x x x 得二列展开cx b x a x b c a c a b x c x b x a c b a x c b a x c b a x ====------=32133332222,,0))()()()()((1111)2(得四阶范得蒙行列式6.证明322)(11122)1(b a b b a a b ab a -=+右左证明三行展开先后=-=-=-----=----=+=+--323322222)(11)()()()1(100211122)1(:2132b a b a b a ba ba b a b b a a b b a b a b b ab ab a b b a ab ab ac c c c1432222222222222222222222222(1)(2)(3)(1)2369(1)(2)(3)(1)2369(3))(1)(2)(3)(1)2369(1)(2)(3)(1)2369c c c ca a a a a a a ab b b b b b b b cc c c cc c cd d d d d d d d --++++++++++++==++++++++++++二三列成比例))()()()()()((1111)4(44442222d c b a d c d b c b d a c a b a d c b a dcbad c b a D +++------==44444333332222211111)(x d c b a xdcbax d c b a x d c b a x f 五阶范得蒙行列式解考虑函数=(5)))()()()()()(())()()()()()(()()())()()()()()()()()((454545453453d c d b c b d a c a b a d c b a A M D d c d b c b d a c a b a d c b a A ,A x x f ,Mx x f D a b b c a b c d b d a d d x c x b x a x ------+++-==------+++-=----------=于是的系数是中而对应的余子式中是(5)n n a a a a a xx x x 12101000000000100001----解:nn n n n n n n n n nn x a x a a x a x a a a a a a a xx x x D +++=-++--+--=---=+++-++++-10)1()1(1211110121)1()1()1()1()1(1000000000100001按最后一行展开7、设n 阶行列式)det(ij a D =把D 的上下翻转、或逆时针旋转090、或依副对角线翻转、依次得111131111211111,,a a a a D a a a a D a a a a D n n nn n nn n nnnn=== 证明D D D D D n n =-==-32)1(21,)1(证明:将D 上下翻转,相当于将对D 的行进行)1(21-n n 相邻对换得1D ,故D D n nn 2)1(1)1(--=将D 逆时针旋转090相当于将T D 上下翻转,故D n n D n n D T 2)1(2)1(2-=-=D 依副对角线翻转相当于将D 逆时针旋转090变为2D , 然后再2D 左右翻转变为3D ,故D D D D n n n n n n =--=-=---2)1(2)1(22)1(3)1()1()1(8、计算下列行列式(k D 为k 阶行列式)(1)aa D n 11=,其中对角线上元素都是a ,未写出的元素都是0;解:)1()1(0100)1(1122211111-=-+=-+==--++-+a a a a a aa a a D n n n n n n n n n n 列展开按行展开按(2)x a a a x a a a x D n=解:xaa x a a a n x x a aa x a a a x D nc c c n111])1([21-+==+++12)]()1([0001])1([1--≥--+=---+=n r r k a x a n x ax a x a a a n x k(3)111111)()1()1()()1()1(11111n a n a a a n a n a a a n a n a a a D n n n n n nnm n -+---+---+--=----+解:11111(1)(1)22111111(1)(1)()(1)(1)()111111111111()()()((1)(1)()(1)(1)()n nnn n n n n n n n n n n j i n n n n mnnna a a n a n a a a n a n D a a a n a n a a a n a n j i a a a n a n a a a n a n ----++++≥>≥------+---+-=--+---+-=-=--=--+---+-∏上下翻11)n j i i j +≥>≥-∏(4)n n nnn d c d c b a b a D11112=(未写出的均为0)解:)1(2)1(211112)(02232--↔↔-===n n n n n n n nnn r r c c nnnnn D c b d a D d c b a d c d c b a b a D mn得递推公式)1(22)(--=n n n n n n D c b d a D ,而11112c b d a D -=递归得∏=-=ni i i i i n c b d a D 12)((5)det(),||n ij ij D a a i j ==-解111,2,,1120121111110121111210311111230123010001200(1)(1)211201231i i j r r n i n c c n n n n D n n n n n n n n n n n n +-=-+-------==-------------==---------解:11211*222,3,,1111111(6)1111111111101111000111100:01111i n nr r n i n nna a D a a a a a D D a a -=+++=++-+-===+-解111211121,2,,12111(1)1110001(1)0000i inc c na n i ni ina a a a a a a a a a ++==++++==+∑9.设3351110232152113-----=D ,D 的),(j i 元的代数余子式为ij A ,求44333231223A A A A +-+解:24335122313215211322344333231=-----=+-+A A A A。

(完整版)行列式习题1附答案.doc

(完整版)行列式习题1附答案.doc

⋯⋯_ ⋯_ ⋯_ _ ⋯_ _ ⋯_ _ ⋯_ _ ⋯_ _ ⋯_ _ ⋯_ _ ⋯_ _ ⋯_ _ ⋯:⋯号⋯学⋯_ _ ⋯_ _ ⋯_ _ ⋯_ _ ⋯_ _ 线_ 订_ _ 装_ _ ⋯_ _ ⋯_ _ ⋯_ ⋯:⋯名⋯姓⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯:⋯⋯⋯班⋯⋯⋯《线性代数》第一章练习题⋯⋯一、填空⋯⋯⋯1、(631254) _____________ 8⋯⋯⋯2、要使排列(3729m14n5)偶排列, m =___8____, n =____6_____⋯⋯x 1 13 , x 2 的系数分是⋯3、关于x的多式x x x中含 x -2,4⋯1 2 2x⋯⋯4、 A 3方, A 2, 3A* ____________ 108⋯⋯⋯5、四行列式det( a ij)的次角元素之(即a14a23a32a41)一的符号+⋯⋯1 2 1线1234 2346、求行列式的 (1) =__1000 ;(2)2 4 2 =_0___;封2469 469密10 14 13⋯⋯1 2000 2001 2002⋯0 1 0 2003⋯⋯(3)0 1=___2005____;⋯0 20040 0 0 2005⋯⋯1 2 3⋯中元素 0 的代数余子式的___2____⋯(4) 行列式2 1 0⋯3 4 2⋯⋯1 1 1 1⋯1 5 25⋯ 4 2 3 57、 1 7 49 = 6 ;= 1680⋯16 4 9 25⋯1 8 64⋯64 8 27 125⋯⋯矩方,且,,, A 1 1 。

⋯A 4⋯8、|A|=5 | A*| =__125 | 2A| =__80___ | |=50 1 10 1 2 22 2 2 09、 1 0 1 = 2 。

;3 0121 1 01 01 0 0 0bx ay010、若方程cx az b 有唯一解,abc≠0 cy bz a11、把行列式的某一列的元素乘以同一数后加到另一列的元素上,行列式12、行列式a11a12a13a14a21a22a23a24 的共有4! 24, 在a11a23 a14a42, a34a12a31a32a33a34a41a42a43a44a34a12a43 a21 是行列式的,符号是 + 。

线性代数第一章行列式练习题

线性代数第一章行列式练习题

线性代数第一章行列式练习题(总13页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--班级__________ 姓名__________ 学号_______第一章第一次练习题一)填空题1)计算(1465372)τ=________;[135(21)246(2)]n n τ-=________;2)写出四阶行列式中含有因子1123a a 的项及符号__________; 3)在四阶行列式中,21143243a a a a 的符号为__________;4)设12134453k l a a a a a 在五阶行列式中带有负号,则k =________;l =________.二)解答题5)计算三阶行列式 222111ab c a b c .6)用定义证明1(1)212100000(1)0000n nn nnλλλλλλ--=-.7)设n阶行列式中有多于2n n-个元素为零,证明这个行列式为零.班级__________ 姓名__________ 学号_______第一章第二次练习题一)填空题1)把行列式111222a b c a b c ++定出两个行列式之和______________________; 2)把行列式132412340000a a a a x yb b z wb b 写成两个行列式之积_________________________________;3)提取行列式第二行公因子后111213212223313233333a a a a a a a a a =__________________________; 4)行列式223456789a b c d a ab ac ad=_________________________________.二)解答题5)化简行列式111122223333x y x a z x y x a z x y x a z +++6)计算行列式5222 2522 2252 22257)计算行列式3112 5134 2011 1533------班级__________ 姓名__________ 学号_______第一章第三次练习题一)填空题1)将行列式123123123x x xy y yz z z按第三列展开为__________________________________;2)已知四阶行列式D中第三行元素依次为2,5,3,4;它们的余子式分别为3,1,2,4;则D=__________;3)计算1111234549162582764125=__________;4)设3961246812035436D=,则41424423A A A++=__________.二)解答题5)计算行列式100 110 011 001abcd ---.6)当λ为何值时,线性方程组12312330(3)22040x x x x x x x λλ++=⎧⎪--+=⎨⎪=⎩有非零解7)设曲线230123y a a x a x a x =+++通过四个点(1,3),(2,4) ,(3,4) , (4,3)-;求系数0123,,,a a a a .班级__________ 姓名__________ 学号_______第一章复习题1) 按定义计算行列式0001000200200100000n n n--2)计算行列式ab b b ba b b bb a b bbba3)计算行列式01000 00100 00010 a b c d e e d c b a4)计算行列式1231111 1111 11111111n aaaa ++++5)问,λμ取何值时,齐次线性方程组12312312320x x xx x xx x xλμμ++=⎧⎪++=⎨⎪++=⎩有非零解6)解非齐次线性方程组12341241341234 2583692254760 x x x xx x xx x xx x x x+-+=⎧⎪--=⎪⎨-+=-⎪⎪+-+=⎩。

《线性代数》第一章行列式精选习题及解答

《线性代数》第一章行列式精选习题及解答

(C)0, 2
(D)0,1
解 按 三 阶 行 列 式 的 对 角 线 法 则 得 D1 = (λ + 1)(λ − 1)2 , D2 = 0 . 若 D1 = D2 , 则
(λ + 1)(λ −1)2 = 0 ,于是 λ = 1,−1,故正确答案为(B).
例 1.5
方程组 ⎪⎨⎧λx1x1++λxx22
故逆序数为 1;于是这个排列的逆序数为 t=0+0+2+4+1=7,故正确答案为(B).
例 1.2 下列排列中( )是偶排列.
(A)54312 (B)51432
(C) 45312
(D) 654321
解 按照例 1 的方法计算知:排列 54312 的逆序数为 9;排列 51432 的逆序数为 7;排列
例17分析如果行列式的各行列数的和相同时一般首先采用的是将各列行加到第一列行提取第一列行的公因子简称列行加法这个行列式的特点是各列4个数的和为10于是各行加到第一行得10101010分析此类确定系数的题目首先是利用行列式的定义进行计算
第一章 行列式
1.1 目的要求
1.会求 n 元排列的逆序数; 2.会用对角线法则计算 2 阶和 3 阶行列式; 3.深入领会行列式的定义; 4.掌握行列式的性质,并且会正确使用行列式的有关性质化简、计算行列式; 5.灵活掌握行列式按(列)展开; 6.理解代数余字式的定义及性质; 7.会用克拉默法则判定线性方程组解的存在性、唯一性及求出方程组的解.
(2) A34 + A35 = ( ), (3) A51 + A52 + A53 + A54 + A55 = ( ).
分析 此类题目一般不宜算出表达式里每一项的值,而是注意观察要求的表达式的结构,

线性代数第一章行列式试题及答案

线性代数第一章行列式试题及答案

如何复习线形代数性代数的特点主要有两个:一是的算量偏大,无是行列式、矩、性方程的求解,是特征、特征向量和二次型的都涉及到大量的数运算,稍有不慎,即会出;二是前后内容密相,横交,既相独立又密不可分,形成了一个完整、独特的知体系.在掌握好根本概念、根本原理和根本方法的前提下,下面在复程中注意的一些 .一、加强计算能力训练,切实提高计算的准确性二、扩展公式结论蕴涵,努力探索灵活解题途径三、注重前后知识联系,努力培养综合思维能力性代数不概念多,公式多,而且前后知系密,相扣,几乎从任何一个知点都可切入将前后知系起来考四、加强综合题型训练,全面系统地掌握好知识算能力的提高不是一朝一夕的事,除了要不断一些重要公式和并加以巧妙、适当的用外,要靠平的累,要养成踏踏、有始有将最后果算出来的,只要持之以恒、持,算准确性的提高并不是一件困的事 . 而整个知的融会通、合用也有于适当地多做方面的,第一章行列式当两个行列式的相等 , 就可以在它之写等号 ! ( 不必形式一 , 甚至数可不同 .)每个 n 矩A一个n 行列式 , 作 | A|.行列式一的的核心是的算, 以及判断一个行列式的是否0.2.定 ( 完全展开式 )一般地 , 一个 n 行列式a11 a 12⋯a1na21 a 22⋯ a 2n⋯⋯⋯a n1 a n2⋯ a nn的是多的代数和, 每一都是取自不同行 , 不同列的 n 个元素的乘 , 其一般形式 : a1 j1a2 j2anj n , 里把相乘的 n 个元素的行按自然序排列, 它的列j 1j 2⋯j n构成 1,2, ⋯ ,n 的一个全排列 ( 称一个 n 元排列 ), 一个 n 元排列的数共有 n! 个 , 因此 n 行列式的是 n! 的代数和。

所代数和是在求和每先要乘+1 或 -1. 定(j 1j 2⋯j n) 全排列 j 1j 2⋯j n的逆序数 , 全排列的逆序数即小数排列在大数右面的象出的个数.逆序数可如下算: 出每个数右面比它小的数的个数, 它的和就是逆序数 . 例如求 436512 的逆序数 :3 2 3 2 0 043 6512, (436512)=3+2+3+2+0+0=10.一. 概念复1.形式和意形式 : 用 n2个数排列成的一个 n 行行列式 :a11 a 12⋯a1na21 a 22⋯ a 2n⋯⋯⋯.a n1 a n2⋯ a nn如果行列式的列向量1, |1,2,⋯,n|.a1 j1a2 j2anj n 所乘的是( 1) ( j1 j2 j n) . 即逆序数是偶数,正;逆n 列的表格 , 两界以 , 就成一个 n 序数是奇数,;在一个n 元排列的 n! 中,奇排列和偶排列各有n!/2个。

线性代数第1章行列式试卷及答案

线性代数第1章行列式试卷及答案

线性代数第1章行列式试卷及答案第一章行列式一、单项选择题1.行列式D 非零的充分条件是( D )(A) D 的所有元素非零 (B) D 至少有n 个元素非零 (C) D 的任何两行元素不成比例(D)以D 为系数矩阵的非齐次线性方程组有唯一解 2.二阶行列式1221--k k ≠0的充分必要条件是( C )A .k ≠-1B .k ≠3C .k ≠-1且k ≠3D .k ≠-1或≠3 3.已知2阶行列式2211b a b a =m ,2211c b c b =n ,则222111c a b c a b ++=( B )+n (m+n )4.设行列式==1111034222,1111304z y x zy x 则行列式( A ) A.32D.38 5.下列行列式等于零的是(D )A .100123123- B. 031010300- C . 100003010- D . 2 61422613-6.行列式111101111011110------第二行第一列元素的代数余子式21A =( B )A .-2B .-1C .1D .28.如果方程组??=+=-=-+0404033232321kx x x x x kx x 有非零解,则k =( B )9.(考研题)行列式0000000ab a bcd c d=( B )A.()2ad bc - B.()2ad bc -- C.2222a d b c - D.2222b c a d -二、填空题1.四阶行列式中带负号且含有因子12a 和21a 的项为 44332112aa a a 。

2. 行列式1112344916中(3,2)元素的代数余子式A 32=___-2___.3. 设7343690211118751----=D ,则5A 14+A 24+A 44=_______。

解答:5A 14+A 24+A 44=1501343090211115751-=---4.已知行列式011103212=-a ,则数a =____3______.5.若a ,b 是实数,则当a =___且b =___时,有=---10100a b b a 0。

线性代数第一章行列式练习题

线性代数第一章行列式练习题

班级__________ 姓名__________ 学号_______第一章第一次练习题一)填空题1)计算(1465372)τ=________;[135(21)246(2)]n n τ-L L =________;2)写出四阶行列式中含有因子1123a a 的项及符号__________;3)在四阶行列式中,21143243a a a a 的符号为__________;4)设12134453k l a a a a a 在五阶行列式中带有负号,则k =________;l =________.二)解答题5)计算三阶行列式 222111a bc a b c .6)用定义证明1(1)212100000(1)0000n nn nnλλλλλλ--=-LLLLL.7)设n阶行列式中有多于2n n 个元素为零,证明这个行列式为零.班级__________ 姓名__________ 学号_______第一章第二次练习题一)填空题1)把行列式111222a b c a b c ++定出两个行列式之和______________________; 2)把行列式132412340000a a a a x yb b z w b b 写成两个行列式之积_________________________________; 3)提取行列式第二行公因子后111213212223313233333a a a a a a a a a =__________________________; 4)行列式223456789ab c d a ab ac ad=_________________________________.二)解答题5)化简行列式1111 2222 3333 x y x a z x y x a z x y x a z+++6)计算行列式5222 2522 2252 22257)计算行列式3112 5134 2011 1533------班级__________ 姓名__________ 学号_______第一章第三次练习题一)填空题1)将行列式123123123x x xy y yz z z按第三列展开为__________________________________;2)已知四阶行列式D中第三行元素依次为2,5,3,4;它们的余子式分别为3,1,2,4;则D=__________;3)计算1111234549162582764125=__________;4)设3961246812035436D=,则41424423A A A++=__________.二)解答题5)计算行列式100 110 011 001abcd---.6)当λ为何值时,线性方程组12312330(3)22040x x x x x x x λλ++=⎧⎪--+=⎨⎪=⎩有非零解?7)设曲线230123y a a x a x a x =+++通过四个点(1,3),(2,4),(3,4) ,(4,3)-;求系数0123,,,a a a a .班级__________ 姓名__________ 学号_______第一章复习题。

线代习题(1-3章)

线代习题(1-3章)

线性代数习题第一章 行列式1、计算下列行列式.① b a ....a a a a b ....a a a .............a a ....a b a a a ....a a b D n = ② xy yx y x y x D n 0....00....000 00 (00)0....0=③ 00...0100...10...........01...0010...00=n D ④43215321542154315432543215=D ⑤aa a a D n 0 (010)...00.. 00 (01)0...0=⑥ nn a a a a D ...001...........0 (010) (011)...112101=+ (其中),..,2,1,0,0n i a i =≠⑦ 1500310000430021D 4-= ⑧ 22221111400000000d c b a d cb a D =2、解方程: ① 021231x 123625x 4312222=--+----- ② 011011201=--+-x x x ③04321432143214321=----a a a x a a a x a a a x a a a x a a a a ④11000100011=z y x zy x (其中z y x ,,均为实数)3、如果1a a a a a a a a a D 333231232221131211==,=1D 333231312322212113121111a a 3a 2a 4a a 3a 2a 4a a 3a 2a 4---,求1D .4、设n....001..........0....3010....0211n 2....531D n -=,则n D 的第一行各元D 素的代数余子式之和为5、在关于x 的多项式227132014321352)(-------=x x f 中,一次项系数是6、多项式xxxx x f 1713410732201)(---=中常数项是7、n 阶行列式n D 为零的充分条件是( )A 、主对角线上的元素全为零B 、有2)1n (n -个元素都为零C 、至少有一个1n -阶子式为零 C 、所有1n -阶子式均为零8、设线性方程组⎪⎪⎩⎪⎪⎨⎧-=++-=+-=++24442212321321321x x x x x x x x bx ,当b 为( )时方程组有唯一解A 、1≠bB 、2≠bC 、3≠bD 、1-≠b9、设齐次线性方程组⎪⎪⎩⎪⎪⎨⎧=++=++=++000321321321abx acx bcx cx bx axx x x 有非零解,试确定a 、b 、c 应满足何种条件.第二章 矩阵及其运算1、设有矩阵13343343D ,C ,B ,A ⨯⨯⨯⨯,则下列运算中没有意义的是( )A 、BACB 、T DD AC + C 、C 2B A T +D 、D D AC T +2、设A 、B 为n 阶对称矩阵,则下列结论中不正确的是( )A 、A+B 为对称矩阵 B 、对任意的矩阵AP P ,P T n n ⨯为对称矩阵C 、AB 为对称矩阵D 、若A 、B 可换,则AB 为对称矩阵3、设A 、B 为n 阶对称矩阵,则下列结论中正确的是( )A 、22B A )B A )(B A (-=-+ B 、k k k B A )AB (=C 、 B A k kAB ⋅=D 、()kk k B A AB ⋅= 4、设A 为n 阶矩阵,则下列结论中不正确的是( )A 、T T kA )kA (=(k 为常数)B 、若A 可逆,则111A k )kA (---=,)0k (≠C 、若A 可逆,则T 111T T ])A [(])A [(---=D 、若A 可逆,则11T T 11])A [(])A [(----=5、设A 为3阶矩阵,j A 是A 的第j 列)3,2,1j (=,矩阵B=)A 5A 2,A A 3,A (21323+-,若A =2-,则B =A 、16B 、12C 、10D 、76、设A 、B 为n 阶可逆矩阵,则下列结论中不正确的是( )A 、111B A )B A (---+=+ B 、T 1T 11T )B ()A (])AB [(---=C 、k 11k )A ()A (--= (k 为正整数)D 、()0(,11≠=---k A k AB n 为任意常数) 7、设A 、B 、C 为n 阶矩阵,则下列结论中不正确的是( )A 、若ABC=E ,则A 、B 、C 都可逆 B 、若 AB=AC ,且A 可逆,则B=CC 、若 AB=AC ,且A 可逆,则BA=CAD 、若 AB=0,且A 0≠,则B=08、设n 阶矩阵A 非奇异)2n (≥,则( )A 、A A)A (1n **-= B 、A A )A (1n **+= C 、A A )A (2n **-= D 、A A )A (2n **+= 9、已知C B A ,,均为n 阶可逆矩阵,且E ABC =,则下列结论必成立的是( )A 、E ACB = B 、E BCA =C 、E CBA =D 、E BAC =10、设矩阵⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=1111C ,3301B ,1035A ,a 、b 、c 为实数,且已知E cC bB aA =-+,则a= , b = ,c =11、设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=101020101A ,n 为正整数,则=--1n n A 2A12、设()T 1,0,1-=α,矩阵A=T αα,n 为正整数,则=-n A aE13、已知()3,2,1=α,⎪⎭⎫⎝⎛=31,21,1β,矩阵βαT A =,则=n A 14、设A 、B 为3阶矩阵,且2=A ,3-=B ,则=-1*3BA 15、设A 为3阶矩阵,21=A ,则=--*12)3(A A 16、设A 、B 为3阶矩阵,若1-=A ,3=B ,则=B AA 0217、设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=13101201a A 是不可逆矩阵,则=a 18、设321,,ααα为三维列向量,矩阵),,(321ααα=A ,矩阵),,(3112αααα-=B ,且3=A ,求B A +.19、设44⨯矩阵),,,(432γγγα=A ,),,,(432γγγβ=B .且已知行列式1=A ,4=B , 试求A+B .20、设273)(x x x f --=,⎪⎪⎪⎭⎫ ⎝⎛---=702151043A ,求)(A f21、设T P )5,2,3(-=,)3,2,4(-=Q ,PQ A =,求100A .22、设⎪⎪⎪⎭⎫ ⎝⎛=010101001A ,证明:当正整数n ≥3时,E A AA n n -+=-22,并求100A . 23、设⎪⎪⎪⎪⎭⎫ ⎝⎛=710004100031A ,矩阵B 满足BA A BA A +=-61,求B. 24、设⎪⎪⎪⎪⎭⎫ ⎝⎛=1 1- 11 1 1-1- 1 1A ,矩阵X 满足X A X A 21*+=-,求X.25、设n 阶矩阵A 满足A 2-3A =5E ,证明A +2E ,A -7E 都可逆,并写出其逆阵.26、设11)2(--=-C A B C E T ,⎪⎪⎪⎪⎪⎭⎫⎝⎛---=1000210032102321B ,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=1000210002101021C ,求A. 27、设矩阵⎪⎪⎪⎭⎫ ⎝⎛--=11334221tA ,B 是三阶非零矩阵,且AB =O ,求t.第三章 矩阵的初等变换与线性方程组1、设A 是任意矩阵,判断下列关于秩的命题是否正确?(1)若r A r =)(,则A 的所有r 阶子式都不等于零.(2)若1)(>=r A r ,则A 至少有一个1-r 阶子式不等于零.(3)若A 的所有1+r 阶子式全为零,则r A r =)(.(4)若n A r n m =⨯)(, 则m ≥n.(5)若A 是非零矩阵,则0)(>=r A r .(6)若4阶方阵A 的秩为2,则A*的秩为0.(7)若r A r =)(,则没有等于0的1-r 阶子式.2、利用初等变换求矩阵方程:⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛---192636123246131X 3、设⎪⎪⎪⎭⎫ ⎝⎛=λλ2381231A 的秩为2,求λ.4、设A 为n m ⨯矩阵,线性方程组b AX =对应的导出组为0=AX ,则下述结论中正确的是A 、若0=AX 仅有零解,则b AX =有唯一解B 、若0=AX 有非零解,则b AX =有无穷多解C 、若b AX =有无穷多解,则0=AX 仅有零解D 、若b AX =有无穷多解,则0=AX 有非零解5、求解线性方程组 ① ⎪⎪⎩⎪⎪⎨⎧=--+=+-+=+-+12222412w z y x w z y x w z y x ②⎪⎪⎩⎪⎪⎨⎧=-++=--+=-++05105036302432143214321x x x x x x x x x x x x6、设⎪⎪⎩⎪⎪⎨⎧--=-+--=--+=-+-1)5(4224)5(2122)2(321321321λλλλx x x x x x x x x当λ取何值时,此方程组有惟一解?无解或有无穷多解?并在有无穷多解时求解.7、证明:如果线性方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=+++⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=+++=+++++++112121112222212111212111.........n n n n n n n n n n b x a x a x a b x ax a x a b x a x a x a 有解,则行列式0 (1)112112222211112111==+++++n n n n n n n n b a a a b a a a b a a a D8、证明:线性方程组⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=-=-=-=-=-515454343232121a x x a x x a x xa x x a x x 有解的充要条件是∑==510i i a .在有解时,求全部解.9、证明:线性方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=+++⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=+++=+++nn nn n n n n n n b x a x a x a bx a x a x a b x a x a x a (2211222221211)1212111的系数矩阵n n ij a A ⨯=)(与矩阵⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=0..................2121222221111211n n nn n n n n b b b b a a a b a a a b a a a C 的秩相等,则此线性方程组有解.。

线性代数习题参考答案

线性代数习题参考答案

第一章 行列式§1 行列式的概念1. 填空<1> 排列6427531的逆序数为,该排列为排列。

<2> i = ,j = 时, 排列1274i 56j 9为偶排列。

<3> n 阶行列式由项的代数和组成,其中每一项为行列式中位于不同行不同列的n个元素的乘积,若将每一项的各元素所在行标按自然顺序排列,那么列标构成一个n 元排列。

若该排列为奇排列,则该项的符号为号;若为偶排列,该项的符号为号。

<4> 在6阶行列式中,含152332445166a a a a a a 的项的符号为,含324314516625a a a a a a 的项的符号为。

2. 用行列式的定义计算下列行列式的值<1> 1122233233000a a a a a 解: 该行列式的3!项展开式中,有项不为零,它们分别为 ,所以行列式的值为。

<2>12,121,21,11,12,1000000n n nn n n n n n n n n nna a a a a a a a a a ------解:该行列式展开式中唯一不可能为0的项是,而它的逆序数是,故行列式值为。

3. 证明:在全部n 元排列中,奇排列数与偶排列数相等。

证明:n 元排列共有!n 个,设其中奇排列数有1n 个,偶排列数为2n 个。

对于任意奇排列,交换其任意两个元的位置,就变成偶排列,故一个奇排列与许多偶排列对应,所以有1n 2n ,同理得2n 1n ,所以1n 2n 。

4. 若一个n 阶行列式中等于0的元素个数比n n -2多,则此行列式为0,为什么?5. n 阶行列式中,若负项的个数为偶数,则n 至少为多少?〔提示:利用3题的结果6. 利用对角线法则计算下列三阶行列式〔1201141183--- 〔2222111ab c a b c §2 行列式的性质1. 利用行列式的性质计算系列行列式。

线性代数 第一章 行列式

线性代数 第一章 行列式

第一章 行列式习题答案二、三阶行列式及n 阶行列式的定义部分习题答案1.计算下列二阶行列式(1)23112=; (2)cos sin 1sin cos θθθθ-=;(3)1111121221212222a b a b a b a b ++++1122112211221122a a a b b a b b =+++ 1221122112211221a a a b b a b b ----(4)1112111221222122a ab b a a b b +1122112212211221a a b b a a b b =+--2.计算下列三阶行列式(1)10312126231-=--; (2)11121322233233a a a a a a a 112233112332a a a a a a =-()1122332332a a a a a =- (3)a c bba c cb a3333a b c abc =++- 3.按自然数从小到大为标准次序,求下列各排列的逆序数: (1)3214; (2)614235.123t =+= 112217t =++++=(3)()()()12322524212n n n n ---4.确定,i j ,使6元排列2316i j 为奇排列.解:4,5i j ==,()()23162431655t i j t ==为奇排列. 5.写出4阶行列式中含有1321a a 的项. 解:13213244a a a a ;13213442a a a a -6.按定义计算下列行列式:(1)0001002003004000(4321)(1)2424t =-= (2)000000000000a c db (1342)(1)abcd abcd t =-= 7. 求1230312()123122x xf x x x x-=的展开式中4x 和3x 的系数.4x 的系数为6-;含3x 的项只有(4231)(1)(3)3t x x x -?创,所以3x 的系数为(4231)(1)3(3)119t -?创= 行列式的性质与展开部分习题答案 1.计算下列行列式:(1)200819861964200919871965201019881966;解:32212008198619641110111r r r r D --==(2)123123123111a a a a a a a a a +++; 解:2312323231(1)1111a a D a a a a a a a =+++++各列加到第一列后提取公因式21312312331(1)0101r r r r a a a a a a --=+++123(1)a a a =+++ (3)41232013201116011601110111031023500r r D +--==-- 213314116116(1)111027350818r r r +++--=-=-20=- (4)211201110111611261112112211100100c c D ---==----314110110(1)26126116221223c c -+=-=--=--.(5)00100101D αβαβαβαβαβαβαβ++=++.()401100101D αβαβαβαβαβαβαβαβαβαβαβ+=++-+++ ()()()32212D D D D D a b a b a b a b a b a b 轾=+-=++--臌432234a a b a b ab b =++++2.证明:(1)011=++++=cb adb a dcd a c b d c b a D 11;证明:将D 的各列都加到最后一列再提出公因式有1111(1)01111a b c d a b b c a d b c D a b c d c d a b c d d a b c d a ++==++++=++1111(2)33()ax byay bzaz bx x y z ay bzaz bx ax by a b yz x az bx ax byay bz z xy ++++++=++++.证明:左式12axayaz bybzbx ay bzaz bx ax by ay bzaz bx ax by D D az bx ax by ay bzaz bx ax by ay bz =+++++++=+++++++311r br xyzx y z D a ay bzaz bx ax by a ay bz az bx ax byaz bx ax byay bzazaxay-=+++=++++++23223r br x y z x y z x y z a ay bz az bx ax by a ay az ax a yz x zxyzxyzxy-=+++== 类似有1323322(1)r r r r yz x x y z D b zx y yz x xyzzx y ←−→←−→==-,所以33()ax byay bz az bx x y z ay bzaz bx ax by a b yz x az bx ax byay bzzxy++++++=++++ 3.计算n 阶行列式(1)n D =ab bbb a b bbb a bb b b a ...........................;各行加到第一行后提取公因式有:[]111...1...(1).....................n ba b b D a n b bba bb b b a=+-[]211111 (10)0...0(1)00 0 0...n r br r br a b a n b a b a b---=+---L[]()1(1)n a n b a b -=+--(2)12121212n na n a n D n a ++=+12(0)n a a a ≠ .211212111212121211210012000n n nr r n r r r n r r a a nna naa a n a a a a a a a a a a -----+++++--==--1112221211n n n n i i a na i a a a a a a a a =⎛⎫⎛⎫=++++=+⎪ ⎪⎝⎭⎝⎭∑ 4.利用范德猛行列式计算:1111123414916182764D =.2222333311111234(21)(31)(41)(32)(42)(43)1212341234==------= 克拉默法则部分习题答案1.用克拉默法则解线性方程组(1)122313223(0)0bx ax ab cx bx bc abc cx ax ì-=-ïïï-+= íïï+=ïïî;解:002350b a D cb abc ca-=-=-,212023500ab a D bc c b a bc a --=-= 2220350b ab D bc b ab c ca -==-,220250baab D c bc abc c --=-=-123,,x a x b x c =-==(2)123412341234123432125323348246642x x x x x x x x x x x x x x x x +-+=⎧⎪+-+=⎪⎨-++-=⎪⎪--+=⎩.解:132125321734826164D --==----,1132135323444822164D --==----211212332034826264D --==---,3131125321734426124D ==---,13212533853*******D --==---12342,0,1,5x x x x =-===2.当λ为何值时,齐次线性方程组⎪⎩⎪⎨⎧=+=+-=++0 00433221321x x x x x x x λλλ(1) 仅有零解;(2) 有非零解. 解:3410(1)(3)01D l ll l l=-=--,(1)1l ¹且3l ¹时0D ¹,该齐次线性方程组只有零解。

线代第1章练习附答案

线代第1章练习附答案
a4 b4 c4
1 d
的值。
d2 d4
111 1 1
abcd x 【分析】 利用范作范德蒙行列式 D1 a 2 b2 c 2 d 2 x 2 ,则行
a3 b3 c3 d 3 x3 a4 b4 c4 d 4 x4
列式 D 就是行列式 D1 元素 x3 的余子式 M 45 ,即 D M 45
又 D1 (x a)(x b)(x c)(x d)(d a)(d b)(d c)(c a)(c b)(b a)
2341 2 3 4 1 2341
D
10
3412 3 4 1 2 3412
4123 4 1 2 3 4123
1 1 1 1 11 1 1
0 1 2 1 0 1 2 1
10
10
160
0 1 2 1 0 0 4 0
0 3 2 1 0 0 0 4
1 222
2 2 22
3.计算 2 2 3 2 的值。
3
111
111
A. 2
B.1
3
5.下列行列式等于零的是(
3 21
A . 3 2 1
003
B. 0 1 0
0 01
130
C.2
D. 8
3
D)
0 1 0
C. 3 0 0
001
3 1 6
D. 2 2 4
162
0 1 1 1
6.行列式 1 0 1 1
1 0
1 1
第二行第一列元素的代数余子式
A21=(
B)
1 1 1 0
2013 0 0

00 0 00 0 0 0 2015
【分析】方法一:此行列式刚好只有 n 个非零元素

《线性代数》第一章行列式精选习题及解答

《线性代数》第一章行列式精选习题及解答

a1 ...
∏ a2
...
... ...
an ...
=
(a j − ai ) .
1≤i< j≤n
a1n−1
a
n−1 2
... ann−1
1.2.6 计算行列式的常用方法
1.利用对角线法则计算行列式,它只适用于 2、3 阶行列式;
2.利用 n 阶行列式定义计算行列式;
3.利用行列式的性质化三角形法计算行列式;
(C) 10 (D) 9
解 在排列 14536287 中,1 排在首位,逆序数为 0;4、5、6、8 各数的前面没有比它们
自身大的数,故这四个数的逆序数为 0;3 的前面比它大的数有 2 个(4、5),故逆序数为 2;
2 的前面比它大的数有 4 个(4、5、3、6),故逆序数为 4;7 的前面比它大的数有 1 个(8),
MM MM
M
11 1 1L2
1 −1 −1 −1 L −1
n +1 0 0 0 L 0
11 0 0L0
求和,故共有 n!项. 1.2.2 行列式的性质
1.行列式和它的转置行列式相等; 2.行列式的两行(列)互换,行列式改变符号; 3.行列式中某行(列)的公因子可提到行列式的的外面,或若以一个数乘行列式等于 用该数乘此行列式的任意一行(列);
4.行列式中若有两行(列)成比例,则该行列式为零; 5.若行列式的某一行(列)的元素都是两数之和,则此行列式等于两个行列式之和, 即
即 ( A31 + A32 + A33 ) + 2( A34 + A35 ) =0. 同理 2( A31 + A32 + A33 ) + ( A34 + A35 ) =0

行列式练习题及答案

行列式练习题及答案

行列式练习题及答案(总11页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--2一、填空题1.设自然数从小到大为标准次序,则排列1 3 … )12(-n 2 4 … )2(n 的逆序数为 ,排列1 3 … )12(-n )2(n )22(-n …2的逆序数为 . 2.在6阶行列式中,651456314223a a a a a a 这项的符号为 . 3.所有n 元排列中,奇排列的个数共 个. 二、选择题1.由定义计算行列式nn 0000010020001000-= ( ). (A )!n (B )!)1(2)1(n n n -- (C )!)1(2)2)(1(n n n --- (D )!)1()1(n n n --2.在函数xx x x xx f 21123232101)(=中,3x 的系数是( ).(A )1 (B )-1 (C )2 (D )33.四阶行列式的展开式中含有因子32a 的项,共有( )个. (A )4; (B )2; (C )6; (D )8.三、请按下列不同要求准确写出n 阶行列式)det(ij a D =定义式:1. 各项以行标为标准顺序排列;2. 各项以列标为标准顺序排列;3. 各项行列标均以任意顺序排列.四、若n 阶行列式中,等于零的元素个数大于n n -2,则此行列式的值等于多少说明理由.3一、填空题 1.若D=._____324324324,13332313123222121131211111333231232221131211=---==a a a a a a a a a a a a D a a a a a a a a a 则 2.方程229132513232213211x x --=0的根为___________ .二、计算题1. 8171160451530169144312----- 2.dcb a10110011001---3.abbb a b b b a D n=44.111113213************n n n n n a a a a x a a a a x a a a a x a a a a x D ---+=5.计算n 阶行列式)2(212121222111≥+++++++++=n nx x x n x x x n x x x D n n n n 。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档