高考(高中)数学__集合的运算_100道练习题_有答案

合集下载

广东省2022年高考[数学]考试真题与答案解析

广东省2022年高考[数学]考试真题与答案解析

广东省2022年高考·数学·考试真题与答案解析————————————————————————————————————————一、选择题1. 若集合,则(){4},{31}M xN x x =<=≥∣M N = A. B. C. D. {}02x x ≤<123x x ⎧⎫≤<⎨⎬⎩⎭{}316x x ≤<1163x x ⎧⎫≤<⎨⎬⎩⎭【答案】D【分析】求出集合后可求.,M N M N ⋂【详解】,故,1{16},{}3M xx N x x =≤<=≥∣0∣1163M N x x ⎧⎫=≤<⎨⎬⎩⎭故选:D2. 若,则()i(1)1z -=z z +=A. B. C. 1 D. 22-1-【答案】D【分析】利用复数的除法可求,从而可求.z z z +【详解】由题设有,故,故,21i1i i iz -===-1+i z =()()1i 1i 2z z +=++-=故选:D3. 在中,点D 在边AB 上,.记,则()ABC 2BD DA =CA m CD n == ,CB=A. B. C. D. 32m n - 23m n -+ 32m n + 23m n + 【答案】B【分析】根据几何条件以及平面向量的线性运算即可解出.【详解】因为点D 在边AB 上,,所以,即,2BD DA =2BD DA =()2CD CB CA CD -=- 所以.CB =3232CD CA n m -=- 23m n =-+故选:B .4. 南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔时,相应水面的面积为;水位为海拔时,相应水面的面积1485m .21400km .1575m .为,将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔上21800km .1485m .升到)()1575m . 2.65≈A. B. C. D. 931.010m ⨯931.210m ⨯931.410m ⨯931.610m ⨯【答案】C【分析】根据题意只要求出棱台的高,即可利用棱台的体积公式求出.【详解】依题意可知棱台的高为(m),所以增加的水量即为棱台的体积.157.5148.59MN =-=V 棱台上底面积,下底面积,262140.014010S ==⨯km m 262180.018010S '==⨯km m∴((66119140101801033V h S S =+=⨯⨯⨯+⨯'.(()679933320109618 2.6510 1.43710 1.410(m )=⨯+⨯≈+⨯⨯=⨯≈⨯故选:C .5. 从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为()A.B.C.D. 16131223【答案】D【分析】由古典概型概率公式结合组合、列举法即可得解.【详解】从2至8的7个整数中随机取2个不同的数,共有种不同的取法,27C 21=若两数不互质,不同的取法有:,共7种,()()()()()()()2,4,2,6,2,8,3,6,4,6,4,8,6,8故所求概率.2172213P -==故选:D.6. 记函数的最小正周期为T .若,且的图象关()sin (0)4f x x b πωω⎛⎫=++> ⎪⎝⎭23T ππ<<()y f x =于点中心对称,则()3,22π⎛⎫⎪⎝⎭2f π⎛⎫= ⎪⎝⎭A. 1B.C.D. 33252【答案】A【分析】由三角函数的图象与性质可求得参数,进而可得函数解析式,代入即可得解.【详解】由函数的最小正周期T 满足,得,解得,23T ππ<<223πππω<<23ω<<又因为函数图象关于点对称,所以,且,3,22π⎛⎫⎪⎝⎭3,24k k Z ππωπ+=∈2b =所以,所以,,12,63k k Z ω=-+∈52ω=5()sin 224f x x π⎛⎫=++ ⎪⎝⎭所以.5sin 21244f πππ⎛⎫⎛⎫=++= ⎪ ⎪⎝⎭⎝⎭故选:A7. 设,则()0.110.1e ,ln 0.99a b c ===-,A. B. C. D. a b c <<c b a <<c a b<<a c b<<【答案】C【分析】构造函数,导数判断其单调性,由此确定的大小.()ln(1)f x x x =+-,,a b c 【详解】设,因为,()ln(1)(1)f x x x x =+->-1()111x f x x x'=-=-++当时,,当时,(1,0)x ∈-()0f x '>,()0x ∈+∞()0f x '<所以函数在单调递减,在上单调递增,()ln(1)f x x x =+-(0,)+∞(1,0)-所以,所以,故,即,1()(0)09f f <=101ln 099-<110ln ln 0.999>=-b c >所以,所以,故,所以,1()(0)010f f -<=91ln +01010<1109e 10-<11011e 109<故,a b <设,则,()e ln(1)(01)xg x x x x =+-<<()()21e 11()+1e 11xx x g x x x x -+'=+=--令,,2()e (1)+1x h x x =-2()e (21)x h x x x '=+-当时,,函数单调递减,01x <<-()0h x '<2()e (1)+1x h x x =-时,,函数单调递增,11x -<<()0h x '>2()e (1)+1x h x x =-又,(0)0h =所以当时,,01x <<-()0h x <所以当时,,函数单调递增,01x <<-()0g x '>()e ln(1)xg x x x =+-所以,即,所以(0.1)(0)0g g >=0.10.1e ln 0.9>-a c >故选:C.8. 已知正四棱锥的侧棱长为l ,其各顶点都在同一球面上.若该球的体积为,且36π,则该正四棱锥体积的取值范围是()3l ≤≤A. B. C. D. 8118,4⎡⎤⎢⎥⎣⎦2781,44⎡⎤⎢⎥⎣⎦2764,43⎡⎤⎢⎥⎣⎦[18,27]【答案】C【分析】设正四棱锥的高为,由球的截面性质列方程求出正四棱锥的底面边长与高的关系,h 由此确定正四棱锥体积的取值范围.【详解】∵球的体积为,所以球的半径,36π3R =设正四棱锥的底面边长为,高为,2a h 则,,2222l a h =+22232(3)a h =+-所以,26h l =2222a l h =-所以正四棱锥的体积,42622411214()=333366936l l l V Sh a h l l ⎛⎫==⨯⨯=⨯-⨯- ⎪⎝⎭所以,5233112449696l l V l l ⎛⎫⎛⎫-'=-= ⎪ ⎪⎝⎭⎝⎭当,当,3l ≤≤0V '>l <≤0V '<所以当时,正四棱锥的体积取最大值,最大值为,l =V 643又时,,,3l =274V =l =814V =所以正四棱锥的体积的最小值为,V 274所以该正四棱锥体积的取值范围是.276443⎡⎤⎢⎥⎣⎦,故选:C.二、不定项选择题9. 已知正方体,则()1111ABCD A B C D -A. 直线与所成的角为 B. 直线与所成的角为1BC 1DA 90︒1BC 1CA 90︒C. 直线与平面所成的角为 D. 直线与平面ABCD 所成的角为1BC 11BB D D 45︒1BC 45︒【答案】ABD【分析】数形结合,依次对所给选项进行判断即可.【详解】如图,连接、,因为,所以直线与所成的角即为直线与1B C 1BC 11//DA B C 1BC 1B C 1BC 所成的角,1DA 因为四边形为正方形,则,故直线与所成的角为,A 正确;11BB C C 1B C ⊥1BC 1BC 1DA 90︒连接,因为平面,平面,则,1AC 11A B ⊥11BB C C 1BC ⊂11BB C C 111A B BC ⊥因为,,所以平面,1B C ⊥1BC 1111A B B C B = 1BC ⊥11A B C 又平面,所以,故B 正确;1AC ⊂11A B C 11BC CA ⊥连接,设,连接,11A C 1111A C B D O = BO 因为平面,平面,则,1BB ⊥1111D C B A 1C O ⊂1111D C B A 11C O B B ⊥因为,,所以平面,111C O B D ⊥1111B D B B B ⋂=1C O ⊥11BB D D 所以为直线与平面所成的角,1C BO ∠1BC 11BB D D设正方体棱长为,则,,11C O =1BC =1111sin 2C O C BO BC ∠==所以,直线与平面所成的角为,故C 错误;1BC 11BB D D 30 因为平面,所以为直线与平面所成的角,易得,1C C ⊥ABCD 1C BC ∠1BC ABCD 145C BC ∠=故D 正确.故选:ABD10. 已知函数,则()3()1f x x x =-+A. 有两个极值点 B. 有三个零点()f x ()f x C. 点是曲线的对称中心 D. 直线是曲线的切线(0,1)()y f x =2y x =()y f x =【答案】AC【分析】利用极值点的定义可判断A ,结合的单调性、极值可判断B ,利用平移可判断()f x C ;利用导数的几何意义判断D.【详解】由题,,令得或()231f x x '=-()0f x '>x >x <令得,()0f x '<x <<所以在上单调递减,在,上单调递增,()fx ((,-∞)+∞所以是极值点,故A 正确;x =因,,,(10f =>10f =->()250f -=-<所以,函数在上有一个零点,()f x,⎛-∞ ⎝当时,,即函数在上无零点,x≥()0f x f ≥>()f x ⎫∞⎪⎪⎭+综上所述,函数有一个零点,故B 错误;()f x 令,该函数的定义域为,,3()h x x x =-R ()()()()33h x x x x x h x -=---=-+=-则是奇函数,是的对称中心,()h x (0,0)()h x将的图象向上移动一个单位得到的图象,()h x ()f x 所以点是曲线的对称中心,故C 正确;(0,1)()y f x =令,可得,又,()2312f x x '=-=1x =±()(1)11f f =-=当切点为时,切线方程为,当切点为时,切线方程为,(1,1)21y x =-(1,1)-23y x =+故D 错误.故选:AC .11. 已知O 为坐标原点,点在抛物线上,过点的直线交C 于(1,1)A 2:2(0)C x py p =>(0,1)B -P ,Q 两点,则()A. C 的准线为B. 直线AB 与C 相切1y =-C. D. 2|OP OQ OA ⋅>2||||||BP BQ BA ⋅>【答案】BCD【分析】求出抛物线方程可判断A ,联立AB 与抛物线的方程求交点可判断B ,利用距离公式及弦长公式可判断C 、D.【详解】将点的代入抛物线方程得,所以抛物线方程为,故准线方程为A 12p =2x y =,A 错误;14y =-,所以直线的方程为,1(1)210AB k --==-AB 21y x =-联立,可得,解得,故B 正确;221y x x y=-⎧⎨=⎩2210x x -+=1x =设过的直线为,若直线与轴重合,则直线与抛物线只有一个交点,B l l y l C 所以,直线的斜率存在,设其方程为,,l 1y kx =-1122(,),(,)P x y Q x y 联立,得,21y kx x y=-⎧⎨=⎩210x kx -+=所以,所以或,,21212Δ401k x x k x x ⎧=->⎪+=⎨⎪=⎩2k >2k <-21212()1y y x x ==又,||OP ==||OQ ==所以,故C 正确;2||||||2||OP OQ k OA ⋅===>=因为,,1||||BP x =2||||BQ x =所以,而,故D 正确.2212||||(1)||15BP BQ k x x k ⋅=+=+>2||5BA =故选:BCD 12. 已知函数及其导函数的定义域均为,记,若,()f x ()'f x R ()()g x f x '=322f x ⎛⎫- ⎪⎝⎭(2)g x +均为偶函数,则()A. B. C. D. (0)0f =102g ⎛⎫-= ⎪⎝⎭(1)(4)f f -=(1)(2)g g -=【答案】BC【分析】转化题设条件为函数的对称性,结合原函数与导函数图象的关系,根据函数的性质逐项判断即可得解.【详解】因为,均为偶函数,322f x ⎛⎫- ⎪⎝⎭(2)g x +所以即,,332222f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭3322f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭(2)(2)g x g x +=-所以,,则,故C 正确;()()3f x f x -=(4)()g x g x -=(1)(4)f f -=函数,的图象分别关于直线对称,()f x ()g x 3,22xx ==又,且函数可导,()()g x f x '=()f x 所以,()()30,32g g x g x ⎛⎫=-=- ⎪⎝⎭所以,所以,()(4)()3g x g x g x -==--()(2)(1)g x g x g x +=-+=所以,,故B 正确,D 错误;13022g g ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭()()()112g g g -==-若函数满足题设条件,则函数(C 为常数)也满足题设条件,所以无法确定()f x ()f x C +()f x 的函数值,故A 错误.故选:BC.三、填空题:本题共4小题,每小题5分,共20分.13. 的展开式中的系数为________________(用数字作答).81()y x y x ⎛⎫-+ ⎪⎝⎭26x y 【答案】-28【分析】可化为,结合二项式展开式的通项公式求解.()81y x y x ⎛⎫-+ ⎪⎝⎭()()88y x y x y x +-+【详解】因为,()()()8881=y y x y x y x y x x ⎛⎫-++-+ ⎪⎝⎭所以的展开式中含的项为,()81y x y x ⎛⎫-+ ⎪⎝⎭26x y 6265352688C 28y x y C x y x y x -=-的展开式中的系数为-28()81y x y x ⎛⎫-+ ⎪⎝⎭26x y 故答案为:-2814. 写出与圆和都相切的一条直线的方程________________.221x y +=22(3)(4)16x y -+-=【答案】或或3544y x =-+7252424y x =-1x =-【分析】先判断两圆位置关系,分情况讨论即可.【详解】圆的圆心为,半径为,圆的圆心为,221x y +=()0,0O 122(3)(4)16x y -+-=1O (3,4)半径为,4,等于两圆半径之和,故两圆外切,5=如图,当切线为l 时,因为,所以,设方程为143OO k =34l k =-3(0)4y x t t =-+>O 到l 的距离,解得,所以l 的方程为,1d ==54t =3544y x =-+当切线为m 时,设直线方程为,其中,,0kx y p ++=0p>0k <,解得,14⎧=⎪⎪7242524k p ⎧=-⎪⎪⎨⎪=⎪⎩7252424y x =-当切线为n 时,易知切线方程为,1x =-故答案为:或或.3544y x =-+7252424y x =-1x =-15. 若曲线有两条过坐标原点的切线,则a 的取值范围是________________.()e xy x a =+【答案】()(),40,∞∞--⋃+【分析】设出切点横坐标,利用导数的几何意义求得切线方程,根据切线经过原点得到关于0x 的方程,根据此方程应有两个不同的实数根,求得的取值范围.0x a 【详解】∵,∴,()e x y x a =+(1)e xy x a '=++设切点为,则,切线斜率,()00,x y ()000e x y x a =+()001e x k x a =++切线方程为:,()()()00000e 1e x x y x a x a x x -+=++-∵切线过原点,∴,()()()00000e 1e x x x a x a x -+=++-整理得:,2000x ax a +-=∵切线有两条,∴,解得或,240a a =+> 4a <-0a >∴的取值范围是,a ()(),40,∞∞--⋃+故答案为:()(),40,∞∞--⋃+16. 已知椭圆,C 的上顶点为A ,两个焦点为,,离心率为.过2222:1(0)x y C a b a b+=>>1F 2F 12且垂直于的直线与C 交于D ,E 两点,,则的周长是1F 2AF ||6DE =ADE ________________.【答案】13【分析】利用离心率得到椭圆的方程为,根据离心率得到222222213412043x y x y c c c+=+-=,即直线的斜率,进而利用直线的垂直关系得到直线的斜率,写出直线的方程:2AF DE DE,代入椭圆方程,整理化简得到:,利用x c =-22234120x y c +-=221390y c --=弦长公式求得,得,根据对称性将的周长转化为的周长,利用138c =1324a c ==ADE 2F DE △椭圆的定义得到周长为.413a =【详解】∵椭圆的离心率为,∴,∴,∴椭圆的方程为12c e a ==2a c =22223b a c c =-=,不妨设左焦点为,右焦点为,如图所示,∵222222213412043x y x y c c c+=+-=,即1F 2F ,∴,∴为正三角形,∵过且垂直于的直222AF a OF c a c ===,,23AF O π∠=12AF F △1F 2AF线与C 交于D ,E 两点,为线段的垂直平分线,∴直线斜率倒数为DE 2AF DE直线的方程:,代入椭圆方程,整理化简得到:DE x c =-22234120x y c +-=,221390y c --=判别式,()22224139616c c =+⨯⨯=⨯⨯∴,22264613cCD y =-==⨯⨯⨯=∴ , 得, 138c =1324a c ==∵为线段的垂直平分线,根据对称性,,∴的周长等于DE 2AF 22AD DF AE EF ==,ADE 的周长,利用椭圆的定义得到周长为2F DE △2F DE △.222211*********DF EF DE DF EF DF EF DF DF EF EF a a a ++=+++=+++=+==故答案为:13.四、解答题本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 记为数列的前n 项和,已知是公差为的等差数列.n S {}n a 11,n n S a a ⎧⎫=⎨⎬⎩⎭13(1)求的通项公式;{}n a (2)证明:.121112na a a +++< 【答案】(1)()12n n n a +=(2)见解析【分析】(1)利用等差数列的通项公式求得,得到,利()121133n nS n n a +=+-=()23n n n a S +=用和与项的关系得到当时,,进而得:,利2n ≥()()112133n n n n n n a n a a S S --++=-=-111n n a n a n -+=-用累乘法求得,检验对于也成立,得到的通项公式;()12n n n a +=1n ={}n a ()12n n n a +=(2)由(1)的结论,利用裂项求和法得到,进而证得.121111211n a a a n ⎛⎫+++=- ⎪+⎝⎭【小问1详解】∵,∴,∴,11a =111S a ==111S a =又∵是公差为的等差数列,n n S a ⎧⎫⎨⎬⎩⎭13∴,∴,()121133n nS n n a +=+-=()23nn n a S +=∴当时,,2n ≥()1113n n n a S --+=∴,()()112133n n n n n n a n a a S S --++=-=-整理得:,()()111n n n a n a --=+即,111n n a n a n -+=-∴31211221n n n n n a a a a a a a a a a ---=⨯⨯⨯⋯⨯⨯,()1341123212n n n n n n ++=⨯⨯⨯⋯⨯⨯=--显然对于也成立,1n =∴的通项公式;{}n a ()12n n n a +=【小问2详解】()12112,11n a n n n n ⎛⎫==- ⎪++⎝⎭∴12111n a a a +++ 1111112121222311n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-=-< ⎪ ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 18. 记的内角A ,B ,C 的对边分别为a ,b ,c ,已知.ABC cos sin 21sin 1cos2A BA B=++(1)若,求B ;23C π=(2)求的最小值.222a b c +【答案】(1);π6(2).5-【分析】(1)根据二倍角公式以及两角差的余弦公式可将化成cos sin 21sin 1cos2A BA B=++,再结合,即可求出;()cos sin A B B +=π02B <<(2)由(1)知,,,再利用正弦定理以及二倍角公式将化成π2C B =+π22A B =-222a b c +,然后利用基本不等式即可解出.2224cos 5cos B B+-【小问1详解】因为,即2cos sin 22sin cos sin 1sin 1cos 22cos cos A B B B BA B B B===++,()1sin cos cos sin sin cos cos 2B A B A B A BC =-=+=-=而,所以;π02B <<π6B =【小问2详解】由(1)知,,所以,sin cos 0B C =->πππ,022C B <<<<而,πsin cos sin 2B C C ⎛⎫=-=- ⎪⎝⎭所以,即有.π2C B =+π22A B =-所以222222222sin sin cos 21cos sin cos a b A B B B c C B+++-==.()2222222cos 11cos 24cos 555cos cos B BB BB-+-==+-≥-=-当且仅当的最小值为.2cos B =222a b c +5-19. 如图,直三棱柱的体积为4,的面积为.111ABC A B C -1A BC(1)求A 到平面的距离;1A BC (2)设D 为的中点,,平面平面,求二面角的正弦1AC 1AA AB =1A BC ⊥11ABB A A BD C --值.【答案】(1)(2【分析】(1)由等体积法运算即可得解;(2)由面面垂直的性质及判定可得平面,建立空间直角坐标系,利用空间向量BC ⊥11ABB A 法即可得解.【小问1详解】在直三棱柱中,设点A 到平面的距离为h ,111ABC A B C -1A BC则,111111111143333A A BC A A ABC A ABC A B BC C C B V S h V S A A V ---=⋅===⋅==解得,h =所以点A 到平面;1A BC 【小问2详解】取的中点E ,连接AE ,如图,因为,所以,1A B 1AA AB =1AE A B ⊥又平面平面,平面平面,1A BC ⊥11ABB A 1A BC 111ABB A A B =且平面,所以平面,AE ⊂11ABB A AE ⊥1A BC 在直三棱柱中,平面,111ABC A B C -1BB ⊥ABC由平面,平面可得,,BC ⊂1A BC BC ⊂ABC AE BC ⊥1BB BC ⊥又平面且相交,所以平面,1,AE BB ⊂11ABB A BC ⊥11ABB A 所以两两垂直,以B 为原点,建立空间直角坐标系,如图,1,,BC BABB 由(1)得,,AE =12AA AB ==1A B =2BC =则,所以的中点,()()()()10,2,0,0,2,2,0,0,0,2,0,0A A B C 1AC ()1,1,1D 则,,()1,1,1BD = ()()0,2,0,2,0,0BA BC ==设平面的一个法向量,则,ABD (),,m x y z = 020m BD x y z m BA y ⎧⋅=++=⎪⎨⋅==⎪⎩ 可取,()1,0,1m =-设平面的一个法向量,则,BDC (),,n a b c = 020m BD a b c m BC a ⎧⋅=++=⎪⎨⋅==⎪⎩ 可取,()0,1,1n =-r则,1cos ,2m n m n m n⋅===⋅所以二面角.A BD C --=20. 一医疗团队为研究某地的一种地方性疾病与当地居民的卫生习惯(卫生习惯分为良好和不够良好两类)的关系,在已患该疾病的病例中随机调查了100例(称为病例组),同时在未患该疾病的人群中随机调查了100人(称为对照组),得到如下数据:不够良好良好病例组4060对照组1090(1)能否有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异?(2)从该地的人群中任选一人,A 表示事件“选到的人卫生习惯不够良好”,B 表示事件“选到的人患有该疾病”.与的比值是卫生习惯不够良好对患该疾病风险程度的(|)(|)P B A P B A (|)(|)P B A P B A 一项度量指标,记该指标为R .(ⅰ)证明:;(|)(|)(|)(|)P A B P A B R P A B P A B =⋅(ⅱ)利用该调查数据,给出的估计值,并利用(ⅰ)的结果给出R 的估计(|),(|)P A B P A B 值.附,22()()()()()n ad bc K a b c d a c b d -=++++()2P K k ≥0.0500.0100.001k3.8416.63510.828【答案】(1)答案见解析(2)(i )证明见解析;(ii);6R =【分析】(1)由所给数据结合公式求出的值,将其与临界值比较大小,由此确定是否有99%2K 的把握认为患该疾病群体与未黄该疾病群体的卫生习惯有差异;(2)(i)根据定义结合条件概率公式即可完成证明;(ii)根据(i )结合已知数据求.R 【小问1详解】由已知,222()200(40906010)=24()()()()50150100100n ad bc K a b c d a c b d -⨯-⨯==++++⨯⨯⨯又,,2( 6.635)=0.01P K ≥24 6.635>所以有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异.【小问2详解】(i)因为,(|)(|)()()()()=(|)(|)()()()()P B A P B A P AB P A P AB P A R P B A P B A P A P AB P A P AB =⋅⋅⋅⋅所以()()()()()()()()P AB P B P AB P B R P B P AB P B P AB =⋅⋅⋅所以,(|)(|)(|)(|)P A B P A B R P A B P A B =⋅(ii)由已知,,40(|)100P A B =10(|)100P A B =又,,60(|)100P A B =90(|)100P A B =所以(|)(|)=6(|)(|)P A B P A B R P A B P A B =⋅21. 已知点在双曲线上,直线l 交C 于P ,Q 两点,直线(2,1)A 2222:1(1)1x yC a a a -=>-,AP AQ 的斜率之和为0.(1)求l 的斜率;(2)若,求的面积.tan PAQ ∠=PAQ △【答案】(1);1-(2.【分析】(1)由点在双曲线上可求出,易知直线l 的斜率存在,设,(2,1)A a :l y kx m =+,再根据,即可解出l 的斜率;()()1122,,,P x y Q x y 0AP BP k k +=(2)根据直线的斜率之和为0可知直线的倾斜角互补,再根据,AP AQ ,AP AQ即可求出直线的斜率,再分别联立直线与双曲线方程求出点tan PAQ ∠=,AP AQ ,AP AQ 的坐标,即可得到直线的方程以及的长,由点到直线的距离公式求出点到直线,P Q PQ PQ A PQ 的距离,即可得出的面积.PAQ △【小问1详解】因为点在双曲线上,所以,解得,即双曲线(2,1)A 2222:1(1)1x yC a a a -=>-224111a a -=-22a =22:12x C y -=易知直线l 的斜率存在,设,,:l y kx m =+()()1122,,,P x y Q x y 联立可得,,2212y kx m x y =+⎧⎪⎨-=⎪⎩()222124220k x mkx m ----=所以,,.2121222422,2121mk m x x x x k k ++=-=--()()22222216422210120m k m k m k ∆=++->⇒-+>所以由可得,,0AP BP k k +=212111022y y x x --+=--即,()()()()122121210x kx m x kx m -+-+-+-=即,()()()1212212410kx x m k x x m +--+--=所以,()()2222242124102121m mk k m k m k k +⎛⎫⨯+-----= ⎪--⎝⎭化简得,,即,()2844410k k m k +-++=()()1210k k m +-+=所以或,1k =-12m k =-当时,直线过点,与题意不符,舍去,12m k =-():21l y kx m k x =+=-+()2,1A 故.1k =-【小问2详解】不妨设直线的倾斜角为,因为,所以,,PA PB (),αβαβ<0AP BP k k +=παβ+=因为,所以,即,tan PAQ ∠=()tan βα-=tan 2α=-,解得,2tan 0αα-=tan α=于是,直线,直线,):21PA y x =-+):21PB y x =-+联立可得,,)222112y x x y ⎧=-+⎪⎨-=⎪⎩(23211002x x +-+-=因为方程有一个根为,所以,,2P x =P y =同理可得,Q x =Q y =所以,,5:03PQ x y +-=163PQ =点到直线的距离,A PQ d故的面积为.PAQ △11623⨯=22. 已知函数和有相同的最小值.()xf x e ax =-()lng x ax x =-(1)求a ;(2)证明:存在直线,其与两条曲线和共有三个不同的交点,并且从左y b =()y f x =()y g x =到右的三个交点的横坐标成等差数列.【答案】(1)1a =(2)见解析【分析】(1)根据导数可得函数的单调性,从而可得相应的最小值,根据最小值相等可求a.注意分类讨论.(2)根据(1)可得当时,的解的个数、的解的个数均为2,构建新1b >e x x b -=ln x x b -=函数,利用导数可得该函数只有一个零点且可得的大小关系,()e ln 2xh x x x =+-()(),f x g x 根据存在直线与曲线、有三个不同的交点可得的取值,再根据两类y b =()y f x =()y g x =b 方程的根的关系可证明三根成等差数列.【小问1详解】的定义域为,而,()e x f x ax =-R ()e '=-x f x a 若,则,此时无最小值,故.0a ≤()0f x '>()f x 0a >的定义域为,而.()ln g x ax x =-()0,+∞11()ax g x a x x'-=-=当时,,故在上为减函数,ln x a <()0f x '<()f x (),ln a -∞当时,,故在上为增函数,ln x a >()0f x '>()f x ()ln ,a +∞故.()min ()ln ln f x f a a a a ==-当时,,故在上为减函数,10x a <<()0g x '<()g x 10,a ⎛⎫ ⎪⎝⎭当时,,故在上为增函数,1x a >()0g x '>()g x 1,a ⎛⎫+∞ ⎪⎝⎭故.min 11()1ln g x g a a ⎛⎫==- ⎪⎝⎭因为和有相同的最小值,()e x f x ax =-()ln g x ax x =-故,整理得到,其中,11ln ln a a a a -=-1ln 1a a a-=+0a >设,则,()1ln ,01a g a a a a -=->+()()()222211011a g a a a a a --'=-=≤++故为上的减函数,而,()g a ()0,+∞()10g =故的唯一解为,故的解为.()0g a =1a =1ln 1a a a -=+1a =综上,.1a =【小问2详解】由(1)可得和的最小值为.e ()x x f x =-()ln g x x x =-11ln11ln 11-=-=当时,考虑的解的个数、的解的个数.1b >e x x b -=ln x x b -=设,,()e x S x x b =--()e 1x S x '=-当时,,当时,,0x <()0S x '<0x >()0S x '>故在上为减函数,在上为增函数,()S x (),0-∞()0,+∞所以,()()min 010S x S b ==-<而,,()e 0b S b --=>()e 2b S b b =-设,其中,则,()e 2b u b b =-1b >()e 20b u b '=->故在上为增函数,故,()u b ()1,+∞()()1e 20u b u >=->故,故有两个不同的零点,即的解的个数为2.()0S b >()e x S x x b =--e x x b -=设,,()ln T x x x b =--()1x T x x-'=当时,,当时,,01x <<()0T x ¢<1x >()0T x '>故在上为减函数,在上为增函数,()T x ()0,1()1,+∞所以,()()min 110T x T b ==-<而,,()e e 0b b T --=>()e e 20b b T b =->有两个不同的零点即的解的个数为2.()ln T x x x b =--ln x x b -=当,由(1)讨论可得、仅有一个零点,1b =ln x x b -=e x x b -=当时,由(1)讨论可得、均无零点,1b <ln x x b -=e x x b -=故若存在直线与曲线、有三个不同的交点,y b =()y f x =()y g x =则.1b >设,其中,故,()e ln 2x h x x x =+-0x >1()e 2x h x x'=+-设,,则,()e 1x s x x =--0x >()e 10x s x '=->故在上为增函数,故即,()s x ()0,+∞()()00s x s >=e 1x x >+所以,所以在上为增函数,1()1210h x x x'>+-≥->()h x ()0,+∞而,,(1)e 20h =->31e 333122()e 3e 30e e eh =--<--<故在上有且只有一个零点,且:()h x ()0,+∞0x 0311ex <<当时,即即,00x x <<()0h x <e ln x x x x -<-()()f x g x <当时,即即,0x x >()0h x >e ln x x x x ->-()()f x g x >因此若存在直线与曲线、有三个不同的交点,y b =()y f x =()y g x =故,()()001b f x g x ==>此时有两个不同的零点,e x x b -=1010,(0)x x x x <<此时有两个不同的零点,ln x x b -=0404,(01)x x x x <<<故,,,11e x x b -=00e x x b -=44ln 0x x b --=00ln 0x x b --=所以即即,44ln x b x -=44e x b x -=()44e 0x b x b b ----=故为方程的解,同理也为方程的解4x b -e x x b -=0x b -e x x b -=又可化为即即,11e x x b -=11e x x b =+()11ln 0x x b -+=()()11ln 0x b x b b +-+-=故为方程的解,同理也为方程的解,1x b +ln x x b -=0x b +ln x x b -=所以,而,{}{}1004,,x x x b x b =--1b >故即.0410x x b x x b =-⎧⎨=-⎩1402x x x +=。

高三数学集合练习题

高三数学集合练习题

高三数学集合练习题1. 设集合A={1,2,3,4,5},集合B={3,4,5,6,7},求:a) A∪Bb) A∩Bc) A-Bd) B-A2. 已知集合A={x | x是三位数},集合B={y | y是偶数},求:a) A∩Bb) A-Bc) A∪B3. 集合A={x | x是正整数,且x ≤ 10},集合B={y | y是奇数},求:a) A∩Bb) A-Bc) A∪B4. 设全集为U={1,2,3,4,5,6,7,8,9,10},集合A={x | x是正整数,且x < 6},集合B={y | y是奇数},求:a) A∩Bb) A∪Bc) A-B5. 设全集为U={-3,-2,-1,0,1,2,3,4,5},集合A={x | x是整数,-2 ≤ x ≤ 2},集合B={y | y是奇数},求:a) A∩Bb) A∪Bc) A-B6. 设全集为U={a,b,c,d,e,f,g,h},集合A={a,b,c},集合B={c,d,e},集合C={b,c,f,g},求:a) (A∩B)∪Cb) (A-B)∩C7. 设全集为U={1,2,3,4,5,6,7,8},集合A={x | x是偶数},集合B={x | x是奇数},集合C={x | x能被3整除},求:a) A∩Bb) A∪Bc) (A∪B)-C8. 设全集为U={a,b,c,d,e,f,g,h,i,j,k,l,m,n},集合A={a,b,c,d,e},集合B={d,e,f,g,h},集合C={a,d,g,j,m},求:a) (A∩B)∪Cb) (A-B)∩Cc) (A∩B)-C9. 设全集为U={x | x是大写英文字母},集合A={x | x是元音字母},集合B={x | x是辅音字母},求:a) A∩Bb) A∪Bc) (A∪B)-U10. 设全集为U={1,2,3,4,5},集合A={1,2,3},集合B={3,4,5},求:a) (A-B)∩(B-A)以上是高三数学集合练习题的内容,请按照题目要求计算并得出答案。

高考文科数学集合专题讲解与高考真题精选(含答案)

高考文科数学集合专题讲解与高考真题精选(含答案)

集合、简易逻辑(1)集合的概念集合中的元素具有确定性、互异性和无序性.(2)常用数集及其记法N 表示自然数集,N 或N 表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a与集合M 的关系是a M ,或者a M ,两者必居其一.(4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合.③描述法:{x| x 具有的性质} ,其中x为集合的代表元素.④图示法:用数轴或韦恩图来表示集合.(5)集合的分类①含有有限个元素的集合叫做有限集. ②含有无限个元素的集合叫做无限集. ③不含有任何元素的集合叫做空集( ).【1.1.2 】集合间的基本关系(6)子集、真子集、集合相等名称记号意义性质示意图A B(1)A A子集B (或A)A中的任一元素都属于B(2) A(3)若A B且B C ,则A C(4)若A B且B A,则A BA(B)B A或真子集A B(或B A ) A B,且 B 中至少有一元素不属于 AA(1) A(为非空子集)(2)若A B且B C ,则A CB A集合相等A BA中的任一元素都属于B,B 中的任一元素都属于 A(1)A B(2)B AA(B)n(7)已知集合A有n(n 1) 个元素,则它有2个子集,它有2n 1个真子集,它有2n 1个非空子集,它有2n 2非空真子集.集合的基本运算1. 集合运算:交、并、补.交:A I B { x | x A,且x B}并:A U B{ x | x A或x B}补:C 且A { x U , x A} U2. 主要性质和运算律(1)包含关系:A A, A,A U , C A U ,UA B,BC A C; A I B A, A I B B; A U B A, A U B B.(2)等价关系: A B A I B A A U B B C U A U B U(3)集合的运算律:交换律: A B B A; A B B A.结合律: ( A B) C A (B C); (A B) C A (B C)分配律:. A (B C) (A B) ( A C); A (B C) ( A B) (A C)0-1 律:I A , U A A,U I A A,U U A U等幂律: A A A, A A A.求补律:A∩C U A=φ A ∪C U A=U C U U=φC Uφ=U反演律:C U(A∩B)= (C U A)∪( C U B) C U(A∪B)= (C U A)∩( C U B)简易逻辑1、命题的定义:可以判断真假的语句叫做命题。

2020年高考复习数学课时作业2:集合运算 2

2020年高考复习数学课时作业2:集合运算 2
2 2
2
A∪B=(-∞,1),A∩B=(-1,0],
故图中阴影部分表示的集合为(-∞,-1]∪(0,1),选 D. 5.答案:C 解析: 由题中集合可知, 集合 A 表示直线 x+y=1 上的点, 集合 B 表示直线 x-y=3 上的点, 联立
x+y=1, x-y=3
可得 A∩B={(2,-1)},M 为 A∩B 的子集,可知 M 可能为{(2,-1)},
y
∈N ,y∈N ,则 A∩B 中元素的个数为

*
*

______. 10.已知集合 A={x|4≤2 ≤16},B=[a,b],若 A⊆B,则实数 a-b 的取值范围是________. 三、解答题 11.已知集合 A={x|1<x<3},集合 B={x|2m<x<1-m}. (1)当 m=-1 时,求 A∪B; (2)若 A⊆B,求实数 m 的取值范围; (3)若 A∩B=∅,求实数 m 的取值范围.
x
集合运算 2 答案 一、选择题 1.答案:A 解析:由不等式 x -2x-3≥0 解得 x≥3 或 x≤-1,因此集合 A={x|x≤-1 或 x≥3},又集合 B={x|-2≤x<2},所以 A∩B={x|-2≤x≤-1},故选 A. 2.答案:C
2
解析:集合 A 表示的是函数 y=x y=-x 的值域, 所以集合 B={y 3.答案:C
x
2
x
4
解得 m≤-2,
即实数 m 的取值范围为(-∞,-2].
(3)由 A∩B=∅,得 1 ①若 2m≥1-m,即 m≥ 时,B=∅,符合题意; 3 1 m< , 1 ②若 2m<1-m,即 m< 时,需 3 3 1-m≤1 1 1 得 0≤m< 或∅,即 0≤m< . 3 3 综上知 m≥0,即实数 m 的取值范围为[0,+∞). 1 m< , 或 3 2m≥3,

高考(高中)数学 集合的概念 100道练习题 有答案

高考(高中)数学 集合的概念 100道练习题 有答案

高中(高考)数学知识点集合的概念练习卷试卷排列:按知识点知识点:集合的概念难度:中等以上版本:适合各地版本题型:填空题40多道,选择题20多道,解答题20多道,共100道有无答案:均有答案或解析价格:6元,算下来每题6分钱。

页数:46页1.已知A B ⊆,A C ⊆,{}1,2,3,5B =,{}0,2,4,8C =,则A 可以是( ) A .{}1,2 B .{}2,4 C .{}2 D .{}4 【答案】C【解析】解:因为{2}}8,4,2,0{},5,3,2,1{,可以是A C B B A C A ∴==⊆⊆2.若A 、B 、C 为三个集合,且C B B A =,则一定有( ) A 、C A ⊆ B 、A C ⊆ C 、C A ≠ D 、φ=A 【答案】A3.: 集合2{03},{9}P x Z x M x R x =∈≤<=∈≤,则PM =(A) {1,2} (B) {0,1,2} (C){x|0≤x<3} (D) {x|0≤x ≤3} 【答案】:B . 【解析】:{}0,1,2P =,[]3,3M =-,因此P M ={}0,1,24.设a ,b ∈R ,集合a b b aba b a -=+则},,,0{},,1{=(A )1 (B )-1 (C )2 (D )-2 【答案】C5.已知集合{(,),}U x y x R y R =∈∈,{(,)}M x y x y a =+<,{(,)()}P x y y f x ==,现给出下列函数:①x y a =②log a y x =③sin()y x a =+④cos y ax =,若01a <<时,恒有U P C M P ⋂=,则()f x 所有可取的函数的编号是 ( )A . ①②③④B .①②④C .①②D .④ 【答案】B 【解析】考点:补集及其运算;交集及其运算. 专题:计算题;数形结合.分析:利用补集的定义求出∁uM ,由P∩∁uM=P ,得到P ⊆∁uM ,故P 中的函数f (x )必须满足||x|+|y|≥a,检验各个选项是否满足此条件.解答:解:∵∁uM={(x ,y )||x|+|y|≥a},0<a <1时,P∩∁uM=P ,∴P={(x ,y )y=f (x )}⊆∁uM ,如图所示:结合图形可得满足条件的函数图象应位于曲线|x|+|y|=a (-a≤x≤a )的上方.①中,x ∈R ,y >0,满足|x|+|y|≥a,故①可取.②中,x >0,y=log a x ∈R ,满足||x|+|y|≥a,故②可取. ③中的函数不满足条件,如 x=0,a=π4时,y= 22,不满足|x|+|y|≥a.④中x ∈R ,-1≤y≤1,满足||x|+|y|≥a,故④可取.故选B .点评:本题考查补集的定义和运算,交集的定义和运算,求出∁uM={(x ,y )||x|+|y|≥a},是解题的关键.6.对于集合M、N,定义{},M N x x M x N -=∈∉且,()()M N M N N M ⊕=--.设{}23A t t x x ==-,(){}lg B x y x ==-,则A B ⊕为( )A .904x x ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭-<≤B.904x x x ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭<-≥或C .904x x ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭-<≤D .904x x x ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭->≤或【答案】B7.设集合{|0},{|03},1xA xB x x x =<=<<-那么“x A ∈”是“x B ∈”的 ( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 【答案】A8.设集合A p a a x a x A ∈><<--=1:},0,2|{命题,命题.2:A q ∈若q p ∨为真命题,q p ∧为假命题,则a 的取值范围是 ( )A .210><<a a 或B .210≥<<a a 或C .21≤<aD .21≤≤a【答案】C 【解析】由题q p ∨为真命题,q p ∧为假命题,可知p 、q 中有且仅有一个为真命题, i)若p 为真,q 为假,则0,12><<--a a a 且A ∉2,解得21≤<a ; ii) 若q 为真,则0,22><<--a a a ,解得2>a ,可知A ∈1,则p 为真,不符题意.9.含有三个实数的集合可表示为{a, ab,1},也可表示为{a 2,a+b ,0},则a 2007 +b 2007的值为( )A .0B .1C .—1D .1± 【答案】C【解析】100-=⇒=⇒=a b ab得a 2007 +b 12007-=10.设集合}5,4,3,2,1{},1,0,2{=-=N M ,映射N M f →:使得对任意的M x ∈,都有)()(x xf x f x ++是奇数,则这样的映射f 的个数是 ( )(A )45 (B )27 (C )15 (D )11 【答案】A 【解析】当2-=x 时,)2(2)()(---=++f x xf x f x 为奇数,则)2(-f 可取1、3、5,有3种取法;当0=x 时,)0()()(f x xf x f x =++为奇数,则)0(f 可取1、3、5,有3种取法;当1=x 时,)1(21)()(f x xf x f x +=++为奇数,则)1(f 可取1、2、3、4、5,有5种取法。

高考数学必刷真题分类大全-专题01-集合与常用逻辑用语

高考数学必刷真题分类大全-专题01-集合与常用逻辑用语

【答案】D
【试题解析】由题意, B= x x2 4x 3 0 1,3,所以 A B 1,1, 2,3 ,
所以 ðU A B 2, 0 .故选:D.
【命题意图】本类题通常主要考查简单不等式解法、交集、并集、补集等运算. 【命题方向】这类试题在考查题型上主要以选择题的形式出现.试题难度不大,多为低档题,集合的基本 运算是历年高考的热点.集合运算多与解简单的不等式、函数的定义域、值域相联系,考查对集合的理解 及不等式的有关知识;有些集合题为抽象集合题或新定义型集合题,考查学生的灵活处理问题的能力. 常见的命题角度有: (1)求交集或并集;(2)交、并、补的混合运算;(3)新定义集合问题. 【得分要点】 解集合运算问题应注意如下三点:
”的(

A.充分非必要条件
B.必要非充分条件
C.充要条件
D.既非充分也非必要条件
7.(2022·青海·海东市第一中学模拟预测(文))设
m,
n
为实数,则“
0.1m
0.1n
”是“
lg
1 m
lg
1 n
”的(

A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
8.(2022·上海虹口·二模)已知 l1 ,l2 是平面 内的两条直线,l 是空间的一条直线,则“ l ”是“ l l1 且 l l2 ”
CU A _____.
13.(2022·广东·华南师大附中三模)当 x a 时, x 1 0 成立,则实数 a 的取值范围是____________. x
14.(2022·山东聊城·三模)命题“ x R ,a2 4 x2 a 2 x 1 0 ”为假命题,则实数 a 的取值范围为______.

高中数学《集合》练习题 (1146)

高中数学《集合》练习题 (1146)

高中数学《集合》测试题学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.设集合}043|{},2|{2≤-+=->=x x x T x x S ,则=⋃T S C R )(A.(2,1]-B. ]4,(--∞C. ]1,(-∞D.),1[+∞ (2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))2.设集合{|20}A x x =+=,集合2{|40}B x x =-=,则A B =( )(A){2}- (B){2} (C){2,2}- (D)∅ (2013年高考四川卷(理))3.已知集合{}3,2,1=A ,集合{}4,3=B ,则=B A .4.设集合A=22{(,)|1}416x y x y +=,B={(,)|3}x x y y =,则A ∩B 的子集的个数是 A. 4 B.3 C.2 D.1(2007年高考)5.设集合∈<≤=x x x A 且30{N}的真子集...的个数是( ) (A) 16(B) 8; (C) 7 (D) 4(2005天津文)6.已知集合A ={|}x x a <,B ={|12}x x <<,且R ()AB R =,则实数a 的取值范围是( )A .2a ≤B . a<1C .2a ≥D .a>2(2007福建理科3) 7.设S 是至少含有两个元素的集合,在S 上定义了一个二元运算“*”(即对任意的,a b S ∈,对于有序元素对(,)a b ,在S 中有唯一确定的元素a ﹡b 与之对应)。

若对任意的,a b S ∈,有a ﹡(b ﹡)a b =,则对任意的,a b S ∈,下列等式中不.恒成立的是 ( ) A . (a ﹡b )﹡a a = B . [a ﹡(b ﹡)a ]﹡(a ﹡b )a =C .b ﹡(b ﹡b )b =D .(a ﹡b )﹡[]()b a b **b =(2007广东理)二、填空题8.已知集合{}1|349,|46,(0,)A x R x x B x R x t t t ⎧⎫=∈++-≤=∈=+-∈+∞⎨⎬⎩⎭,则集合A B ⋂=________(2011年高考天津卷理科13)9.设集合{1,2}A =,则满足{1,2,3}A B ⋃=的集合B 的个数是_____4_________10. 已知:A=(){}0,=+y x y x ,B=(){}2,=-y x y x ,则A∩B=_________.11.设A ,B 是非空集合,定义{}B A x B A x x B A ⋂∉⋃∈=⨯,。

全国统一高考数学练习卷及含答案 (4)

全国统一高考数学练习卷及含答案  (4)

普通高等学校招生全国统一考试数学试卷(满分150分,考试时间120分钟)一、选择题:(本题共12小题,每小题5分,共60分)1.若直线)(042R n m ny mx ∈=-+,始终平分圆042422=-+-+y x y x 的周长,则m 、n 的关系是()A.02=--n m B.02=-+n m C.04=-+n m D.04=+-n m 2.与圆8)3()3(22=-+-y x 相切,且在y x 、轴上截距相等的直线有()A.4条B.3条C.2条D.1条3.在一口袋中有2个白球和3个黑球,从中任意摸出2球,则至少摸出一个黑球的概率是()(A)73(B)109(C)51(D)614.若,1sin )(3++=x b ax x f 且,)75(=f 则=-)5(f ()A7-B5-C 5D75.函数)(x f y =的图象过点(0,1),则函数)3(+=x f y 的图象必过点()A)1,3(-B (3,1)C (0,4)D)4,0(-6.过(x 1,y 1)和(x 2,y 2)两点的直线的方程是()111121212112211211211211...()()()()0.()()()()0y y x x y y x x A B y y x x y y x x C y y x x x x y y D x x x x y y y y ----==---------=-----=7.已知a ∥α,b ∥α,则直线a ,b 的位置关系①平行;②垂直不相交;③垂直相交;④相交;⑤不垂直且不相交.其中可能成立的有()A.2个B.3个C.4个D.5个8.已知a、b、c 是三条互不重合的直线,α、β是两个不重合的平面,给出四个命题:①;//,//,//ααa b b a 则②a、;//,//,//,βαββα则b a b ⊂③;,//,βαβα⊥⊥则a a ④b a b a ⊥⊥则,//,αα.其中正确命题的个数是()A.1个B.2个C.3个D.4个9.已知等差数列==16884,31,}{S S S S S n a n n 那么且项和为的前()A.81B.31C.91D.10310.定义在R 上的偶函数0)(log ,021(,),0[)(41<=+∞=x f f x f y 则满足且上递减在的x 的集合()A.),2()21,(+∞⋃-∞B.)2,1()1,21(⋃C.),2()1,21(+∞⋃D.),2(21,0(+∞⋃11.在如图所示的坐标平面的可行域内(阴影部分且包括周界),若使目标函数z=ax+y(a>0)取最大值的最优解有无穷多个,则a 的值等于()A.31B.1C.6D.312.已知函数)41(,2),3(log ,2,43)(1162-⎪⎩⎪⎨⎧≥+-<-=-f x x x x x f 则的值等于()A.2116B.25-C.4D.-4二、填空题(共4小题,每小题5分;共计20分)1.某校有初中学生1200人,高中学生900人,老师120人,现用分层抽样方法从所有师生中抽取一个容量为N 的样本进行调查,如果应从高中学生中抽取60人,那么N=_______.2.在经济学中,定义)()(),()1()(x f x Mf x f x f x Mf 为函数称-+=的边际函数,某企业的一种产品的利润函数N x x x x x P ∈∈++-=且]25,10[(100030)(23*),则它的边际函数MP(x)=______.(注:用多项式表示)3.已知c b a ,,分别为△ABC 的三边,且==+-+C ab c b a tan ,02333222则______.4.已知下列四个函数:①);2(log 21+=x y ②;231+-=x y ③;12x y -=④2)2(3+-=x y .其中图象不经过第一象限的函数有______.(注:把你认为符合条件的函数的序号都填上)三、大题:(满分30分)1.如图,AE ⊥平面ABCD ,,CF AE AD BC ∥∥,,1,2AD AB AB AD AE BC ⊥====.(Ⅰ)求证:BF ∥平面ADE ;(Ⅱ)求直线CE 与平面BDE 所成角的正弦值;(Ⅲ)若二面角E BD F --的余弦值为13,求线段CF 的长.2.设椭圆22221(0)x y a b a b +=>>的左焦点为F ,上顶点为B .已知椭圆的短轴长为4,离心率为55.(Ⅰ)求椭圆的方程;(Ⅱ)设点P 在椭圆上,且异于椭圆的上、下顶点,点M 为直线PB 与x 轴的交点,点N 在y 轴的负半轴上.若||||ON OF =(O 为原点),且OP MN ⊥,求直线PB 的斜率.3.设{}n a 是等差数列,{}n b 是等比数列.已知1122334,622,24a b b a b a ===-=+,.(Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)设数列{}n c 满足111,22,2,1,,k k n k k c n c b n +=⎧<<=⎨=⎩其中*k ∈N .(i)求数列(){}221nna c -的通项公式;(ii)求()2*1ni ii a c n =∈∑N .4.设函数()e cos ,()xf x xg x =为()f x 的导函数.(Ⅰ)求()f x 的单调区间;(Ⅱ)当,42x ππ⎡⎤∈⎢⎥⎣⎦时,证明()()02f x g x x π⎛⎫+- ⎪⎝⎭ ;(Ⅲ)设n x 为函数()()1u x f x =-在区间2,242m m πππ⎛⎫++ ⎪⎝⎭内的零点,其中n N ∈,证明20022sin cos n n n x x e x πππ-+-<-.5.设首项为1的正项数列{an}的前n 项和为Sn,数列的前n 项和为Tn,且,其中p 为常数.(1)求p 的值;(2)求证:数列{an}为等比数列;(3)证明:“数列an,2xan+1,2yan+2成等差数列,其中x、y 均为整数”的充要条件是“x=1,且y=2”.6.已知函数f(x)=(x﹣x1)(x﹣x2)(x﹣x3),x1,x2,x3∈R,且x1<x2<x3.(1)当x1=0,x2=1,x3=2时,求函数f(x)的减区间;(2)求证:方程f′(x)=0有两个不相等的实数根;(3)若方程f′(x)=0的两个实数根是α,β(α<β),试比较,与α,β的大小,并说明理由.参考答案:一、选择题:1-5题答案:AABBA 6-10题答案:CDBDD 11-12题答案:BD二、填空题:1、148;2、]25,10[(295732∈++-x x x且)*N x ∈(未标定义域扣1分);3、22-;4、①,④(多填少填均不给分)三、大题:1.本小题主要考查直线与平面平行、二面角、直线与平面所成的角等基础知识.考查用空间向量解决立体几何问题的方法.考查空间想象能力、运算求解能力和推理论证能力.满分13分.依题意,可以建立以A 为原点,分别以AB AD AE,,的方向为x 轴,y 轴,z 轴正方向的空间直角坐标系(如图),可得(0,0,0),(1,0,0),(1,2,0),(0,1,0)A B C D ,(0,0,2)E .设(0)CF h h =>>,则()1,2,F h .(Ⅰ)证明:依题意,(1,0,0)AB = 是平面ADE 的法向量,又(0,2,)BF h = ,可得0BF AB ⋅=,又因为直线BF ⊄平面ADE ,所以BF ∥平面ADE .(Ⅱ)解:依题意,(1,1,0),(1,0,2),(1,2,2)BD BE CE =-=-=--.设(,,)n x y z =为平面BDE 的法向量,则0,0,n BD n BE ⎧⋅=⎪⎨⋅=⎪⎩ 即0,20,x y x z -+=⎧⎨-+=⎩不妨令1z =,可得(2,2,1)n =.因此有4cos ,9||||CE n CE n CE n ⋅==-.所以,直线CE 与平面BDE 所成角的正弦值为49.(Ⅲ)解:设(,,)m x y z =为平面BDF 的法向量,则0,0,m BD m BF ⎧⋅=⎪⎨⋅=⎪⎩ 即0,20,x y y hz -+=⎧⎨+=⎩不妨令1y =,可得21,1,m h ⎛⎫=- ⎪⎝⎭.由题意,有||1cos ,||||3m n m n m n ⋅〈〉==,解得87h =.经检验,符合题意.所以,线段CF 的长为87.2.本小题主要考查椭圆的标准方程和几何性质、直线方程等基础知识。

高考(高中)数学 集合的运算 100道练习题 有答案

高考(高中)数学  集合的运算 100道练习题 有答案

高中(高考)数学集合的运算练习卷试卷排列:题目答案上下对照难度:中等以上版本:适合各地版本题型:填空题31多道,选择题32多道,解答题37多道,共100道有无答案:均有答案或解析价格:6元,算下来每题6分钱。

页数:79页1.已知命题:p 对任意x R ∈,总有||0x ≥;:1q x =是方程20x +=的根,则下列命题为真命题的是A.p q ∧⌝B.p q ⌝∧C.p q ⌝∧⌝D.p q ∧ 【答案】A 【解析】试题分析:因为命题:p “对任意x R ∈,总有0x ≥”为真命题; 命题q :“1x =是方程20x +=的根”是假命题;所以q ⌝是真命题,所以p q ∧⌝为真命题,故选A. 考点:1、命题;2、充要条件.2.已知i 是虚数单位,R b a ∈,,则“1==b a ”是“i bi a 2)(2=+”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件 【答案】A【解析】当1a b ==时,()()2212a bi i i +=+=,反过来()22222a bi a b abi i +=-+=,则220,22a b ab -==,解得1,1a b ==或1,1a b =-=-,故1a b ==是()22a bi i +=的充分不必要条件,故选A考点:充要条件的判断,复数相等.3.已知命题.,:,:22y x y x q y x y x p ><-<->则若;命题则若在命题①q p q p q p q p ∨⌝⌝∧∨∧)④(③②);(;;中,真命题是( ) A.①③ B.①④ C.②③ D.②④ 【答案】C【解析】试题分析:当x y >时,两边乘以1-可得x y -<-,所以命题p 为真命题,当1,2x y ==-时,因为2214x y =<=,所以命题q 为假命题,则q ⌝为真命题,所以根据真值表可得②③为真命题,故选C. 考点:命题真假 逻辑连接词 不等式4.设{}n a 是公比为q 的等比数列,则“1>q ”是“{}n a 为递增数列”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】D 【解析】试题分析:对等比数列}{n a ,若1>q ,则当01<a 时数列}{n a 是递减数列;若数列}{n a 是递增数列,则}{n a 满足01<a 且10<<q ,故当“1>q ”是”数列}{n a 为递增数列的既不充分也不必要条件.故选C.考点:等比数列的性质,充分条件与必要条件的判定,容易题.5.在ABC ∆中,角,,A B C 成等差数列是)sin sin cos C A A B =+成立的( )(A )充分不必要条件 (B )必要不充分条件 (C )充要条件 (D )既不充分也不必要条件 【答案】A 【解析】考点:三角函数6.在ABC ∆中,“A>B ”是“22sin sin A B >”的( )A .充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 【答案】C【解析】在ABC ∆中,sin sin 0A B A B >⇔>> 考点:三角函数,充分必要条件7.已知命题p :“∀x ∈[1,2],x 2-a ≥0”,命题q:“∃x ∈R 使x 2+2ax+2-a=0”,若命题“p 且q ”是真命题,则实数a 的取值范围是( )A.{}1a a ≥B.{}212a a a -或≤≤≤C.{}21a a -≤≤D.{}21a a a -=或≤ 【答案】D 【解析】试题分析:若∀x ∈[1,2],x 2-a ≥0,则1≤a ;若∃x ∈R 使x 2+2ax+2-a=0,则0)2(4)2(2≥--a a ,解得2-≤a 或1≥a ,若命题“p且q ”是真命题,则实数a 满足⎩⎨⎧≥-≤≤121a a a 或,2-≤a 或1=a ,所以实数a 的取值范围是2|{-≤a a 或}1=a .考点:含有逻辑联结词的命题的真假判断,全称命题与特称命题..8.下列四个命题:①利用计算机产生0~1之间的均匀随机数a ,则事件“013>-a ”发生的概率为31;②“0≠+y x ”是“1≠x 或1-≠y ”的充分不必要条件; ③命题“在ABC ∆中,若B A sin sin =,则ABC ∆为等腰三角形”的否命题为真命题;④如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β。

2024年天津高考数学真题+答案

2024年天津高考数学真题+答案

2024年天津高考数学真题学校:___________姓名:___________班级:___________考号:___________一、单选题1.集合{}1,2,3,4A =,{}2,3,4,5B =,则A B = ()A .{}1,2,3,4B .{}2,3,4C .{}2,4D .{}12.设,a b ∈R ,则“33a b =”是“33a b =”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.下列图中,相关性系数最大的是()A .B .C .D .4.下列函数是偶函数的是()A .22e 1x x y x -=+B .22cos 1x x y x +=+C .e 1x xy x -=+D .||sin 4e x x x y +=5.若0.30.3 4.24.24.2log 0.2a b c -===,,,则a b c ,,的大小关系为()A .a b c >>B .b a c >>C .c a b >>D .b c a>>6.若,m n 为两条不同的直线,α为一个平面,则下列结论中正确的是()A .若//m α,n ⊂α,则//m n B .若//,//m n αα,则//m n C .若//,αα⊥m n ,则m n⊥D .若//,αα⊥m n ,则m 与n 相交试卷第2页,共4页7.已知函数()()πsin303f x x ωω⎛⎫=+> ⎪⎝⎭的最小正周期为π.则函数在ππ,126⎡⎤-⎢⎥⎣⎦的最小值是()A.B .32-C .0D .328.双曲线22221()00a x y a bb >-=>,的左、右焦点分别为12.F F P 、是双曲线右支上一点,且直线2PF 的斜率为2.12PF F △是面积为8的直角三角形,则双曲线的方程为()A .22182y x -=B .22184x y -=C .22128x y -=D .22148x y -=9.一个五面体ABC DEF -.已知AD BE CF ∥∥,且两两之间距离为1.并已知123AD BE CF ===,,.则该五面体的体积为()A.6B12+CD12二、填空题10.已知i是虚数单位,复数))i 2i +⋅=.11.在63333x x⎛⎫+ ⎪⎝⎭的展开式中,常数项为.12.22(1)25-+=x y 的圆心与抛物线22(0)y px p =>的焦点F 重合,A 为两曲线的交点,则原点到直线AF 的距离为.13.,,,,A B C D E 五种活动,甲、乙都要选择三个活动参加.(1)甲选到A 的概率为;已知乙选了A 活动,他再选择B 活动的概率为.14.在边长为1的正方形ABCD 中,点E 为线段CD 的三等分点,1,2CE DE BE BA BC ==+uur uu r uu u r λμ,则λμ+=;若F 为线段BE 上的动点,G 为AF 中点,则AF DG ⋅的最小值为.15.若函数()2221f x x ax ax =---+有唯一零点,则a 的取值范围为.三、解答题16.在ABC 中,92cos 5163a Bbc ===,,.(1)求a ;(2)求sin A ;(3)求()cos 2B A -.17.已知四棱柱1111ABCD A B C D -中,底面ABCD 为梯形,//AB CD ,1A A ⊥平面ABCD ,AD AB ⊥,其中12,1AB AA AD DC ====.N 是11B C 的中点,M 是1DD 的中点.(1)求证1//D N 平面1CB M ;(2)求平面1CB M 与平面11BB CC 的夹角余弦值;(3)求点B 到平面1CB M 的距离.18.已知椭圆22221(0)x y a b a b+=>>椭圆的离心率12e =.左顶点为A ,下顶点为B C ,是线段OB 的中点,其中33ABC S =△(1)求椭圆方程.(2)过点30,2⎛⎫- ⎪⎝⎭的动直线与椭圆有两个交点P Q ,.在y 轴上是否存在点T 使得0TP TQ ⋅≤ 恒成立.若存在求出这个T 点纵坐标的取值范围,若不存在请说明理由.试卷第4页,共4页19.已知数列{}n a 是公比大于0的等比数列.其前n 项和为n S .若1231,1a S a ==-.(1)求数列{}n a 前n 项和n S ;(2)设11,2,kn n k k k n a b b k a n a -+=⎧=⎨+<<⎩,11b =,其中k 是大于1的正整数.(ⅰ)当1k n a +=时,求证:1n k n b a b -≥⋅;(ⅱ)求1nS i i b =∑.20.设函数()ln f x x x =.(1)求()f x 图象上点()()1,1f 处的切线方程;(2)若()(f x a x ≥在()0,x ∞∈+时恒成立,求a 的取值范围;(3)若()12,0,1x x ∈,证明()()121212f x f x x x -≤-.参考答案:1.B【分析】根据集合交集的概念直接求解即可.【详解】因为集合{}1,2,3,4A =,{}2,3,4,5B =,所以{}2,3,4A B = ,故选:B 2.C【分析】说明二者与同一个命题等价,再得到二者等价,即是充分必要条件.【详解】根据立方的性质和指数函数的性质,33a b =和33a b =都当且仅当a b =,所以二者互为充要条件.故选:C.3.A【分析】由点的分布特征可直接判断【详解】观察4幅图可知,A 图散点分布比较集中,且大体接近某一条直线,线性回归模型拟合效果比较好,呈现明显的正相关,r 值相比于其他3图更接近1.故选:A 4.B【分析】根据偶函数的判定方法一一判断即可.【详解】对A ,设()22e 1x x f x x -=+,函数定义域为R ,但()112e 1f ---=,()112e f -=,则()()11f f -≠,故A 错误;对B ,设()22cos 1x x g x x +=+,函数定义域为R ,且()()()()()2222cos cos 11x x x x g x g x x x -+-+-===+-+,则()g x 为偶函数,故B 正确;对C ,设()e 1x xh x x -=+,函数定义域为{}|1x x ≠-,不关于原点对称,则()h x 不是偶函数,故C 错误;对D ,设()||sin 4e x x x x ϕ+=,函数定义域为R,因为()sin141e ϕ+=,()sin141eϕ---=,则()()11ϕϕ≠-,则()x ϕ不是偶函数,故D 错误.答案第2页,共18页故选:B.5.B【分析】利用指数函数和对数函数的单调性分析判断即可.【详解】因为 4.2x y =在R 上递增,且0.300.3-<<,所以0.300.30 4.2 4.2 4.2-<<<,所以0.30.30 4.21 4.2-<<<,即01a b <<<,因为 4.2log y x =在(0,)+∞上递增,且00.21<<,所以 4.2 4.2log 0.2log 10<=,即0c <,所以b a c >>,故选:B 6.C【分析】根据线面平行的性质可判断AB 的正误,根据线面垂直的性质可判断CD 的正误.【详解】对于A ,若//m α,n ⊂α,则,m n 平行或异面,故A 错误.对于B ,若//,//m n αα,则,m n 平行或异面或相交,故B 错误.对于C ,//,αα⊥m n ,过m 作平面β,使得s βα= ,因为m β⊂,故//m s ,而s α⊂,故n s ⊥,故m n ⊥,故C 正确.对于D ,若//,αα⊥m n ,则m 与n 相交或异面,故D 错误.故选:C.7.A【分析】先由诱导公式化简,结合周期公式求出ω,得()sin2f x x =-,再整体求出,126⎡⎤∈-⎢⎥⎣⎦ππx 时,2x 的范围,结合正弦三角函数图象特征即可求解.【详解】()()πsin3sin 3πsin 33f x x x x ωωω⎛⎫=+=+=- ⎪⎝⎭,由2ππ3T ω==得23ω=,即()sin2f x x =-,当,126⎡⎤∈-⎢⎥⎣⎦ππx 时,ππ2,63x ⎡⎤∈-⎢⎥⎣⎦,画出()sin2f x x =-图象,如下图,由图可知,()sin2f x x =-在ππ,126⎡⎤-⎢⎥⎣⎦上递减,所以,当π6x =时,()min πsin 3f x =-=故选:A 8.C【分析】可利用12PF F △三边斜率问题与正弦定理,转化出三边比例,设2PF m =,由面积公式求出m ,由勾股定理得出c ,结合第一定义再求出a .【详解】如下图:由题可知,点P 必落在第四象限,1290F PF ∠=︒,设2PF m =,211122,PF F PF F θθ∠=∠=,由21tan 2PF k θ==,求得1sin 5θ因为1290F PF ∠=︒,所以121PF PF k k ⋅=-,求得112PF k =-,即21tan 2θ=,2sin 5θ=121212::sin :sin :sin 9025PF PF F F θθ=︒=则由2PF m =得1122,25PF m F F c m ==,由1212112822PF F S PF PF m m =⋅=⋅= 得22m =则211222,42,2210,10PF PF F F c c =====由双曲线第一定义可得:12222PF PF a -==222,8a b c a =-=所以双曲线的方程为22128x y -=.故选:C 9.C【分析】采用补形法,补成一个棱柱,求出其直截面,再利用体积公式即可.答案第4页,共18页【详解】用一个完全相同的五面体HIJ LMN -(顶点与五面体ABC DEF -一一对应)与该五面体相嵌,使得,D N ;,E M ;,F L 重合,因为AD BE CF ∥∥,且两两之间距离为1.1,2,3AD BE CF ===,则形成的新组合体为一个三棱柱,该三棱柱的直截面(与侧棱垂直的截面)为边长为1的等边三角形,侧棱长为1322314+=+=+=,212111142ABC DEF ABC HIJ V --==⨯⨯⨯⨯.故选:C.10.7【分析】借助复数的乘法运算法则计算即可得.【详解】))i 2i 527⋅=+-=-.故答案为:7.11.20【分析】根据题意结合二项展开式的通项分析求解即可.【详解】因为63333x x⎛⎫+ ⎪⎝⎭的展开式的通项为()63636216633C 3C ,0,1,,63rrr r r r r x T xr x ---+⎛⎫⎛⎫===⋅⋅⋅ ⎪ ⎪⎝⎭⎝⎭,令()630r -=,可得3r =,所以常数项为0363C 20=.故答案为:20.12.45/0.8【分析】先求出圆心坐标,从而可求焦准距,再联立圆和抛物线方程,求A 及AF 的方程,从而可求原点到直线AF 的距离.【详解】圆22(1)25-+=x y 的圆心为()1,0F ,故12p=即2p =,由()2221254x y y x⎧-+=⎪⎨=⎪⎩可得22240x x +-=,故4x =或6x =-(舍),故()4,4A ±,故直线()4:13AF y x =±-即4340x y --=或4340x y +-=,故原点到直线AF 的距离为4455d ==,故答案为:4513.3512【分析】结合列举法或组合公式和概率公式可求甲选到A 的概率;采用列举法或者条件概率公式可求乙选了A 活动,他再选择B 活动的概率.【详解】解法一:列举法从五个活动中选三个的情况有:,,,,,,,,,ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE ,共10种情况,其中甲选到A 有6种可能性:,,,,,ABC ABD ABE ACD ACE ADE ,则甲选到A 得概率为:63105P ==;乙选A 活动有6种可能性:,,,,,ABC ABD ABE ACD ACE ADE ,其中再选则B 有3种可能性:,,ABC ABD ABE ,故乙选了A 活动,他再选择B 活动的概率为31=62.解法二:设甲、乙选到A 为事件M ,乙选到B 为事件N ,则甲选到A 的概率为()2435C 3C 5P M ==;乙选了A 活动,他再选择B 活动的概率为()()()133524351C 2C C P MN C P N M P M ===故答案为:35;1214.43518-【分析】解法一:以{},BA BC 为基底向量,根据向量的线性运算求BE,即可得λμ+,设答案第6页,共18页BF BE k =uu u r uur ,求,AF DG uu u r uuu r ,结合数量积的运算律求AF DG ⋅的最小值;解法二:建系标点,根据向量的坐标运算求BE ,即可得λμ+,设()1,3,,03F a a a ⎡⎤-∈-⎢⎥⎣⎦,求,AF DG uu u r uuu r ,结合数量积的坐标运算求AF DG ⋅的最小值.【详解】解法一:因为12CE DE =,即23CE BA =uur uu r ,则13BE BC CE BA BC =+=+uu u r uur u uu ur r uu u r ,可得1,13λμ==,所以43λμ+=;由题意可知:1,0BC BA BA BC ==⋅=,因为F 为线段BE 上的动点,设[]1,0,13BF k BE k BA k BC k ==+∈,则113AF AB BF AB k BE k BA k BC ⎛⎫=+=+=-+ ⎪⎝⎭ ,又因为G 为AF 中点,则1111112232DG DA AG BC k BA k BC ⎛⎫⎛⎫=+=-+=-+- ⎪ ⎪⎝⎭⎝⎭,可得11111113232AF DG k BA k BC k BA k BC ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⋅=-+⋅-+- ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦22111563112329510k k k k ⎛⎫⎛⎫⎛⎫=-+-=-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,又因为[]0,1k ∈,可知:当1k =时,AF DG ⋅ 取到最小值518-;解法二:以B为坐标原点建立平面直角坐标系,如图所示,则()()()()11,0,0,0,0,1,1,1,,13A B C D E ⎛⎫--- ⎪⎝⎭,可得()()11,0,0,1,,13BA BC BE ⎛⎫=-==- ⎪⎝⎭,因为(),BE BA BC λμλμ=+=- ,则131λμ⎧-=-⎪⎨⎪=⎩,所以43λμ+=;因为点F 在线段1:3,,03BE y x x ⎡⎤=-∈-⎢⎥⎣⎦上,设()1,3,,03F a a a ⎡⎤-∈-⎢⎥⎣⎦,且G 为AF 中点,则13,22a G a -⎛⎫- ⎪⎝⎭,可得()131,3,,122a AF a a DG a +⎛⎫=+-=--⎪⎝⎭,则()()22132331522510a AF DG a a a +⎛⎫⎛⎫⋅=+---=+- ⎪ ⎪⎝⎭⎝⎭ ,且1,03a ⎡⎤∈-⎢⎥⎣⎦,所以当13a =-时,AF DG ⋅ 取到最小值为518-;故答案为:43;518-.15.()(1-⋃【分析】结合函数零点与两函数的交点的关系,构造函数()g x =与()23,21,ax x ah x ax x a ⎧-≥⎪⎪=⎨⎪-<⎪⎩,则两函数图象有唯一交点,分0a =、0a >与0a <进行讨论,当0a >时,计算函数定义域可得x a ≥或0x ≤,计算可得(]0,2a ∈时,两函数在y 轴左侧有一交点,则只需找到当(]0,2a ∈时,在y 轴右侧无交点的情况即可得;当0a <时,按同一方式讨论即可得.【详解】令()0f x =,即21ax =--,由题可得20x ax -≥,当0a =时,x ∈R,有211=--=,则x =当0a >时,则23,2121,ax x a ax ax x a ⎧-≥⎪⎪=--=⎨⎪-<⎪⎩,即函数()g x =()23,21,ax x a h x ax x a ⎧-≥⎪⎪=⎨⎪-<⎪⎩有唯一交点,由20x ax -≥,可得x a ≥或0x ≤,当0x ≤时,则20ax -<,则211ax ax =--=-,答案第8页,共18页即()22441x ax ax -=-,整理得()()()2242121210a x ax a x a x ⎡⎤⎡⎤---=++--=⎣⎦⎣⎦,当2a =时,即410x +=,即14x =-,当()0,2a ∈,12x a =-+或102x a=>-(正值舍去),当()2,a ∈+∞时,102x a =-<+或102x a=<-,有两解,舍去,即当(]0,2a ∈时,210ax -+=在0x ≤时有唯一解,则当(]0,2a ∈时,210ax -+=在x a ≥时需无解,当(]0,2a ∈,且x a ≥时,由函数()23,21,ax x ah x ax x a ⎧-≥⎪⎪=⎨⎪-<⎪⎩关于2x a =对称,令()0h x =,可得1x a =或3x a =,且函数()h x 在12,a a ⎛⎫ ⎪⎝⎭上单调递减,在23,a a ⎛⎫⎪⎝⎭上单调递增,令()g x y ==,即2222142a x y a a ⎛⎫- ⎪-⎭=⎝,故x a ≥时,()g x 图象为双曲线()222214y x a a -=右支的x 轴上方部分向右平移2a 所得,由()222214y x a a-=的渐近线方程为22a y x x a =±=±,即()g x 部分的渐近线方程为22a y x ⎛⎫=- ⎪⎝⎭,其斜率为2,又(]0,2a ∈,即()23,21,ax x ah x ax x a ⎧-≥⎪⎪=⎨⎪-<⎪⎩在2x a ≥时的斜率(]0,2a ∈,令()0g x ==,可得x a =或0x =(舍去),且函数()g x 在(),a +∞上单调递增,故有13a aa a⎧<⎪⎪⎨⎪>⎪⎩,解得1a <<,故1a <<当a<0时,则23,2121,ax x a ax ax x a ⎧-≤⎪⎪=--=⎨⎪->⎪⎩,即函数()g x =()23,21,ax x a h x ax x a ⎧-≤⎪⎪=⎨⎪->⎪⎩有唯一交点,由20x ax -≥,可得0x ≥或x a ≤,当0x ≥时,则20ax -<,则211ax ax =--=-,即()22441x ax ax -=-,整理得()()()2242121210a x ax a x a x ⎡⎤⎡⎤---=++--=⎣⎦⎣⎦,当2a =-时,即410x -=,即14x =,当()2,0a ∈-,102x a =-<+(负值舍去)或102x a =-,当(),2a ∈-∞时,102x a =->+或102x a=>-,有两解,舍去,即当[)2,0a ∈-时,210ax -+=在0x ≥时有唯一解,则当[)2,0a ∈-时,210ax -+=在x a ≤时需无解,当[)2,0a ∈-,且x a ≤时,由函数()23,21,ax x ah x ax x a ⎧-≤⎪⎪=⎨⎪->⎪⎩关于2x a =对称,令()0h x =,可得1x a =或3x a =,且函数()h x 在21,a a ⎛⎫⎪⎝⎭上单调递减,在32,a a ⎛⎫ ⎪⎝⎭上单调递增,同理可得:x a ≤时,()g x 图象为双曲线()222214y x a a -=左支的x 轴上方部分向左平移2a 所得,()g x 部分的渐近线方程为22a y x ⎛⎫=-+ ⎪⎝⎭,其斜率为2-,又[)2,0a ∈-,即()23,21,ax x ah x ax x a ⎧-≥⎪⎪=⎨⎪-<⎪⎩在2x a <时的斜率[)2,0a ∈-,令()0g x ==,可得x a =或0x =(舍去),且函数()g x 在(),a -∞上单调递减,答案第10页,共18页故有13a aa a⎧>⎪⎪⎨⎪<⎪⎩,解得1a <<-,故1a <<-符合要求;综上所述,()(1a ∈- .故答案为:()(1-⋃.【点睛】关键点点睛:本题关键点在于将函数()f x 的零点问题转化为函数()g x =与函数()23,21,ax x ah x ax x a ⎧-≥⎪⎪=⎨⎪-<⎪⎩的交点问题,从而可将其分成两个函数研究.16.(1)4(3)5764【分析】(1)2,3a t c t ==,利用余弦定理即可得到方程,解出即可;(2)法一:求出sin B ,再利用正弦定理即可;法二:利用余弦定理求出cos A ,则得到sin A ;(3)法一:根据大边对大角确定A 为锐角,则得到cos A ,再利用二倍角公式和两角差的余弦公式即可;法二:直接利用二倍角公式和两角差的余弦公式即可.【详解】(1)设2,3a t c t ==,0t >,则根据余弦定理得2222cos b a c ac B =+-,即229254922316t t t t =+-⨯⨯⨯,解得2t =(负舍);则4,6a c ==.(2)法一:因为B为三角形内角,所以sin B =再根据正弦定理得sin sin a b A B =,即4sin A =sin A 法二:由余弦定理得2222225643cos 22564b c a A bc +-+-===⨯⨯,因为()0,πA ∈,则sin A ==(3)法一:因为9cos 016B =>,且()0,πB ∈,所以π0,2B ⎛⎫∈ ⎪⎝⎭,由(2)法一知sin B =,因为a b <,则A B <,所以3cos 4A ==,则3sin 22sin cos 2448A A A ==⨯⨯=,2231cos 22cos 12148A A ⎛⎫=-=⨯-= ⎪⎝⎭()1957cos 2cos cos 2sin sin 281616864B A B A B A -=+=⨯+⨯=.法二:3sin 22sin cos 24A A A ==⨯则2231cos 22cos 12148A A ⎛⎫=-=⨯-= ⎪⎝⎭,因为B 为三角形内角,所以sin B =所以()9157cos 2cos cos 2sin sin 216816864B A B A B A -=+=⨯+⨯=17.(1)证明见解析(3)11【分析】(1)取1CB 中点P ,连接NP ,MP ,借助中位线的性质与平行四边形性质定理可得1N//D MP ,结合线面平行判定定理即可得证;(2)建立适当空间直角坐标系,计算两平面的空间向量,再利用空间向量夹角公式计算即可得解;(3)借助空间中点到平面的距离公式计算即可得解.【详解】(1)取1CB 中点P ,连接NP ,MP ,由N 是11B C 的中点,故1//NP CC ,且112NP CC =,由M 是1DD 的中点,故1111122D M DD CC ==,且11//D M CC ,则有1//D M NP 、1D M NP =,答案第12页,共18页故四边形1D MPN 是平行四边形,故1//D N MP ,又MP ⊂平面1CB M ,1D N ⊄平面1CB M ,故1//D N 平面1CB M ;(2)以A为原点建立如图所示空间直角坐标系,有()0,0,0A 、()2,0,0B 、()12,0,2B 、()0,1,1M 、()1,1,0C 、()11,1,2C ,则有()11,1,2CB =- 、()1,0,1CM =- 、()10,0,2BB =,设平面1CB M 与平面11BB CC 的法向量分别为()111,,m x y z = 、()222,,n x y z =,则有111111200m CB x y z m CM x z ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩ ,1222122020n CB x y z n BB z ⎧⋅=-+=⎪⎨⋅==⎪⎩ ,分别取121x x ==,则有13y =、11z =、21y =,20z =,即()1,3,1m = 、()1,1,0n =,则cos ,11m nm n m n ⋅===⋅,故平面1CB M 与平面11BB CC(3)由()10,0,2BB = ,平面1CB M 的法向量为()1,3,1m =,则有111BB m m ⋅==,即点B 到平面1CB M的距离为11.18.(1)221129x y +=(2)存在()30,32T t t ⎛⎫-≤≤ ⎪⎝⎭,使得0TP TQ ⋅≤ 恒成立.【分析】(1)根据椭圆的离心率和三角形的面积可求基本量,从而可得椭圆的标准方程.(2)设该直线方程为:32y kx =-,()()()1122,,,,0,P x y Q x y T t ,联立直线方程和椭圆方程并消元,结合韦达定理和向量数量积的坐标运算可用,k t 表示TP TQ ⋅,再根据0TP TQ ⋅≤ 可求t 的范围.【详解】(1)因为椭圆的离心率为12e =,故2a c =,b =,其中c 为半焦距,所以()()2,0,0,,0,A c B C ⎛- ⎝⎭,故12222ABC S c c =⨯⨯=△,故c =a =,3b =,故椭圆方程为:221129x y +=.(2)若过点30,2⎛⎫- ⎪⎝⎭的动直线的斜率存在,则可设该直线方程为:32y kx =-,设()()()1122,,,,0,P x y Q x y T t ,由22343632x y y kx ⎧+=⎪⎨=-⎪⎩可得()223412270k x kx +--=,故()222Δ144108343245760k k k =++=+>且1212221227,,3434k x x x x k k +==-++而()()1122,,,TP x y t TQ x y t =-=-,故()()121212123322TP TQ x x y t y t x x kx t kx t ⎛⎫⎛⎫⋅=+--=+---- ⎪⎪⎝⎭⎝⎭ ()()22121233122kx x k t x x t ⎛⎫⎛⎫=+-++++ ⎪ ⎪⎝⎭⎝⎭()22222731231342342k kk t t kk ⎛⎫⎛⎫⎛⎫=+⨯--+⨯++ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭答案第14页,共18页()2222222327271812332234k k k t t t k k ⎛⎫----++++ ⎪⎝⎭=+()22223321245327234t t k t k ⎛⎫⎡⎤+--++- ⎪⎣⎦⎝⎭=+,因为0TP TQ ⋅≤ 恒成立,故()223212450332702t t t ⎧+--≤⎪⎨⎛⎫+-≤⎪ ⎪⎝⎭⎩,解得332t -≤≤.若过点30,2⎛⎫- ⎪⎝⎭的动直线的斜率不存在,则()()0,3,0,3P Q -或()()0,3,0,3P Q -,此时需33t -≤≤,两者结合可得332t -≤≤.综上,存在()30,32T t t ⎛⎫-≤≤ ⎪⎝⎭,使得0TP TQ ⋅≤ 恒成立.【点睛】思路点睛:圆锥曲线中的范围问题,往往需要用合适的参数表示目标代数式,表示过程中需要借助韦达定理,此时注意直线方程的合理假设.19.(1)21n n S =-(2)①证明见详解;②()131419nn S i i n b =-+=∑【分析】(1)设等比数列{}n a 的公比为0q >,根据题意结合等比数列通项公式求q ,再结合等比数列求和公式分析求解;(2)①根据题意分析可知12,1k k n a b k -==+,()121n k k b -=-,利用作差法分析证明;②根据题意结合等差数列求和公式可得()()1211213143449k k k k i i b k k ---=⎡⎤=---⎣⎦∑,再结合裂项相消法分析求解.【详解】(1)设等比数列{}n a 的公比为0q >,因为1231,1a S a ==-,即1231a a a +=-,可得211q q +=-,整理得220q q --=,解得2q =或1q =-(舍去),所以122112nn n S -==--.(2)(i )由(1)可知12n n a -=,且N*,2k k ∈≥,当124kk n a +=≥=时,则111221111k k k k k a n n a a -++⎧=<-=-⎨-=-<⎩,即11k k a n a +<-<可知12,1k k n a b k -==+,()()()1111222121k k k n a k k b b a a k k k k --+=+--⋅=+-=-,可得()()()()1112112122120k n k n k k k k k k k k b k a b ---=--+=--≥--=-⋅≥-,当且仅当2k =时,等号成立,所以1n k n b a b -≥⋅;(ii )由(1)可知:1211nn n S a +=-=-,若1n =,则111,1S b ==;若2n ≥,则112k k k a a -+-=,当1221k k i -<≤-时,12i i b b k --=,可知{}i b 为等差数列,可得()()()111211112221122431434429k k k k k k k k i i b k kk k k -------=-⎡⎤=⋅+=⋅=---⎣⎦∑,所以()()()232113141115424845431434499nn S nn i i n b n n -=-+⎡⎤=+⨯-⨯+⨯-⨯+⋅⋅⋅+---=⎣⎦∑,且1n =,符合上式,综上所述:()131419nn S i i n b =-+=∑.【点睛】关键点点睛:1.分析可知当1221k k i -<≤-时,12i i b b k --=,可知{}i b 为等差数列;2.根据等差数列求和分析可得()()1211213143449k k k k i i b k k ---=⎡⎤=---⎣⎦∑.20.(1)1y x =-(2){}2(3)证明过程见解析【分析】(1)直接使用导数的几何意义;(2)先由题设条件得到2a =,再证明2a =时条件满足;答案第16页,共18页(3)先确定()f x 的单调性,再对12,x x 分类讨论.【详解】(1)由于()ln f x x x =,故()ln 1f x x ='+.所以()10f =,()11f '=,所以所求的切线经过()1,0,且斜率为1,故其方程为1y x =-.(2)设()1ln h t t t =--,则()111t h t t t'-=-=,从而当01t <<时()0h t '<,当1t >时()0h t '>.所以()h t 在(]0,1上递减,在[)1,+∞上递增,这就说明()()1h t h ≥,即1ln t t -≥,且等号成立当且仅当1t =.设()()12ln g t a t t =--,则()((ln 1f x a x x x a x x a x g ⎛⎫-=-=-=⋅ ⎪⎭⎝.当()0,x ∞∈+()0,∞+,所以命题等价于对任意()0,t ∞∈+,都有()0g t ≥.一方面,若对任意()0,t ∞∈+,都有()0g t ≥,则对()0,t ∞∈+有()()()()112012ln 12ln 1212g t a t t a t a t at a tt t ⎛⎫≤=--=-+≤-+-=+-- ⎪⎝⎭,取2t =,得01a ≤-,故10a ≥>.再取t =2022a a a ≤-=-=-,所以2a =.另一方面,若2a =,则对任意()0,t ∞∈+都有()()()212ln 20g t t t h t =--=≥,满足条件.综合以上两个方面,知a 的取值范围是{}2.(3)先证明一个结论:对0a b <<,有()()ln 1ln 1f b f a a b b a-+<<+-.证明:前面已经证明不等式1ln t t -≥,故lnln ln ln ln ln ln 1ln 1bb b a a a b a aa b b b b b a b a a--=+=+<+---,且1lnln ln ln ln ln ln ln 1ln 11a a b b a a b b b a b b a a a a a a b a b a b b⎛⎫--- ⎪--⎝⎭=+=+>+=+----,所以ln ln ln 1ln 1b b a aa b b a -+<<+-,即()()ln 1ln 1f b f a a b b a-+<<+-.由()ln 1f x x ='+,可知当10e x <<时()0f x '<,当1ex >时()0f x '>.所以()f x 在10,e ⎛⎤ ⎥⎝⎦上递减,在1e ,⎡⎫+∞⎪⎢⎣⎭上递增.不妨设12x x ≤,下面分三种情况(其中有重合部分)证明本题结论.情况一:当1211ex x ≤≤<时,有()()()()()()122122121ln 1f x f x f x f x x x x x x -=-<+-<-<情况二:当1210ex x <≤≤时,有()()()()12121122ln ln f x f x f x f x x x x x -=-=-.对任意的10,e c ⎛⎤∈ ⎥⎝⎦,设()ln ln x x x c c ϕ=-()ln 1x x ϕ=+'由于()x ϕ'单调递增,且有1111111ln 1ln11102e2e ec c ϕ+⎛⎫⎪=++++--+ ⎪⎝⎭',且当2124ln 1x c c ≥-⎛⎫- ⎪⎝⎭,2c x >2ln 1c ≥-可知()2ln 1ln 1ln 102c x x c ϕ⎛⎫=+>+--≥ ⎪⎝⎭'.所以()x ϕ'在()0,c 上存在零点0x ,再结合()x ϕ'单调递增,即知00x x <<时()0x ϕ'<,0x x c <<时()0x ϕ'>.故()x ϕ在(]00,x 上递减,在[]0,x c 上递增.①当0x x c ≤≤时,有()()0x c ϕϕ≤=;②当00x x <<112221e e f f c ⎛⎫=-≤-=< ⎪⎝⎭,故我们可以取1,1q c ⎫∈⎪⎭.从而当201cx q <<->,可得()1ln ln ln ln ln 0x x x c c c c c c q c ϕ⎫=-<-<---<⎪⎭.再根据()x ϕ在(]00,x 上递减,即知对00x x <<都有()0x ϕ<;综合①②可知对任意0x c <≤,都有()0x ϕ≤,即()ln ln 0x x x c c ϕ=-≤.答案第18页,共18页根据10,e c ⎛⎤∈ ⎥⎝⎦和0x c <≤的任意性,取2c x =,1x x =,就得到1122ln ln 0x x x x -≤.所以()()()()12121122ln ln f x f x f x f x x x x x -=-=-≤.情况三:当12101ex x <≤≤<时,根据情况一和情况二的讨论,可得()11e f x f ⎛⎫-≤≤ ⎪⎝⎭,()21e f f x ⎛⎫-≤≤ ⎪⎝⎭而根据()f x 的单调性,知()()()1211e f x f x f x f ⎛⎫-≤- ⎪⎝⎭或()()()1221e f x f x f f x ⎛⎫-≤- ⎪⎝⎭.故一定有()()12f x f x -≤成立.综上,结论成立.【点睛】关键点点睛:本题的关键在于第3小问中,需要结合()f x 的单调性进行分类讨论.。

高中数学,必修一课后习题答案,完整版,附精品高考试卷1套

高中数学,必修一课后习题答案,完整版,附精品高考试卷1套

高中数学,必修一课后习题答案完整版,附精品高考试卷1套第一章集合与函数概念1. 1集合1. 1. 1集合的含义与表示练习(第5页)用符号或填空:(1)1.设A 为所有亚洲国家组成的集合,贝上中国.印度一A,A,美国.英国一A,A ;(2)若 A = {x\x 2 =x},则一1(3)^B = {x \x 2+x -6 = 0},贝J 3B ;(4)^C = {xeN\l<x<10}f 贝U8C, 9.1 C.A ;1.(1)中国g A ,美国印度g A ,英国g A ;中国和印度是属于亚洲的国家,美国在北美洲,英国在欧洲.(2)-IgAA = {x\x 2 =x} = {0.1}.(3)3 w 8B = {x\x 1+x —6 = 0} = (—3,2).2.8 g C,9.19.1WN .(4)试选择适当的方法表示下列集合:(1)由方程x 2-9 = 0的所有实数根组成的集合;(2)由小于8的所有素数组成的集合;(3)一次函数y =工+3与y = -2x+6的图象的交点组成的集合;(4)不等式4x-5<3的解集.2.解:(1)因为方程x 2-9 = 0的实数根为吐=—3,改=3,所以由方程/ -9 = 0的所有实数根组成的集合为(-3,3};(2)因为小于8的素数为2,3,5,7,所以由小于8的所有素数组成的集合为{2,3,5,7};x = l y = 4(3)由<y=x+3,,得< y = -2尤+6即一次函数y=x+3与y=-2x+6的图象的交点为(1,4),所以一次函数y=x+3与y=-2x+6的图象的交点组成的集合为{(1,4)};(4)由4x-5<3,得x<2,所以不等式4x-5<3的解集为{x|x<2}.1. 1.2集合间的基本关系练习(第7页)1.写出集合{a,b,c}的所有子集.1.解:按子集元素个数来分类,不取任何元素,得0;取一个元素,得{a},{b},{c}取两个元素,得{a,b},{a,c},{b,c}-,取三个元素,得{a,b,c},即集合{a,b,c}的所有子集^0,(«},(Z?},{c},{a,/?},(«,c},{b,c},{a,b,c}.2.用适当的符号填空:_{心=0};(1)a___—{a,b,c};(2)0____(3)0—__{xg7?|x23+1=0);(4){0,l}_____N;(5){0}_____{x|x2=x};(6)(2,1}_____{x\x1—3x+2=0} 2.(1)a^{a,b,c}a是集合{a,b,c}中的一个元素;(2)0e(%|%2=0}(x|x2=0}={0};(3)0-{xe/?|x2+l-0}方程%2+1=0无实数根,{xek|F+l=O}=0;(4){0,l}%N(或{0,1}g N){0,]是自然数集合N的子集,也是真子集;(5){0}S(x|x2=x}(或{0}o{x|x2 =%))(x|x2=%)={0,1);(6)(2,1}={x\x2-3x+2=0)方程了2一3工+2=0两根为jq=1,芍=2.3.判断下列两个集合之间的关系:(1)A={1,2,4},8={幻尤是8的约数};(2)A={x\x-3k,k^N},B-{x\x=6z.z^N];(3)A={x|x是4与10的公倍数,xc M},B-{x\x~20m,m^N+}.3.解:(1)因为8={x|俱8的约数}={1,2,4,8},所以A隼B;(2)当k=2z时,3k=6z;当R=2z+1时,3k=6z+3,即B是A的真子集,(3)因为4与10的最小公倍数是20,所以A=B.1. 1.3集合的基本运算练习(第11页)1.设A={3,5,6,8},3={4,5,7,8},求A B,A B.1.解:A B=(3,5,6,8}{4,5,7,8}={5,8},A B=(3,5,6,8}{4,5,7,8}={3,4,5,6,7,8}.2.iS A—{x|x2 —4x—5—0},2?={x\x2=1},求A B,A B.2.解:方程x2-4x-5=0的两根为X]=—1,易=5,方程*2—i=o的两根为改=一1,易=1,得A={_1,5},3={-1,1},即A B=(-1),A B=(-1,1,5).3.已知A={x|x是等腰三角形},3={x|x是直角三角形},求A B,A B.3.解:A3={x|x是等腰直角三角形},A3={x|x是等腰三角形或直角三角形}.4.已知全集U={1,2,3,4,5,6,7},A={2,4,5},3={1,3,5,7},求A(雅8),(〃A)(*3).4.解:显然切3={2,4,6},{1,3,6,7),则A QB)={2,4},(噂4)(波)={6}.1.1集合习题1.1(第11页)A组1.用符号或“W,,填空:⑴3-7—Q-(2)32_—N;(3)7i______(4)^2——R;(5)a/9_______Z;⑹(姊2______N.1.(1)3—g Q23—是有理数;(2)32e N32=9是个自然数;77(3)7i7T是个无理数,不是有理数;(4)gcR扬是实数;(5)a/9s Z^=3是个整数;(6)(>/5)2e N(灼2=5是个自然数2.已知A={x\x=3k-l,k^Z},用“b‘或“w”符号填空:(1)5A;(2)7A;(3)-10A.2.(1)5g A;(2)7g A;(3)-10e A.当k=2时,3k—1=5;当k=-3时,3R—1=—10;3.用列举法表示下列给定的集合:(1)大于1且小于6的整数;(2)A={x|(x-l)(x+2)=0};(3)B=(xeZ|-3<2x-l<3).3.解:(1)大于1且小于6的整数为2,3,4,5,即{2,3,4,5}为所求;(2)方程(X—l)(x+2)=0的两个实根为茶=一2,易=1,即{—2,1}为所求;(3)由不等式—3<2x—1<3,得—l<x<2,且xcZ,艮盯0,1,2}为所求.4.试选择适当的方法表示下列集合:(1)二次函数y=x"-4的函数值组成的集合;2(2)反比例函数y=—的自变量的值组成的集合;x(3)不等式3x>4-2x的解集.4.解:(1)显然有X2>0,得工2_42T,即y>-4,得二次函数y=x2-4的函数值组成的集合为{y|y2—4};2(2)显然有尤主0,得反比例函数y=—的自变量的值组成的集合为{x|xa0};x44(3)由不等式3xN4—2x,Wx>-,即不等式3x>4-2x的解集为{工|工>;}. 5.选用适当的符号填空:(1)已知集合A={x12x-3v3x},8={x|x>2},则有:-4B;-3A;{2B;B A;(2)已知集合A={x\x2-1=0},则有:1A;(-1A;0A;(1-]A;(3){x|x是菱形}{x|x是平行四边形};{x|x是等腰三角形}{x|x是等边三角形}.5.(1)-4WB;-3WA;(2;2x-3<3x=>x>-3,即A=[x\x>-3},B={x|x>2);(2)1e A;{-1呈A:。

高中数学-集合习题7

高中数学-集合习题7

课时作业(七)1.集合P ={x ∈Z |0≤x <3},M ={x ∈R |x 2≤9},则P ∩M =()A .{1,2}B .{0,1,2}C .{x |0≤x <3}D .{x |0≤x ≤3}2.(2019·浙江)已知全集U ={-1,0,1,2,3},集合A ={0,1,2},B ={-1,0,1},则(∁U A )∩B =()A .{-1}B .{0,1}C .{-1,2,3}{-1,0,1,3}3.设集合A ={x ∈Z |0≤x ≤5},B =k 2,k ∈A ∩B =()A .{0,1,2}{0,1,2,3}C .{0,1,3}D .B 4.【多选题】设M ={1,2,m 2-3m -1},P ={1,3},且M ∩P ={1,3},则m 的值可以是()A .1B .-1C .4D .-45.已知集合M ={x |y =x 2-1},N ={y |y =x 2-1},那么M ∩N 等于()A .∅B .NC .MD .R 6.已知集合A ={x |x 2-3x +2=0,x ∈R },B ={x |0<x <5,x ∈N },则满足条件A ⊆C ⊆B 的集合C 的个数为()A .1B .2C .3D .47.设集合A ={x |x ∈Z 且-15≤x ≤-2},B ={x |x ∈Z 且|x |<5},则A ∪B 中的元素个数是()A .10B .11C .20D .218.设全集U =Z ,集合P ={x |x =2n ,n ∈Z },Q ={x |x =4m ,m ∈Z },则U 等于()A .P ∪Q B .(∁U P )∪Q C .P ∪(∁U Q )D .(∁U P )∪(∁U Q )9.已知方程x 2-px +15=0与x 2-5x +q =0的解集分别为S 与M ,且S ∩M ={3},则p +q 的值是()A .2B .7C .11D .1410.已知集合A ,B 与集合A @B 的对应关系如下表:A {1,2,3,4,5}{-1,0,1}{-4,8}B {2,4,6,8}{-2,-1,0,1}{-4,-2,0,2}A @B {1,3,6,5,8}{-2}{-2,0,2,8}若A ={-2020,0,2020},B ={-2020,0,2021},试根据图表中的规律写出A @B =________.11.设S ,P 为两个非空集合,且S P ,P S ,令M =S ∩P ,则与S ∪M 相等的集合是()A .S B .P C .∅D .S ∪P 12.已知集合P ={x |-1≤x ≤1},M ={-a ,a },若P ∪M =P ,则a 的取值范围是()A .{a |-1≤a ≤1}B .{a |-1<a <1}C .{a |-1<a <1,且a ≠0}D .{a |-1≤a ≤1,且a ≠0}13.【多选题】若A ,B ,C 为三个集合,且A ∪B =B ∩C ,则一定有()A .A ⊆B B .B ⊆C C .A ≠C D .B ≠C 14.设集合I ={1,2,3},A 是I 的子集,若把满足M ∪A =I 的集合M 叫做集合A 的“配集”,则当A ={1,2}时,A 的配集的个数是()A .1B .2C .3D .415.设集合S={1,2},A与B是S的两个子集,若A∪B=S,则称(A,B)为集合S的一个分拆,当且仅当A=B时,(A,B)与(B,A)是同一个分拆.那么集合S的不同分拆有________个.16.已知集合A={-1,2},B={x|mx+1>0},若A∪B=B,求实数m的取值范围.教师备选作业1.(高考真题·广东卷)若集合M={x|(x+4)(x+1)=0},N={x|(x-4)(x-1)=0},则M∩N=()A.{1,4}B.{-1,-4}C.{0}D.∅2.设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∪B,则集合∁U(A∩B)中的元素的个数为() A.3B.4C.5D.63.若A∪B=∅,则()A.A=∅,B≠∅B.A≠∅,B=∅C.A=∅,B=∅D.A≠∅,B≠∅4.设U=R,A={x|x>0},B={x|x>1},则A∩(∁U B)=()A.{x|0≤x≤1}B.{x|0<x≤1}C.{x|x<0}D.{x|x>1}5.已知集合A={1,3,5,7,9},B={0,3,6,9,12},则A∩(∁N B)=()A.{1,5,7}B.{3,5,7}C.{1,3,9}D.{1,2,3}6.已知全集R,集合A={x|(x-1)(x+2)(x-2)=0},B={y|y≥0},则A∩(∁R B)为()A.{1,2,-2}B.{1,2}C.{-2}D.{-1,-2}7.集合P={1,4,9,16,…},若a∈P,b∈P,则a⊕b∈P,则运算⊕可能是()A.除法B.加法C.乘法D.减法8.如果U={x|x是小于9的正整数},A={1,2,3,4},B={3,4,5,6},那么(∁U A)∩(∁U B)等于() A.{1,2}B.{3,4}C.{5,6}D.{7,8}9.集合M={x|x=5k-2,k∈Z},P={x|x=5n+3,n∈Z},S={x|x=10m+3,m∈Z}之间的关系是()A.S P M B.S=P MC.S P=M D.P=M S13,18,…},P={…,-7,-2,3,8,13,18,…},S={…,-7,3,13,23,…},故S P=M.故选C. 10.已知集合M={x∈N|x<3},N={0,2,4},则集合M∩N的真子集的个数为________.11.【多选题】已知集合U=R,A={1,2,3,4,5},B={x∈R|x≥3},以下选项属于图中阴影部分所表示的集合中元素的为()A.0B.1C.2D.312.若集合A={1,3,x},B={1,x2},且A∪B={1,3,x},则x=________.13.已知S={a,b},A⊆S,则A与∁S A的所有有序组对共有________组.14.已知集合A={x|x2-px+15=0,x∈Z},B={x|x2-5x+q=0,x∈Z},若A∪B={2,3,5},则A=________,B =________.15.定义集合的商集运算为AB={x|x=mn,m∈A,n∈B},已知集合A={2,4,6},B={x|x=k2-1,k∈A},则集合BA∪B中元素的个数为()A.7B.8C.9D.1016.给定数集A,若对于任意a,b∈A,有a+b∈A,且a-b∈A,则称集合A为闭集合.(1)判断集合A={-4,-2,0,2,4},B={x|x=3k,k∈Z}是否为闭集合,并给出证明;(2)若集合A,B为闭集合,则A∪B是否一定为闭集合?请说明理由.设全集U={1,3,5,7,9},集合A={1,|a-5|,9},∁U A={5,7},则a的值是() A.2B.8C.-2或8D.2或81.(2021·新高考Ⅰ卷)设集合A={x|-2<x<4},B={2,3,4,5},则A∩B=() A.{2}B.{2,3}C.{3,4}D.,3,2)设集合M={x|0<x<4},x13≤x≤5M∩N=()x0<x≤13x13≤x<4C.|4≤x D.{x|0<x≤5}3.(2021·全国乙卷,文)已知全集U={1,2,3,4,5},集合M={1,2},N={3,4},则∁U(M∪N)=() A.{5}B.{1,2}C.{3,4}D.{1,2,3,4}4.(2021·全国乙卷,理)已知集合S={s|s=2n+1,n∈Z},T={t|t=4n+1,n∈Z},则S∩T=()A.∅B.SC.T D.Z5.(2020·北京)已知集合A={-1,0,1,2},B={x|0<x<3},则A∩B=()A.{-1,0,1}B.{0,1}C.{-1,1,2}D.{1,2}6.(2020·课标全国Ⅱ,理)已知集合U={-2,-1,0,1,2,3},A={-1,0,1},B={1,2},则∁U(A∪B)=() A.{-2,3}B.{-2,2,3}C.{-2,-1,0,3}D.{-2,-1,0,2,3}7.(2020·课标全国Ⅲ,理)已知集合A={(x,y)|x,y∈N*,y≥x},B={(x,y)|x+y=8},则A∩B中元素的个数为() A.2B.3C.4D.68.(2020·山东新高考Ⅰ)设集合A={x|1≤x≤3},B={x|2<x<4},则A∪B=()A.{x|2<x≤3}B.{x|2≤x≤3}C.{x|1≤x<4}D.{x|1<x<4}9.(2020·天津)设全集U={-3,-2,-1,0,1,2,3},集合A={-1,0,1,2},B={-3,0,2,3},则A∩(∁U B)=()A.{-3,3}B.{0,2}C.{-1,1}D.{-3,-2,-1,1,3}10.(2020·浙江)已知集合P={x|1<x<4},Q={x|2<x<3},则P∩Q=()A.{x|1<x≤2}B.{x|2<x<3}C.{x|3≤x<4}D.{x|1<x<4}11.(2019·课标全国Ⅰ,文)已知集合U={1,2,3,4,5,6,7},A={2,3,4,5},B={2,3,6,7},则B∩(∁U A)=()A.{1,6}B.{1,7}C.{6,7}D.{1,6,7}12.(2019·天津,理)设集合A={-1,1,2,3,5},B={2,3,4},C={x∈R|1≤x<3},则(A∩C)∪B=() A.{2}B.{2,3}C.{-1,2,3}D.{1,2,3,4}13.(2017·课标全国Ⅱ)设集合A={1,2,4},B={x|x2-4x+m=0}.若A∩B={1},则B=()A.{1,-3}B.{1,0}C.{1,3}D.{1,5}14.(2015·课标全国Ⅰ,文)已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B中元素的个数为()A.5B.4C.3D.215.(2016·天津)已知集合A={1,2,3,4},B={y|y=3x-2,x∈A},则A∩B=()A.{1}B.{4}C.{1,3}D.{1,4}1.(2014·辽宁)已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=()A.{x|x≥0}B.{x|x≤1}C.{x|0≤x≤1}D.{x|0<x<1}2.(2013·山东,文)已知集合A,B均为全集U={1,2,3,4}的子集,且∁U(A∪B)={4},B={1,2},则A∩(∁U B)=() A.{3}B.{4}C.{3,4}D.∅3.(2013·课标全国)已知集合A={1,2,3,4},B={x|x=n2,n∈A},A∩B=()A.{1,4}B.{2,3}C.{9,16}D.{1,2}4.(2013·山东)已知集合A={0,1,2},则集合B={x-y|x∈A,y∈A}中元素的个数是()A.1B.3C.5D.95.(2018·课标全国Ⅰ,文)已知集合A={0,2},B={-2,-1,0,1,2},则A∩B=()A.{0,2}B.{1,2}C.{0}D.{-2,-1,0,1,2}6.(2018·北京,文)已知集合A={x||x|<2},B={-2,0,1,2},则A∩B=()A.{0,1}B.{-1,0,1}C.{-2,0,1,2}D.{-1,0,1,2}7.(2014·重庆,理)设全集U={n∈N|1≤n≤10},A={1,2,3,5,8},B={1,3,5,7,9},则(∁U A)∩B=________.。

高中数学集合、复数必做题型(含解析)

高中数学集合、复数必做题型(含解析)

集合,复数---高考题型一.选择题(共40小题)1.已知集合M={x||x﹣1|≥2},N={﹣1,0,1,2,3},则(∁R M)∩N=()A.{0,1,2}B.{1,2}C.{﹣1,0,1,2}D.{2,3}2.已知集合U={0,1,2,3},S={0,3},T={2},则∁U(S∪T)=()A.{1}B.{0,2}C.{1,2,3}D.{0,1,2,3} 3.设集合A={x|x<2},,则(∁U A)∩B=()A.(1,2)B.[1,2]C.[2,3)D.[2,3]4.设集合M={2m﹣1,m﹣3},若﹣3∈M,则实数m=()A.0B.﹣1C.0或﹣1D.0或15.已知集合M={x|x2+x﹣6<0},集合,则M∪N=()A.{x|﹣3<x<1}B.{x|﹣4<x<1}C.{x|﹣4<x<2}D.{x|﹣3<x<2} 6.设全集U={﹣3,﹣2,﹣1,0,1,2,3},集合A={﹣3,﹣2,2,3},B={﹣3,0,1,2},则(∁U A)∩B=()A.∅B.{1}C.{0,1}D.{0,1,2} 7.已知集合A={x|﹣1≤2x﹣1≤3},B={x|x2﹣3x<0},则A∪B=()A.(0,2]B.[0,2]C.[0,3)D.[0,3]8.设集合A={x|0<x≤1},B={x|x2﹣2x≤0},则A∩B=()A.[0,+∞)B.[0,1]C.(0,1]D.[0,1)9.已知集合A={x|x2≤4},集合B={x|x>0},则A∪B=()A.(﹣∞,﹣2]B.[﹣2,0)C.[﹣2,+∞)D.(0,2]10.已知集合A={x|x2﹣2<0},且a∈A,则a可以为()A.﹣2B.﹣1C.D.11.设集合A={x|1<2x<8},B={x||x+1|≥3},则A∩B=()A.(0,2]B.[2,3)C.(2,3]D.(0,3)12.已知集合,N={x||x﹣1|≤2},则M∩N=()A.[﹣1,3]B.[1,2]C.[﹣1,2)D.(2,3]13.若集合A={x|2x2+3x﹣9≤0},B={x|2x>﹣3,x∈Z},则A∩B=()A.{﹣3,﹣2,﹣1,0,1}B.{﹣2,﹣1,0}C.{﹣1,0,1}D.{﹣2,﹣1,0,1}14.已知集合A={x∈Z|x2﹣2x﹣3<0},则集合A的子集个数为()A.3B.4C.8D.16 15.若集合M={x|x2﹣3x﹣4≤0},N={x|﹣2≤x≤2},则M∪N=()A.[﹣1,2]B.[﹣1,4]C.[﹣2,2]D.[﹣2,4] 16.已知集合A={x∈Z|x2﹣2x﹣3<0},B={﹣2,﹣1,0,1},则A∪B=()A.{﹣2,﹣1}B.{﹣2,﹣1,0,1,2} C.{﹣2,﹣1,0}D.{0,1}17.已知集合,B={x||x﹣1|<2},则A∩B=()A.[2,3]B.[2,3)C.(2,3)D.(2,3] 18.已知集合A={x|﹣5<x<2},B={x||x|<3},则A∪B=()A.(﹣∞,2)B.(﹣∞,3)C.(﹣3,2)D.(﹣5,3)19.已知集合A={x|﹣2≤x≤2},B={x|0<x<2},则()A.A⊆B B.B⊆A C.A∪B=R D.A∩B=∅20.已知集合A={x|≥1},B={x|﹣2<x<1},则A∩(∁R B)=()A.(﹣2,2)B.[﹣1,1]C.(﹣∞,﹣2]∪[2,+∞)D.(﹣∞,﹣1)∪(1,+∞)21.设i是虚数单位,复数,则在复平面内z所对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限22.设复数z=1﹣i,则=()A.B.C.D.23.已知i为虚数单位,则复数在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限24.若复数z满足z•(2+3i)=3﹣2i,其中i为虚数单位,则|z|=()A.0B.﹣1C.D.1 25.复数的共轭复数是()A.i+2B.i﹣2C.﹣i﹣2D.2﹣i26.若复数z=2﹣i,则i•z的虚部是()A.2i B.i C.2D.127.若复数z=i(i﹣1),则|z﹣1|=()A.﹣2﹣i B.﹣i C.D.528.已知复数z满足z=(2+i)(1+3i)(i为虚数单位),则复数z的共轭复数的虚部为()A.﹣7i B.7i C.﹣7D.﹣129.已知a,b∈R,i为虚数单位,若,则|a+bi|=()A.3B.5C.9D.230.已知a,b∈R,a+i与3+bi互为共轭复数,则|a﹣bi|=()A.2B.3C.D.431.复数(2﹣3i)i的实部为()A.﹣2B.2C.﹣3D.332.设复数z在复平面内对应的点为(2,5),则1+z在复平面内对应的点为()A.(3,﹣5)B.(3,5)C.(﹣3,﹣5)D.(﹣3,5)33.已知复数(为虚数单位),则|z|=()A.2B.C.D.34.若复数z满足,则复数z的虚部为()A.B.C.D.35.复平面内表示复数的点位于()A.第一象限B.第二象限C.第三象限D.第四象限36.已知z+i=zi,则|z|=()A.B.0C.D.137.已知,i为虚数单位,则z=()A.﹣2+i B.2﹣i C.2+i D.﹣2﹣i38.已知复数,则=()A.B.C.D.39.若(z+1)i=z,则z2+i=()A.B.C.D.40.已知复数z满足(1﹣i)(z+4i)=2i,则z的虚部为()A.﹣3B.﹣3i C.﹣1D.﹣i集合,复数---高考题型参考答案与试题解析一.选择题(共40小题)1.已知集合M={x||x﹣1|≥2},N={﹣1,0,1,2,3},则(∁R M)∩N=()A.{0,1,2}B.{1,2}C.{﹣1,0,1,2}D.{2,3}【解答】解:集合M={x||x﹣1|≥2}={x|x≥3或x≤﹣1},则∁R M={x|﹣1<x<3},又N={﹣1,0,1,2,3},则(∁R M)∩N={0,1,2}.故选:A.2.已知集合U={0,1,2,3},S={0,3},T={2},则∁U(S∪T)=()A.{1}B.{0,2}C.{1,2,3}D.{0,1,2,3}【解答】解:U={0,1,2,3},S={0,3},T={2},根据集合补集的概念和运算得:S∪T={0,2,3},∁U(S∪T)={1}.故选:A.3.设集合A={x|x<2},,则(∁U A)∩B=()A.(1,2)B.[1,2]C.[2,3)D.[2,3]【解答】解:集合A={x|x<2},={x|1≤x<3},∴∁U A={x|x≥2},(∁U A)∩B={x|2≤x<3}.故选:C.4.设集合M={2m﹣1,m﹣3},若﹣3∈M,则实数m=()A.0B.﹣1C.0或﹣1D.0或1【解答】解:设集合M={2m﹣1,m﹣3},∵﹣3∈M,∴2m﹣1=﹣3或m﹣3=﹣3,当2m﹣1=﹣3时,m=﹣1,此时M={﹣3,﹣4};当m﹣3=﹣3时,m=0,此时M={﹣3,﹣1};所以m=﹣1或0.故选:C.5.已知集合M={x|x2+x﹣6<0},集合,则M∪N=()A.{x|﹣3<x<1}B.{x|﹣4<x<1}C.{x|﹣4<x<2}D.{x|﹣3<x<2}【解答】解:集合M={x|x2+x﹣6<0}={x|﹣3<x<2},集合={x|﹣4<x<1},则M∪N={x|﹣4<x<2}.故选:C.6.设全集U={﹣3,﹣2,﹣1,0,1,2,3},集合A={﹣3,﹣2,2,3},B={﹣3,0,1,2},则(∁U A)∩B=()A.∅B.{1}C.{0,1}D.{0,1,2}【解答】解:∵U={﹣3,﹣2,﹣1,0,1,2,3},A={﹣3,﹣2,2,3},B={﹣3,0,1,2},∴∁U A={﹣1,0,1},(∁U A)∩B={0,1}.故选:C.7.已知集合A={x|﹣1≤2x﹣1≤3},B={x|x2﹣3x<0},则A∪B=()A.(0,2]B.[0,2]C.[0,3)D.[0,3]【解答】解:因为A={x|﹣1≤2x﹣1≤3}={x|0≤x≤2}=[0,2],B={x|x2﹣3x<0}={x|0<x<3}=(0,3),所以A∪B=[0,2]∪(0,3)=[0,3).故选:C.8.设集合A={x|0<x≤1},B={x|x2﹣2x≤0},则A∩B=()A.[0,+∞)B.[0,1]C.(0,1]D.[0,1)【解答】解:x2﹣2x≤0,x(x﹣2)≤0,∴0≤x≤2,B=[0,2],又A=(0,1],则A∩B=(0,1].故选:C.9.已知集合A={x|x2≤4},集合B={x|x>0},则A∪B=()A.(﹣∞,﹣2]B.[﹣2,0)C.[﹣2,+∞)D.(0,2]【解答】解:由题意A={x|x2≤4}={x|﹣2≤x≤2},B={x|x>0},所以A∪B={x|﹣2≤x≤2}∪{x|x>0}={x|x≥﹣2}=[﹣2,+∞).故选:C.A.﹣2B.﹣1C.D.【解答】解:由题意可得集合A={x|﹣<x<},因为a∈A,所以﹣<a<,故选项B正确,ACD错误.故选:B.11.设集合A={x|1<2x<8},B={x||x+1|≥3},则A∩B=()A.(0,2]B.[2,3)C.(2,3]D.(0,3)【解答】解:因为1<2x<8⇒20<2x<23,所以0<x<3,即A=(0,3),且|x+1|≥3⇒x+1≥3或x+1≤﹣3,所以x≥2或x≤﹣4,即B=(﹣∞,﹣4]∪[2,+∞),所以A∩B=[2,3).故选:B.12.已知集合,N={x||x﹣1|≤2},则M∩N=()A.[﹣1,3]B.[1,2]C.[﹣1,2)D.(2,3]【解答】解:∵,N={x|﹣1≤x≤3},∴M∩N=(2,3].故选:D.13.若集合A={x|2x2+3x﹣9≤0},B={x|2x>﹣3,x∈Z},则A∩B=()A.{﹣3,﹣2,﹣1,0,1}B.{﹣2,﹣1,0}C.{﹣1,0,1}D.{﹣2,﹣1,0,1}【解答】解:由2x2+3x﹣9≤0解得,所以,因为B={x|2x>﹣3,x∈Z},所以,所以A∩B={﹣1,0,1},故选:C.A.3B.4C.8D.16【解答】解:∵集合A={x|x∈Z|x2﹣2x﹣3<0}={x∈Z|﹣1<x<3}={0,1,2},∴集合A的子集个数为23=8.故选:C.15.若集合M={x|x2﹣3x﹣4≤0},N={x|﹣2≤x≤2},则M∪N=()A.[﹣1,2]B.[﹣1,4]C.[﹣2,2]D.[﹣2,4]【解答】解:∵M={x|﹣1≤x≤4},N={x|﹣2≤x≤2},∴M∪N=[﹣2,4].故选:D.16.已知集合A={x∈Z|x2﹣2x﹣3<0},B={﹣2,﹣1,0,1},则A∪B=()A.{﹣2,﹣1}B.{﹣2,﹣1,0,1,2} C.{﹣2,﹣1,0}D.{0,1}【解答】解:∵B={﹣2,﹣1,0,1},集合A={x∈Z|x2﹣2x﹣3<0}={0,1,2},∴A∪B={﹣2,﹣1,0,1,2}.故选:B.17.已知集合,B={x||x﹣1|<2},则A∩B=()A.[2,3]B.[2,3)C.(2,3)D.(2,3]【解答】解:∵,B={x|﹣1<x<3},∴A∩B=(2,3).故选:C.18.已知集合A={x|﹣5<x<2},B={x||x|<3},则A∪B=()A.(﹣∞,2)B.(﹣∞,3)C.(﹣3,2)D.(﹣5,3)【解答】解:∵A={x|﹣5<x<2},B={x|﹣3<x<3},∴A∪B=(﹣5,3).故选:D.19.已知集合A={x|﹣2≤x≤2},B={x|0<x<2},则()A.A⊆B B.B⊆A C.A∪B=R D.A∩B=∅【解答】解:∵集合A={x|﹣2≤x≤2},B={x|0<x<2},∴B⊆A,A∪B=A,A∩B=B,因此选项B正确,选项A,C,D错误;故选:B.20.已知集合A={x|≥1},B={x|﹣2<x<1},则A∩(∁R B)=()A.(﹣2,2)B.[﹣1,1]C.(﹣∞,﹣2]∪[2,+∞)D.(﹣∞,﹣1)∪(1,+∞)【解答】解:A={x|≥1}={x|x<﹣1或x≥2},B={x|﹣2<x<1},则∁R B={x|x≥1或x≤﹣2},故A∩(∁R B)=(﹣∞,﹣2]∪[2,+∞).故选:C.21.设i是虚数单位,复数,则在复平面内z所对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:=,故在复平面内z所对应的点(﹣1,1)在第二象限.故选:B.22.设复数z=1﹣i,则=()A.B.C.D.【解答】解:由题意,,故.故选:B.23.已知i为虚数单位,则复数在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:因为,所以,复数在复平面内对应的点的坐标为,位于第二象限.故选:B.24.若复数z满足z•(2+3i)=3﹣2i,其中i为虚数单位,则|z|=()A.0B.﹣1C.D.1【解答】解:z•(2+3i)=3﹣2i,则z=,故|z|==.故选:D.25.复数的共轭复数是()A.i+2B.i﹣2C.﹣i﹣2D.2﹣i【解答】解:∵复数==﹣2﹣i,∴共轭复数是﹣2+i故选:B.26.若复数z=2﹣i,则i•z的虚部是()A.2i B.i C.2D.1【解答】解:z=2﹣i,则iz=i(2﹣i)=1+2i,其虚部为2.故选:C.27.若复数z=i(i﹣1),则|z﹣1|=()A.﹣2﹣i B.﹣i C.D.5【解答】解:z=i(i﹣1)=﹣1﹣i,则z﹣1=﹣2﹣i,故|z﹣1|=|2﹣i|=.故选:C.28.已知复数z满足z=(2+i)(1+3i)(i为虚数单位),则复数z的共轭复数的虚部为()A.﹣7i B.7i C.﹣7D.﹣1【解答】解:因为z=(2+i)(1+3i)=﹣1+7i,所以,所以复数z的共轭复数的虚部为﹣7.故选:C.29.已知a,b∈R,i为虚数单位,若,则|a+bi|=()A.3B.5C.9D.2【解答】解:若,则a+bi=(2+i)(1﹣2i)=4﹣3i,故|a+bi|==5.故选:B.30.已知a,b∈R,a+i与3+bi互为共轭复数,则|a﹣bi|=()A.2B.3C.D.4【解答】解:∵a+i与3+bi互为共轭复数,∴a=3,b=﹣1,∴|a﹣bi|=|3+i|==.故选:C.31.复数(2﹣3i)i的实部为()A.﹣2B.2C.﹣3D.3【解答】解:(2﹣3i)i=3+2i,其实部为3.故选:D.32.设复数z在复平面内对应的点为(2,5),则1+z在复平面内对应的点为()A.(3,﹣5)B.(3,5)C.(﹣3,﹣5)D.(﹣3,5)【解答】解:复数z在复平面内对应的点为(2,5),则z=2+5i,故1+z=1+2+5i=3+5i,其在复平面内对应的点为(3,5).故选:B.33.已知复数(为虚数单位),则|z|=()A.2B.C.D.【解答】解:,则=.故选:D.34.若复数z满足,则复数z的虚部为()A.B.C.D.【解答】解:设z=a+bi(a,b∈R),则,∵,∴a﹣bi﹣3i=a+bi,即﹣b﹣3=b,解得b=.故选:B.35.复平面内表示复数的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:=﹣1﹣i,则z在复平面对应的点(﹣1,﹣1)位于第三象限.故选:C.36.已知z+i=zi,则|z|=()A.B.0C.D.1【解答】解:z+i=zi,则z(1﹣i)=﹣i,故z=,所以|z|=.故选:A.37.已知,i为虚数单位,则z=()A.﹣2+i B.2﹣i C.2+i D.﹣2﹣i 【解答】解:,则z=(1﹣2i)i=2+i.故选:C.38.已知复数,则=()A.B.C.D.【解答】解:==,则.故选:D.39.若(z+1)i=z,则z2+i=()A.B.C.D.【解答】解:由(z+1)i=z得:(1﹣i)z=i,即,所以.故选:D.40.已知复数z满足(1﹣i)(z+4i)=2i,则z的虚部为()A.﹣3B.﹣3i C.﹣1D.﹣i【解答】解:因为,所以z的虚部为﹣3.故选:A.。

高考数学模拟复习试卷试题模拟卷第01节 集合的概念及其基本运算1 3

高考数学模拟复习试卷试题模拟卷第01节 集合的概念及其基本运算1 3

高考模拟复习试卷试题模拟卷第01节 集合的概念及其基本运算A 基础巩固训练1.【高考新课标1,文1】已知集合{32,},{6,8,10,12,14}A x x n n N B ==+∈=,则集合A B 中的元素个数为( )(A ) 5 (B )4 (C )3 (D )22.【高考浙江,文1】已知集合{}223x x x P =-≥,{}Q 24x x =<<,则Q P =()A .[)3,4B .(]2,3C .()1,2-D .(]1,3- 3.【福州市三中模拟】已知集合,,若,则实数的取值范围是() A .B .C .D .4.【冀州中学高三上学期第一次月考,文1】若集合{}0P y y =≥,P Q Q =,则集合Q 不可能是( )A .∅B .{}2,R y y x x =∈C .{}2,R xy y x =∈D .{}2log ,0y y x x =>5.【重点中学高三上学期第三次月考,理1】已知全集{}1,2,3,4,5,6,7,8,9U = 集合{}1,2,3,4,5,6A = 集合{}3,4,5,6,7,8B =,则集合B C A C U U ⋂为( )A . {}3,4,5,6B . {}1,2,7,8,9C . {}1,2,3,4,5,6,7,8D . {}9 B 能力提升训练1.定义集合A 与B 的运算“*”为:{A B x x A *=∈或x B ∈,但}x A B ∉.设X 是偶数集,{1,2,3,4,5}Y =,则()X Y Y **=( ) A.X B.Y C.XY D.X Y2.下列四个集合中,是空集的是( )A .{}3|3x x +=B .22{|}x y y x x y R =∈(,)﹣,, C .21{|0}x x x x R +=∈﹣, D .2{|}0x x ≤3.设集合{}1,0,2A =-,集合{}2B x x A x A =-∈-∉且,则B =( ) (A ){}1 (B ){}2- (C ){}1,2-- (D ){}1,0-4.【·海安中学模拟】已知集合A ={(x ,y)|x2+y2=1},B ={(x ,y)||x|+|y|=λ},若A ∩B ≠∅,则实数λ的取值范围是________.5.已知集合A ={x|4≤x2≤16},B =[a ,b],若A ⊆B ,则实数a -b 的取值范围是( ) A. (-∞,-2]B.[)+∞-,2 C. (-∞,2]D.[)+∞,2 C 思维拓展训练1.【湖北八校联考文】已知M=3(,)|3,{(,)|20}2y x y N x y ax y a x -⎧⎫==++=⎨⎬-⎩⎭且M N =∅,则a =( )A .6或2B .6C .2或6D .22.【广东汕头市二模】设非空集合M 同时满足下列两个条件: ①{}1,2,3,,1M n ⊆⋅⋅⋅⋅⋅⋅-;②若a M ∈,则n a M -∈,(2,)n n N +≥∈.则下列结论正确的是( ) A .若n 为奇数,则集合M 的个数为122n - B .若n 为奇数,则集合M 的个数为122n +C .若n 为偶数,则集合M 的个数为22n D .若n 为偶数,则集合M 的个数为221n - 3.设数集M 同时满足条件①M 中不含元素1,0,1-,②若a M ∈,则11aM a+∈-. 则下列结论正确的是 ( )(A )集合M 中至多有2个元素; (B )集合M 中至多有3个元素; (C )集合M 中有且仅有4个元素; (D )集合M 中有无穷多个元素. 4.【其中总动员】设集合(){}(){},|||||1,,()()0A x y x y B x y y x y x =+≤=-+≤,M AB =,若动点(,)P x y M ∈,则22(1)x y +-的取值范围是( )A .15[,]22B .25[,]22 C .110[,]22 D .210[,]225.已知集合()(){},M x y y f x ==,若对于任意()11,x y M∈,存在()22,x y M ∈,使得12120x x y y +=成立,则称集合M 是“垂直对点集”.给出下列四个集合:①()1,M x y y x ⎧⎫==⎨⎬⎩⎭; ②(){},sin 1M x y y x ==+; 则以下选项正确的是()(A)①是“垂直对点集” ,②不是“垂直对点集” (B)①不是“垂直对点集”,②是“垂直对点集” (C)①②都是“垂直对点集” (D) ①②都不是“垂直对点集”高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。

2019年高考集合汇总(有答案)

2019年高考集合汇总(有答案)

集合专题复习(2019年高考题)1.(2019-卷1文)已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则C U B A IA. {}1,6B. {}1,7C. {}6,7D. {}1,6,7【答案】C【解析】【分析】先求A C U ,再求A C B U I .【详解】由已知得{}1,6,7U C A =,所以U B C A ⋂={6,7},故选C .【点睛】本题主要考查交集、补集的运算.渗透了直观想象素养.使用补集思想得出答案.2.(2019-卷1理)已知集合{}}242{60M x x N x x x =-<<=--<,,则M N ⋂= A. }{43x x -<< B. }{42x x -<<- C. }{22x x -<< D. }{23x x <<【答案】C 【解析】【分析】本题考查集合的交集和一元二次不等式的解法,渗透了数学运算素养.采取数轴法,利用数形结合的思想解题.【详解】由题意得,{}{}42,23M x x N x x =-<<=-<<,则{}22M N x x ⋂=-<<.故选C .【点睛】不能领会交集的含义易致误,区分交集与并集的不同,交集取公共部分,并集包括二者部分.3.(2019-卷2文)已知集合={|1}A x x >-,{|2}B x x =<,则A ∩B =A. (–1,+∞)B. (–∞,2)C. (–1,2)D. ∅【答案】C【解析】【分析】本题借助于数轴,根据交集的定义可得.【详解】由题知,(1,2)A B =-I ,故选C .【点睛】本题主要考查交集运算,容易题,注重了基础知识、基本计算能力的考查.易错点是理解集合的概念及交集概念有误,不能借助数轴解题.4.(2019-卷2理)设集合A ={x |x 2-5x +6>0},B ={ x |x -1<0},则A ∩B =A. (-∞,1)B. (-2,1)C. (-3,-1)D. (3,+∞) 【答案】A【解析】【分析】先求出集合A ,再求出交集.【详解】由题意得,{}{}1,32<=><=x x B x x x A 或,则{}1A B x x ⋂=<.故选A .【点睛】本题考点为集合的运算,为基础题目.5.(2019-卷3文理)已知集合{}{}21,0,1,21A B x x ,=-=≤,则A B ⋂=( ) A. {}1,0,1-B. {}0,1C. {}1,1-D. {}0,1,2【答案】A 【解析】【分析】先求出集合B 再求出交集.【详解】21,x ≤∴Q 11x -≤≤,∴{}11B x x =-≤≤,则{}1,0,1A B ⋂=-,故选A .【点睛】本题考查了集合交集的求法,是基础题.6.(2019-北京卷文)已知集合A ={x |–1<x <2},B ={x |x >1},则A ∪B =A. (–1,1)B. (1,2)C. (–1,+∞)D. (1,+∞)【答案】C【解析】【分析】根据并集的求法直接求出结果.【详解】∵ A ={x |–1<x <2},B ={x |x >1},∴(1,)A B ⋃=+∞ ,故选C.【点睛】考查并集的求法,属于基础题.7.(2019-天津卷文理)设集合{}1,1,2,3,5A =-,{}2,3,4B = ,{}31<≤∈=x R x C ,则()A C B =I U A. {2} B. {2,3} C. {-1,2,3} D. {1,2,3,4}【答案】D【解析】【分析】先求A B ⋂,再求()A C B I U 。

高考数学《集合》专项练习(选择题含答案)(汇编)

高考数学《集合》专项练习(选择题含答案)(汇编)

《集合》专项练习参考答案1.(2016全国Ⅰ卷,文1,5分)设集合,,则A ∩B =( ) (A ){1,3} (B ){3,5} (C ){5,7} (D ){1,7}【解析】集合A 与集合B 的公共元素有3,5,故}5,3{=B A ,故选B .2.(2016全国Ⅱ卷,文1,5分)已知集合,则A ∩B =( ) (A ) (B ) (C ) (D ) 【解析】由29x <得33x -<<,所以{|33}B x x =-<<,因为{1,2,3}A =,所以{1,2}A B =,故选D .3.(2016全国Ⅲ卷,文1,5分)设集合{0,2,4,6,8,10},{4,8}A B ==,则A B =( )(A ){48}, (B ){026},, (C ){02610},,, (D ){0246810},,,,, 【解析】由补集的概念,得{0,2,6,10}AB =,故选C .4.(2016全国Ⅰ卷,理1,5分)设集合,, 则A ∩B =( ) (A ) (B ) (C ) (D )【解析】对于集合A :解方程x 2-4x +3=0得,x 1=1,x 2=3,所以A ={x |1<x <3}(大于取两边,小于取中间).对于集合B :2x -3>0,解得x >23.3{|3}2A B x x ∴=<<.选D .5.2016全国Ⅱ卷,理1,5分)已知(3)(1)i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是( )(A )(31)-, (B )(13)-,(C )(1,)∞+(D )(3)∞--, 【解析】要使复数z 对应的点在第四象限,应满足3010m m +>⎧⎨-<⎩,解得31m -<<,故选A .6.(2016全国Ⅲ卷,理1,5分)设集合{}{}(x 2)(x 3)0,T 0S x x x =--≥=>,则S ∩T =( )(A) [2,3] (B)(-∞ ,2] [3,+∞)(C) [3,+∞) (D)(0,2] [3,+∞)7.(2016北京,文1,5分)已知集合{|24},{|3>5}A x x B x x x =<<=<或,则A B =( ) (A ){|2<<5}x x (B ){|<45}x x x >或 (C ){|2<<3}x x (D ){|<25}x x x >或【解析】画数轴得,,所以,故选C .8.(2016北京,理1,5分)已知集合,,则( ) (A )(B )(C )(D )【解析一】对于集合A :(解绝对值不等的常用方法是两边同时平方)|x |<2,两边同时平方{1,3,5,7}A ={|25}B x x =≤≤{123}A =,,,2{|9}B x x =<{210123}--,,,,,{21012}--,,,,{123},,{12},2{|430}A x x x =-+<{|230}B x x =->3(3,)2--3(3,)2-3(1,)23(,3)2(2,3)AB ={|||2}A x x =<{1,0,1,2,3}B =-A B ={0,1}{0,1,2}{1,0,1}-{1,0,1,2}-得x 2<4,解方程x 2=4得,x 1=-2,x 2=2,所以A ={x |-2<x <2}(大于取两边,小于取中间).所以A ∩B ={-1,0,1}.故选C .【解析二】对于集合A :(绝对值不等式解法二:|x |<2⇔-2<x <2).A ={x |-2<x <2}.所以A ∩B ={-1,0,1}.故选C . 9.(2016上海,文理1,5分)设x ∈R ,则不等式31x -<的解集为_______. 【答案】(24),【解析】试题分析:421311|3|<<⇔<-<-⇔<-x x x ,故不等式1|3|<-x 的解集为)4,2(.【解析一】对不等式31x -<:(解绝对值不等的常用方法是两边同时平方)|x -3|<1,两边同时平方得(x -3)2<1,解方程(x -3)2=1得,x 1=2,x 2=4,所以A ={x |2<x <4}. 【解析二】对于集合A :(绝对值不等式解法二:|x -3|<1⇔-1<x -3<1,解得2<x <4).A ={x |2<x <4}. 10.(2016山东,文1,5分)设集合{1,2,3,4,5,6},{1,3,5},{3,4,5}U A B ===,则()U A B =(A ){2,6} (B ){3,6} (C ){1,3,4,5} (D ){1,2,4,6} 【答案】A11.(2016山东,理2,5分)设集合2{|2,},{|10},x A y y x B x x ==∈=-<R 则A ∪B =( )(A )(1,1)- (B )(0,1) (C )(1,)-+∞ (D )(0,)+∞ 【答案】C【解析】对于集合A :∵y =2x >0,∴A ={y |y >0}.对于集合B :∵x 2-1=0,解得x =±1,∴B ={x |-1<x <1}(大于取两边,小于取中间).∴A ∪B =(1,)-+∞12.(2016四川,文2,5分)设集合A ={x |1≤x ≤5},Z 为整数集,则集合A∩Z 中元素的个数是(A)6 (B)5 (C)4 (D)3 【答案】B【解析】{1,2,3,4,5}A =Z ,由Z 为整数集得Z ={…-3,-2,-1,0,1,2,3…}.故A Z 中元素的个数为5,选B .13.(2016四川,理1,5分)设集合{|22}A x x =-≤≤,Z 为整数集,则A Z 中元素的个数是( )(A )3(B )4(C )5(D )6 【答案】C【解析】由题意,知{2,1,0,1,2}A =--Z ,由Z 为整数集得Z ={…-3,-2,-1,0,1,2,3…}.故AZ 中元素的个数为5,选C .14.(2016天津,文1,5分)已知集合}3,2,1{=A ,},12|{A x x y y B ∈-==,则AB =(A )}3,1{ (B )}2,1{ (C )}3,2{ (D )}3,2,1{【答案】A【解析】∵},12|{A x x y y B ∈-==,∴当x =1时,y =2×1-1=1;当x =2时,y =2×2-1=3;当x =3时,y =2×3-1=5.∴{1,3,5},{1,3}B A B ==.选A .15.(2016天津,理1,5分)已知集合}{4,3,2,1=A ,}{A x x y y B ∈-==,23,则=B A (A )}{1 (B )}{4 (C )}{3,1 (D )}{4,1 【答案】D【解析】∵}{A x x y y B ∈-==,23,∴当x =1时,y =3×1-2=1;当x =2时,y =3×2-2=4;当x =3时,y =3×3-2=7;当x =4时,y =4×3-2=10.∴{14710}{14}B =A B =,,,,,.选D .16.(2016浙江,文1,5分)已知全集U ={1,2,3,4,5,6},集合P ={1,3,5},Q ={1,2,4},则U P Q ()=( ) A .{1} B .{3,5} C .{1,2,4,6} D .{1,2,3,4,5} 【答案】C17.(2016浙江,理1,5分)已知集合P ={x ∈R |1≤x ≤3},Q ={x ∈R |x 2≥4},则P ∪(C R Q )=( )A .[2,3]B .(-2,3]C .[1,2)D .(−∞,−2]∪[1,+∞)【答案】B【解析】对于集合Q :∵x 2=4,解得x =±2,∴B ={x |x ≤-2或x ≥2}(大于取两边,小于取中间). 18.(2016江苏,文理1,5分)已知集合{1,2,3,6},{|23},A B x x =-=-<<则=A B _______. 【答案】{}1,2- 【解析】{}{}{}1,2,3,6231,2AB x x =--<<=-.故答案应填:{}1,2-19.(2015全国Ⅰ卷,文1,5分)已知集合A ={x |x =3n +2,n ∈N},B ={6,8,10,12,14},则集合A∩B 中元素的个数为( ) A .5 B .4 C .3 D .2 【答案】D【解析】由已知得A ={2,5,8,11,14,17,…},又B ={6,8,10,12,14},所以A∩B ={8,14}. 20.(2015全国Ⅱ卷,文1,5分)已知集合A ={x |-1<x <2},B ={x |0<x <3},则A ∪B =( )A .(-1,3)B .(-1,0)C .(0,2)D .(2,3) 【答案】A【解析】因为A =(-1,2),B =(0,3),所以A ∪B =(-1,3),故选A . 21.(2014全国Ⅰ卷,文1,5分)已知集合M ={x |-1<x <3},N ={x |-2<x <1},则M∩N =( )A .(-2,1)B .(-1,1)C .(1,3)D .(-2,3) 【答案】B【解析】M∩N ={x |-1<x <3}∩{x |-2<x <1}={x |-1<x <1}. 22.(2014全国Ⅱ卷,文1,5分)已知集合A ={-2,0,2},B ={x |x 2-x -2=0},则A∩B =( )A .∅B .{2}C .{0}D .{-2}【答案】B【解析】∵集合A ={-2,0,2},B ={x |x 2-x -2=0}={2,-1},∴A∩B ={2},故选B . 23.(2013全国Ⅰ卷,文1,5分)已知集合A ={1,2,3,4},B ={x |x =n 2,n ∈A},则A∩B=( )A .{1,4}B .{2,3}C .{9,16}D .{1,2} 【答案】A【解析】∵B ={x |x =n 2,n ∈A}={1,4,9,16},∴A∩B ={1,4},故选A . 24.(2013全国Ⅱ卷,文1,5分)已知集合M ={x |-3<x <1},N ={-3,-2,-1,0,1},则M∩N =( )A .{-2,-1,0,1}B .{-3,-2,-1,0}C .{-2,-1,0}D .{-3,-2,-1} 【答案】C【解析】由题意得M∩N ={-2,-1,0}.选C . 25.(2012全国卷,文1,5分)已知集合A ={x |x 2-x -2<0},B ={x |-1<x <1},则( )(A )A ⊂≠B (B )B ⊂≠A (C )A =B (D )A∩B =∅【答案】B【解析】A ={x |-1<x <2},B ={x |-1<x <1},则B ⊂≠A ,故选B . 26.(2011全国卷,文1,5分)已知集合M ={0,1,2,3,4},N ={1,3,5},P =M∩N ,则P 的子集共有( )A .2个B .4个C .6个D .8个【答案】B【解析】由题意得P =M∩N ={1,3},∴P 的子集为⌀,{1},{3},{1,3},共4个.27.(2010全国卷,文1,5分)已知集合,则 (A )(0,2)(B )[0,2](C )|0,2|(D )|0,1,2|【解析】,,选D28.(2009全国卷,文2,5分)设集合A ={4,5,7,9},B ={3,4,7,8,9},全集,则集合中的元素共有( )(A)3个 (B )4个 (C )5个 (D )6个【解析】,.故选A .29.(2008全国卷,文1,5分)已知集合M ={x |(x +2)(x -1)<0},N ={x |x +1<0},则M∩N =( )A.(-1,1)B.(-2,1)C.(-2,-1)D.(1,2) 【答案】C【解析】易求得{}{}|21,|1=-<<=<-M x x N x x ∴{}|21=-<<-M N x x 30.(2007全国卷,文1,5分)设{|210}S x x =+>,{|350}T x x =-<,则S T ⋂=2,,4,|A x x x R B x x Z =≤∈=∈A B ={}|22,{0,1,2}A x x B =-≤≤={}0,1,2AB =U A B =()UA B {3,4,5,7,8,9}A B ={4,7,9}(){3,5,8}UA B A B =∴=A.∅B.1{|}2x x<C.5{|}3x x>D.15{|}23x x-<<【答案】D.。

2020高中数学《集合》复习测试题 (302).pdf

2020高中数学《集合》复习测试题 (302).pdf

高中数学《集合》测试题学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.设全集为R , 函数2()1f x x =−的定义域为M , 则C M R 为(A) [-1,1] (B) (-1,1)(C) ,1][1,)(∞−⋃+∞− (D) ,1)(1,)(∞−⋃+∞−(2013年高考陕西卷(理))2.已知集合M={1,2,3},N={2,3,4},则A .M N ⊆ B.N M ⊆ C .{2,3}M N ⋂= D.{1,4}M N ⋃ (2010湖南理数) 3.已知A ,B 均为集合U={1,3,5,7,9}的子集,且A ∩B={3},u ðB ∩A={9},则A=(A ){1,3} (B){3,7,9} (C){3,5,9} (D){3,9}(2010辽宁理数)1.4.已知U =R ,{}|0A x x =>,{}|1B x x =−≤,则()()U U A B B A 痧=( )(A )∅ (B ){}|0x x ≤(C ){}|1x x >−(D ){}|01x x x >≤−或(2008浙江理) (2)5.设集合 M ={x|260x x +−<},N ={x|1≤x ≤3},则M ∩N =(A )[1,2) (B)[1,2] (C)( 2,3] (D)[2,3] (2011年高考山东卷理科1)6.已知集合M={x|-3<x ≤5},N={x|-5<x<5},则M ∩N=(A) {x|-5<x <5} (B) {x|-3<x <5}(C) {x|-5<x ≤5} (D) {x|-3<x ≤5}(2009辽宁卷理)7.设全集U R =,下列集合运算结果为R 的是( )(A)u Z N ð (B)u N N ð (C)()u u ∅痧 (D){0}u ð (2013年上海市春季高考数学试卷(含答案))8.已知集合{}2{|3},|log 1M x x N x x =<=>,则M N =( D )(A )∅ (B ){}|03x x << (C ){}|13x x << (D ){}|23x x <<(2006全国2文)9.设集合A ={3,5,6,8},集合B ={4,5, 7,8},则A ∩B 等于(A ){3,4,5,6,7,8} (B ){3,6} (C ) {4,7} (D ){5,8}(2010四川文数)(1)二、填空题10.已知全集U R =,集合{|13}A x x =−≤≤,集合2{|log (2)1}B x x =−<,则U A C B =_____11.已知集合{}{}2|320,|1M x x x N x x =+−>=≥,则M N = .12.已知集合M={x |1−x x >2},N={x ||2x -1|<2},则M∩N= . 13.设A ,B 是非空集合,定义{}B A x B A x x B A ⋂∉⋃∈=⨯,。

2022年高考真题—数学(新高考Ⅰ卷)【含答案及解析】

2022年高考真题—数学(新高考Ⅰ卷)【含答案及解析】

2022年普通⾼等学校招⽣全国统⼀考试数学一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{4},{31}M x N x x =<=³∣,则M N =I ( )A.{}02x x £< B.123xx ìü£<íýîþC.{}316x x £< D.1163x x ìü£<íýîþ2.若i(1)1z -=,则z z +=( )A.2- B.1- C. 1D. 23.在ABC V 中,点D 在边AB 上,2BD DA =.记CA m CD n ==u u u r u u u r r r ,,则CB u u u r =( )A.32m n-r rB.23m n-+r rC.32m n+r rD.23m n+r r 4.南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔1485m .时,相应水面的面积为21400km .;水位为海拔1575m .时,相应水面的面积为21800km .,将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔1485m .上升到1575m . 2.65»)( )A.931.010m ´ B.931.210m ´ C.931.410m ´ D.931.610m ´5.从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为( )A.16B.13C.12D.236.记函数()sin (0)4f x x b p w w æö=++>ç÷èø的最小正周期为T .若23T p p <<,且()y f x =的图象关于点3,22p æöç÷èø中心对称,则2f p æö=ç÷èø( )A. 1B.32C.52D. 37.设0.110.1e ,ln 0.99a b c ===-,则( )A.a b c << B.c b a << C.c a b<< D.a c b<<8.已知正四棱锥的侧棱长为l ,其各顶点都在同一球面上.若该球的体积为36p ,且3l ££,则该正四棱锥体积的取值范围是( )A.8118,4éùêúëûB.2781,44éùêúëûC.2764,43éùêúëûD.[18,27]二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知正方体1111ABCD A B C D -,则( )A.直线1BC 与1DA 所成的角为90°B.直线1BC 与1CA 所成的角为90°C.直线1BC 与平面11BB D D 所成的角为45°D.直线1BC 与平面ABCD 所成的角为45°10.已知函数3()1f x x x =-+,则( )A.()f x 有两个极值点B.()f x 有三个零点C.点(0,1)是曲线()y f x =的对称中D.直线2y x =是曲线()y f x =的切线11.已知O 为坐标原点,点(1,1)A 在抛物线2:2(0)C x py p =>上,过点(0,1)B -的直线交C 于P ,Q 两点,则( )A.C 的准线为1y =- B.直线AB 与C 相切C.2|OP OQ OA×> D.2||||||BP BQ BA ×>12.已知函数()f x 及其导函数()¢f x 的定义域均为R ,记()()g x f x ¢=,若322f x æö-ç÷èø,(2)g x +均为偶函数,则( )A.(0)0f =B.102g æö-=ç÷èøC.(1)(4)f f -=D.(1)(2)g g -=三、填空题:本题共4小题,每小题5分,共20分.13.81()y x y x æö-+ç÷èø的展开式中26x y 的系数为________________(用数字作答).14.写出与圆221x y +=和22(3)(4)16x y -+-=都相切的一条直线的方程________________.15.若曲线()e x y x a =+有两条过坐标原点的切线,则a 的取值范围是________________.16.已知椭圆2222:1(0)x y C a b a b+=>>,C 的上顶点为A ,两个焦点为1F ,2F ,离心率为12.过1F 且垂直于2AF 的直线与C 交于D ,E 两点,||6DE =,则ADE V 的周长是________________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.记n S 为数列{}n a 的前n 项和,已知11,n n S a a ìü=íýîþ是公差为13的等差数列.(1)求{}n a 的通项公式;(2)证明:121112na a a +++<L .18.记ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos sin 21sin 1cos2A BA B=++.(1)若23C p=,求B ;(2)求222a b c+的最小值.19.如图,直三棱柱111ABC A B C -的体积为4,1A BC V 的面积为.(1)求A 到平面1A BC 的距离;(2)设D 为1A C 的中点,1AA AB =,平面1A BC ^平面11ABB A ,求二面角A BD C --的正弦值.20.一医疗团队为研究某地的一种地方性疾病与当地居民的卫生习惯(卫生习惯分为良好和不够良好两类)的关系,在已患该疾病的病例中随机调查了100例(称为病例组),同时在未患该疾病的人群中随机调查了100人(称为对照组),得到如下数据:不够良好良好病例组4060对照组1090(1)能否有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异?(2)从该地的人群中任选一人,A表示事件“选到的人卫生习惯不够良好”,B表示事件“选到的人患有该疾病”.(|)(|)P B AP B A与(|)(|)P B AP B A的比值是卫生习惯不够良好对患该疾病风险程度的一项度量指标,记该指标为R.(ⅰ)证明:(|)(|)(|)(|)P A B P A BRP A B P A B=×;(ⅱ)利用该调查数据,给出(|),(|P A B P A B的估计值,并利用(ⅰ)的结果给出R的估计值.附22()()()()()n ad bcKa b c d a c b d-=++++,()2P K k³0.0500.0100.001k 3.841 6.63510.82821.已知点(2,1)A 在双曲线2222:1(1)1x yC a a a -=>-上,直线l 交C 于P ,Q 两点,直线,AP AQ 的斜率之和为0.(1)求l 的斜率;(2)若tan PAQ Ð=,求PAQ △的面积.22.已知函数()x f x e ax =-和()ln g x ax x =-有相同的最小值.(1)求a ;(2)证明:存在直线y b =,其与两条曲线()y f x =和()y g x =共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.答案及解析一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{4},{31}M x N x x =<=³∣,则M N =I ()A.{}02x x £< B.123xx ìü£<íýîþC.{}316x x £< D.1163x x ìü£<íýîþ【答案】D 【解析】【分析】求出集合,M N 后可求M N Ç.【详解】1{16},{}3M xx N x x =£<=³∣0∣,故1163M N x x ìü=£<íýîþI ,故选:D2.若i(1)1z -=,则z z +=()A.2- B.1- C. 1D. 2【答案】D 【解析】【分析】利用复数的除法可求z ,从而可求z z +.【详解】由题设有21i1i i iz -===-,故1+i z =,故()()1i 1i 2z z +=++-=,故选:D3.在ABC V 中,点D 在边AB 上,2BD DA =.记CA m CD n ==u u u r u u u r r r ,,则CB u u u r=()A.32m n-r rB.23m n-+r rC.32m n+r rD.23m n+r r 【答案】B 【解析】【分析】根据几何条件以及平面向量的线性运算即可解出.【详解】因为点D 在边AB 上,2BD DA =,所以2BD DA =u u u r u u u r,即()2CD CB CA CD -=-u u u r u u u r u u u r u u u r ,所以CB u u u r =3232CD CA n m -=-u u u r u u u r r u r23m n =-+r r.故选:B .4.南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔1485m .时,相应水面的面积为21400km .;水位为海拔1575m .时,相应水面的面积为21800km .,将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔1485m .上升到1575m . 2.65»)()A.931.010m ´ B.931.210m ´ C.931.410m ´ D.931.610m ´【答案】C 【解析】【分析】根据题意只要求出棱台的高,即可利用棱台的体积公式求出.【详解】依题意可知棱台的高为157.5148.59MN =-=(m),所以增加的水量即为棱台的体积V .棱台上底面积262140.014010S ==´km m ,下底面积262180.018010S ¢==´km m ,∴((66119140101801033V h S S =++=´´´+´+¢(()679933320109618 2.6510 1.43710 1.410(m )=´+´»+´´=´»´.故选:C .5.从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为()A.16B.13C.12D.23【答案】D 【解析】【分析】由古典概型概率公式结合组合、列举法即可得解.【详解】从2至8的7个整数中随机取2个不同的数,共有27C 21=种不同的取法,若两数不互质,不同的取法有:()()()()()()()2,4,2,6,2,8,3,6,4,6,4,8,6,8,共7种,故所求概率2172213P -==.故选:D.6.记函数()sin (0)4f x x b p w w æö=++>ç÷èø的最小正周期为T .若23T p p <<,且()y f x =的图象关于点3,22p æöç÷èø中心对称,则2f p æö=ç÷èø()A. 1 B.32 C.52D. 3【答案】A 【解析】【分析】由三角函数的图象与性质可求得参数,进而可得函数解析式,代入即可得解.【详解】由函数的最小正周期T 满足23T p p <<,得223p p p w <<,解得23w <<,又因为函数图象关于点3,22p æöç÷èø对称,所以3,24k k Z p p w p +=Î,且2b =,所以12,63k k Z w =-+Î,所以52w =,5()sin 224f x x p æö=++ç÷èø,所以5sin 21244f p p p æöæö=++=ç÷ç÷èøèø.故选:A7.设0.110.1e ,ln 0.99a b c ===-,则()A.a b c <<B.c b a <<C.c a b<< D.a c b<<【答案】C 【解析】【分析】构造函数()ln(1)f x x x =+-,导数判断其单调性,由此确定,,a b c 的大小.【详解】设()ln(1)(1)f x x x x =+->-,因为1()111x f x x x¢=-=-++,当(1,0)x Î-时,()0f x ¢>,当,()0x Î+¥时()0f x ¢<,所以函数()ln(1)f x x x =+-在(0,)+¥单调递减,在(1,0)-上单调递增,所以1((0)09f f <=,所以101ln099-<,故110ln ln 0.999>=-,即b c >,所以1()(0)010f f -<=,所以91ln+01010<,故1109e 10-<,所以11011e 109<,故a b <,设()e ln(1)(01)xg x x x x =+-<<,则()()21e 11()+1e 11x xx g x x x x -+¢=+=--,令2()e (1)+1x h x x =-,2()e (21)x h x x x ¢=+-,当01x <<-时,()0h x ¢<,函数2()e (1)+1x h x x =-单调递减,11x <<时,()0h x ¢>,函数2()e (1)+1x h x x =-单调递增,又(0)0h =,所以当01x <<时,()0h x <,所以当01x <<时,()0g x ¢>,函数()e ln(1)xg x x x =+-单调递增,所以(0.1)(0)0g g >=,即0.10.1e ln 0.9>-,所以a c >故选:C.8.已知正四棱锥的侧棱长为l ,其各顶点都在同一球面上.若该球的体积为36p,且3l ££,则该正四棱锥体积的取值范围是()A.8118,4éùêúëûB.2781,44éùêúëûC.2764,43éùêúëûD.[18,27]【答案】C 【解析】【分析】设正四棱锥的高为h ,由球的截面性质列方程求出正四棱锥的底面边长与高的关系,由此确定正四棱锥体积的取值范围.【详解】∵球的体积为36p ,所以球的半径3R =,设正四棱锥的底面边长为2a ,高为h ,则2222l a h =+,22232(3)a h =+-,所以26h l =,2222a l h =-所以正四棱锥的体积42622411214()=333366936l l l V Sh a h l l æö==´´=´-´-ç÷èø,所以5233112449696l l V l l æöæö-¢=-=ç÷ç÷èøèø,当3l ££0V ¢>,当l <£时,0V ¢<,所以当l =时,正四棱锥的体积V 取最大值,最大值为643,又3l =时,274V =,l =814V =,所以正四棱锥的体积V 的最小值为274,所以该正四棱锥体积的取值范围是276443éùêúëû,.故选:C.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知正方体1111ABCD A B C D -,则()A.直线1BC 与1DA 所成的角为90° B.直线1BC 与1CA 所成的角为90°C.直线1BC 与平面11BB D D 所成的角为45°D.直线1BC 与平面ABCD 所成的角为45°【答案】ABD 【解析】【分析】数形结合,依次对所给选项进行判断即可.【详解】如图,连接1B C 、1BC ,因为11//DA B C ,所以直线1BC 与1B C 所成的角即为直线1BC 与1DA 所成的角,因为四边形11BB C C 为正方形,则1B C ^1BC ,故直线1BC 与1DA 所成的角为90°,A正确;连接1A C ,因为11A B ^平面11BB C C ,1BC Ì平面11BB C C ,则111A B BC ^,因为1B C ^1BC ,1111A B B C B =I ,所以1BC ^平面11A B C ,又1AC Ì平面11A B C ,所以11BC CA ^,故B 正确;连接11A C ,设1111AC B D O =I ,连接BO ,因为1BB ^平面1111D C B A ,1C O Ì平面1111D C B A ,则11C O B B ^,因为111C O B D ^,1111B D B B B Ç=,所以1C O ^平面11BB D D ,所以1C BO Ð为直线1BC 与平面11BB D D 所成的角,设正方体棱长为1,则12C O =,1BC =,1111sin 2C O C BO BC Ð==,所以,直线1BC 与平面11BB D D 所成的角为30o ,故C 错误;因为1C C ^平面ABCD ,所以1C BC Ð为直线1BC 与平面ABCD 所成的角,易得145C BC Ð=o ,故D 正确.故选:ABD10.已知函数3()1f x x x =-+,则()A.()f x 有两个极值点B.()f x 有三个零点C.点(0,1)是曲线()y f x =的对称中心D.直线2y x =是曲线()y f x =的切线【答案】AC 【解析】【分析】利用极值点的定义可判断A ,结合()f x 的单调性、极值可判断B ,利用平移可判断C ;利用导数的几何意义判断D.【详解】由题,()231f x x ¢=-,令()0f x ¢>得3x >或3x <-,令()0f x ¢<得33x -<<,所以()f x 在(,33-上单调递减,在(,3-¥-,(,)3+¥上单调递增,所以3x =±是极值点,故A 正确;因(1039f -=+>,1039f =->,()250f -=-<,所以,函数()f x 在,3æö-¥-ç÷ç÷èø上有一个零点,当3x ³时,()03f x f æö³>ç÷ç÷èø,即函数()f x 在3æö¥ç÷ç÷èø上无零点,综上所述,函数()f x 有一个零点,故B 错误;令3()h x x x =-,该函数的定义域为R ,()()()()33h x x x x x h x -=---=-+=-,则()h x 是奇函数,(0,0)是()h x 的对称中心,将()h x 的图象向上移动一个单位得到()f x 的图象,所以点(0,1)是曲线()y f x =的对称中心,故C 正确;令()2312f x x ¢=-=,可得1x =±,又()(1)11f f =-=,当切点为(1,1)时,切线方程为21y x =-,当切点为(1,1)-时,切线方程为23y x =+,故D 错误.故选:AC.11.已知O 为坐标原点,点(1,1)A 在抛物线2:2(0)C x py p =>上,过点(0,1)B -的直线交C 于P ,Q 两点,则()A.C 的准线为1y =- B.直线AB 与C 相切C.2|OP OQ OA ×> D.2||||||BP BQ BA ×>【答案】BCD 【解析】【分析】求出抛物线方程可判断A ,联立AB 与抛物线的方程求交点可判断B ,利用距离公式及弦长公式可判断C 、D.【详解】将点A 的代入抛物线方程得12p =,所以抛物线方程为2x y =,故准线方程为14y =-,A 错误;1(1)210AB k --==-,所以直线AB 的方程为21y x =-,联立221y x x y=-ìí=î,可得2210x x -+=,解得1x =,故B 正确;设过B 的直线为l ,若直线l 与y 轴重合,则直线l 与抛物线C 只有一个交点,所以,直线l 的斜率存在,设其方程为1y kx =-,1122(,),(,)P x y Q x y ,联立21y kx x y=-ìí=î,得210x kx -+=,所以21212Δ401k x x k x x ì=->ï+=íï=î,所以2k >或2k <-,21212()1y y x x ==,又||OP ==,||OQ ==所以2||||||2||OP OQ k OA ×===>=,故C 正确;因为1||||BP x =,2||||BQ x =,所以2212||||(1)||15BP BQ k x x k ×=+=+>,而2||5BA =,故D 正确.故选:BCD12.已知函数()f x 及其导函数()¢f x 的定义域均为R ,记()()g x f x ¢=,若322f x æö-ç÷èø,(2)g x +均为偶函数,则()A.(0)0f = B.102g æö-=ç÷èøC.(1)(4)f f -= D.(1)(2)g g -=【答案】BC 【解析】【分析】转化题设条件为函数的对称性,结合原函数与导函数图象的关系,根据函数的性质逐项判断即可得解.【详解】因为322f x æö-ç÷èø,(2)g x +均为偶函数,所以332222f x f x æöæö-=+ç÷ç÷èøèø即3322f x f x æöæö-=+ç÷ç÷èøèø,(2)(2)g x g x +=-,所以()()3f x f x -=,(4)()g x g x -=,则(1)(4)f f -=,故C 正确;函数()f x ,()g x 的图象分别关于直线3,22x x ==对称,又()()g x f x ¢=,且函数()f x 可导,所以()()30,32g g x g x æö=-=-ç÷èø,所以()(4)()3g x g x g x -==--,所以()(2)(1)g x g x g x +=-+=,所以13022g g æöæö-==ç÷ç÷èøèø,()()()112g g g -==-,故B 正确,D 错误;若函数()f x 满足题设条件,则函数()f x C +(C 为常数)也满足题设条件,所以无法确定()f x 的函数值,故A 错误.故选:BC.【点睛】关键点点睛:解决本题的关键是转化题干条件为抽象函数的性质,准确把握原函数与导函数图象间的关系,准确把握函数的性质(必要时结合图象)即可得解.三、填空题:本题共4小题,每小题5分,共20分.13.81()y x y x æö-+ç÷èø的展开式中26x y 的系数为________________(用数字作答).【答案】-28【解析】【分析】()81y x y x æö-+ç÷èø可化为()()88y x y x y x +-+,结合二项式展开式的通项公式求解.【详解】因为()()()8881=y y x y x y x y x xæö-++-+ç÷èø,所以()81y x y x æö-+ç÷èø的展开式中含26x y 的项为6265352688C 28y x y C x y x y x-=-,()81y x y x æö-+ç÷èø的展开式中26x y 的系数为-28故答案为:-2814.写出与圆221x y +=和22(3)(4)16x y -+-=都相切的一条直线的方程________________.【答案】3544y x =-+或7252424y x =-或1x =-【解析】【分析】先判断两圆位置关系,分情况讨论即可.【详解】圆221x y +=的圆心为()0,0O ,半径为1,圆22(3)(4)16x y -+-=的圆心1O 为(3,4),半径为4,5=,等于两圆半径之和,故两圆外切,如图,当切线为l 时,因为143OO k =,所以34l k =-,设方程为3(0)4y x t t =-+>O 到l的距离1d ==,解得54t =,所以l 的方程为3544y x =-+,当切线为m 时,设直线方程为0kx y p ++=,其中0p >,0k <,由题意14=,解得7242524kpì=-ïïíï=ïî,7252424y x=-当切线为n时,易知切线方程为1x=-,故答案为:3544y x=-+或7252424y x=-或1x=-.15.若曲线()e xy x a=+有两条过坐标原点的切线,则a的取值范围是________________.【答案】()(),40,¥¥--È+【解析】【分析】设出切点横坐标0x,利用导数的几何意义求得切线方程,根据切线经过原点得到关于0x的方程,根据此方程应有两个不同的实数根,求得a的取值范围.【详解】∵()e xy x a=+,∴(1)e xy x a¢=++,设切点为()00,x y,则()000e xy x a=+,切线斜率()01e xk x a=++,切线方程为:()()()00000e1ex xy x a x a x x-+=++-,∵切线过原点,∴()()()00000e1ex xx a x a x-+=++-,整理得:200x ax a+-=,∵切线有两条,∴240a a =+>n ,解得4a <-或0a >,∴a 的取值范围是()(),40,¥¥--È+,故答案为:()(),40,¥¥--È+16.已知椭圆2222:1(0)x y C a b a b+=>>,C 的上顶点为A ,两个焦点为1F ,2F ,离心率为12.过1F 且垂直于2AF 的直线与C 交于D ,E 两点,||6DE =,则ADE V 的周长是________________.【答案】13【解析】【分析】利用离心率得到椭圆的方程为222222213412043x y x y c c c+=+-=,即,根据离心率得到直线2AF 的斜率,进而利用直线的垂直关系得到直线DE 的斜率,写出直线DE 的方程:x c =-,代入椭圆方程22234120x y c +-=,整理化简得到:221390y c --=,利用弦长公式求得138c =,得1324a c ==,根据对称性将ADE V 的周长转化为2F DE △的周长,利用椭圆的定义得到周长为413a =.【详解】∵椭圆的离心率为12c e a ==,∴2a c =,∴22223b a c c =-=,∴椭圆的方程为222222213412043x y x y c c c+=+-=,即,不妨设左焦点为1F ,右焦点为2F ,如图所示,∵222AF a OF c a c ===,,,∴23AF O pÐ=,∴12AF F △为正三角形,∵过1F 且垂直于2AF 的直线与C 交于D ,E 两点,DE 为线段2AF 的垂直平分线,∴直线DE 的斜率为3, 直线DE 的方程:x c =-,代入椭圆方程22234120x y c +-=,整理化简得到:221390y c --=,判别式()22224139616c c =+´´=´´n ,∴226461313cCD ==´=´´´=,∴138c =, 得1324a c ==,∵DE 为线段2AF 的垂直平分线,根据对称性,22AD DF AE EF ==,,∴ADE V 的周长等于2F DE △的周长,利用椭圆的定义得到2F DE △周长为222211*********DF EF DE DF EF DF EF DF DF EF EF a a a ++=+++=+++=+==.故答案为:13.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.记n S 为数列{}n a 的前n 项和,已知11,n n S a a ìü=íýîþ是公差为13的等差数列.(1)求{}n a 的通项公式;(2)证明:121112na a a +++<L .【答案】(1)()12n n n a +=(2)见解析【解析】【分析】(1)利用等差数列的通项公式求得()121133n n S n n a +=+-=,得到()23n n n a S +=,利用和与项的关系得到当2n ³时,()()112133n n n n n n a n a a S S --++=-=-,进而得:111n n a n a n -+=-,利用累乘法求得()12n n n a +=,检验对于1n =也成立,得到{}n a 的通项公式()12n n n a +=;(2)由(1)的结论,利用裂项求和法得到121111211n a a a n æö+++=-ç÷+èøL ,进而证得.【小问1详解】∵11a =,∴111S a ==,∴111S a =,又∵n n S a ìüíýîþ是公差为13的等差数列,∴()121133n n S n n a +=+-=,∴()23n n n a S +=,∴当2n ³时,()1113n n n a S --+=,∴()()112133n n n n n n a n a a S S --++=-=-,整理得:()()111n n n a n a --=+,即111n n a n a n -+=-,∴31211221n n n n n a a a a a a a a a a ---=´´´¼´´()1341123212n n n n n n ++=´´´¼´´=--,显然对于1n =也成立,∴{}n a 的通项公式2n a =;【小问2详解】()12112,11n a n n n n æö==-ç÷++èø∴12111n a a a +++L 1111112121222311n n n éùæöæöæöæö=-+-+-=-<ç÷ç÷ç÷ç÷êú++èøèøèøèøëûL 18.记ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos sin 21sin 1cos2A BA B=++.(1)若23C p=,求B ;(2)求222a b c +的最小值.【答案】(1)π6;(2)5.【解析】【分析】(1)根据二倍角公式以及两角差的余弦公式可将cos sin 21sin 1cos2A BA B=++化成()cos sin A B B +=,再结合π02B <<,即可求出;(2)由(1)知,π2C B =+,π22A B =-,再利用正弦定理以及二倍角公式将222a b c+化成2224cos 5cos B B+-,然后利用基本不等式即可解出.【小问1详解】因为2cos sin 22sin cos sin 1sin 1cos 22cos cos A B B B BA B B B===++,即()1sin cos cos sin sin cos cos 2B A B A B A BC =-=+=-=,而π02B <<,所以π6B =;【小问2详解】由(1)知,sin cos 0B C =->,所以πππ,022C B <<<<,而sin cos sin 2B C C =-=-ç÷èø,所以π2C B =+,即有π22A B =-.所以222222222sin sin cos 21cos sin cos a b A B B Bc C B+++-==()2222222cos 11cos 24cos 555cos cos B BB BB-+-==+-³-=.当且仅当2cos 2B =时取等号,所以222a b c+的最小值为5-.19.如图,直三棱柱111ABC A B C -的体积为4,1A BC V 的面积为.(1)求A 到平面1A BC 的距离;(2)设D 为1A C 的中点,1AA AB =,平面1A BC ^平面11ABB A ,求二面角A BD C --的正弦值.【答案】(1(2)2【解析】【分析】(1)由等体积法运算即可得解;(2)由面面垂直的性质及判定可得BC ^平面11ABB A ,建立空间直角坐标系,利用空间向量法即可得解.【小问1详解】在直三棱柱111ABC A B C -中,设点A 到平面1A BC 的距离为h ,则1111111111433333A A BC A A ABC A ABC AB BC C C B V S h h V S A A V ---=×===×==V V ,解得h =,所以点A 到平面1A BC ;【小问2详解】取1A B 的中点E ,连接AE ,如图,因为1AA AB =,所以1AE A B ^,又平面1A BC ^平面11ABB A ,平面1A BC I 平面111ABB A A B =,且AE Ì平面11ABB A ,所以AE ⊥平面1A BC ,在直三棱柱111ABC A B C -中,1BB ^平面ABC ,由BC Ì平面1A BC ,BC Ì平面ABC 可得AE BC ^,1BB BC ^,又1,AE BB Ì平面11ABB A 且相交,所以BC ^平面11ABB A ,所以1,,BC BA BB 两两垂直,以B 为原点,建立空间直角坐标系,如图,由(1)得AE =12AA AB ==,1A B =2BC =,则()()()()10,2,0,0,2,2,0,0,0,2,0,0A A B C ,所以1A C 的中点()1,1,1D ,则()1,1,1BD =u u u r ,()()0,2,0,2,0,0BA BC ==uu u r u uu r,设平面ABD 的一个法向量(),,m x y z =u r ,则020m BD x y z m BA y ì×=++=ïí×==ïîu r u u u r u r u u u r ,可取()1,0,1m =-u r,设平面BDC 的一个法向量(),,n a b c =r ,则020m BD a b c m BC a ì×=++=ïí×==ïîu r u u u r u r u u u r ,可取()0,1,1n =-r,则cos ,m n m n m n×==×u r ru r r u r r ,所以二面角A BD C --2=.20.一医疗团队为研究某地的一种地方性疾病与当地居民的卫生习惯(卫生习惯分为良好和不够良好两类)的关系,在已患该疾病的病例中随机调查了100例(称为病例组),同时在未患该疾病的人群中随机调查了100人(称为对照组),得到如下数据:不够良好良好病例组4060对照组1090(1)能否有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异?(2)从该地的人群中任选一人,A 表示事件“选到的人卫生习惯不够良好”,B 表示事件“选到的人患有该疾病”.(|)(|)P B A P B A 与(|)(|)P B A P B A 的比值是卫生习惯不够良好对患该疾病风险程度的一项度量指标,记该指标为R .(ⅰ)证明:(|)(|)(|)(|)P A B P A B R P A B P A B =×;(ⅱ)利用该调查数据,给出(|),(|P A B P A B 的估计值,并利用(ⅰ)的结果给出R 的估计值.附22()()()()()n ad bc K a b c d a c b d -=++++,()2P K k ³0.0500.0100.001k3.8416.63510.828【答案】(1)答案见解析(2)(i )证明见解析;(ii)6R =;【解析】【分析】(1)由所给数据结合公式求出2K 的值,将其与临界值比较大小,由此确定是否有99%的把握认为患该疾病群体与未黄该疾病群体的卫生习惯有差异;(2)(i)根据定义结合条件概率公式即可完成证明;(ii)根据(i )结合已知数据求R .【小问1详解】由已知222()200(40906010)=24()()()()50150100100n ad bc K a b c d a c b d -´-´==++++´´´,又2( 6.635)=0.01P K ³,24 6.635>,所以有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异.【小问2详解】(i)因为(|)(|)()()()()=(|)(|)()()()()P B A P B A P AB P A P AB P A R P B A P B A P A P AB P A P AB =××××,所以()()()()()()()()P AB P B P AB P B R P B P AB P B P AB =×××所以(|)(|)(|)(|)P A B P A B R P A B P A B =×,(ii)由已知40(|)100P A B =,10(|)100P A B =,又60(|)100P A B =,90(|)100P A B =,所以(|)(|)=6(|)(|)P A B P A B R P A B P A B =×21.已知点(2,1)A 在双曲线2222:1(1)1x yC a a a -=>-上,直线l 交C 于P ,Q 两点,直线,AP AQ 的斜率之和为0.(1)求l 的斜率;(2)若tan PAQ Ð=,求PAQ △的面积.【答案】(1)1-;(2)9.【解析】【分析】(1)由点(2,1)A 在双曲线上可求出a ,易知直线l 的斜率存在,设:l y kx m =+,()()1122,,,P x y Q x y ,再根据0AP BP k k +=,即可解出l 的斜率;(2)根据直线,AP AQ 的斜率之和为0可知直线,AP AQ的倾斜角互补,再根据tan PAQ Ð=即可求出直线,AP AQ 的斜率,再分别联立直线,AP AQ 与双曲线方程求出点,P Q 的坐标,即可得到直线PQ 的方程以及PQ 的长,由点到直线的距离公式求出点A 到直线PQ 的距离,即可得出PAQ △的面积.【小问1详解】因为点(2,1)A 在双曲线2222:1(1)1x yC a a a -=>-上,所以224111a a -=-,解得22a =,即双曲线22:12x C y -=易知直线l 的斜率存在,设:l y kx m =+,()()1122,,,P x y Q x y ,联立2212y kx m x y =+ìïí-=ïî可得,()222124220k x mkx m ----=,所以,2121222422,2121mk m x x x x k k ++=-=--,()()22222216422210120m k m k m k D =++->Þ-+>.所以由0AP BP k k +=可得,212111022y y x x --+=--,即()()()()122121210x kx m x kx m -+-+-+-=,即()()()1212212410kx x m k x x m +--+--=,所以()()2222242124102121m mk k m k m k k +æö´+-----=ç÷--èø,化简得,()2844410k k m k +-++=,即()()1210k k m +-+=,所以1k =-或12m k =-,当12m k =-时,直线():21l y kx m k x =+=-+过点()2,1A ,与题意不符,舍去,故1k =-.【小问2详解】不妨设直线,PA PB 的倾斜角为(),a b a b <,因为0AP BP k k +=,所以πa b +=,因为tan PAQ Ð=()tan b a -=tan 2a =-,2tan 0a a --=,解得tan a =,于是,直线):21PA y x =-+,直线):21PB y x =-+,联立)222112y x x y ì=-+ïí-=ïî可得,(23211002x x +-+-=,因为方程有一个根为2,所以103P x -=,Py=53-,同理可得,103Q x +=,Q y=53--.所以5:03PQ x y +-=,163PQ =,点A 到直线PQ 的距离3d ==,故PAQ △的面积为1162339´´=.22.已知函数()x f x e ax =-和()ln g x ax x =-有相同的最小值.(1)求a ;(2)证明:存在直线y b =,其与两条曲线()y f x =和()y g x =共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.【答案】(1)1a =(2)见解析【解析】【分析】(1)根据导数可得函数的单调性,从而可得相应的最小值,根据最小值相等可求a.注意分类讨论.(2)根据(1)可得当1b >时,e x x b -=的解的个数、ln x x b -=的解的个数均为2,构建新函数()e ln 2x h x x x =+-,利用导数可得该函数只有一个零点且可得()(),f x g x 的大小关系,根据存在直线y b =与曲线()y f x =、()y g x =有三个不同的交点可得b 的取值,再根据两类方程的根的关系可证明三根成等差数列.【小问1详解】()e x f x ax =-的定义域为R ,而()e ¢=-x f x a ,若0a £,则()0f x ¢>,此时()f x 无最小值,故0a >.()ln g x ax x =-的定义域为()0,+¥,而11()ax g x a x x¢-=-=.当ln x a <时,()0f x ¢<,故()f x 在(),ln a -¥上为减函数,当ln x a >时,()0f x ¢>,故()f x 在()ln ,a +¥上为增函数,故()min ()ln ln f x f a a a a ==-.当10x a <<时,()0g x ¢<,故()g x 在10,a æöç÷èø上为减函数,当1x a >时,()0g x ¢>,故()g x 在1,a æö+¥ç÷èø上为增函数,故min 11()1ln g x g a a æö==-ç÷èø.因为()e x f x ax =-和()ln g x ax x =-有相同的最小值,故11lnln a a a a -=-,整理得到1ln 1a a a-=+,其中0a >,设()1ln ,01a g a a a a -=->+,则()()()222211011a g a a a a a --¢=-=£++,故()g a 为()0,+¥上的减函数,而()10g =,故()0g a =的唯一解为1a =,故1ln 1aa a-=+的解为1a =.综上,1a =.【小问2详解】由(1)可得e ()x x f x =-和()ln g x x x =-的最小值为11ln11ln 11-=-=.当1b >时,考虑e x x b -=的解的个数、ln x x b -=的解的个数.设()e xS x x b =--,()e 1xS x ¢=-,当0x <时,()0S x ¢<,当0x >时,()0S x ¢>,故()S x 在(),0-¥上为减函数,在()0,+¥上为增函数,所以()()min 010S x S b ==-<,而()e0bS b --=>,()e 2b S b b =-,设()e 2b u b b =-,其中1b >,则()e 20bu b ¢=->,故()u b 在()1,+¥上为增函数,故()()1e 20u b u >=->,故()0S b >,故()e xS x x b =--有两个不同的零点,即e x x b -=的解的个数为2.设()ln T x x x b =--,()1x T x x-¢=,当01x <<时,()0T x ¢<,当1x >时,()0T x ¢>,故()T x 在()0,1上为减函数,在()1,+¥上为增函数,所以()()min 110T x T b ==-<,而()ee0bbT --=>,()e e 20b b T b =->,()ln T x x x b =--有两个不同的零点即ln x x b -=的解的个数为2.当1b =,由(1)讨论可得ln x x b -=、e x x b -=仅有一个零点,当1b <时,由(1)讨论可得ln x x b -=、e x x b -=均无零点,故若存在直线y b =与曲线()y f x =、()y g x =有三个不同的交点,则1b >.设()e ln 2x h x x x =+-,其中0x >,故1()e 2xh x x¢=+-,设()e 1xs x x =--,0x >,则()e 10xs x ¢=->,故()s x 在()0,+¥上为增函数,故()()00s x s >=即e 1x x >+,所以1()1210h x x x¢>+-³->,所以()h x 在()0,+¥上为增函数,而(1)e 20h =->,31e 333122()e 3e 30e e eh =--<--<,故()h x 在()0,+¥上有且只有一个零点0x ,0311e x <<且:当00x x <<时,()0h x <即e ln x x x x -<-即()()f x g x <,当0x x >时,()0h x >即e ln x x x x ->-即()()f x g x >,因此若存在直线y b =与曲线()y f x =、()y g x =有三个不同的交点,故()()001b f x g x ==>,此时e x x b -=有两个不同的零点1010,(0)x x x x <<,此时ln x x b -=有两个不同的零点0404,(01)x x x x <<<,25故11e x x b -=,00e x x b -=,44ln 0x x b --=,00ln 0x x b --=所以44ln x b x -=即44e x b x -=即()44e 0x b x b b ----=,故4x b -为方程e x x b -=的解,同理0x b -也为方程e x x b -=的解又11e x x b -=可化为11e xx b =+即()11ln 0x x b -+=即()()11ln 0x b x b b +-+-=,故1x b +为方程ln x x b -=的解,同理0x b +也为方程ln x x b -=的解,所以{}{}1004,,x x x b x b =--,而1b >,故0410x x b x x b =-ìí=-î即1402x x x +=.【点睛】思路点睛:函数的最值问题,往往需要利用导数讨论函数的单调性,此时注意对参数的分类讨论,而不同方程的根的性质,注意利用方程的特征找到两类根之间的关系.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中(高考)数学集合的运算练习卷试卷排列:题目答案上下对照难度:中等以上版本:适合各地版本题型:填空题31多道,选择题32多道,解答题37多道,共100道有无答案:均有答案或解析价格:6元,算下来每题6分钱。

页数:79页1.已知命题:p 对任意x R ∈,总有||0x ≥;:1q x =是方程20x +=的根,则下列命题为真命题的是A.p q ∧⌝B.p q ⌝∧C.p q ⌝∧⌝D.p q ∧ 【答案】A 【解析】试题分析:因为命题:p “对任意x R ∈,总有0x ≥”为真命题; 命题q :“1x =是方程20x +=的根”是假命题;所以q ⌝是真命题,所以p q ∧⌝为真命题,故选A. 考点:1、命题;2、充要条件.2.已知i 是虚数单位,R b a ∈,,则“1==b a ”是“i bi a 2)(2=+”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件 【答案】A【解析】当1a b ==时,()()2212a bi i i +=+=,反过来()22222a bi a b abi i +=-+=,则220,22a b ab -==,解得1,1a b ==或1,1a b =-=-,故1a b ==是()22a bi i +=的充分不必要条件,故选A考点:充要条件的判断,复数相等.3.已知命题.,:,:22y x y x q y x y x p ><-<->则若;命题则若在命题①q p q p q p q p ∨⌝⌝∧∨∧)④(③②);(;;中,真命题是( ) A.①③ B.①④ C.②③ D.②④ 【答案】C【解析】试题分析:当x y >时,两边乘以1-可得x y -<-,所以命题p 为真命题,当1,2x y ==-时,因为2214x y =<=,所以命题q 为假命题,则q ⌝为真命题,所以根据真值表可得②③为真命题,故选C. 考点:命题真假 逻辑连接词 不等式4.设{}n a 是公比为q 的等比数列,则“1>q ”是“{}n a 为递增数列”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】D 【解析】试题分析:对等比数列}{n a ,若1>q ,则当01<a 时数列}{n a 是递减数列;若数列}{n a 是递增数列,则}{n a 满足01<a 且10<<q ,故当“1>q ”是”数列}{n a 为递增数列的既不充分也不必要条件.故选C.考点:等比数列的性质,充分条件与必要条件的判定,容易题.5.在ABC ∆中,角,,A B C 成等差数列是)sin sin cos C A A B =+成立的( )(A )充分不必要条件 (B )必要不充分条件 (C )充要条件 (D )既不充分也不必要条件 【答案】A 【解析】考点:三角函数6.在ABC ∆中,“A>B ”是“22sin sin A B >”的( )A .充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 【答案】C【解析】在ABC ∆中,sin sin 0A B A B >⇔>> 考点:三角函数,充分必要条件7.已知命题p :“∀x ∈[1,2],x 2-a ≥0”,命题q:“∃x ∈R 使x 2+2ax+2-a=0”,若命题“p 且q ”是真命题,则实数a 的取值范围是( )A.{}1a a ≥B.{}212a a a -或≤≤≤C.{}21a a -≤≤D.{}21a a a -=或≤ 【答案】D 【解析】试题分析:若∀x ∈[1,2],x 2-a ≥0,则1≤a ;若∃x ∈R 使x 2+2ax+2-a=0,则0)2(4)2(2≥--a a ,解得2-≤a 或1≥a ,若命题“p且q ”是真命题,则实数a 满足⎩⎨⎧≥-≤≤121a a a 或,2-≤a 或1=a ,所以实数a 的取值范围是2|{-≤a a 或}1=a .考点:含有逻辑联结词的命题的真假判断,全称命题与特称命题..8.下列四个命题:①利用计算机产生0~1之间的均匀随机数a ,则事件“013>-a ”发生的概率为31;②“0≠+y x ”是“1≠x 或1-≠y ”的充分不必要条件; ③命题“在ABC ∆中,若B A sin sin =,则ABC ∆为等腰三角形”的否命题为真命题;④如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β。

其中说法正确的个数是( )A .0个B .1个C .2个D .3个 【答案】C 【解析】试题分析:解:①利用计算机产生0~1之间的均匀随机数a ,根据几何概型知事件“013>-a ”发生的概率为23而非31,所以命题①不正确;②因为“互为逆否命题的两个命题同真假”,由“若=1x 且=1y -,则=0x y +”为真,可知“0≠+y x ”⇒“1≠x 或1-≠y ”为真;由“若=0x y +=1x 且=1y -,则=1x 且=1y -”为假,可知 “1≠x 或1-≠y ” ⇒“0≠+y x ”为假;“0≠+y x ”是“1≠x 或1-≠y ”的充分不必要条件,所以命题②正确;③因为命题“在ABC ∆中,若B A sin sin =,则ABC ∆为等腰三角形”的逆命题:“若ABC ∆为等腰三角形,则B A sin sin =”是假命题,所以其否命题也是假命题,所以命题③不正确;④若平面α内一定存在直线垂直于平面β,则根据平面与平面垂直的判定理可知一定有平面α垂直于平面β,所以命题④正确; 综上只有②④两个命为真,故选C.考点:1、四种命题;2、平面与平面垂直的判定;3、几何概型.9.给出下面四个命题:p 1:∃x ∈(0,+∞),(12)x <(13)x ; p 2:∃x ∈(0,1),12log x>13log x ;p 3:∀x ∈(0,+∞),(12)x >12log x ;p 4:∀x ∈(0,13),(12)x <13log x.其中的真命题是( )A .p 1,p 3B .p 1,p 4C .p 2,p 3D .p 2,p 4 【答案】D【解析】当x>0时,(12)x ×3x =(32)x >1,总有(12)x >(13)x ,因此命题p 1是假命题;当x =12时,12log 12=1>13log 12=log 32,因此命题p2是真命题;当x=12时,12log12=1>1212⎛⎫⎪⎝⎭=12,因此命题p3是假命题;当x∈(0,13)时,(12)x<(12)0=1=13log13<13log x,即(1 2)x<13log x,因此命题p4是真命题.综上所述,其中的真命题是p2,p4,选D.10.已知命题p:∀x∈(1,+∞),log2x<log3x;命题q:∃x∈(0,+∞),2-x=lnx.则下列命题中为真命题的是( )A.p∧q B.(⌝p)∧qC.p∧(⌝q) D.(⌝p)∧(⌝q)【答案】B【解析】函数y=log2x与y=log3x的图象如图(1)所示,函数y =2-x与y=lnx的图象如图(2)所示.如图可知,p假q真,故选B.11.已知命题p :∃x ∈R ,x 2+1<2x ;命题q :若mx 2-mx -1<0恒成立,则-4<m≤0,那么( )A .“⌝p”是假命题B .“⌝q”是真命题C .“p∧q”为真命题D .“p∨q”为真命题 【答案】D【解析】对于命题p ,x 2+1-2x =(x -1)2≥0, 即对任意的x ∈R ,都有x 2+1≥2x, 因此命题p 是假命题.对于命题q ,若mx 2-mx -1<0恒成立, 则当m =0时, mx 2-mx -1<0恒成立; 当m≠0时,由mx 2-mx -1<0恒成立得240m m m <⎧⎨∆=+<⎩,即-4<m<0. 因此若mx 2-mx -1<0恒成立,则-4<m≤0, 故命题q 是真命题.因此,“⌝p”是真命题,“⌝q”是假命题,“p∧q”是假命题,“p∨q”是真命题,选D.12.命题p :函数f(x)=x 3-3x 在区间(-1,1)内单调递减,命题q :函数f(x)=|sin2x|的最小正周期为π,则下列命题为真命题的是( )A.p∧q B.(⌝p)∨qC.p∨q D.(⌝p)∧(⌝q)【答案】C【解析】由f′(x)=3x2-3<0,解得-1<x<1,故函数f(x)=x3-3x在区间(-1,1)内单调递减,即命题p为真命题;函数y=sin2x的最小正周期为π,则函数f(x)=|sin2x|的最小正周期为π,即命题q为假命题.由于p真、q假,故p∧q为假命题,p 2∨q为真命题;由于⌝p假、q假,故(⌝p)∨q为假命题;由于⌝p假,⌝q真,故(⌝p)∧(⌝q)为假命题.13.“|x-a|<m,且|y-a|<m”是“|x-y|<2m”(x,y,a,m∈R)的( )A.充分非必要条件 B.必要非充分条件C.充要条件 D.非充分非必要条件【答案】A【解析】∵|x-y|=|(x-a)-(y-a)|≤|x-a|+|y-a|<m+m=2m,∴|x-a|<m,且|y-a|<m是|x-y|<2m的充分条件.取x=3,y=1,a=-2,m=2.5,则有|x-y|=2<5=2m,但|x-a|=5,不满足|x-a|<m=2.5,故|x -a|<m 且|y -a|<m 不是|x -y|<2m 的必要条件.14.“10a >10b ”是“lga>lgb”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 【答案】B【解析】由10a >10b 得a>b ,由lga>lgb 得a>b>0,所以“10a >10b ”是“lga>lgb”的必要不充分条件,选B.15.下列命题中假命题有 ( )①m R ∃∈,使2431()(2)m m f x m x m -+=++是幂函数; ②R θ∃∈,使3sin cos 5θθ=成立;③a R ∀∈,使220ax y a ++-=恒过定点; ④0x ∀>,不等式24a x x+≥成立的充要条件2a ≥. A.3个 B.2个 C.1个 D.0个 【答案】B【解析】①中,令121m m ++=,即210m m ++=,其1430∆=-=-<,所以方程210m m ++=无解,故①错;②中,由3sin cos 5θθ=得:6sin 215θ=>不成立,故②错; ③中,由220ax y a ++-=得:(1)220x a y ++-=,所以220ax y a ++-=恒过定点(1,1)-,故③正确;④中,当2a ≥时,24ax x +≥≥成立,反之,当24a x x+≥成立,则22242(1)2a x x x ≥-+=--+恒成立,所以2a ≥,故④正确. 故选B【考点】命题的真假判断.16.“5a =”是“直线210ax y --=与直线520x y c -+=平行”的( ) A.充要条件 B.充分不必要条件 C.必要不充分条件 D.既不充分也不必要条件 【答案】C【解析】当5a =时,直线210ax y --=与直线520x y c -+=可能平行或重合;若直线210ax y --=与直线520x y c -+=平行,则5a = 故选C考点:命题充分必要性.17.下列有关命题的说法正确的是( )A .命题“若1,12==x x 则”的否命题为:“若1,12≠=x x 则”;B .“1-=x ”是“0652=--x x ”的必要不充分条件;C .命题“∈∃x R ,使得012<-+x x ”的否定是:“∈∀x R ,均有D .命题“若y x y x sin sin ,==则”的逆否命题为真命题. 【答案】D【解析】命题“若1,12==x x 则”的否命题应为:“若21x ≠,则1x ≠”.A 错;当1-=x 时,0652=--x x 成立;反之,0652=--x x 可得1-=x 或6x =.所以,B 错;命题“∈∃x R ,使得012<-+x x ”的否定应是:全称命题“∈∀x R ,均有012≥-+x x ”,C 错;命题“若y x y x sin sin ,==则”是真命题,所以其逆否命题为真命题.故选D .考点:1、命题;2、简单逻辑联结词;3、存在性命题与全称命题;4、充要条件.18.“21sin =A ”是“︒=30A ”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】B 【解析】试题分析:当︒=30A 时21sin =A ;但当21sin =A 时,30360,A k k Z =︒+⋅︒∈或150360,A k k Z =︒+⋅︒∈。

相关文档
最新文档