构造平行四边形解题方略2
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
E A C H G
B
M
D
中考链接
西城二模) (2010西城二模)在△ABC中,点P为BC的中 西城二模 中 为 的中 点. <(AB+AC); (1)如图 ,求证:AP<( )如图1,求证: <( ); (2)延长 到D,使得 )延长AB到 ,使得BD=AC,延长 到E, ,延长AC到 , 使得CE=AB,连结 . 使得 ,连结DE. 如图2,连结BE, BAC=60° ①如图2,连结BE,若∠BAC=60°,请你探究 线段BE与线段 之间的数量关系. 与线段AP之间的数量关系 线段BE与线段AP之间的数量关系.写出你的结 并加以证明; 论,并加以证明; 请在图3中证明 中证明: ②请在图 中证明:BC≥DE. .
D B F
H
C E
G
二、构造平行四边形证
2、如图,AD是 ∆ABC 的边 上的中线, 、如图, 是 的边BC上的中线 上的中线, 求证: 求证:AB+AC﹥2AD ﹥
A
B
ቤተ መጻሕፍቲ ባይዱ
○
D
○
C
F
三、构造平行四边形证
3、如图,分别以 ∆ABC 中的 、AC为边 、如图, 中的AB、 为边 向外作正方形ABEF和正方形 和正方形ACGH,M是 向外作正方形 和正方形 , 是 BC的中点, 的中点, 的中点 F 求证: 求证:FH=2AM
课堂检测
平面上三个等边三角形 ∆ACE、∆ABD、∆BCF 两两共有一个顶点,如图所示, 两两共有一个顶点,如图所示, B 求证: 与 互相平分 求证:CD与EF互相平分
C F
E D A
构造平行四边形解题方略
2011年3月 年 月
一、构造平行四边形证
∆ 1、如图, ABC 中,D在AB上,E在AC的 、如图, 在 上 在 的 延长线上, 连结DE, 延长线上,BD=CE连结 ,交BC于F, 连结 于 , 外角的平分线交BC的延长线于 ∠BAC外角的平分线交 的延长线于 , 外角的平分线交 的延长线于G, 且AG//DE。 。 A 求证:BF=CF 求证:
B
M
D
中考链接
西城二模) (2010西城二模)在△ABC中,点P为BC的中 西城二模 中 为 的中 点. <(AB+AC); (1)如图 ,求证:AP<( )如图1,求证: <( ); (2)延长 到D,使得 )延长AB到 ,使得BD=AC,延长 到E, ,延长AC到 , 使得CE=AB,连结 . 使得 ,连结DE. 如图2,连结BE, BAC=60° ①如图2,连结BE,若∠BAC=60°,请你探究 线段BE与线段 之间的数量关系. 与线段AP之间的数量关系 线段BE与线段AP之间的数量关系.写出你的结 并加以证明; 论,并加以证明; 请在图3中证明 中证明: ②请在图 中证明:BC≥DE. .
D B F
H
C E
G
二、构造平行四边形证
2、如图,AD是 ∆ABC 的边 上的中线, 、如图, 是 的边BC上的中线 上的中线, 求证: 求证:AB+AC﹥2AD ﹥
A
B
ቤተ መጻሕፍቲ ባይዱ
○
D
○
C
F
三、构造平行四边形证
3、如图,分别以 ∆ABC 中的 、AC为边 、如图, 中的AB、 为边 向外作正方形ABEF和正方形 和正方形ACGH,M是 向外作正方形 和正方形 , 是 BC的中点, 的中点, 的中点 F 求证: 求证:FH=2AM
课堂检测
平面上三个等边三角形 ∆ACE、∆ABD、∆BCF 两两共有一个顶点,如图所示, 两两共有一个顶点,如图所示, B 求证: 与 互相平分 求证:CD与EF互相平分
C F
E D A
构造平行四边形解题方略
2011年3月 年 月
一、构造平行四边形证
∆ 1、如图, ABC 中,D在AB上,E在AC的 、如图, 在 上 在 的 延长线上, 连结DE, 延长线上,BD=CE连结 ,交BC于F, 连结 于 , 外角的平分线交BC的延长线于 ∠BAC外角的平分线交 的延长线于 , 外角的平分线交 的延长线于G, 且AG//DE。 。 A 求证:BF=CF 求证: