任意角的概念和弧度制(第一课时)
教师版__任意角和弧度制知识点和练习
9.一扇形半径长与弧长之比是3:,则该扇形所含弓形面积与该扇形的
面积之比为( )
(A)(B)(C) (D)
针对练习
1.下列角中终边与330°相同的角是( )
Α.30° B.-30° C.630° D.-630°
2.下列命题正确的是( )
A.终边相同的角一定相等 B.第一象限的角都是锐角。 C.锐角都是第一象
12.已知是第二象限角,且则的范围是
.
三、解答题
13. 在与范围内,找出与下列各角终边相同的角,并判断它们是第几象
限角?
(1)
(2)
(3)
14.写出角的终边在下图中阴影区域内角的集合(用弧度制表示)
(1)
(2)
(3)
于的角是锐角。
其中正确的命题序号是
。
例2:写出终边在直线上的角的集合;
练习:写出终边在直线上的角的集合。 例3: 求两个集合的交集 已知集合,, 练习:1、集合,,则等于( )
A、 B、 C、 D、 2、集合,,则等于( ) (A) (B) (C) (D) 3、,求 例4:判断下列角的集合的关系: 已知集合集合,则( )
A.三角形的内角是第一象限角或第二象限角 B.第一象限的角是锐角
C.第二象限的角比第一象限的角大 D.角α是第四象限角的充要条件 是2kπ-
<α<2kπ(k∈Z) 14.设k∈Z,下列终边相同的角是 ( )
A.(2k+1)·180°与(4k±1)·180° B.k·90°与k·180°+90° C.k·180°+30°与k·360°±30° D.k·180°+60°与k·60° 15.若90°<-α<180°,则180°-α与α的终边 ( ) A.关于x轴对称 B.关于y轴对称 C.关于原点对称 D.以上 都不对 16.设集合M={α|α=
任意角和弧度制PPT课件
与x轴正方向形成的角称为轴线角 ,其大小为正负90°。
Part
02
弧度制的基本概念
弧度的定义
弧度的定义
弧度是度量角的一种方式,它是以长度来度量圆弧所对应的中心角的大小。在 圆中,长度等于半径的圆弧所对应的中心角叫做1弧度的角。
弧度的符号
用rad表示弧度,例如,1弧度可以表示为1rad。
弧度与角度的换算
任意角和弧度制ppt 课件
• 任意角的概念 • 弧度制的基本概念 • 任意角的三角函数 • 弧度制下的三角函数 • 任意角和弧度制的实际应用
目录
Part
01
任意角的概念
定义与性质
定义
任意角是平面内一条射线绕着端点从 一个位置旋转到另一个位置所形成的 角。
性质
任意角具有方向性,其正方向由旋转 方向确定;旋转量大于0°小于360°的 角称为正角,旋转量大于360°的角称 为负角。
正弦函数、余弦函数、正 切函数都具有周期性,其 周期为2π弧度。
奇偶性
正弦函数和正切函数是奇 函数,余弦函数是偶函数 。
图像
正弦函数、余弦函数、正 切函数的图像分别呈正弦 波、余弦波和直线形状, 且均在单位圆上表示。
弧度制下三角函数的应用
三角恒等式
利用三角函数的性质,可以推导 出许多三角恒等式,如sin^2(x)
电磁学中的交流电
在电磁学中,交流电的相位角可以用任意角和弧度制来表示,帮助 理解交流电的特性和规律。
振动和波动
在振动和波动的研究中,任意角和弧度制可以用来描述振动相位、 波传播方向等。
在几何学中的应用
平面几何和立体几何
任意角和弧度制可以用来描述平面几何和立体几何中的角度 和旋转,例如旋转矩阵、极坐标等。
三角函数教案(共10课时)
第一课时:任意角与弧度制教学目标知识目标:理解任意角的概念(包括正角、负角、零角) 与区间角的概念,会用终边相同的角的形式表示某些位置的角;了解弧度的意义,并能正确的进行弧度与角度的换算;能用弧长公式解决相关的实际问题。
能力目标:会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写.德育目标:1.提高学生的推理能力; 2.培养学生应用意识. 教学重点:任意角概念的理解;区间角的集合的书写.教学难点:终边相同角的集合的表示;区间角的集合的书写. 教学方法:讲授,练习,探究启发 课 时:1课时 教学过程 【课前预习】1.与α角终边相同的角的集合,连同α角在内(而且只有这样的角),可以记为 ; 1弧度=( )0,1°= 弧度;弧长公式: ,扇形面积公式: ;2.下列说法正确的是 ( ) A .第二象限的角是钝角 B .第三象限的角必大于第二象限的角 C .-8500是第二象限的角 D .00095,264,984-是终边相同的角3.(世纪金榜P52 第一题)若01125与α(00360α≤≤)终边相同,则α为( ) A .045 B .0135 C .0315- D .04054.在直角坐标系中,若角α与β终边互为反向延长线,α与β之间的关系是 ( )A .αβ=B .2()k k R απβ=+∈C .απβ=+D .(21)()k k R απβ=++∈ 5. (世纪金榜P52 基础知识)终边在x 轴上的角的集合为 , 终边在y 轴上的角的集合为 , 终边在坐标轴上的角的集合为 , 第三象限的角的集合是 。
6.(世纪金榜P53 例1)若α是第二象限的角,则2α是第 象限的角。
7.(世纪金榜P53 例2)一个扇形ABC 的圆心角060α=,10r =,则它的弧长是 ,该段弧所在的弓形面积 。
【典型例题】例1:若θ角的终边与85π角的终边相同,则在[]0,2π上终边与4π的角终边相同的角为 。
5.1.2弧度制(第一课时)
5.1.2《弧度制》教学设计一、教材分析本节内容为学生学习三角函数的基础概念课,前一节已经学习了任意角的概念,而本节课主要依托圆心角这个情境学习一种用长度度量角的方法—弧度制,从而将角与实数建立一一对应关系,为学习本章的核心内容—三角函数扫平障碍,打下基础.二、课程目标1.了解弧度制,明确1弧度的含义.2.能进行弧度与角度的互化.3.掌握用弧度制表示扇形的弧长公式和面积公式.三、教学重难点重点:弧度制的概念与弧度制与角度制的转化;难点:弧度制概念的理解.四、教学过程1.度量角的两种单位制(1)回顾角度制 ①定义:用 度 作为单位来度量角的单位制. ②1度的角:周角的1360. (2)定义弧度制①定义:以 弧度 作为单位来度量角的单位制.②1弧度的角:长度等于 半径长 的弧所对的圆心角.2.弧度数的计算l r正数 负数 零3.角度制与弧度制的转算(1)例1:(1)把 67°30′化成弧度.(2)例2.一些特殊角与弧度数的对应关系度0°30°45°60°90°120°135°150°180°270°360°弧度0π6π4π3π22π33π45π6π3π22π(3)例3.利用弧度制证明扇形的面积公式设扇形的半径为R,弧长为l,α(0<α<2π)为其圆心角,则:(1)弧长公式:l=αr.(2)扇形面积公式:S=12lr=12αr2.π180(180π)°。
《任意角和弧度制》三角函数PPT教学课件(第一课时任意角)
栏目 导引
第五章 三角函数
判断正误(正确的打“√”,错误的打“×”) (1)第一象限的角一定是正角.( × ) (2)终边相同的角一定相等.( × ) (3)锐角都是第一象限角.( √ ) (4)第二象限角是钝角.( × )
栏目 导引
第五章 三角函数
3.终边在直线 y=-x 上的角 β 的集合 S=________. 解析:由题意可知,终边在直线 y=-x 上的角有两种情况: ①当终边在第二象限时,可知{β|β=135°+k·360°,k∈Z}; ②当终边在第四象限时,可知{β|β=315°+k·360°,k∈Z}. 综合①②可得,终边在直线 y=-x 上的角的集合 S={β|β= 135°+k·180°,k∈Z}. 答案:{β|β=135°+k·180°,k∈Z}
栏目 导引
第五章 三角函数
2.如图,α,β 分别是终边落在 OA,OB 位置上的两 个角,且 α=60°,β=315°. (1)求终边落在阴影部分(不包括边界)的角 γ 的集 合; (2)求终边落在阴影部分(不包括边界),且在 0°~360°范围内 的角的集合. 解:(1)因为与角 β 终边相同的一个角可以表示为-45°,所以 阴 影 部 分 (不 包 括 边 界 )所 表 示 的 角 的 集 合 为 {γ|k·360 ° - 45 ° <γ<k·360°+60°,k∈Z}. (2){θ|0°≤θ<60°或 315°<θ<360°}.
别是( )
高一数学必修任意角和弧度制
高一数学必修4任意角和弧度制第一课时 1.1.1 任意角教学要求:理解任意大小地角正角、负角和零角,掌握终边相同地角、象限角、区间角、终边在坐标轴上地角.教学重点:理解概念,掌握终边相同角地表示法.教学难点:理解角地任意大小.教学过程:一、复习准备:1.提问:初中所学地角是如何定义?角地范围?(角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成地图形;0°~360°)2.讨论:实际生活中是否有些角度超出初中所学地范围? → 说明研究推广角概念地必要性(钟表;体操,如转体720°;自行车车轮;螺丝扳手)二、讲授新课:1.教学角地概念:① 定义正角、负角、零角:按逆时针方向旋转所形成地角叫正角,按顺时针方向旋转所形成地角叫负角,未作任何旋转所形成地角叫零角.② 讨论:推广后角地大小情况怎样? (包括任意大小地正角、负角和零角) ③ 示意几个旋转例子,写出角地度数.④ 如何将角放入坐标系中?→定义第几象限地角.(概念:角地顶点与原点重合,角地始边与x 轴地非负半轴重合. 那么,角地终边(除端点外)在第几象限,我们就说这个角是第几象限角. )⑤ 练习:试在坐标系中表示300°、390°、-330°角,并判别在第几象限? ⑥ 讨论:角地终边在坐标轴上,属于哪一个象限?结论:如果角地终边在坐标轴上,就认为这个角不属于任何一个象限,称为非象限角. 口答:锐角是第几象限角?第一象限角一定是锐角吗?再分别就直角、钝角来回答这两个问题.⑦ 讨论:与60°终边相同地角有哪些?都可以用什么代数式表示?与α终边相同地角如何表示?⑧ 结论:与α角终边相同地角,都可用式子k ×360°+α表示,k ∈Z ,写成集合呢? ⑨ 讨论:给定顶点、终边、始边地角有多少个?注意:终边相同地角不一定相等;但相等地角,终边一定相同;终边相同地角有无数多个,它们相差360°地整数倍2.教学例题:① 出示例1:在0°~360°间,找出下列终边相同角:-150°、1040°、-940°. (讨论计算方法:除以360求正余数 →试练→订正)② 出示例2:写出与下列终边相同地角地集合,并写出-720°~360°间角. 120°、-270°、1020°(讨论计算方法:直接写,分析k 地取值 →试练→订正)③ 讨论:上面如何求k 地值? (解不等式法)④ 练习:写出终边在x 轴上地角地集合,y 轴上呢?坐标轴上呢?第一象限呢? ⑤ 出示例3:写出终边直线在y =x 上地角地集合S , 并把S 中适合不等式360720α︒-≤<︒地元素β写出来. (师生共练→小结)3. 小结:角地推广;象限角地定义;终边相同角地表示;终边落在坐标轴时等;区间角表示.三、巩固练习:1. 写出终边在第一象限地角地集合?第二象限呢?第三象限呢?第四象限呢?直线y =-x 呢?2. 作业:书P6 练习 3 ③④、4、5题.第二课时:1.1.2 弧度制(一)教学要求:掌握弧度制地定义,学会弧度制与角度制互化,并进而建立角地集合与实数集R 一一对应关系地概念.教学重点:掌握换算.教学难点:理解弧度意义.教学过程:一、复习准备:1. 写出终边在x 轴上角地集合 .2. 写出终边在y 轴上角地集合 .3. 写出终边在第三象限角地集合 .4. 写出终边在第一、三象限角地集合 .5. 什么叫1°地角?计算扇形弧长地公式是怎样地?二、讲授新课:1. 教学弧度地意义:① 如图:∠AOB 所对弧长分别为L 、L ’,半径分别为r 、r ’,求证:l r =''l r . ② 讨论:l r 是否为定值?其值与什么有关系?→结论:l r =180n π=定值. ③ 讨论:l r 在什么情况下为值为1?l r是否可以作为角地度量? ④ 定义:长度等于半径长地弧所对地圆心角叫1弧度地角. 用rad 表示,读作弧度. ⑤ 计算弧度:180°、360°→ 思考:-360°等于多少弧度?⑥ 探究:完成书P7 表1.1-1后,讨论:半径为r 地圆心角α所对弧长为l ,则α弧度数=?⑦ 规定:正角地弧度数是一个正数,负角地弧度数是一个负数,零角地弧度数是0. 半径为r 地圆心角α所对弧长为l ,则α弧度数地绝对值为|α|=l r. 用弧度作单位来度量角地制度叫弧度制.⑧ 讨论:由弧度数地定义可以得到计算弧长地公式怎样?⑨ 讨论:1度等于多少弧度?1弧度等于多少度?→度表示与弧度表示有啥不同? -720°地圆心角、弧长、弧度如何看?2 .教学例题:①出示例1:角度与弧度互化:6730' ;35rad π.分析:如何依据换算公式?(抓住:180︒=π rad ) → 如何设计算法?→ 计算器操作: 模式选择 MODE MODE 1(2);输入数据;功能键SHIFT DRG 1(2)=② 练习:角度与弧度互化:0°;30°;45°;3π;2π;120°;135°;150°;54π ③ 讨论:引入弧度制地意义?(在角地集合与实数地集合之间建立一种一一对应地关系)④ 练习:用弧度制表示下列角地集合:终边在x 轴上; 终边在y 轴上.3. 小结:弧度数定义;换算公式(180︒=π rad );弧度制与角度制互化.三、巩固练习:1. 教材P10 练习1、2题.2. 用弧度制表示下列角地集合:终边在直线y =x ; 终边在第二象限; 终边在第一象限.3. 作业:教材P11 5、7、8题.第三课时:1.1.2 弧度制(二)教学要求:更进一步理解弧度地意义,能熟练地进行弧度与角度地换算. 掌握弧长公式,能用弧度表示终边相同地角、象限角和终边在坐标轴上地角. 掌握并运用弧度制表示地弧长公式、扇形面积公式教学重点:掌握扇形弧长公式、面积公式.教学难点:理解弧度制表示.教学过程:一、复习准备:1. 提问:什么叫1弧度地角?1度等于多少弧度?1弧度等于多少度?扇形弧长公式?2. 弧度与角度互换:-43π、310π、-210°、75° 3. 口答下列特殊角地弧度数:0°、30°、45°、60°、90°、120°、135°、…二、讲授新课:1. 教学例题:① 出示例:用弧度制推导:S 扇=12LR ;212S R α=扇. 分析:先求1弧度扇形地面积(12ππR 2)→再求弧长为L 、半径为R 地扇形面积? 方法二:根据扇形弧长公式、面积公式,结合换算公式转换.② 练习:扇形半径为45,圆心角为120°,用弧度制求弧长、面积. ③ 出示例:计算sin 3π、tan1.5、cos 4π (口答方法→共练→小结:换算为角度;计算器求)② 练习:求6π、4π、3π地正弦、余弦、正切. 2. 练习:①. 用弧度制写出与下列终边相同地角,并求0~2π间地角.193π、-675° ② 用弧度制表示终边在x 轴上角地集合、终边在y 轴上角地集合?终边在第三象限角地集合?③ 讨论:α=k ×360°+3π与β=2k π+30°是否正确? ④ α与-94π地终边相同,且-2π<α<2π,则α= . ⑤ 已知扇形AOB 地周长是6cm ,该扇形地中心角是1弧度,求该扇形地面积.解法:设扇形地半径为r ,弧长为l ,列方程组而求.3. 小结:扇形弧长公式、面积公式;弧度制地运用;计算器使用.三、巩固练习:1. 时间经过2小时30分,时针和分针各转了多少弧度?2. 一扇形地中心角是54°,它地半径为20cm ,求扇形地周长和面积.3. 已知角α和角β地差为10°,角α和角β地和是10弧度,则α、β地弧度数分别是 .4. 作业:教材P10 练习4、5、6题.。
第1讲 任意角和弧度制、三角函数的概念
第1讲任意角和弧度制、三角函数的概念1.了解任意角的概念和弧度制的概念.2.能进行弧度与角度的互化.3.理解任意角的三角函数(正弦、余弦、正切)的定义.1.任意角(1)任意角包括正角、负角和零角.(2)象限角:在平面直角坐标系中,使角的顶点与原点重合,角的始边与x轴的非负半轴重合,那么,角的终边在□1第几象限,就说这个角是第几□2象限角;如果角的终边在□3坐标轴上,就认为这个角不属于任何一个象限.(3)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S=□4{β|β=α+k·360°,k∈Z}.2.弧度制的定义和公式(1)定义:把长度等于□5半径长的圆弧所对的圆心角叫做1弧度的角,正角的弧度数是一个□6正数,负角的弧度数是一个□7负数,零角的弧度数是□80.(2)公式角α的弧度数公式|α|=lr(弧长用l表示)角度与弧度的换算1°=π180rad;1rad=□9(180π)°弧长公式弧长l=□10|α|r扇形面积公式S=□1112lr=□1212|α|r2扇形的弧长公式、面积公式中角的单位要用弧度,在同一式子中,采用的度量制必须一致.3.任意角的三角函数(1)概念:任意角α的终边与单位圆交于点P(x,y)时,sinα=□13y,cosα=□14x,tan α=□15y x(x ≠0).(2)概念推广:三角函数坐标法定义中,若取点P (x ,y )是角α终边上异于顶点的任一点,设点P 到原点O 的距离为r ,则sin α=□16y r ,cos α=□17x r ,tan α=□18y x(x ≠0).常用结论1.三角函数值在各象限的符号规律:一全正,二正弦,三正切,四余弦.2.象限角与不属于任何象限的角(1)(2)(3)3.重要不等关系:若α∈(0,π2),则sin α<α<tan α.1.思考辨析(在括号内打“√”或“×”)(1)小于90°的角是锐角.()(2)锐角是第一象限角,第一象限角也都是锐角.()(3)角α的三角函数值与其终边上点P 的位置无关.()(4)若α为第一象限角,则sin α+cos α>1.()答案:(1)×(2)×(3)√(4)√2.回源教材(1)67°30′化为弧度是()A.3π8B.38C.673π1800D.6731800解析:A 67°30′=67.5×π180=38π.(2)已知α是第一象限角,那么α2是()A.第一象限角B.第二象限角C.第一或第二象限角D.第一或第三象限角解析:D 易知2k π<α<π2+2k π,k ∈Z ,故k π<α2<π4+k π,所以α2是第一或第三象限角.(3)已知角θ的终边经过点P (-12,5),则sin θ+cos θ=.解析:由三角函数的定义可得sin θ+cos θ=5(-12)2+52+-12(-12)2+52=513-1213=-713.答案:-713任意角及其表示例1(1)(多选)若α是第二象限角,则()A.-α是第一象限角B.α2是第一或第三象限角C.3π2+α是第二象限角D.2α是第三或第四象限角或终边在y 轴负半轴上解析:BD因为α是第二象限角,所以可得π2+2k π<α<π+2k π,k ∈Z .对于A ,-π-2k π<-α<-π2-2k π,k ∈Z ,则-α是第三象限角,所以A 错误.对于B ,可得π4+k π<α2<π2+k π,k ∈Z ,当k 为偶数时,α2是第一象限角;当k 为奇数时,α2是第三象限角,所以B 正确.对于C ,2π+2k π<3π2+α<5π2+2k π,k ∈Z ,即2(k +1)π<3π2+α<π2+2(k +1)π,k ∈Z ,所以3π2+α是第一象限角,所以C 错误.对于D ,π+4k π<2α<2π+4k π,k ∈Z ,所以2α的终边位于第三象限或第四象限或y 轴负半轴上,所以D 正确.故选BD.(2)集合{α|k π+π4≤α≤k π+π2,k ∈Z }中的角所表示的范围(阴影部分)是()解析:C当k =2n (n ∈Z )时,2n π+π4≤α≤2n π+π2,此时α表示的范围与π4≤α≤π2表示的范围一样;当k =2n +1(n ∈Z )时,2n π+π+π4≤α≤2n π+π+π2,此时α表示的范围与π+π4≤α≤π+π2表示的范围一样.故选C.反思感悟1.表示区间角的三个步骤(1)先按逆时针方向找到区域的起始和终止边界.(2)再按由小到大的顺序分别标出起始和终止边界对应的-360°~360°范围内的角α和β,写出最简区间{x |α<x <β},其中β-α<360°.(3)最后令起始、终止边界对应角α,β再加上360°的整数倍,即得区间角的集合.2.象限角的两种判断方法(1)图象法:在平面直角坐标系中,作出已知角并根据象限角的定义直接判断已知角是第几象限角.(2)转化法:先将已知角化为k ·360°+α(0°≤α<360°,k ∈Z )的形式,即找出与已知角终边相同的角α,再由角α的终边所在的象限判断已知角是第几象限角.训练1(1)把-380°表示成θ+2k π(k ∈Z )的形式,则θ的值可以是()A.π9B.-π9C.8π9D.-8π9解析:B∵-380°=-20°-360°,∴-380°=(-π9-2π)rad ,故选B.(2)终边在直线y =3x 上,且在[-2π,2π)内的角α的集合为.解析:如图,在平面直角坐标系中画出直线y=3x,可以发现它与x轴的夹角是π3,在[0,2π)内,终边在直线y=3x上的角有两个,即π3,4π3;在[-2π,0)内满足条件的角有两个,即-2π3,-5π3,故满足条件的角α构成的集合为{-5π3,-2π3,π3,4π3}.答案:{-5π3,-2π3,π3,4π3}弧度制及其应用例2已知扇形的圆心角是α,半径为R,弧长为l.(1)若α=π3,R=10cm,求扇形的弧长l;(2)若扇形的周长是20cm,当扇形的圆心角α为多少弧度时,这个扇形的面积最大?(3)若α=π3,R=2cm,求扇形的弧所在的弓形的面积.解:(1)因为α=π3,R=10cm,所以l=|α|R=π3×10=10π3(cm).(2)由已知,得l+2R=20,所以S=12lR=12(20-2R)R=10R-R2=-(R-5)2+25.所以当R=5cm时,S取得最大值,此时l=10cm,α=2.(3)设弓形面积为S弓形,由题意知l=2π3cm,所以S弓形=12×2π3×2-12×22×sinπ3=(2π3-3)(cm2).反思感悟应用弧度制解决问题时的注意点(1)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度.(2)求扇形面积最大值的问题时,常转化为二次函数的最值问题,或用基本不等式解决.(3)在解决弧长问题和扇形面积问题时,要合理地利用圆心角所在的三角形.训练2如图,图1是杭州2022年第19届亚运会的会徽,名为“潮涌”,整个会徽象征着新时代中国特色社会主义大潮的涌动和发展.图2是会徽的几何图形,设弧AD 的长度是l 1,弧BC 的长度是l 2,几何图形ABCD 的面积为S 1,扇形BOC 的面积为S 2,若l 1l 2=2,则S1S 2=()图1图2A.1B.2C.3D.4解析:C 设∠BOC =α,由l 1l 2=2,得OA ·αOB ·α=OA OB =2,即OA =2OB ,∴S1S 2=12α·OA 2-12α·OB 212α·OB 2=OA 2-OB 2OB 2=4OB 2-OB 2OB 2=3.故选C.三角函数的定义及其应用三角函数的定义例3(1)(2024·哈尔滨期中)已知角α的终边经过点P (-3,4),则sin α-cos α-11+tan α的值为()A.-65 B.1C.2D.3解析:A由(-3)2+42=5,得sin α=45,cos α=-35,tan α=-43,代入原式得45-(-35)-11+(-43)=-65.(2)如果点P 在角23π的终边上,且|OP |=2,则点P 的坐标是()A.(1,3)B.(-1,3)C.(-3,1)D.(-3,-1)解析:B由三角函数定义知,cos 23π=x P |OP |=-12,sin 23π=y P |OP |=32,所以x P =-1,y P =3,即P 的坐标是(-1,3).三角函数值的符号例4(1)点P (sin 100°,cos 100°)落在()A.第一象限内B.第二象限内C.第三象限内D.第四象限内解析:D因为sin 100°=sin(90°+10°)=cos 10°>0,cos 100°=cos(90°+10°)=-sin 10°<0,所以点P (sin 100°,cos 100°)落在第四象限内.(2)已知sin θ<0,tan θ<0,则角θ的终边位于()A.第一象限B.第二象限C.第三象限D.第四象限解析:D 由sin θ<0,tan θ<0,根据三角函数的符号与角的象限间的关系,可得角θ的终边位于第四象限.反思感悟1.三角函数定义的应用(1)直接利用三角函数的定义,找到给定角的终边上一个点的坐标,及这点到原点的距离,确定这个角的三角函数值.(2)已知角的某一个三角函数值,可以通过三角函数的定义列出含参数的方程,求参数的值.2.要判定三角函数值的符号,关键是要搞清三角函数中的角是第几象限角,再根据正、余弦函数值在各象限的符号确定值的符号.如果不能确定角所在象限,那就要进行分类讨论求解.训练3(1)(多选)已知角α的终边与单位圆交于点P (35,m5),则sin α的值可能是()A.45B.35C.-45 D.-35解析:AC由题意可得sin α=m 5(35)2+(m 5)2=m 32+m 2=m5,解得m =±4.当m =4时,sin α=45;当m =-4时,sin α=-45.故A ,C 正确,B ,D 错误.(2)(多选)已知角θ的终边经过点(-2,-3),且θ与α的终边关于x 轴对称,则()A.sin θ=-217B.α为钝角C.cos α=-277D.点(tan θ,tan α)在第四象限解析:ACD因为角θ的终边经过点(-2,-3),所以sin θ=-37=-217,故A 正确.因为θ与α的终边关于x 轴对称,所以α的终边经过点(-2,3),则α为第二象限角,不一定为钝角,且cos α=-27=-277,故B 错误,C 正确.因为tanθ=32>0,tan α=-32<0,所以点(tan θ,tan α)在第四象限,D 正确.故选ACD.限时规范训练(二十四)A级基础落实练1.与-2023°终边相同的最小正角是()A.137°B.133°C.57°D.43°解析:A因为-2023°=-360°×6+137°,所以与-2023°终边相同的最小正角是137°.2.下列与角9π4的终边相同的角的表达式中正确的是()A.2kπ+45°(k∈Z)B.k·360°+9π4(k∈Z)C.k·360°-315°(k∈Z)D.kπ+5π4(k∈Z)解析:C对于A,B,2kπ+45°(k∈Z),k·360°+9π4(k∈Z)中角度和弧度混用,不正确;对于C,因为9π4=2π+π4与-315°是终边相同的角,故与角9π4的终边相同的角可表示为k·360°-315°(k∈Z),C正确;对于D,kπ+5π4(k∈Z),不妨取k=0,则表示的角5π4与9π4终边不相同,D错误.3.已知角θ的顶点与原点重合,始边与x轴非负半轴重合,若A(-1,y)是角θ终边上一点,且sinθ=-31010,则y=()A.3B.-3C.1D.-1解析:B因为sinθ=-31010<0,A(-1,y)是角θ终边上一点,所以y<0,由三角函数的定义,得yy2+1=-31010,解得y=-3(正值舍去).4.(2024·鹰潭期中)点A(sin1240°,cos1240°)在直角坐标平面上位于()A.第一象限B.第二象限C.第三象限D.第四象限解析:D1240°=3×360°+160°,160°是第二象限角,所以sin1240°>0,cos1240°<0,P点在第四象限.5.(2023·河东一模)在面积为4的扇形中,其周长最小时半径的值为()A.4B.22C.2D.1解析:C设扇形的半径为R(R>0),圆心角为α,则12αR2=4,所以α=8R2,则扇形的周长为2R+αR=2R+8R≥22R·8R=8,当且仅当2R=8 R,即R=2时,取等号,此时α=2,所以周长最小时半径的值为2.6.给出下列命题:①第二象限角大于第一象限角;②三角形的内角一定是第一象限角或第二象限角;③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关;④若sinα=sinβ,则α与β的终边相同;⑤若cosθ<0,则θ是第二或第三象限的角.其中正确命题的序号是()A.②④⑤B.③⑤C.③D.①③⑤解析:C①由于120°是第二象限角,390°是第一象限角,故第二象限角大于第一象限角不正确,即①不正确;②直角不属于任何一个象限,故三角形的内角是第一象限角或第二象限角错误,即②不正确;③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关,即③正确;④若sinα=sinβ,则α与β的终边相同或终边关于y轴对称,即④不正确;⑤若cosθ<0,则θ是第二象限角或第三象限角或θ的终边落在x轴的负半轴上,即⑤不正确.其中正确命题的序号是③,故选C.7.(多选)已知角α的顶点为坐标原点,始边为x轴的非负半轴,终边上有一点P(1,2sinα),且|α|<π2,则角α的可能取值为()A.-π3B.0C.π6D.π3解析:ABD因为角α的终边上有一点P(1,2sinα),所以tanα=2sinα,所以sinαcosα=2sinα,①若α=0,则sinαcosα=2sinα成立;②若α≠0,则cosα=12,因为|α|<π2,所以α=π3或α=-π3.8.已知角α的终边过点P(-8m,-6sin30°),且cosα=-45,则m的值为.解析:因为r=64m2+9,所以cosα=-8m64m2+9=-45,所以4m264m2+9=125,因为m>0,解得m=12.答案:1 29.α为第二象限角,且|cosα2|=-cosα2,则α2在象限.解析:∵α为第二象限角,∴α2为第一或第三象限角,又|cos α2|=-cos α2,∴cos α2<0,∴α2在第三象限.答案:第三10.若角α的终边与函数5x +12y =0(x <0)的图象重合,则2cos α+sin α=.解析:∵角α的终边与函数5x +12y =0(x <0)的图象重合,∴α为第二象限角,且tan α=-512,即sin α=-512cos α.∴sin 2α+cos 2α=(-512cos α)2+cos 2α=1,解得cos α=-1213.∴sin α=-512cos α=-512×(-1213)=513.∴2cos α+sin α=2×(-1213)+513=-1913.答案:-191311.用弧度制表示终边落在如图所示阴影部分内(含边界)的角θ的集合是.解析:由题图,终边OB 对应角为2k π-π6且k ∈Z ,终边OA 对应角为2k π+3π4且k ∈Z ,所以阴影部分角θ的集合是[2k π-π6,2k π+3π4],k ∈Z .答案:[2k π-π6,2k π+3π4],k ∈Z12.已知扇形的圆心角为23π,扇形的面积为3π,则该扇形的周长为.解析:设扇形的半径为R,利用扇形面积计算公式S=12×23πR2=3π,可得R=3,所以该扇形的弧长为l=23π×3=2π,所以周长为l+2R=6+2π.答案:6+2πB级能力提升练13.(多选)在平面直角坐标系xOy中,角α以Ox为始边,终边经过点P(-1,m)(m>0),则下列各式的值一定为负的是()A.sinα+cosαB.sinα-cosαC.sinαcosαD.sinαtanα解析:CD因为角α终边经过点P(-1,m)(m>0),所以α在第二象限,所以sinα>0,cosα<0,tanα<0,如果α=23π,所以sinα+cosα=32-12>0,所以选项A不满足题意;sinα-cosα>0;sinαcosα<0;sinαtanα<0,故CD正确.14.(2023·长治模拟)水滴是刘慈欣的科幻小说《三体Ⅱ·黑暗森林》中提到的由三体文明使用强相互作用力(SIM)材料所制成的宇宙探测器,因为其外形与水滴相似,所以被人类称为水滴.如图所示,水滴是由线段AB,AC和圆的优弧BC围成,其中AB,AC恰好与圆弧相切.若圆弧所在圆的半径为1,点A到圆弧所在圆的圆心的距离为2,则该封闭图形的面积为()A.3+2π3 B.23+2π3C.23+π3D.3+π3解析:A 如图,设圆弧所在圆的圆心为O ,连接OA ,OB ,OC ,依题意得OB ⊥AB ,OC ⊥AC ,且OB =OC =1,OA =2,则AB =AC =3,∠BAC =π3,所以∠BOC =2π3,所以该封闭图形的面积为2×12×3×1+12×(2π-2π3)×12=3+2π3.15.(2024·牡丹江模拟)在平面直角坐标系xOy 中,已知点A (35,45),将线段OA绕原点顺时针旋转π3得到线段OB ,则点B 的横坐标为.解析:易知A (35,45)在单位圆上,记终边在射线OA 上的角为α,如图所示,根据三角函数定义可知,cos α=35,sin α=45;OA 绕原点顺时针旋转π3得到线段OB ,则终边在射线OB 上的角为α-π3,所以点B 的横坐标为cos(α-π3)=cos αcos π3+sin αsin π3=3+4310.答案:3+431016.若点P (sin α-cos α,tan α)在第一象限,则在[0,2π)内α的取值范围是.解析:由题意可得α-cos α>0,α>0,∈[0,2π),α>0,∈[0,2π),可得α∈(0,π2)或α∈(π,3π2),当α∈(0,π2),即α为第一象限角,则sin α>0,cos α>0,∵sin α-cos α>0,则tan α>1,∴α∈(π4,π2);当α∈(π,3π2),即α为第三象限角,则sin α<0,cos α<0,∵sin α-cos α>0,则0<tan α<1,∴α∈(π,5π4);综上所述,α∈(π4,π2∪(π,5π4).答案:(π4,π2)∪(π,5π4)。
任意角和弧度制(第1课时)
第四课时:任意角和弧度制(第1课时)编写人:潘有金审核人:张广泉审批:苏自先学习目标:1.理解任意角的概念,学会在平面直角坐标系中讨论角;2.掌握象限角、终边相同的角、终边在坐标轴上的角的表示方法;3.了解角的概念推广的现实意义,学会用数学的观点分析、解决实际问题。
预习案一、教材助读认真阅读课本P 1 -P 5 ,完成下列问题1.在初中,我们已学习过角的有关知识。
请同学们回忆:角的定义:角的表示:角的范围:2.角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的几何图形。
我们规定:按逆时针方向旋转所成的角叫做_________;按顺时针方向旋转所成的角叫做_________;如果一条射线没有作任何旋转,我们称它形成了_________。
3.在直角坐标系内讨论角,必须使角的顶点与________________重合,角的始边与______________________重合.4. 在直角坐标系内,如果角的终边在第几象限,我们就说这个角是_________;如果角的终边在坐标轴上,我们就说这个角_________。
5. 在直角坐标系内,相等的两个角终边一定相同;反过来,终边相同的两个角不一定相等。
6. 在直角坐标系内,所有与角α终边相同的角,连同角α在内,可构成一个集合S=______________________二、预习自测(牛刀小试)1.下列命题正确的是()A.终边相同的角一定相等B.第一象限的角都是锐角C.锐角都是第一象限的角D.小于90°的角都是锐角2.已知集合A={第一象限的角},B={锐角},C={小于90°的角},则下面正确的是()A.A=B=CB.A BC.A∩C=BD.以上都不对3.已知角的顶点与坐标原点重合,终边与x轴的非负半轴重合,作出下列各角:(1)420°;(2)-75°;(3)-510°在下面记下预习中的困惑在课上和同学讨论或向老师请教第四课时:任意角和弧度制(第1课时)导学案一、学始于疑同学们首先认真独立思考如下问题问题1.体操中,有“转体720°”、“转体1080°”,这些动作名称的含义是什么?问题2.被动轮随主动轮旋转而旋转,OA绕O旋转形成的角与O/B/绕O/旋转形成的角有什么区别?如何准确地描述这些现象?二、质疑探究小组内讨论上述问题,准备展示,将组内不能解决的问题用小纸条交给老师探究一任意角的概念(利用几何画板展示任意角形成的过程)⎧⎪⎨⎪⎩正角按逆时针方向旋转形成的角任意角零角未作任何旋转负角按顺时针方向旋转形成的角探究二如何在直角坐标系内讨论角?今后,我们一般地都是在直角坐标系内讨论角,为了讨论问题的方便,规定:角的顶点与坐标原点重合,角的始边与x轴的非负半轴重合探究三象限角的定义探究四终边相同的两个角之间的关系问题1.给定一个角,它的终边是不是唯一的?问题2.对于直角坐标系中的任意一条射线OB,以它为终边的角是否唯一?问题3.在直角坐标系中,如果角α与β的终边相同,那么α与β有什么关系?探究五终边相同的角的集合所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k×360°,k∈Z}即任一与角α终边相同的角,都可以表示成角α与整数个周角的和。
必修四 任意角和弧度制 课时练习 含答案
必修四§1.1任意角和弧度制第一课时:§1.1.1任意角1. 下列命题中正确的是( )A .终边在y 轴非负半轴上的角是直角B .第二象限角一定是钝角C .第四象限角一定是负角 D.若β=α+k·360°(k∈Z),则α与β终边相同2.将-885化为360k α+⋅ (0360α≤<k ,∈Z )的形式是 ( ) A.-165(2)360+-⨯ B.195(3)360+-⨯ C.195(2)360+-⨯ D.165(3)360+-⨯3.在[360°,1440°]中与-21°16′终边相同的角有( )A .1个B .2个C .3个D .4个4.终边落在X 轴上的角的集合是( )A.{ α|α=k ·360°,K ∈Z }B.{ α|α=(2k+1)·180°,K ∈Z }C.{ α|α=k ·180°,K ∈Z }D.{ α|α=k ·180°+90°,K ∈Z }5.角α=45°+k·180°,k∈Z的终边落在 ( )A .第一或第三象限B .第一或第二象限C .第二或第四象限D .第三或第四象限6.设,,,,那么( ) A .B C A B .B A C C .D (A ∩C) D .C ∩D=B7.下列各组角中终边相同的是( )A. +90与Z B.与ZC. +30与+30Z D.与+60Z 8.若角和的终边关于y 轴对称,则有 ( ) A. B.Z C.Z D.Zo {90A =小于的角}{B =锐角}{C =第一象限的角}00{900}D =小于而不小于的角180k ⋅90k ⋅k ,∈(21)180k +⋅(41)180k ±⋅k ,∈180k ⋅360k ⋅k ,∈60k ⋅180k ⋅k ,∈αβ90αβ+=90αβ+=360k +⋅k ,∈360k αβ+=⋅k ,∈180αβ+=360k +⋅k ,∈9.若β是第四象限角,则180β-是第 象限角。
任意角和弧度制(弧度制)教案 高一上学期数学人教A版(2019)必修第一册
第五章三角函数5.1.2 弧度制(1 课时)【教学内容】弧度与角度的互化;特殊角的弧度制;弧长公式、扇形面积公式.【教学目标】(说明:不要写成三维目标的形式,点列,可以从知识技能、过程方法、数学核心素养等角度写目标)1.理解弧度制的定义,体会引入弧度制的必要性.(数学抽象)2.能进行弧度与角度的互化,熟悉特殊角的弧度制.(逻辑推理、数学运算)3.掌握弧度制中扇形的弧长和面积公式,体会弧度制下公式形式的简洁性,会应用公式解决简单的问题.(数学运算、数学模型)【教学重难点】教学重点:角度制与弧度制间的互相转化,弧长公式及扇形的面积公式的推导与证明.教学难点:能灵活运用弧长公式、扇形面积公式解决问题.【教学过程】(说明:本环节包括新授、小结、布置作业等)一、复习回顾,温故知新1.在平面几何里,度量角的大小用什么单位?【答案】角度制的单位有:度、分、秒。
2.1 的角是如何定义的?【答案】规定:圆周1/360 的圆心角称作1 角.这种用度做单位来度量角的制度叫做角度制.日常生活中,度量长度可用不同的单位,如:一张课桌长80 厘米,也可以说长0.8 米,显然两种结果出现了不同的数值. 在数学和其他科学研究中还经常用到另一种度量角的制度—弧度制,它是如何定义呢?二、探索新知探究:在圆内,圆心角的大小和半径大小有关系吗?角度为60的圆心角,半径r 1,2,3 时,(1)分别计算相对应的弧长l ;(2)分别计算对应弧长与半径之比.思考:通过上面的计算,你发现了什么规律?【答案】①.圆心角不变,比值不变;比值的大小与所取的圆的半径大小无关;②圆心角改变,比值改变;比值的大小只与圆心角的大小有关;1.弧度的概念把长度等于半径长的弧所对的圆心角叫做1 弧度(radian)的角.弧度制:这种以弧度作为单位来度量角的单位制叫做弧度制,它的单位是弧度,单位符号是 rad. 约定: 正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为 0.思考 1:圆的半径为 r,弧长分别为 2r 、πr,则它们所对圆心角的弧度 数是多少?【答案】2rad, πrad.思考 2:如果半径为 r 的圆的圆心角α所对的弧长为l ,那么,角α的弧度数的绝对值如何计算?l【答案】|α| =r2. 角度与弧度的换算思考 3:一个周角以度为单位度量是多少度, 以弧度为单位度量是多少弧度?由此可得角度与弧度有怎样的换算关系?【答案】360º, 2π. 360︒= 2πrad,180︒ = πrad思考 4:根据上述关系,1°等于多少弧度, 1 rad 等于多少度? 【答案】1︒ =π180︒≈ 0.01745rad 1rad = 180)︒≈ 57.30︒(π三、典型例题例 1. 把下列各角的度数化为弧度。
第一节 任意角的概念与弧度制
任意角的概念与弧度制教案
任意角的概念与弧度制教案一、任意角的概念:1.任意角的定义:在坐标平面上,如果将终边与正半轴之间的交点记作点A,即A=(1,0),以正向旋转方向将终边与正半轴旋转到位时所转过的角叫做任意角。
任意角由初始边和终边两部分构成。
2.任意角的位置:任意角不限于0到360度之间,可以是任意大小的角度。
旋转方向可以是正向(逆时针)或反向(顺时针)。
3.任意角的度数:任意角的度数即为终边与正半轴的夹角的度数,用角度符号°表示。
4.任意角的象限:根据终边在哪个象限上,可以将任意角分为一、二、三、四象限。
二、弧度制的概念:1.弧度的定义:将半径等于1的圆的周长分成等份,每份叫做一个弧度。
如果圆上的一段弧的长度等于半径的长度,则该弧对应的角叫做一弧度。
2.弧度与度数的关系:360°对应的弧度为2π,即一周对应2π弧度。
所以,任意角对应的弧度数等于该角度数乘以π/180。
3.弧度制的优势:在三角函数的计算中,弧度制比度数制更为方便和精确,有利于进行各种数学计算。
三、教学步骤:教学目标:学生了解任意角的概念与弧度制的定义,掌握任意角的度数与弧度的转化关系。
教学步骤:Step 1:导入新知识通过出示一个角的图片,提问学生这个角是什么角,是否为任意角。
引导学生思考任意角的含义与特点。
Step 2:任意角的概念解释与举例教师对任意角的概念进行解释,并用实际生活中的例子来说明。
比如:针对绕场地跑的运动员,可以将终点的方向与正北方向之间的夹角视为任意角。
Step 3:弧度制的引入教师让学生回忆以前学过的圆的知识,引出弧度的概念。
通过实际的展示,向学生展示单位圆上的一个弧度与该弧度对应的角。
Step 4:弧度与度数的转化通过一个表格或示例,教师向学生解释弧度与度数之间的转化关系。
提醒学生要掌握好π、角度、弧度之间的换算。
Step 5:练习与巩固提供一些练习题,让学生进行弧度与度数之间的互相转化,巩固所学知识。
Step 6:拓展应用教师提出一些与弧度制相关的实际问题,让学生运用所学知识解决问题。
第1讲三角函数任意角的定义与弧度制
第四章
三角函数、解三角形
(教材习题改编)若角 θ 满足 tan θ>0,sin θ<0,则角 θ 所在的 象限是( ) B.第二象限 D.第四象限
A.第一象限 C.第三象限
答案:C
栏目 导引
第四章
三角函数、解三角形
(教材习题改编)单位圆中, 200° 的圆心角所对的弧长为( A.10π 9 C. π 10
同角三角函数 cos2x=1, sin x =tan x. cos x 的基本关系式 与诱导公式
π 能利用单位圆中的三角函数线推导出 ±α, 2
π±α 的正弦、余弦、正切的诱导公式.
第四章
三角函数、解三角形
知识点
考纲下载 会用向量的数量积推导出两角差的余弦公 式.
和与差的三角函 数公式
能利用两角差的余弦公式导出两角差的正 弦、正切公式. 能利用两角差的余弦公式导出两角和的正 弦、余弦、正切公式,导出二倍角的正弦、余 弦、正切公式,了解它们的内在联系.
y x 叫做 α 的余 ___ x 叫做 α 的正切, ___
y 叫做 α 的正 ___
弦,记作 sin α
弦,记作 cos α 记作 tan α
栏目 导引
第四章
三角函数、解三角形
三角 函数
正弦
余弦
正切
三角 函数线
MP OM 有向线段______ 有向线段______
为正弦线 为余弦线
AT 有向线段______
π α∈0, 2 ,则
tan α>sin α.( √ )
(6)若 α 为第一象限角,则 sin α+cos α>1.( √ )
栏目 导引
第四章
三角函数、解三角形
1.1任意角和弧度制教程
1.1任意角和弧度制一、教学目标:1.理解任意角的概念;2.学会建立直角坐标系讨论任意角,判断象限角,掌握终边相同角的集合的书写。
3.理解弧度制的意义;4.能正确的应用弧度与角度之间的换算; 5.记住公式||lrα=(l 为以角α作为圆心角时所对圆弧的长,r 为圆半径)。
二、教学重、难点:1.判断已知角所在象限; 2.终边相同的角的书写。
3.弧度与角度之间的换算。
三、教学过程: (一)复习引入:1.初中所学角的概念。
2.实际生活中出现一系列关于角的问题。
(二)新课讲解:1.角的定义:一条射线绕着它的端点O ,从起始位置OA 旋转到终止位置OB ,形成一个角α,点O 是角的顶点,射线,OA OB 分别是角α的终边、始边。
说明:在不引起混淆的前提下,“角α”或“α∠”可以简记为α. 2.角的分类:正角:按逆时针方向旋转形成的角叫做正角; 负角:按顺时针方向旋转形成的角叫做负角;零角:如果一条射线没有做任何旋转,我们称它为零角。
说明:零角的始边和终边重合。
3.象限角:在直角坐标系中,使角的顶点与坐标原点重合,角的始边与x 轴的非负轴重合,则 (1)象限角:若角的终边(端点除外)在第几象限,我们就说这个角是第几象限角。
例如:30,390,330-都是第一象限角;300,60-是第四象限角。
(2)非象限角(也称象限间角、轴线角):如角的终边在坐标轴上,就认为这个角不属于任何象限。
例如:90,180,270等等。
说明:角的始边“与x 轴的非负半轴重合”不能说成是“与x 轴的正半轴重合”。
因为x 轴的正半轴不包括原点,就不完全包括角的始边,角的始边是以角的顶点为其端点的射线。
4.终边相同的角的集合:由特殊角30看出:所有与30角终边相同的角,连同30角自身在内,都可以写成30360k +⋅()k Z ∈的形式;反之,所有形如30360k +⋅()k Z ∈的角都与30角的终边相同。
从而得出一般规律:所有与角α终边相同的角,连同角α在内,可构成一个集合{}|360,S k k Z ββα==+⋅∈, 即:任一与角α终边相同的角,都可以表示成角α与整数个周角的和。
2022年人教B版高中数学必修第三册第七章三角函数第1节任意角的概念与弧度制第1课时角的推广
(2)下面与-850°12′终边相同的角是( ) A.230°12′ B.229°48′ C.129°48′ D.130°12′
【答案】 B
【解析】 与-850°12′终边相同的角可表示为α=-850°12′+k·360°(k∈Z),当 k=3时,α=-850°12′+1 080°=229°48′.
方法归纳
(1)判断角的概念问题的关键与技巧: ①关键:正确理解象限角与锐角、直角、钝角、平角、周角等概 念. ②技巧:判断命题为真需要证明,而判断命题为假只要举出反例即 可. (2)在0°到360°范围内找与给定角终边相同的角的方法: ①一般地,可以将所给的角α化成k·360°+β的形式(其中0°≤β<360°, k∈Z),其中的β就是所求的角. ②如果所给的角的绝对值不是很大,可以通过如下方法完成:当所 给角是负角时,采用连续加360°的方式;当所给角是正角时,采用连 续减360°的方式,直到所得结果达到要求为止.
(2)已知α为第二象限角,则2α,α2分别是第几象限角?
【解析】∵α是第二象限角, ∴90°+k·360°<α<180°+k·360°,k∈Z, ∴180°+2k·360°<2α<360°+2k·360°,k∈Z, ∴2α是第三或第四象限角,或是终边落在y轴的非正半轴上的角. 同当理k为4偶5°+数k2时·3,60不°<α妨2<令90k°+=k22·n3,60n°.∈Z,则45°+n·360°<α2<90°+n·360°,此时,α2为 第一象限角; 当k为奇数时,令k=2n+1,n∈Z,则225°+n·360°<α2<270°+n·360°,此时,α2 为第三象限角. ∴α为第一或第三象限角.
【解析】 因为α是第四象限角,则角α应满足: k·360°-90°<α<k·360°,k∈Z, 所以-k·360°<-α<-k·360°+90°, 则-k·360°+180°<180°-α<-k·360°+90°+180°,k∈Z, 当k=0时,180°<180°-α<270°, 故180°-α为第三象限角.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1.1 任意角的概念和弧度制
引例
你的手表慢了5分钟,你是怎样将它校 准的?校准后分针旋转了多少度? 你的手表快了1.25小时,你应当如何将它 校准?校准后分针旋转了多少度?
新课讲解
角的定义:平面内一条射线绕着端点从一个位 置旋转到另一个位置所成的图形.
角的分类 正角:按逆时针方向旋转形成的角 负角:按顺时针方向旋转形成的角 零角:射线没有任何旋转形成的角
所有与角α终边相同的角,连同角α在内, 可构成一个集合S-{β| β = α +k×360°,k∈Z}
例1、写出下列角的集合
1. 终边落在x轴正半轴 2. 终边落在x轴负半轴负半轴 6. 终边落在y轴 7. 终边落在坐标轴上
思考:终边落在:(1)一条射线上;(2) 一条直线上;(3)两条相互垂直的直线上, 分别应如何表示?
① -120° ② 640° ③ -2046°24`
练习:若α=k*360 °-1575 °,k∈Z,试判断α所在 象限。
例4、角α的终边在如下阴影部分, 写出角α的取值集合。
y y=x
O
x
(1)
y y=x
y=-x
O
x
(2)
例5、 已知角为第二象限角, 问2 , ,
23
分别是第几象限的角?
例6、根据下列条件,找出两角关系:
思考:如果把角放在直角坐标系中,那么怎样放 比较方便、合理?
使角的顶点与原点重合,角的始边与x轴的非 负半轴重合,那么,角的终边在第几象限, 我们就说这个角是第几象限角。 如果角的终边在坐标轴上,就认为这个角不 属于任何一个象限,是坐标轴上的角。
将角按照上述方法放在直角坐标系中后,给 定一个角,就有唯一的一条终边与之对应。 反之,对于直角坐标系内任意一条射线,以 它为终边的角是否唯一?
① 找出终边落在射线上的其中一个角加上360° 的整数倍;
② 找出终边落在直线上的其中一个角加上180° 的整数倍;
③ 找出终边落在两直线上的其中一个角加上 90°的整数倍;
例2:第一象限角如何表示?
{x|k*360°<x<k*360°+90°,k∈Z} 思考:其它象限呢?
例3、在0°到360°范围内,找出下 列各角终边相同的角,并判断它们是 第几象限的角