人教八年级数学上册第15章《分式方程》同步练习及(含答案)1

合集下载

人教版八年级数学上册《15.3 分式方程》练习题-附带有答案

人教版八年级数学上册《15.3 分式方程》练习题-附带有答案

人教版八年级数学上册《15.3 分式方程》练习题-附带有答案一、选择题1.下列关于x 的方程:①x−12=5 ,②1x =4x−1 ,③1x (x −1)+x =1 ,④x a =1b−1 中,分式方程有( ) A .4个B .3个C .2个D .1个 2.若分式 x 3x+4 的值为1,则x 的值是( )A .1B .2C .-1D .-2 3.解方程 1+2x−1=x−5x−3 时,去分母得( )A .(x −1)(x −3)+2(x −3)=(x −5)(x −1)B .(x −1)(x −3)+2(x −3)=(x +5)C .1+2(x −3)=(x −5)(x −1)D .(x −3)+2(x −3)=x −5 4.分式方程 3x−2=1 的解是 ( )A .x =5B .x =1C .x =−1D .x =2 5.关于x 的方程 m−1x−1+x 1−x =0 有增根,则m 的值是( )A .2B .1C .0D .-1 6.若关于x 的方程2x+m x−2+x−12−x =3的解是非负数,则m 的取值范围为( ) A .m ≤-7且m ≠-3B .m ≥-7且m ≠-3C .m ≤-7D .m ≥-77.一艘轮船在两个码头之间航行,顺水航行81km 所需的时间与逆水航行69km 所需的时间相同.已知水流速度是速度2km/h ,则轮船在静水中航行的速度是( )A .25km/hB .24km/hC .23km/hD .22km/h 8.若整数a 使关于y 的不等式组{2y−53≤y −13a −y +3≥0至少有3个整数解,且使得关于x 的分式方程3x(x−1)−a 1−x =2x 的解为正数,则所有符合条件的整数a 的和为( )A .-6B .-9C .-11D .-14 二、填空题9.关于x 的方程x−a x−1=12的解是x =3,则a = .10.当x = 时,分式32−x 比x−1x−2大2.11.若关于x 的方程1x−1+2x+m 1−x =1有增根,则m 的值是 . 12.若关于x 的分式方程2x−m x+1 =3的解是负数,则字母m 的取值范围是 .13.某校要建立两个计算机教室,为此要购买相同数量的A型计算机和B型计算机.已知一台A型计算机的售价比一台B型计算机的售价便宜400元,如果购买A型计算机需要224 000元,购买B型计算机需要240 000元.求一台A型计算机和一台B型计算机的售价分别是多少元.设一台B型计算机的售价是x元,依题意列方程为.三、解答题14.解方程:(1)3x =2x−2(2)2x2x−1+51−2x=315.冬季来临,某商场预购进一批毛衣.用9600元先购进一批毛衣,面市后因供不应求,商场决定又用16800元再次购进这批毛衣,所购数量是第一批购进量的2倍,但单价便宜了10元.该商场第一次购进这批毛衣的数量是多少?16.杭州国际动漫节开幕前,某动漫公司预测某种动漫玩具能够畅销,就用32000元购进了一批这种玩具,上市后很快脱销,动漫公司又用68000元购进第二批这种玩具,所购数量是第一批购进数量的2倍,但每套进价多了10元.(1)该动漫公司两次共购进这种玩具多少套?(2)如果这两批玩具每套的售价相同,且全部售完后总利润率不低于20%,那么每套售价至少是多少元?17.某家电销售商城电冰箱的销售价为每台2100元,空调的销售价为每台1750元,每台电冰箱的进价比每台空调的进价多400元,商城用80000元购进电冰箱的数量与用64000元购进空调的数量相等.(1)求每台电冰箱与空调的进价分别是多少?(2)现在商城准备一次性购进这两种家电共100台,要求购进空调数量不超过电冰箱数量的2倍,总利润不低于13000元,一共有多少种合理的购买方案?参考答案1.C2.D3.A4.A5.A6.B7.A8.C9.210.2311.-112.m>-3且m≠-213.240000x =224000x−40014.(1)解:3x =2x−23(x-2)=2x3x-6=2x3x-2x=6x=6经检验,x=6是原方程的解.(2)解:2x2x−1+51−2x=32x-5=3(2x-1)2x-6x=5-3-4x=2x=−12.经检验,x=−12是原方程的解.15.解:设该商场第一次购进这批毛衣的数量是x件,则第二次购进这批毛衣的数量是2x件根据题意,得:9600x −168002x=10解得:x=120经检验,x=120是所列方程的解答:该商场第一次购进这批毛衣的数量是120件.16.(1)解:设动漫公司第一次购x套玩具,由题意得:=10解这个方程,x=200经检验x=200是原方程的根.∴2x+x=2×200+200=600答:动漫公司两次共购进这种玩具600套(2)解:设每套玩具的售价y元,由题意得:≥20%解这个不等式,y≥200答:每套玩具的售价至少是200元17.(1)解:设每台空调的进价为m元,每台电冰箱的进价为元.根据题意得解得经检验符合题意故每台空调进价为1600元,电冰箱进价为2000元;(2)解:设购进电冰箱x台,则进购空调台解得:∵购进空调数量不超过电冰箱数量的2倍解得∵为正整数、35、36、37、38、39、40 共有七种合理的购买方案。

人教版初中数学八年级上册第十五章《分式》测试题(含答案)

人教版初中数学八年级上册第十五章《分式》测试题(含答案)
24.解:(1) + + +…+
=1- + - + - +…+ -
=1-
= ;
(2)①∵ + =
= ,
∴ ,
解得 .
∴A和B的值分别是 和- ;
②∵ = • - •
= •( - )- ( - )
∴原式= • - • + • - • +…+ • - •
= • - •
= -
= .
故 且 .
故答案为 且 .
18.解:(1)去分母得:2x﹣5=3(2x﹣1),解得:x=﹣ ,
经检验x=﹣ 是分式方程的解;
所以原方程的解是x=﹣ ;
(2)去分母得:2x﹣1﹣x+1=0,解得:x=0,
经检验x=0是增根,所以分式方程无解.
19解:设 ,则 , , .
所以 .
20解:原式=[ + ]÷ =( + )•x=x﹣1+x﹣2=2x﹣3
10.计算(a2)3+a2·a3-a2÷a-3的结果是( )
A.2a5-aB.2a5- C.a5D.a6
11.已知关于x的分式方程 =1的解是负数,则m的取值范围是( )
A.m≤3B.m≤3且m≠2C.m<3D.m<3且m≠2
12.施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x米,所列方程正确的是( )
八年级上册《第15章分式》单元同步测验卷
一、单选题
1.代数式 中的x取值范围是( )
A.x B.x C.x D.
2.下列各式:2个C.3个D.4个
3.若分式 中的x和y都扩大10倍,那么分式的值()

人教版初中八年级数学上册第十五章《分式》知识点(含答案解析)(1)

人教版初中八年级数学上册第十五章《分式》知识点(含答案解析)(1)

一、选择题1.使分式21xx -有意义的x 的取值范围是( )A .x ≠1B .x ≠0C .x ≠±1D .x 为任意实数2.若关于x 的一元一次不等式组()()1112232321x x x a x ⎧-≤-⎪⎨⎪-≥-⎩恰有3个整数解,且使关于y 的分式方程3133y ayy y++=--有正整数解,则所有满足条件的整数a 的值之和是( ) A .4B .5C .6D .33.若关于x 的分式方程3211m x x =---有非负实数解,且关于x 的不等式组102x x m +≥⎧⎨+≤⎩有解,则满足条件的所有整数m 的和为( ) A .9-B .8-C .7-D .6-4.如果关于x 的分式方程6312233ax x x x--++=--有正整数解,且关于y 的不等式组521510yy a -⎧≥-⎪⎨⎪+->⎩至少有两个整数解,则满足条件的整数a 的和为( ) A .2 B .3C .6D .115.已知分式34x x -+的值为0,则x 的值是( ) A .3B .0C .-3D .-46.如图,若x 为正整数,则表示3211327121(1)(1)543x x x x x x x x x--++--÷++++的值的点落在( ).A .段①B .段②C .段③D .段④7.下列各式中,正确的是( )A .22a a b b =B .11a ab b +=+ C .2233a b a ab b= D .232131a ab b ++=--8.已知2340x x --=,则代数式24xx x --的值是( )A .3B .2C .13D .129.若2x 11x x 1+--的值小于3-,则x 的取值范围为( ) A .x 4>- B .x 4<-C .x 2>D .x 2<10.若分式()22222x y x y a x a yax ay+-÷-+的值等于5,则a 的值是( )A .5B .-5C .15D .15-11.2222x y x y x y x y -+÷+-的结果是( ) A .222()x y x y ++B .222()x y x y +-C .222()x y x y -+D .222()x y x y ++12.020*******)(0.125)8+⨯的结果是( )A B 2C .2D .013.下列各式中,无论x 取何值,分式都有意义的是( ). A .132x - B .213x + C .231x x+ D .21xx + 14.当1x 0-<<时, 1x -,0x ,2x 的大小顺序是( ) A .102x x x -<< B .012x x x -<<C .021x x x -<<D .120x x x -<<15.计算a ba b a÷⨯的结果是() A .aB .2aC .2b aD .21a二、填空题16.已知5a b +=,6ab =,b aa b+=______. 17.已知3m n +=.则分式222m n m n n m m ⎛⎫+--÷- ⎪⎝⎭的值是_________. 18.已知5,3a b ab -==,则b aa b+的值是__________. 19.新冠疫情期间,口罩成为了人们出行必备的防护工具.某药店抓住商机购进甲、乙、丙三种口罩进行销售.已知销售每件甲种口罩的利润率为30%,每件乙种口罩的利润率为20%,每件丙种口罩的利润率为5%.当售出的甲、乙、丙口罩件数之比为1:3:2时,药店得到的总利润率为20%;当售出的甲、乙、丙口罩件数之比为3:2:2时,药店得到的总利润率为24%.因丙种口罩利润较低,现药店准备只购进甲、乙两种口罩进行销售,若该药店想要获得的总利润率为28%,则该药店应购进甲、乙两种口罩的数量之比是______.20.某班在“世界读书日”当天开展了图书交换活动,第一组同学共带图书24本,第二组同学共带图书27本.已知第一组同学比第二组同学平均每人多带1本图书,第二组人数是第一组人数的1.5倍,则第一组的人数为_________人.21.某危险品工厂采用甲型、乙型两种机器人代替人力搬运产品.甲型机器人比乙型机器人每小时多搬运10kg ,甲型机器人搬运800kg 所用时间与乙型机器人搬运600kg 所用时间相等.问乙型机器人每小时搬运多少kg 产品? 根据以上信息,解答下列问题.(1)小华同学设乙型机器人每小时搬运xkg 产品,可列方程为______小惠同学设甲型机器人搬运800kg 所用时间为y 小时,可列方程为____________. (2)乙型机器人每小时搬运产品_______________kg .22.计算:2120192-⎛⎫-= ⎪⎝⎭______. 23.如图,将形状大小完全相同的“□”按照一定规律摆成下列图形,第1幅图中“□”的个数为1a ,第2幅图中“□”的个数为2a ,第3幅图中“□”的个数为3a ,……,以此类推,若123201922222020n a a a a +++⋅⋅⋅+=(n 为正整数),则(1)5a =________;(2)n 的值为________.24.已知(3)1a a -=,则整数a 的值为______. 25.方程11212x x =+-的解是x =_____. 26.方程22020(1)1x x x ++-=的整数解的个数是_____.三、解答题27.雪梨是石家庄市某地的特色时令水果.雪梨上市后,水果店的老板用2400元购进一批雪梨,很快售完;老板又用3750元购进第二批雪梨,所购件数是第一批的32倍,但进价比第一批每件多了5元.(1)求第一批雪梨每件进价是多少元?(2)老板以每件225元的价格销售第二批雪梨,售出80%后,为了尽快售完,剩下的决定打折促销,要使得第二批雪梨的销售利润为2460元,剩余的雪梨每件售价应该打几折?(利润=售价-进价) 28.计算:(1)化简:()()22n m n m n -++;(2)解分式方程:2132163x x x -=---. 29.分式计算与解方程:(1)21211a a a a ----; (2)121221xx x +=-+. 30.先化简,再求值:22214244x x x x x x x x +--⎛⎫-÷ ⎪--+⎝⎭,其中5x =.。

人教版 八年级数学上册 第15章分式 分式方程及其应用专题(含答案)

人教版 八年级数学上册 第15章分式   分式方程及其应用专题(含答案)

人教版 八年级数学上册 第15章 分式方程及其应用(含答案) 例1. 解方程:x x x --+=1211 分析:首先要确定各分式分母的最简公分母,在方程两边乘这个公分母时不要漏乘,解完后记着要验根解:方程两边都乘以,得()()x x +-11 x x x x x x x x x 22221112123232--=+---=--∴==()()(),即,经检验:是原方程的根。

例2. 解方程x x x x x x x x +++++=+++++12672356 解:原方程变形为:x x x x x x x x ++-++=++-++67562312 方程两边通分,得 167123672383692()()()()()()()()x x x x x x x x x x ++=++++=++=-∴=-所以即 经检验:原方程的根是x =-92。

例3. 解方程:121043323489242387161945x x x x x x x x --+--=--+-- 解:由原方程得:3143428932874145--++-=--++-x x x x 即2892862810287x x x x ---=---于是,所以解得:经检验:是原方程的根。

1898618108789868108711()()()()()()()()x x x x x x x x x x --=----=--== 例4. 解方程:61244444402222y y y y y y y y +++---++-=2 解:原方程变形为:622222220222()()()()()()()y y y y y y y y ++-+--++-= 约分,得62222202y y y y y y +-+-++-=()()方程两边都乘以()()y y +-22,得 622022()()y y y --++= 整理,得经检验:是原方程的根。

21688y y y =∴==5、中考题解:例1.若解分式方程产生增根,则m 的值是( )2111x x m x x x x +-++=+A. B. --12或-12或C. D. 12或12或- 分析:分式方程产生的增根,是使分母为零的未知数的值。

人教版八年级上册第15章 《分式方程应用》专项综合训练(一)

人教版八年级上册第15章 《分式方程应用》专项综合训练(一)

《分式方程应用》专项综合训练(一)1.由于“新冠肺炎”的发生,市场上防护口罩出现热销.某药店第一次用2000元购进若干个防护口罩,并按定价2.5元/个出售,很快售完由于该防护口罩畅销,第二次购进时,每个防护口罩的进价比第一次的进价提高了25%,该药店用3000元购进防护口罩的数量比第一次多了200个,并把定价提高20%进行销售.(1)第一次购进时,每个防护口罩的价格是多少元?(2)第二次售出800个防护口罩时,出现了滞销,该药店打算降价售完剩余的防护口罩.那么该药店每个防护口罩至多降价多少元出售,才能使第二次销售的防护口罩不亏本?2.2020年初武汉爆发新冠肺炎疫情,使得口罩成为人们生活的必需品.爱民药店库存一批N95和普通医用两种类型口罩,N95口罩进价是普通医用口罩进价的5倍,药店把N95口罩和普通医用口罩在进价基础上分别加价40%、50%做为零售价.某人在爱民药店用84元购买一种口罩,发现买普通医用口罩的数量恰好比买N95口罩的数量4倍还多4个.(1)求两种口罩的进价分别是多少元?(2)随着疫情的进一步恶化,爱民药店的口罩很快被抢购一空.该药店再去厂家进货时发现,由于原材料上涨,N95口罩进价上涨20%,普通医用口罩进价上涨了30%.爱民药店购进这两种口罩共1500个,在零售时,N95口罩保持原售价不变,而普通医用口罩在原售价基础上上调20%,该药店要想在这批口罩全部售出后的利润不少于2000元(不考虑其它因素),则这次至少购进N95口罩多少个?3.某单位计划从商店购买同一种品牌的钢笔和笔记本,已知购买一支钢笔比购买一个笔记本多用20元,若用1500元购买钢笔和用600元购买笔记本,则购买钢笔的数量是购买笔记本数量的一半.(1)求购买一支钢笔、一个笔记本各需要多少元?(2)经商谈,商店给予优惠,优惠方式是每购买一支钢笔赠送一个笔记本;如果此单位需要笔记本的数量是钢笔数量的3倍还少6个,且购买钢笔和笔记本的总费用不超过1020元,那么最多可购买多少支钢笔?4.某学校计划选购A、B两种图书.已知A种图书每本价格是B种图书每本价格的2.5倍,用1200元单独购买A种图书比用1500元单独购买B种图书要少25本.(1)A、B两种图书每本价格分别为多少元?(2)如果该学校计划购买B种图书的本数比购买A种图书本数的2倍多8本,且用于购买A、B两种图书的总经费不超过1164元,那么该学校最多可以购买多少本B种图书?5.某公司用6000元购进A,B两种电话机25台,购买A种电话机与购买B种电话机的费用相等.已知A种电话机的单价是B种电话机单价的1.5倍.(1)求A,B两种电话机的单价各是多少?(2)若计划用不超过8000元的资金再次购进A,B两种话机共30台,已知A,B两种电话机的进价不变,求最多能购进多少台A种电话机?6.某学校计划从商店购进A,B两种商品,购买一个A商品比购买一个B商品多花10元,并且花费300元购买A商品和花费100元购买B商品的数量相等.(1)求购买一个A商品和一个B商品各需要多少元;(2)根据学校实际情况,该学校需要购买B种商品的个数是购买A种商品个数的3倍,还多11个,经与商店洽谈,商店决定在该学校购买A种商品时给予八折优惠,如果该学校本次购买A,B两种商品的总费用不超过1000元,那么该学校最多可购买多少个A种商品?7.近年来骑自行车运动成为时尚,甲、乙两人相约由A地出发骑自行车去B景区游玩(匀速骑行),已知甲骑行180千米与乙骑行200千米所用的时间相同,且乙每小时比甲每小时多骑行5千米.(1)求甲、乙两人的速度各是多少;(2)如果A地到B景区的路程为180千米,甲、乙两人到达B景区游玩一段时间后,甲按原速返回A地,同时乙按原速骑行1.5小时后,因体力消耗,每小时骑行速度减少m 千米,如果甲回到A地时,乙距离A地不超过25千米,求乙的速度每小时最多减少多少千米.8.某服装店购进一批甲、乙两种款型时尚的T恤衫,其中甲种款型共用7800元,乙种款型共用6000元,甲种款型的件数是乙种款型件数的1.5倍,甲种款型每件的进价比乙种款型每件的进价少8元.(1)甲、乙两种款型的T恤衫各购进多少件?(2)若甲种款型T恤衫每件售价比乙种款型T恤衫的每件售价少10元,且这批T恤衫全部售出后,商店获利不少于6700元,则甲种T恤衫每件售价至少多少元?9.某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元.已知乙种商品每件进价比甲种商品每件进价多10元,且购进的甲、乙两种商品件数相同.(1)求甲、乙两种商品的每件进价;(2)该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为70元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售﹣定数量后,将剩余的甲种商品按原销售单价的九折销售;乙种商品销售单价保持不变.要使两种商品全部售完后共获利不少于680元,问甲种商品按原销售单价至少销售多少件?10.A,B两种机器人都被用来搬运化工原料,A型机器人每小时搬运的化工原料是B型机器人每小时搬运的化工原料的1.5倍,A型机器人搬运900kg所用时间比B型机器人搬运800kg所用时间少1小时.(1)求两种机器人每小时分别搬运多少化工原料?(2)某化工厂有8000kg化工原料需要搬运,要求搬运所有化工原料的时间不超过5小时.现计划先由6个B型机器人搬运3小时,再增加若干个A型机器人一起搬运,请问至少要增加多少个A型机器人?11.某商场第一次用22000元购进某款智能清洁机器人进行销售,很快销售一空,商家又用48000元第二次购进同款智能清洁机器人,所购进数量是第一次的2倍,但单价贵了10元.(1)求该商家第一次购进智能清洁机器人多少台?(2)若所有智能清洁机器人都按相同的标价销售,要求全部销售完毕的利润率不低于20%(不考虑其它因素),那么每台智能清洁机器人的标价至少是多少元?12.春节即将来临,根据习俗好多家庭都会在门口挂红灯笼和贴对联.某商店看准了商机,准备购进批红灯笼和对联进行销售,已知红灯笼的进价是对联进价的2.25倍,用720元购进对联的数量比用540元购进红灯笼的数量多60件(1)对联和红灯笼的进价分别为多少?(2)由于销售火爆,第一批售完后,该商店以相同的进价再购进300幅对联和200个红灯笼.已知对联的销售价格为12元一幅,红灯笼的销售价格为24元一个.销售一段时间后发现对联售出了总数的,红灯笼售出了总数的.为了清仓,该店老板决定对剩下的红灯笼和对联以相同的折扣数打折销售,并很快全部售出,问商店最低打几折,才能使总的利润率不低于20%?13.某企业拟投资共购买10条N95口罩生产线和平面口罩生产线.已知购买一条平面口罩生产线需要资金为100万元,购买一条N95口罩生产线所需资金是一条平面口罩生产线所需资金的2倍;一条平面口罩生产线每小时比一条N95口罩生产线多生产4200只口罩,且一条平面口罩生产线生产36000只口罩与一条N95口罩生产线生产15000只口罩所用时间相同.(1)如果计划用于购买N95口罩生产线的资金不超过用于购买平面口罩生产线的资金,那么该企业最多可购买几条N95口罩生产线?(2)该企业按照(1)中的最大值购买N95口罩生产线,所有10条生产线全部正常投产后按照每天工作8小时计算,问该企业每天可以生产N95口罩和平面口罩的总和为多少只?14.有一项工程,乙队单独完成所需的时间是甲队单独完成所需时间的2倍,若两队合作4天后,剩下的工作甲单独做还需要6天完成.(1)求甲、乙两队单独完成这项工程各需多少天;(2)若甲队每天的报酬是1万元,乙队每天的报酬是0.3万元,要使完成这项工程时的总报酬不超过9.6万元,甲队最多可以工作多少天?15.时代天街某商场经营的某品牌书包,6月份的销售额为20000元,7月份因为厂家提高了出厂价,商场把该品牌书包售价上涨20%,结果销量减少50个,使得销售额减少了2000元.(1)求6月份该品牌书包的销售单价;(2)若6月份销售该品牌书包获利8000元,8月份商场为迎接中小学开学做促销活动,该书包在6月售价的基础上一律打八折销售,若成本上涨5%,则销量至少为多少个,才能保证8月份的利润比6月份的利润至少增长6.25%?参考答案1.解:(1)设第一次购进时,每个防护口罩的价格是x元,则第二次购进时,每个防护口罩的价格是(1+25%)x元,依题意,得:﹣=200,解得:x=2,经检验,x=2是原分式方程的解,且符合题意.答:第一次购进时,每个防护口罩的价格是2元.(2)第二次购进防护口罩的单价为(1+25%)×2=2.5(元),第二次购进防护口罩的数量为3000÷2.5=1200(个),第二次购进防护口罩的销售单价为2.5×(1+20%)=3(元).设该药店每个防护口罩降价y元销售,依题意,得:800×3+(1200﹣800)(3﹣y)≥3000,解得:y≤1.5.答:该药店每个防护口罩至多降价1.5元销售,才能使第二次销售的防护口罩不亏本.2.解:(1)设普通医用口罩的进价为x元,则N95口罩的进价为5x元,依题意,得:=4×+4,解得:x=2,经检验,x=2是原方程的解,且符合题意,∴5x=10.答:普通医用口罩的进价为2元,N95口罩的进价为10元.(2)设这次购进N95口罩m个,则购进普通医用口罩(1500﹣m)个,依题意,得:[10×(1+40%)﹣10×(1+20%)]m+[2×(1+50%)×(1+20%)﹣2×(1+30%)](1500﹣m)≥2000,解得:m≥500.答:这次至少购进N95口罩500个.3.解:(1)设购买一个笔记本需要x元,则购买一支钢笔需要(x+20)元,依题意,得:2×=,解得:x=5,经检验,x=5是原分式方程的解,且符合题意,∴x+20=25.答:购买一支钢笔需要25元,购买一个笔记本需要5元.(2)设购买m支钢笔,则购买(3m﹣6)个笔记本,依题意,得:25m+5(3m﹣6﹣m)≤1020,解得:m≤30.答:最多可购买30支钢笔.4.解:(1)设B种图书每本价格为x元,则A种图书每本价格为2.5x元,依题意,得:﹣=25,解得:x=40.8,经检验,x=40.8是原方程的解,且符合题意,∴2.5x=102.答:A种图书每本价格为102元,B种图书每本价格为40.8元.(2)设购买y本A种图书,则购买(2y+8)本B种图书,依题意,得:102y+40.8(2y+8)≤1164,解得:y≤4.∵y为整数,∴y的最大值为4,∴(2y+8)的最大值为16.答:该学校最多可以购买16本B种图书.5.解:(1)设B种电话机的单价是x元,则A种电话机的单价是1.5x元,依题意,得:+=25,解得:x=200,经检验,x=200是原方程的解,且符合题意,∴1.5x=300.答:A种电话机的单价是300元,B种电话机的单价是200元.(2)设购进m台A种电话机,则购进(30﹣m)台B种电话机,依题意,得:300m+200(30﹣m)≤8000,解得:m≤20.答:最多能购进20台A种电话机.6.解:(1)设购买一个B商品需要x元,则购买一个A商品需要(x+10)元,依题意,得:=,解得:x=5,经检验,x=5是原分式方程的解,且符合题意,∴x+10=15.答:购买一个A商品需要15元,一个B商品5元.(2)设该学校可购买m个A种商品,则可购买(3m+11)个B种商品,依题意,得:80%×15m+5(3m+11)≤1000,解得:m≤35.答:该学校最多可购买35个A种商品.7.解:(1)设甲的速度为x千米/时,则乙的速度为(x+5)千米/时,依题意,得:=,解得:x=45,经检验,x=45是原方程的解,且符合题意,∴x+5=50.答:甲的速度为45千米/时,乙的速度为50千米/时.(2)依题意,得:180﹣50×1.5﹣(180÷45﹣1.5)(50﹣m)≤25,解得:m≤18.答:乙的速度每小时最多减少18千米.8.解:(1)设购进乙x件,则购进甲1.5x件,,解得,x=100,经检验x=100是原方程的解,∴1.5x=1.5×100=150,答:甲购进150件,乙购进100件.(2)设甲每件售价m元,则150m+100(m+10)﹣7800﹣6000≥6700,解得:m≥78,答:甲每件售价至少78元.9.解:(1)设甲种商品的每件进价为x元,则乙种商品的每件进价为(x+10)元.根据题意,得,,解得x=50.经检验,x=50是原方程的解.∴x+10=60,答:甲种商品的每件进价为50元,乙种商品的每件进价为60元(2)甲、乙两种商品的数量为.设甲种商品按原销售单价销售a件,∵商品全部售完后共获利不少于680元,∴(60﹣50)a+(60×0.9﹣50)(40﹣a)+(70﹣60)×40≥680,解得a≥20.答:甲种商品按原销售单价至少销售20件.10.解:(1)设B型机器人每小时搬运xkg化工原料,则A型机器人每小时搬运1.5xkg 化工原料,依题意,得:﹣=1,解得:x=200,经检验,x=200是原方程的解,且符合题意,∴1.5x=300.答:A型机器人每小时搬运300kg化工原料,B型机器人每小时搬运200kg化工原料.(2)设增加y个A型机器人,依题意,得:200×5×6+(5﹣3)×300y≥8000,解得:y≥,∵y为正整数,∴y的最小值为4.答:至少要增加4个A型机器人.11.解:(1)设该商家第一次购进智能清洁机器人x台,则第二次购进智能清洁机器人2x 台,依题意,得:﹣=10,解得:x=200,经检验,x=200是原方程的解,且符合题意.答:该商家第一次购进智能清洁机器人200台.(2)设每台智能清洁机器人的标价为y元,依题意,得:(200+200×2)y﹣(22000+48000)≥(22000+48000)×20%,解得:y≥140.答:每台智能清洁机器人的标价至少为140元.12.解:(1)设对联的进价为x元,则红灯笼的进价为2.25x元,依题意,得:﹣=60,解得:x=8,经检验,x=8是原方程的解,且符合题意,∴2.25x=18.答:对联的进价为8元,红灯笼的进价为18元.(2)设商店对剩下的商品打y折销售,依题意,得:12×300×+24×200×+12××300×(1﹣)+24××200×(1﹣)﹣8×300﹣18×200≥(8×300+18×200)×20%,整理,得:240y≥1200,解得:y≥5.答:商店最低打5折,才能使总的利润率不低于20%.13.解:(1)设该企业购买x条N95口罩生产线,则购买购买(10﹣x)条平面口罩生产线,依题意,得:2×100x≤100(10﹣x),解得:x≤.又∵x为正整数,∴x的最大值为3.答:该企业最多可购买3条N95口罩生产线.(2)设一条N95口罩生产线每小时生产m只口罩,则一条平面口罩生产线每小时生产(m+4200)只口罩,依题意,得:=,解得:m=3000,经检验,m=3000是原方程的解,且符合题意,∴m+4200=7200,∴[3000×3+7200×(10﹣3)]×8=475200(只).答:该企业每天可以生产N95口罩和平面口罩的总和为475200只.14.解:(1)设甲队单独完成这项工程需要x天,则乙队单独完成这项工程需要2x天,依题意,得:+=1,解得:x=12,经检验,x=12是原方程的解,且符合题意,∴2x=24.答:甲队单独完成这项工程需要12天,乙队单独完成这项工程需要24天.(2)设甲队工作m天,则乙队工作天,依题意,得:m+0.3×≤9.6,整理,得:0.4m≤2.4,解得:m≤6.答:甲队最多可以工作6天.15.解:(1)设6月份该品牌书包的销售单价为x元,则7月份该品牌书包的销售单价为(1+20%)x元,依题意,得:﹣=50,解得:x=100,经检验,x=100是原方程的解,且符合题意.答:6月份该品牌书包的销售单价为100元.(2)6月份该品牌书包的销售数量为20000÷100=200(个),6月份该品牌书包的进价为(20000﹣8000)÷200=60(元).设8月份该品牌书包的销售数量为y个,依题意,得:[100×0.8﹣(1+5%)×60]y≥8000×(1+6.25%),解得:y≥500.答:销量至少为500个时,才能保证8月份的利润比6月份的利润至少增长6.25%.。

人教版初中八年级数学上册第十五章《分式》经典测试(含答案解析)

人教版初中八年级数学上册第十五章《分式》经典测试(含答案解析)

一、选择题1.若整数a 使得关于x 的方程3222a x x-=--的解为非负数,且使得关于y 的一元一次不等式组322222010y y y a --⎧+>⎪⎪⎨-⎪≤⎪⎩至少有3个整数解,则所有符合条件的整数a 的和为( )A .23B .25C .27D .28B解析:B【分析】表示出不等式组的解集,由不等式至少有3个整数解确定出a 的值,再由分式方程的解为非负数以及分式有意义的条件求出满足题意整数a 的值,进而求出之和.【详解】 解:322222010y y y a --⎧+>⎪⎪⎨-⎪≤⎪⎩, 不等式组整理得:2y y a -⎧⎨≤⎩>, 由不等式组至少有3个整数解,得到-2<y≤a ,解得:a≥1,即整数a=1,2,3,4,5,6,…,3222a x x-=--, 去分母得:2(x-2)-3=-a ,解得:x=72a -, ∵72a -≥0,且72a -≠2, ∴a≤7,且a≠3,由分式方程的解为非负数以及分式有意义的条件,得到a 为1,2,4,5,6,7, 之和为1+2+4+5+6+7=25.故选:B .【点睛】此题考查了解分式方程,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键. 2.2020年新冠肺炎疫情影响全球,某企业临时增加甲、乙两个厂房生产口罩,甲厂房每天生产的数量是乙厂房每天生产数量的2倍,两厂房各加工6000箱口罩,甲厂房比乙厂房少用5天.则甲、乙两厂房每天各生产的口罩箱数为( )A .1200,600B .600,1200C .1600,800D .800,1600A解析:A【分析】 先设乙厂房每天生产x 箱口罩,则甲厂房每天生产2x 箱口罩,根据工作时间=工作总量÷工作效率且两厂房各加工6000箱口罩时甲厂房比乙厂房少用5天,可得出关于x 的分式方程,解方程即可得出结论.【详解】解:设乙厂房每天生产x 箱口罩,则甲厂房每天生产2x 箱口罩, 依题意得:6000600052x x-=, 解得:x =600, 经检验,x =600是原分式方程的解,且符合题意,∴2x =1200.故答案选:A .【点睛】该题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键. 3.已知2,1x y xy +==,则y x x y +的值是( ) A .0B .1C .-1D .2D 解析:D【分析】 将y x x y+进行通分化简,整理出含已知条件形式的分式,即可得出答案. 【详解】 解:2222()2221=21y x y x x y xy x y xy xy ++--⨯+=== 故选D .【点睛】本题考查了分式的混合运算,熟练运用完全平方公式是解题的关键.4.若方程21224k x x -=--有增根,则k =( ) A .4-B .14-C .4D .14B 解析:B【分析】先根据题意对原分式方程去分母,化为整式方程,然后根据增根的情况代入整式方程求解即可.【详解】去分母得:()()22421x k x --+=, 整理得:22290x kx k ---=,∵原分式方程有增根,∴240x -=,解得增根即为:2x =±,当2x =时,代入整式方程得:82290k k ---=,解得: 14k =-, 当2x =-时,代入整式方程无意义,∴14k =-故选:B【点睛】本题考查分式方程的增根,熟记增根是使最简公分母为零的数同时是对应整式方程的解,两者缺一不可.5.如图,若a 为负整数,则表示2a 111a a 1⎛⎫÷- ⎪-+⎝⎭的值的点落在( )A .段①B .段②C .段③D .段④C 解析:C【分析】将所给式子化简,根据a 为负整数,确定化简结果的范围,再从所给图中可得正确答案.【详解】 解:2a 111a a 1⎛⎫÷- ⎪-+⎝⎭=()()a a 111a 1a a 1a 1+⎛⎫÷- ⎪+-++⎝⎭=()()aa 1a 1a a 1÷+-+ =()()a a 11a 1a a+⋅+- =11a -; ∵a 为负整数,且a 1≠-,∴1a -是大于1的正整数,则1101a 2<<-.故选C .【点睛】本题考查了分式的化简及分式加减运算,同时考查了分式值的估算,总体难度中等. 6.下列各式计算正确的是( )A .()23233412ab a b -=- B .()222(2)2224x xy y x y xy x --++=+-C .()2422842a ba b b -÷=- D .()325339a b a b -=- A解析:A【分析】根据单项式乘单项式,幂的乘方,单项式除单项式,单项式乘多项式运算法则判断即可.【详解】 A 、()23233412a b a b -=-,故这个选项正确;B 、()222(2)2224x xy y x y xy x --++=--,故这个选项错误;C 、()24222842a b a b b -÷=-,故这个选项错误;D 、()3263327a b a b -=-,故这个选项错误; 故选:A .【点睛】本题考查了单项式乘单项式,幂的乘方,单项式除单项式,单项式乘多项式,重点是掌握相关的运算法则.7.若实数a 使关于x 的不等式组313212x x a xx +⎧+≥⎪⎪⎨+⎪-≥⎪⎩有解且最多有4个整数解,且使关于y 的方程3233y a y y --++ 1=的解是整数,则符合条件的所有整数a 的个数是( ) A .4B .3C .2D .1D 解析:D【分析】解不等式组得到a+2≤x ≤﹣3,利用不等式组有解且最多有4个整数解得到﹣7<a+2≤﹣3,解关于a 的不等式组得到整数a 为﹣8,﹣7,﹣6,﹣5,再解分式方程得到y =12a +且y ≠﹣3,利用分式方程的解为整数且12a +≠﹣3即可确定符合条件的所有整数a 的值. 【详解】解:313212x x a x x +⎧+≥⎪⎪⎨+⎪-≥⎪⎩①②, 由①得:x ≤﹣3,由②得:x ≥a+2,∴a+2≤x ≤﹣3,因为不等式组有解且最多有4个整数解,所以﹣7<a+2≤﹣3,解得﹣9<a ≤﹣5,整数a 为﹣8,﹣7,﹣6,﹣5, 方程3233y a y y --++ 1=去分母得3y ﹣a +2=y +3, 解得y =12a +且y ≠﹣3, ∴12a +≠﹣3, 解得a ≠﹣7,当a =﹣8时,y =﹣3.5(不是整数,舍去),当a =﹣6时,y =﹣2.5(不是整数,舍去),当a =﹣5时,y =﹣2(是整数,符合题意),所以符合条件的所有整数a 为﹣5.故选:D .【点睛】本题考查了分式方程的解:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解.也考查了解一元一次不等式组的整数解.8.2a ab b a++-的结果是( ). A .2a- B .4a C .2b a b -- D .b a- C 解析:C【分析】根据分式的加减运算的法则计算即可.【详解】 222()()a a b a b a b a b b a a b a b a b+-++=-=-----. 故选:C【点睛】本题考查了分式加减运算的法则,熟记法则是解题的关键.9.如果关于x 的不等式组0243(2)x m x x -⎧>⎪⎨⎪-<-⎩的解集为1x >,且关于x 的分式方程1322x m x x -+=--有非负整数解,则符合条件的所有m 的取值之和为( ) A .8-B .7-C .15D .15- B解析:B【分析】解出不等式组,求出不等式组的解集,确定m 的取值范围,再解出分式方程,找到分式方程的非负整数解,进而求出m 的值即可.【详解】 解:0243(2)x m x x -⎧>⎪⎨⎪-<-⎩①②,解不等式①得:x m >,解不等式②得:1x >,不等式组的解集为1x >,∴1m ;1322x m x x -+=-- 方程两边同时乘以()2x -得:()132x m x --=-; 解得:52m x +=, ∴25m x =-,1m ,∴251x -≤,∴3x ≤,分式方程有非负整数解且20x -≠,∴x 的值为:0,1,3,此时对应的m 的值为:5-,3-,1,∴符合条件的所有m 的取值之和为:()5317-+-+=-.故选:B .【点睛】本题考查了分式方程的解以及不等式的解集,求得m 的取值范围以及求出分式方程的解是解题的关键.10.使分式2221x x x ---的值为0的所有x 的值为( ) A .2或1- B .2-或1 C .2 D .1C解析:C【分析】先根据分式为零的条件列出不等式组,然后再求解即可.【详解】解:∵2221x x x ---=0 ∴222=010x x x ⎧--⎨-≠⎩,解得x=2. 故答案为C .【点睛】本题主要考查了分式为零的条件,根据分式为零的条件列出不等式组是解答本题的关键.二、填空题11.规定一种新的运算“ JX x A B →+∞”,其中A 和B 是关于x 的多项式,当A 的次数小于B 的次数时. 0JX x A B →+∞=;当A 的次数等于B 的次数时, JX x A B→+∞的值为A 、B 的最高次项的系数的商,当A 的次数大于B 的次数时, JX x A B →+∞不存在,例如: 201JX x x →+∞=-,2 2212312JXx x x x →+∞+=+-,若223410211A x x B x x -⎛⎫=-÷ ⎪--⎝⎭,则 JX x A B →+∞的值为__________.【分析】根据已知条件化简分式即可求出答案【详解】解:∵的次数等于的次数故答案为:【点睛】本题考查了分式的混合运算熟练分解因式是解题的关键 解析:12【分析】根据已知条件,化简分式即可求出答案.【详解】 解:223410(2)11A x xB x x -=-÷-- ()()()225223111x x x x x x ---⎛⎫=÷ ⎪-+-⎝⎭ ()()()1125112252x x x x x x x x +--+⎛⎫=⨯= ⎪--⎝⎭ 12x x+=, ∵A 的次数等于B 的次数,∴12x A JX B →+∞=, 故答案为:12. 【点睛】 本题考查了分式的混合运算,熟练分解因式是解题的关键.12.已知关于x 的分式方程239133x mx x x ---=--无解,则m 的值为______.1或4【分析】先去分母将原方程化为整式方程根据一元一次方程无解的条件得出一个m 值再根据分式方程无解的条件得出一个m 值即可【详解】解:去分母得:2x-3-mx+9=x-3整理得:(m-1)x=9∴当m解析:1或4【分析】先去分母,将原方程化为整式方程,根据一元一次方程无解的条件得出一个m 值,再根据分式方程无解的条件得出一个m 值即可.【详解】解:去分母得:2x-3- mx+9 =x-3,整理得:(m-1)x=9,∴当m-1=0,即m=1时,方程无解;当m-1≠0时,由分式方程无解,可得x-3=0,即x=3,把x=3代入(m-1)x=9,解得:m=4,综上,m 的值为1或4.故答案为:1或4.【点睛】本题考查了分式方程的解,熟练掌握分式方程及整式方程无解的条件是解题的关键. 13.若分式方程13322a x x x--=--有增根,则a 的值是________.【分析】分式方程去分母转化为整式方程由分式方程有增根求出x 的值代入整式方程计算即可求出a 的值【详解】去分母得:1-3x+6=-3a+x 由分式方程有增根得到x−2=0即x =2把x =2代入得:1-6+6 解析:13【分析】分式方程去分母转化为整式方程,由分式方程有增根求出x 的值,代入整式方程计算即可求出a 的值.【详解】去分母得:1-3x+6=-3a+x ,由分式方程有增根,得到x−2=0,即x =2,把x =2代入得:1-6+6=-3a+2,解得:a =13, 故答案为:13. 【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.14.A B 两地相距36千米,一艘轮船从A 地顺流行至B 地,又立即从B 地逆流返回A 地,共用9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米时,则可列方程为__________.【分析】设该轮船在静水中的速度为x 千米/时则一艘轮船从A 地顺流航行至B 地已知水流速度为4千米/时所花时间为;从B 地逆流返回A 地水流速度为4千米/时所花时间为根据题意列方程即可【详解】解:设该轮船在静 解析:3636944x x +=+- 【分析】设该轮船在静水中的速度为x 千米/时,则一艘轮船从A 地顺流航行至B 地,已知水流速度为4千米/时,所花时间为364x +;从B 地逆流返回A 地,水流速度为4千米/时,所花时间为364x -根据题意列方程3636944x x +=+-即可. 【详解】解:设该轮船在静水中的速度为x 千米时,根据题意列方程得:3636944x x +=+- 【点睛】本题考查列分式方程解应用题,关键是正确列出分式方程,找出题干中等量关系式即可. 15.分式2222,39a b b c ac的最简公分母是______.【分析】常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母这样的公分母叫做最简公分母【详解】分式的分母分别是3b2c9ac2故最简公分母是9ab2c2故答案为:9ab2c2【点睛】本题考查了解析:229ab c【分析】常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.【详解】分式222239a b b c ac、的分母分别是3b 2c 、9ac 2,故最简公分母是9ab 2c 2. 故答案为:9ab 2c 2.【点睛】 本题考查了最简公分母的定义及求法.通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母. 一般方法:①如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数,相同字母的最高次幂,所有不同字母都写在积里. ②如果各分母都是多项式,就可以将各个分母因式分解,取各分母数字系数的最小公倍数,凡出现的字母(或含字母的整式)为底数的幂的因式都要取最高次幂. 16.计算:()222333a b a b --⋅=_______________.【分析】根据单项式乘单项式计算法则以及幂的乘方与积的乘方负整数指数幂计算即可【详解】原式=故答案为:【点睛】本题主要考查了单项式乘单项式幂的乘方与积的乘方负整数指数幂属于基础计算题 解析:3a b【分析】根据单项式乘单项式计算法则以及幂的乘方与积的乘方,负整数指数幂,计算即可.【详解】原式=44334343113333a a b a b a b a b b----+-=== 故答案为:3a b. 【点睛】 本题主要考查了单项式乘单项式,幂的乘方与积的乘方,负整数指数幂,属于基础计算题.17.甲、乙二人做某种机械零件,已知甲每小时比乙少做8个,甲做160个所用的时间比乙做160个所用的时间多1小时,设甲每小时做x 个零件,列方程为________.【分析】设甲每小时做x 个零件根据甲做160个所用的时间比乙做160个所用的时间多1小时得出方程解答即可【详解】解:设甲每小时做个零件则乙每小时做个零件依题意得:即故答案为:【点睛】本题考查了由实际问 解析:16016018x x -=+ 【分析】设甲每小时做x 个零件,根据甲做160个所用的时间比乙做160个所用的时间多1小时得出方程解答即可.【详解】解:设甲每小时做x 个零件,则乙每小时做(8)x +个零件,依题意,得:16016018x x -=+, 即16016018x x -=+. 故答案为:16016018x x -=+. 【点睛】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.18.已知1112a b -=,则ab a b-的值是________.-2【分析】先把所给等式的左边通分再相减可得再利用比例性质可得再利用等式性质易求的值【详解】解:∵∴∴即∴故答案为:-2【点睛】本题考查了分式的加减法代数式求值解题的关键是通分得出是解题关键解析:-2【分析】 先把所给等式的左边通分,再相减,可得12b a ab -=,再利用比例性质可得()2ab a b =--,再利用等式性质易求ab a b -的值. 【详解】解:∵1112a b -=, ∴12b a ab -=, ∴()2ab b a =-,即()2ab a b =--, ∴2ab a b=--. 故答案为:-2.【点睛】 本题考查了分式的加减法,代数式求值,解题的关键是通分,得出12b a ab -=是解题关键. 19.某公司生产了A 型、B 型两种计算机,它们的台数相同,但总价值和单价不同.已知A 型计算机总价值为102万元;B 型计算机总价值为81.6万元,且单价比A 型机便宜了2400元.问A 型、B 型两种计算机的单价各是多少万元.若设A 型计算机的单价是x 万元,请你根据题意列出方程________.【分析】设A 型计算机的单价是x 万元/台则B 型计算机的单价是(x-024)万元/台根据单价=总价÷数量即可得出关于x 的分式方程此题得解【详解】解:设型计算机的单价是万元/台则型计算机的单价是解析:10281.6x x 0.24=- 【分析】设A 型计算机的单价是x 万元/台,则B 型计算机的单价是(x-0.24)万元/台,根据单价=总价÷数量即可得出关于x 的分式方程,此题得解.【详解】解:设A 型计算机的单价是x 万元/台,则B 型计算机的单价是()x 0.24-万元/台, 根据题意得:10281.6x x 0.24=-. 故答案为:10281.6x x 0.24=-. 【点睛】 本题考查了由实际问题抽象出分式方程,根据数量关系单价=总价÷数量列出关于x 的分式方程是解题的关键.20.若关于x 的分式方程11222mx x x-=---无解,则m =______.2或1【分析】将分式方程化成整式方程按照一元一次方程无解的条件及分式方程无解的条件求得m 的值即可【详解】解:方程两边同时乘以(x ﹣2)得:1﹣mx =-1﹣2(x ﹣2)整理得:(2﹣m )x =2∵无解∴解析:2或1【分析】将分式方程化成整式方程,按照一元一次方程无解的条件及分式方程无解的条件求得m 的值即可.【详解】 解:方程11222mx x x-=---两边同时乘以(x ﹣2)得: 1﹣mx =-1﹣2(x ﹣2),整理得:(2﹣m )x =2,∵无解,∴当2﹣m =0,即m =2时,方程无解;当x ﹣2=0时,方程也无解,此时x =2,则2(2﹣m )=2,解得m =1.故答案为:2或1.【点睛】 本题考查了分式方程的解,明确分式方程和整式方程无解的条件是解题的关键.21.某商店购进 A B 、两种商品,购买1个A 商品比购买1个B 商品多花10元,并且花费300元购买A 商品和花费100元购买B 商品的数量相等(1)求购买一个A 商品和一个B 商品各需要多少元(2)商店准备购买A B 、两种商品共80个,若A 商品的数量不少于B 商品数量的4倍,并且购买A B 、商品的总费用不低于1000元且不高于1060元,那么商店有哪几种购买方案? 解析:(1)购买一个A 商品需要15元,购买一个B 商品需要5元;(2)商店有3种购买方案,方案①:购进A 商品66个,B 商品14个;方案②:购进A 商品65个,B 商品15个;方案③:购进A 商品64个,B 商品16个【分析】(1)设购买一个B 商品需要x 元,则购买一个A 商品需要()10x +元,列出分式方程求解;(2)设购买B 商品m 个,则购买A 商品()80m -个,根据题意列出不等式组求出m 的范围,取整数解.【详解】解:()1设购买一个B 商品需要x 元,则购买一个A 商品需要()10x +元,依题意, 得:30010010x x=+, 解得:5x =,经检验, = 5x 是原方程的解,且符合题意, 1015x ∴+=,答:购买一个A 商品需要15元,购买一个B 商品需要5元;()2设购买B 商品m 个,则购买A 商品()80m -个,依题意,得:()()804158051000158051060m m m m m m ⎧-≥⎪-+≥⎨⎪-+≥⎩,解得:1416m ≤≤, m 为整数,14m ∴=或15或16,∴商店有3种购买方案,方案①:购进A 商品66个,B 商品14个,方案②:购进A 商品65个,B 商品15个,方案③:购进A 商品64个,B 商品16个.【点睛】本题考查分式方程的应用和不等式的应用,解题的关键是掌握根据题意列分式方程和不等式的方法.22.解方程(1)22211x x x =-+. (2)2127111x x x +=+--. 解析:(1)无解;(2)2x =【分析】(1)先把分式方程化为整式方程,然后解方程,再进行检验,即可得到答案; (2)先把分式方程化为整式方程,然后解方程,再进行检验,即可得到答案;【详解】(1)解:原方程可变形为()()()21111x x x x =+-+, 方程两边同乘最简公分母()()11x x x +-,得21x x =-.解得:1x =-.检验:把1x =-代入最简公分母()()11x x x +-,得()()()()11111110x x x +-=--+--=,因此,1x =-是增根,从而原方程无解.(2)原方程可变形为:()()1271111x x x x +=+-+- 方程两边同乘最简公分母()()11x x +-,得()1217x x -++=解得,2x =检验:把2x =代入最简公分母()()11x x +-,得()()113130x x +-=⨯=≠因此,2x =是原方程的解.【点睛】本题考查了解分式方程,解题的关键是掌握解分式方程的步骤,注意解分式方程需要检验.23.(1)计算:22y x x y x y-++ (2)解方程:4322x x x=+-- 解析:(1)y x -;(2)5x =. 【分析】(1)根据分式运算的性质,结合平方差公式计算,即可得到答案;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】(1)22y x x y x y-++, =22y x x y-+, =()()x y x y x y +--+,=()x y y x --=-,y x =-;(2)4322x x x=+--, 去分母得()4=32x x --,去括号得436x x =--,移项合并得210x =,系数化1得5x =,当x=5时,25230x -=-=≠,所以x=5是原方程的解.【点睛】本题考查了分式的混合运算及解分式方程,能正确根据分式的运算法则进行化简以及掌握解分式方程的方法是解答此题的关键,注意解分式方程要验根.24.解方程:(1)3311x x x +=-- (2)23425525x x x +=-+- 解析:(1)3x =;(2)1x =【分析】(1)先去分母,再解整式方程求解,检验解是否为原方程的解即可;(2)先去分母,再解整式方程求解,检验解是否为原方程的解即可.【详解】解:(1)方程两边同乘1x -,得33(1)x x +=-,解得3x =,检验:当3x =时10x -≠,∴原分式方程的解为3x =;(2)方程两边同乘(5)(5)x x -+,得3(5)4(5)2x x ++-=,解得1x =,检验:当1x =时,(5)(5)0x x -+≠,∴原分式方程的解为1x =.【点睛】此题考查解分式方程,掌握解方程的步骤:先去分母,再解整式方程求解,检验解是否为原方程的解.25.某快餐店欲购进A ,B 两种型号的餐盘,每个A 种型号的餐盘比每个B 种型号的餐盘费用多5元,且用120元购进的A 种型号的餐盘与用90元购进的B 种型号的餐盘的数量相同.(1)问A ,B 两种型号的餐盘单价为多少元?(2)若该快餐店决定在成本不超过1900元的前提下购进A ,B 两种型号的餐盘100个,则最多购进A 种型号餐盘多少个?解析:(1)A 种型号的餐盘单价为20元,B 种型号的餐盘单价为15元;(2)最多购进A 种型号餐盘80个【分析】(1)设A 型号的餐盘单价为x 元,则B 型号的餐盘单价为(x ﹣5)元,根据用120元购进的A 种型号的餐盘与用90元购进的B 种型号的餐盘的数量相同这个等量关系列出方程即可;(2)设购进A 种型号餐盘m 个,结合“该快餐店决定在成本不超过1900元的前提购进A 、B 两种型号的餐盘100个”列出不等式并解答.【详解】解:(1)设A 种型号的餐盘单价为x 元,则B 种型号的餐盘单价为(5x -)元, 由题意可列方程120905x x =-, 解得20x .经检验,20x 是原分式方程的解,则520515x -=-=.答:A 种型号的餐盘单价为20元,B 种型号的餐盘单价为15元.(2)设购进A 种型号餐盘m 个,则购进B 种型号餐盘()100m -个.依题意可得()20151001900m m +-≤,解得80m ≤.答:最多购进A 种型号餐盘80个.【点睛】本题考查了分式方程的应用和一元一次不等式的应用.解决本题的关键是读懂题意,找到符合题意的数量关系.准确的解分式方程或不等式是需要掌握的基本计算能力. 26.秋冬来临之际,天气开始慢慢变冷,某商家抓住商机,在十一月份力推甲、乙两款儿童棉服.已知十一月份甲款棉服的销售总额为8400元,乙款棉服的销售总额为9000元,乙款棉服的单价是甲款棉服单价的1.2倍,乙款棉服的销售数最比甲款棉服的销售数量少6件.(1)求十一月份甲款棉服的单价是多少元?(2)十二月份,为了加大推销力度,该商家将甲款棉服的单价在十一月份的基础上下调了%a ,结果甲款棉服的销量比十一月份多卖了24件;乙款棉服的单价在十一月份的基础上下调3%2a ,结果乙款棉服的销量比十一月份多卖了50件.要使十二月份的总销售额不低于22200元,求a 的最大值,解析:(1)十一月份甲款棉服的单价是150元;(2)20【分析】(1)设十一月份甲款棉服的单价是x 元,则十一月份乙款棉服的单价是1.2x 元,根据题意列方程即可得到结论;(2)根据不等量关系,列出关于a 的不等式,即可得到结论.【详解】(1)设十一月份甲款棉服的单价是x 元,则十一月份乙款棉服的单价是1.2x 元,根据题意得,8400900061.2x x-=, 解得:x =150,经检验:x =150是原方程的根, 答:十一月份甲款棉服的单价是150元;(2)由题意得:150(1-%a )(8400÷150+24)+1.2×150(1-3%2a )(8400÷150-6+50)≥22200,解得:a≤20,∴a 的最大值为20.【点睛】本题考查了分式方程的应用,一元一次不等式的应用,正确的理解题意,列出方程和不等式,是解题的关键.27.为了安全与方便,某自助加油站只提供两种自助加油方式:“每次定额只加200元”与“每次定量只加40升”.自助加油站规定每辆车只能选择其中一种自助加油方式,那么哪种加油方式更合算呢?请以两种加油方式各加油两次予以说明.(分析问题)“更合算”指的是两次加油后平均油价更低由于汽油单价会变,不妨设第一次加油时油价为x 元/升,第二次加油时油价为y 元/升.①两次加油,每次只加200元的平均油价为:_______________元/升.②两次加油,每次只加40升的平均油价为:_______________元/升.(解决问题)请比较两种平均油价,并用数学语言说明哪种加油方式更合算.解析:【分析问题】①2xy x y +;②2x y +;【解决问题】22x y xy x y +≥+,当x y =时,两种加油方式均价相等;当x y ≠时,每次加200元更合算【分析】分析问题:①计算出两次加油的总价400元,总的加油量为200200+xy ⎛⎫ ⎪⎝⎭升,从而得到两次加油的平均价格;②计算出两次加油的总价()4040x y +元,总的加油量为80升,从而得到两次加油的平均价格; 解决问题:利用作差法可得22x y xy x y +-+()()22x y x y -=+,再判断()()22x y x y -+的符号,从而可得结论.【详解】解:分析问题:① 第一次加油时油价为x 元/升, ∴ 第一次加油的数量为:200x升,第二次加油时油价为y 元/升,∴ 第二次加油的数量为:200y 升, 所以两次加油的平均价格为每升:()200+2004004002200200200200200xy xy x y x y x y x y xy===++++(元) 故答案为:2xy x y+ ②两次加油,每次只加40升的总价分别为:40x 元,40y 元, 所以两次加油的平均价格为每升:()40404080802x y x y x y +++==元, 故答案为:2x y +. 解决问题:()()()()()222422422x y x y x y xy xy x y x xy y x y x y +++-=--=++++()()22x y x y -=+ x ,y 为两次加油的汽油单价,故0x y +>,()20x y -≥ ()()22022x y x y xy x y x y -+∴-=≥+-,即22x y xy x y +≥+. 结论:当x y =时,两种加油方式均价相等;当x y ≠时,每次加200元更合算.【点睛】本题考查的是列代数式,分式的化简,分式的加减运算的应用,分式除法的应用,代数式的值的大小比较,掌握以上知识是解题的关键.28.先化简,再求值:213(1)211x x x x x +--÷-+-,其中x =12. 解析:1x x -,-1. 【分析】 先计算括号内,再将除法化为乘法,分别因式分解后约分,将x =12代入计算即可. 【详解】 解:原式=222113211x x x x x x x -+---÷-+- =2233211x x x x x x --÷-+- =2(3)1(1)3x x x x x ---- =1x x -, 当x =12时, 原式=121112=--. 【点睛】本题考查分式的化简求值.属于常考题型,熟练掌握分式混合运算的法则是解题的关键.。

人教版八年级上册数学第十五章 分式 含答案

人教版八年级上册数学第十五章 分式 含答案

人教版八年级上册数学第十五章分式含答案一、单选题(共15题,共计45分)1、要使代数式有意义,则x的取值范围是()A.x>﹣1B.x≥﹣1C.x≠0D.x>﹣1且x≠02、计算:的结果为()A.x+3B.C.x-3D.3、若把分式中的、都扩大为原来的3倍,则分式的值()A.缩小3倍B.扩大3倍C.扩大9倍D.不变4、若,则=()A. B. C. D.5、分式方程的解是()A.3B.﹣3C.±3D.无解6、要使分式有意义,则x应满足条件()A.x≠1B.x≠﹣2C.x>1D.x>﹣27、若关于x的分式方程+ =2有增根,则m的值是()A.m=﹣1B.m=0C.m=3D.m=0或m=38、把分式方程化成整式方程,正确的是()A.2(x+1)-1=-x 2B.2(x+1)-x(x+1)=-xC.2(x+1)-x(x+1)=-x 2 D.2x-x(x+1)=-x9、(﹣2)﹣3的值等于()A.6B.﹣8C.D.10、使分式和分式相等的值是()A.-5B.-4C.-3D.-111、甲、乙两地相距,提速前动车的速度为,提速后动车的速度是提速前的倍,提速后行车时间比提速前减少,则可列方程为()A. B. C. D.12、下列运算中,错误的是()A. B. C. D.13、计算:53×5﹣2的值是()A.5B.﹣5C.10D.﹣1014、函数y= 中,自变量x的取值范围()A.x>﹣4B.x>1C.x≥﹣4D.x≥115、下列计算正确的是( )A. B. C. D.二、填空题(共10题,共计30分)16、若分式方程=4﹣无解,则a的值为________.17、当x=________时, 与互为相反数.18、化简:÷的结果是________.19、甲、乙二人做某种机械零件.已知甲每小时比乙多做4个,甲做60个所用的时间与乙做40个所用的时间相等,则乙每小时所做零件的个数为________.20、 +(2﹣π)0﹣sin60°=________.21、若关于x的分式方程=1的解为正数,那么字母a的取值范围是________.22、化简:﹣=________.23、(________ )2=;(________ )3=-24、函数f(x)= 的定义域是________.25、使有意义的x的取值范围是________.三、解答题(共5题,共计25分)26、先化简,再求值:•,其中x=3.27、在防疫新冠状病毒期间,市民对医用口罩的需求越来越大.某药店第一次用3000元购进医用口罩若干个,第二次又用3000元购进该款口罩,但第二次每个口罩的进价是第一次进价的1.25倍,购进的数量比第一次少200个.求第一次和第二次分别购进的医用口罩数量为多少个?28、为改善生态环境,防止水土流失,某村计划在荒坡上种1000棵树.由于青年志愿者的支援,每天比原计划多种25%,结果提前5天完成任务,原计划每天种多少棵树?29、今年上海市政府计划年内改造1.8万个分类垃圾箱房,把原有的分类垃圾箱房改造成可以投放“干垃圾、湿垃圾、可回收垃圾、有害垃圾”四类垃圾的新型环保垃圾箱房.环卫局原定每月改造相同数量的分类垃圾箱房,为确保在年底前顺利完成改造任务,环卫局决定每月多改造250个分类垃圾箱房,提前一个月完成任务.求环卫局每个月实际改造分类垃圾箱房的数量.30、先化简,再求值:÷(x+1﹣),其中x=﹣8sin30°+2cos45°.参考答案一、单选题(共15题,共计45分)1、A2、B3、B4、D5、D7、A8、C9、D10、C11、A12、C13、A14、B15、C二、填空题(共10题,共计30分)16、17、18、19、20、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、。

人教版八年级数学上:第15章《分式》单元测试(含答案)(含答案)

人教版八年级数学上:第15章《分式》单元测试(含答案)(含答案)

第15章分式一、解答题1.某市一项民生改造工程,由甲、乙两工程队合作20天可完成,若单独完成此项工程,甲工程对所用天数是乙工程队的2倍.(1)甲、乙两工程队单独完成此项工程各需要多少天?(2)甲工程队单独做a天后,再由甲、乙两工程队合作______(用含a的代数式表示)可完成此项工程.已知甲工程队施工费每天1万元,乙工程队每天施工费2.5万元,求甲工程队要单独施工多少天后,再由甲、乙两工程队合作完成剩下的工程,才能使工程费不超过64万元.2.某市修通一条与省会城市相连接的高速铁路,动车走高速铁路线到省会城市路程是500千米,普通列车走原铁路线路程是560千米.已知普通列车与动车的速度比是2:5,从该市到省会城市所用时间动车比普通列车少用4.5小时,求普通列车、动车的速度.3.市实验学校为创建书香校园,去年进一批图书.经了解,科普书的单价比文学书的单价多4元,用1500元购进的科普书与1000元购进的文学书本数相等.(1)求去年购进的文学书和科普书的单价各是多少元?(2)若今年书和科普书的单价与去年相比保持不变,该校打算用1250元再购进一批文学书和科普书,问购进科普书65本后至多还能购进多少本文学书?4.列分式方程解应用题:为绿化环境,某校在3月12日组织七、八年级学生植树.在植树过程中,八年级学生比七年级学生每小时多植10棵树,八年级学生植120棵树与七年级学生植100棵树所用时间相等,七年级学生和八年级学生每小时分别植多少棵树?5.某工程开准备招标,指挥部现接到甲乙两个工程队的投标书,从投标书中得知:乙队单独完成这项工程所需天数是甲队单独完成这项工程所需天数的2倍;该工程若由甲队先做6天,剩下的工程再由甲、乙合作16天可以完成.求甲、乙两队单独完成这项工程各需多少天.6.(2014•晋江市)某水果店老板用400元购进一批葡萄,由于葡萄新鲜,很快售完,老板又用500元购进第二批葡萄,所购数量与第一批相同,但每千克比第一批多了2元.(1)求:第一批葡萄进价每千克多少元?(请列方程求解)(2)若水果店老板以每千克11元的价格将两批葡萄全部售出,可以盈利多少元?7.为了进一步落实“节能减排”措施,冬季供暖来临前,某单位决定对7200平方米的“外墙保温”工程进行招标,现有甲、乙两个工程队参与投标,比较这两个工程队的标书发现:乙队每天完成的工程量是甲队的1.5倍,这样乙队单独干比甲队单独干能提前15天完成任务.问甲队每天完成多少平方米?8.某超市用3000元购进某种干果销售,由于销售状况良好,超市又调拨9000元资金购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果数量是第一次的2倍还多300千克,如果超市按每千克9元的价格出售,当大部分干果售出后,余下的600千克按售价的8折售完.(1)该种干果的第一次进价是每千克多少元?(2)超市销售这种干果共盈利多少元?9.某文具厂计划加工3000套画图工具,为了尽快完成任务,实际每天加工画图工具的数量是原计划的1.2倍,结果提前4天完成任务,求该文具厂原计划每天加工这种画图工具的数量.10.济宁市“五城同创”活动中,一项绿化工程由甲、乙两工程队承担.已知甲工程队单独完成这项工作需120天,甲工程队单独工作30天后,乙工程队参与合做,两队又共同工作了36天完成.(1)求乙工程队单独完成这项工作需要多少天?(2)因工期的需要,将此项工程分成两部分,甲做其中一部分用了x天完成,乙做另一部分用了y 天完成,其中x、y均为正整数,且x<46,y<52,求甲、乙两队各做了多少天?11.某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?12.荣庆公司计划从商店购买同一品牌的台灯和手电筒,已知购买一个台灯比购买一个手电筒多用20元,若用400元购买台灯和用160元购买手电筒,则购买台灯的个数是购买手电筒个数的一半.(1)求购买该品牌一个台灯、一个手电筒各需要多少元?(2)经商谈,商店给予荣庆公司购买一个该品牌台灯赠送一个该品牌手电筒的优惠,如果荣庆公司需要手电筒的个数是台灯个数的2倍还多8个,且该公司购买台灯和手电筒的总费用不超过670元,那么荣庆公司最多可购买多少个该品牌台灯?13.某漆器厂接到制作480件漆器的订单,为了尽快完成任务,该厂实际每天制作的件数比原来每天多50%,结果提前10天完成任务.原来每天制作多少件?14.学校计划选购甲、乙两种图书作为“校园读书节”的奖品.已知甲图书的单价是乙图书单价的1.5倍;用600元单独购买甲种图书比单独购买乙种图书要少10本.(1)甲、乙两种图书的单价分别为多少元?(2)若学校计划购买这两种图书共40本,且投入的经费不超过1050元,要使购买的甲种图书数量不少于乙种图书的数量,则共有几种购买方案?15.某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A 款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年5月份A款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?(3)如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a值应是多少?此时,哪种方案对公司更有利?16.甲、乙两座城市的中心火车站A,B两站相距360km.一列动车与一列特快列车分别从A,B两站同时出发相向而行,动车的平均速度比特快列车快54km/h,当动车到达B站时,特快列车恰好到达距离A站135km处的C站.求动车和特快列车的平均速度各是多少?17.某商场销售的一款空调机每台的标价是1635元,在一次促销活动中,按标价的八折销售,仍可盈利9%.(1)求这款空调每台的进价(利润率==).(2)在这次促销活动中,商场销售了这款空调机100台,问盈利多少元?18.从广州到某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍.(1)求普通列车的行驶路程;(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.19.马小虎的家距离学校1800米,一天马小虎从家去上学,出发10分钟后,爸爸发现他的数学课本忘记拿了,立即带上课本去追他,在距离学校200米的地方追上了他,已知爸爸的速度是马小虎速度的2倍,求马小虎的速度.20.几个小伙伴打算去音乐厅观看演出,他们准备用360元钱购买门票.下面是两个小伙伴的对话:根据对话的内容,请你求出小伙伴们的人数.21.某服装商预测一种应季衬衫能畅销市场,就用8000元购进一批衬衫,面市后果然供不应求,服装商又用17600元购进了第二批这种衬衫,所购数量是第一批购进数量的2倍,但单价贵了8元.商家销售这种衬衫时每件定价都是100元,最后剩下10件按8折销售,很快售完.在这两笔生意中,商家共盈利多少元?22.端午节期间,某食堂根据职工食用习惯,用700元购进甲、乙两种粽子260个,其中甲粽子比乙种粽子少用100元,已知甲种粽子单价比乙种粽子单价高20%,乙种粽子的单价是多少元?甲、乙两种粽子各购买了多少个?23.杨梅是漳州的特色时令水果,杨梅一上市,水果店的老板用1200元购进一批杨梅,很快售完;老板又用2500元购进第二批杨梅,所购件数是第一批的2倍,但进价比第一批每件多了5元.(1)第一批杨梅每件进价多少元?(2)老板以每件150元的价格销售第二批杨梅,售出80%后,为了尽快售完,决定打折促销,要使第二批杨梅的销售利润不少于320元,剩余的杨梅每件售价至少打几折?(利润=售价﹣进价)24.某校枇杷基地的枇杷成熟了,准备请专业摘果队帮忙摘果,现有甲、乙两支专业摘果队,若由甲队单独摘果,预计6天才能完成,为了减少枇杷因气候变化等原因带来的损失,现决定由甲、乙两队同时摘果,则2天可以完成,请问:(1)若单独由乙队摘果,需要几天才能完成?(2)若有三种摘果方案,方案1:单独请甲队;方案2:同时请甲、乙两队;方案3:单独请乙队.甲队每摘果一天,需支付给甲队1000元工资,乙队每摘果一天,须支付给乙队1600元工资,你认为用哪种方案完成所有摘果任务需支付给摘果队的总工资最低?最低总工资是多少元?25.某市区一条主要街道的改造工程有甲、乙两个工程队投标.经测算:若由两个工程队合做,12天恰好完成;若两个队合做9天后,剩下的由甲队单独完成,还需5天时间,现需从这两个工程队中选出一个队单独完成,从缩短工期角度考虑,你认为应该选择哪个队?为什么?26.某“爱心义卖”活动中,购进甲、乙两种文具,甲每个进货价高于乙进货价10元,90元买乙的数量与150元买甲的数量相同.(1)求甲、乙进货价;(2)甲、乙共100件,将进价提高20%进行销售,进货价少于2080元,销售额要大于2460元,求有几种方案?27.甲、乙两人准备整理一批新到的图书,甲单独整理需要40分钟完工;若甲、乙共同整理20分钟后,乙需再单独整理30分钟才能完工.问乙单独整理这批图书需要多少分钟完工?28.国家实施高效节能电器的财政补贴政策,某款空调在政策实施后.每购买一台,客户每购买一台可获得补贴500元.若同样用11万元所购买此款空调,补贴后可购买的台数比补贴前前多20%,则该款空调补贴前的售价为每台多少元?29.某校选派一部分学生参加“六盘水市马拉松比赛”,要为每位参赛学生购买一顶帽子.商场规定:凡一次性购买200顶或200顶以上,可按批发价付款;购买200顶以下只能按零售价付款.如果为每位参赛学生购买1顶,那么只能按零售价付款,需用900元;如果多购买45顶,那么可以按批发价付款,同样需用900元.问:(1)参赛学生人数x在什么范围内?(2)若按批发价购买15顶与按零售价购买12顶的款相同,那么参赛学生人数x是多少?30.为了保护环境,某开发区综合治理指挥部决定购买A,B两种型号的污水处理设备共10台.已知用90万元购买A型号的污水处理设备的台数与用75万元购买B型号的污水处理设备的台数相同,每台设备价格及月处理污水量如下表所示:污水处理设备A型B型价格(万元/台)m m﹣3月处理污水量(吨/台)220 180(1)求m的值;(2)由于受资金限制,指挥部用于购买污水处理设备的资金不超过165万元,问有多少种购买方案?并求出每月最多处理污水量的吨数.第15章分式参考答案与试题解析一、解答题1.某市一项民生改造工程,由甲、乙两工程队合作20天可完成,若单独完成此项工程,甲工程对所用天数是乙工程队的2倍.(1)甲、乙两工程队单独完成此项工程各需要多少天?(2)甲工程队单独做a天后,再由甲、乙两工程队合作天(用含a的代数式表示)可完成此项工程.已知甲工程队施工费每天1万元,乙工程队每天施工费2.5万元,求甲工程队要单独施工多少天后,再由甲、乙两工程队合作完成剩下的工程,才能使工程费不超过64万元.【解答】解:(1)设乙工程队单独完成此项工程需要x天,由题意得: +=,解得:x=30,经检验:x=30是原分式方程的解,2x=60.答:甲、乙两工程队单独完成此项工程各需要60天,30天;(2)甲工程队单独做a天后,再由甲、乙两工程队合作:(1﹣a×)÷(+)=(天),由题意可得:1•a+(1+2.5)•≤64,解得:a≥36,答:甲工程队要单独施工36天后,再由甲、乙两工程队合作完成剩下的工程,才能使工程费不超过64万元.故答案为:天.2.某市修通一条与省会城市相连接的高速铁路,动车走高速铁路线到省会城市路程是500千米,普通列车走原铁路线路程是560千米.已知普通列车与动车的速度比是2:5,从该市到省会城市所用时间动车比普通列车少用4.5小时,求普通列车、动车的速度.【解答】解:设普通列车的速度2x千米/小时,则动车的速度是5x千米/小时,由题意有:解得:x=40,经检验:x=40是分式方程的解,∴2x=80,5x=200.答:普通列车的速度80千米/小时,动车的速度是200千米/小时.3.市实验学校为创建书香校园,去年进一批图书.经了解,科普书的单价比文学书的单价多4元,用1500元购进的科普书与1000元购进的文学书本数相等.(1)求去年购进的文学书和科普书的单价各是多少元?(2)若今年书和科普书的单价与去年相比保持不变,该校打算用1250元再购进一批文学书和科普书,问购进科普书65本后至多还能购进多少本文学书?【解答】解:(1)设文学书的单价是x元,则科普书的单价是(x+4)元,根据题意,得=,解得x=8.经检验:x=8是原分式方程的解,x+4=12.答:文学书的单价是8元,则科普书的单价是12元.(2)设购进科普书65本后还能购进y本文学书,则12×65+8y≤1250,解得:y≤58.75,∵y为整数,∴y最大是58,答:购进科普书65本后至多还能购进58本文学书.4.(2014•西藏)列分式方程解应用题:为绿化环境,某校在3月12日组织七、八年级学生植树.在植树过程中,八年级学生比七年级学生每小时多植10棵树,八年级学生植120棵树与七年级学生植100棵树所用时间相等,七年级学生和八年级学生每小时分别植多少棵树?【解答】解:设七年级学生每小时植x棵,则八年级每小时植(x+10)棵,由题意得:=,解得:x=50,经检验:x=50是原分式方程的解,则x+10=50+10=60,答:七年级学生每小时植50棵,则八年级每小时植60棵.5.某工程开准备招标,指挥部现接到甲乙两个工程队的投标书,从投标书中得知:乙队单独完成这项工程所需天数是甲队单独完成这项工程所需天数的2倍;该工程若由甲队先做6天,剩下的工程再由甲、乙合作16天可以完成.求甲、乙两队单独完成这项工程各需多少天.【解答】解:设甲队单独完成这项工程需x天,由题意得:×6+(+)×16=1,解得:x=30,经检验:x=30是原分式方程的解,2x=60,答:甲队单独完成这项工程需30天,乙队单独完成这项工程需60天.6.某水果店老板用400元购进一批葡萄,由于葡萄新鲜,很快售完,老板又用500元购进第二批葡萄,所购数量与第一批相同,但每千克比第一批多了2元.(1)求:第一批葡萄进价每千克多少元?(请列方程求解)(2)若水果店老板以每千克11元的价格将两批葡萄全部售出,可以盈利多少元?【解答】解:(1)设第一批葡萄进价每千克x元,则第二批葡萄的进价为(x+2)元,依题意得,,解得:x=8,经检验,x=8是原方程的解,且符合题意.答:第一批葡萄进价每千克8元.(2)由题意,得第一批的数量为:,50×2×11﹣(400+500)=200答:可盈利200元.7.为了进一步落实“节能减排”措施,冬季供暖来临前,某单位决定对7200平方米的“外墙保温”工程进行招标,现有甲、乙两个工程队参与投标,比较这两个工程队的标书发现:乙队每天完成的工程量是甲队的1.5倍,这样乙队单独干比甲队单独干能提前15天完成任务.问甲队每天完成多少平方米?【解答】解:设甲队每天完成x米2,乙队每天完成1.5 x米2,根据题意得.﹣=15,解得x=160,经检验,x=160,是所列方程的解.答:甲队每天完成160米2.8.某超市用3000元购进某种干果销售,由于销售状况良好,超市又调拨9000元资金购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果数量是第一次的2倍还多300千克,如果超市按每千克9元的价格出售,当大部分干果售出后,余下的600千克按售价的8折售完.(1)该种干果的第一次进价是每千克多少元?(2)超市销售这种干果共盈利多少元?【解答】解:(1)设该种干果的第一次进价是每千克x元,则第二次进价是每千克(1+20%)x元,由题意,得=2×+300,解得x=5,经检验x=5是方程的解.答:该种干果的第一次进价是每千克5元;(2)[+﹣600]×9+600×9×80%﹣(3000+9000)=(600+1500﹣600)×9+4320﹣12000=1500×9+4320﹣12000=13500+4320﹣12000=5820(元).答:超市销售这种干果共盈利5820元.9.某文具厂计划加工3000套画图工具,为了尽快完成任务,实际每天加工画图工具的数量是原计划的1.2倍,结果提前4天完成任务,求该文具厂原计划每天加工这种画图工具的数量.【解答】解:设文具厂原计划每天加工x套这种画图工具.根据题意,得﹣=4.解得 x=125.经检验,x=125是原方程的解,且符合题意.答:文具厂原计划每天加工125套这种画图工具.10.济宁市“五城同创”活动中,一项绿化工程由甲、乙两工程队承担.已知甲工程队单独完成这项工作需120天,甲工程队单独工作30天后,乙工程队参与合做,两队又共同工作了36天完成.(1)求乙工程队单独完成这项工作需要多少天?(2)因工期的需要,将此项工程分成两部分,甲做其中一部分用了x天完成,乙做另一部分用了y 天完成,其中x、y均为正整数,且x<46,y<52,求甲、乙两队各做了多少天?【解答】解:(1)设乙工程队单独完成这项工作需要a天,由题意得+36()=1,解之得a=80,经检验a=80是原方程的解.答:乙工程队单独做需要80天完成;(2)∵甲队做其中一部分用了x天,乙队做另一部分用了y天,∴=1即y=80﹣x,又∵x<46,y<52,∴,解得42<x<46,∵x、y均为正整数,∴x=45,y=50,答:甲队做了45天,乙队做了50天.11.某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?【解答】解:(1)设乙工程队每天能完成绿化的面积是x(m2),根据题意得:﹣=4,解得:x=50,经检验x=50是原方程的解,则甲工程队每天能完成绿化的面积是50×2=100(m2),答:甲、乙两工程队每天能完成绿化的面积分别是100m2、50m2;(2)设应安排甲队工作y天,根据题意得:0.4y+×0.25≤8,解得:y≥10,答:至少应安排甲队工作10天.12.荣庆公司计划从商店购买同一品牌的台灯和手电筒,已知购买一个台灯比购买一个手电筒多用20元,若用400元购买台灯和用160元购买手电筒,则购买台灯的个数是购买手电筒个数的一半.(1)求购买该品牌一个台灯、一个手电筒各需要多少元?(2)经商谈,商店给予荣庆公司购买一个该品牌台灯赠送一个该品牌手电筒的优惠,如果荣庆公司需要手电筒的个数是台灯个数的2倍还多8个,且该公司购买台灯和手电筒的总费用不超过670元,那么荣庆公司最多可购买多少个该品牌台灯?【解答】解:(1)设购买该品牌一个手电筒需要x元,则购买一个台灯需要(x+20)元.根据题意得=×解得 x=5经检验,x=5是原方程的解.所以 x+20=25.答:购买一个台灯需要25元,购买一个手电筒需要5元;(2)设公司购买台灯的个数为a,则还需要购买手电筒的个数是(2a+8﹣a)由题意得 25a+5(2a+8﹣a)≤670解得 a≤21∴荣庆公司最多可购买21个该品牌的台灯.13.某漆器厂接到制作480件漆器的订单,为了尽快完成任务,该厂实际每天制作的件数比原来每天多50%,结果提前10天完成任务.原来每天制作多少件?【解答】解:设原来每天制作x件,根据题意得:﹣=10,解得:x=16,经检验x=16是原方程的解,答:原来每天制作16件.14.学校计划选购甲、乙两种图书作为“校园读书节”的奖品.已知甲图书的单价是乙图书单价的1.5倍;用600元单独购买甲种图书比单独购买乙种图书要少10本.(1)甲、乙两种图书的单价分别为多少元?(2)若学校计划购买这两种图书共40本,且投入的经费不超过1050元,要使购买的甲种图书数量不少于乙种图书的数量,则共有几种购买方案?【解答】解:(1)设乙种图书的单价为x元,则甲种图书的单价为1.5x元,由题意得﹣=10解得:x=20则1.5x=30,经检验得出:x=20是原方程的根,答:甲种图书的单价为30元,乙种图书的单价为20元;(2)设购进甲种图书a本,则购进乙种图书(40﹣a)本,根据题意得解得:20≤a≤25,所以a=20、21、22、23、24、25,则40﹣a=20、19、18、17、16、15∴共有6种方案.15.某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A 款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年5月份A款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?(3)如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a值应是多少?此时,哪种方案对公司更有利?【解答】解:(1)设今年5月份A款汽车每辆售价m万元.则:,解得:m=9.经检验,m=9是原方程的根且符合题意.答:今年5月份A款汽车每辆售价9万元;(2)设购进A款汽车x辆.则:99≤7.5x+6(15﹣x)≤105.解得:6≤x≤10.∵x的正整数解为6,7,8,9,10,∴共有5种进货方案;(3)设总获利为W万元,购进A款汽车x辆,则:W=(9﹣7.5)x+(8﹣6﹣a)(15﹣x)=(a﹣0.5)x+30﹣15a.当a=0.5时,(2)中所有方案获利相同.此时,购买A款汽车6辆,B款汽车9辆时对公司更有利.16.甲、乙两座城市的中心火车站A,B两站相距360km.一列动车与一列特快列车分别从A,B两站同时出发相向而行,动车的平均速度比特快列车快54km/h,当动车到达B站时,特快列车恰好到达距离A站135km处的C站.求动车和特快列车的平均速度各是多少?【解答】解:设特快列车的平均速度为xkm/h,则动车的速度为(x+54)km/h,由题意,得: =,解得:x=90,经检验得:x=90是这个分式方程的解.x+54=144.答:特快列车的平均速度为90km/h,动车的速度为144km/h.17.某商场销售的一款空调机每台的标价是1635元,在一次促销活动中,按标价的八折销售,仍可盈利9%.(1)求这款空调每台的进价(利润率==).(2)在这次促销活动中,商场销售了这款空调机100台,问盈利多少元?【解答】解:(1)设这款空调每台的进价为x元,根据题意得:=9%,解得:x=1200,经检验:x=1200是原方程的解.答:这款空调每台的进价为1200元;(2)商场销售这款空调机100台的盈利为:100×1200×9%=10800元.。

人教版八年级数学上册 第 15 章《分式》 单元测试题(配套练习附答案)

人教版八年级数学上册 第 15 章《分式》 单元测试题(配套练习附答案)
【答案】 ,
【解析】
【分析】
原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,将x的值代入计算即可求出值.
【详解】解:原式
当x=1时,原式= .
【点睛】本题考查了分式的化简求值,解题的关键是熟练的掌握分式的化简求值.
19.开学初,小芳和小亮去学校商店购买学习用品,小芳用30元钱购买钢笔的数量是小亮用25元钱购买笔记本数量的2倍,已知每支钢笔的价格比每本笔记本的价格少2元
11.当a=______时, 的值为零.
【答案】﹣1.
【解析】
【分析】
根据分式的值为零的条件列式计算即可.
【详解】由题意得:a2﹣1=0,a﹣1≠0,
解得:a=﹣1.
故答案为:﹣1.
【点睛】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:①分子为0;②分母不为0.这两个条件缺一不可.
(1)求每支钢笔和每本笔记本各是多少元;
(2)学校运动会后,班主任再次购买上述价格的钢笔和笔记本共50件作为奖品,奖励给校运动会中表现突出的同学,总费用不超过200元.请问至少要买多少支钢笔?
【答案】(1)每支钢笔3元,每本笔记本5元;(2)至少要买25支钢笔.
【解析】
【分析】
(1)根据小芳用30元钱购买钢笔的数量是小亮用25元钱购买笔记本数量的2倍,已知每支钢笔的价格比每本笔记本的价铬少2元,可以得到相应的方程,解方程即可求得每支钢笔和每本笔记本各是多少元;
2018-2019年人教版八年级数学上册 第 15 章《分式》经典题型单元测试题
第Ⅰ卷(选择题)
一.选择题(每小题3分,共10小题)
1.若把 变形为 ,则下列方法正确的是
A.分子与分母同时乘 B.分子与分母同时除以

八年级数学上册第十五章《分式方程》课时练习题(含答案)

八年级数学上册第十五章《分式方程》课时练习题(含答案)

八年级数学上册第十五章《15.3分式方程》课时练习题(含答案)一、选择题1.方程2152x x =+-的解是( ) A .=1x - B .5x = C .7x = D .9x = 2.若关于x 的分式方程322x m x x -=--有增根,则m 的值是( ) A .1B .﹣1C .2D .﹣2 3.关于x 的分式方程2m x x +--3=0有解,则实数m 应满足的条件是( ) A .m =﹣2B .m ≠﹣2C .m =2D .m ≠2 4.分式方程3262(2)x x x x =+--的解是( ) A .0 B .2 C .0或2 D .无解5.已知111,1a b b c=-=-,用a 表示c 的代数式为( ) A .11c b =- B .11a c =- C .1a c a -= D .1a c a -= 6.解方程21132x x a -+=-时,小刚在去分母的过程中,右边的“-1”漏乘了公分母6,因而求得方程的解为2x =,则方程正确的解是( )A .3x =-B .2x =-C .13x =D .13x 7.已知关于x 的分式方程21m x -+=1的解是负数,则m 的取值范围是( ) A .m≤3 B .m≤3且m≠2 C .m <3 D .m <3且m≠2 8.衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为x 万千克,根据题意,列方程为( ) A .3036101.5x x -= B .3030101.5x x -= C .3630101.5x x -= D .3036101.5x x+= 二、填空题 9.方程11212x x =+-的解是______.10.定义一种新运算:对于任意的非零实数a ,b ,11b a b a ⊗=+.若21(1)++⊗=x x x x ,则x 的值为___________.11.若关于x 的分式方程211111k k x x x +-=--+有增根,则k 的值为______. 12.某校学生捐款支援地震灾区,第一次捐款的总额为6600元,第二次捐款的总额为7260元,第二次捐款的总人数比第一次多30人,而且两次人均捐款额恰好相等,则第一次捐款的总人数为________人.13.若方程2111ax a x -=+-的解与方程63x=的解相同,则=a ________. 14.若关于x 的方程2134416x m m x x ++=-+-无解,则m 的值为__. 三、解答题15.解分式方程:2312x x x --=-.16.为推动家乡学校篮球运动的发展,某公司计划出资12000元购买一批篮球赠送给家乡的学校.实际购买时,每个篮球的价格比原价降低了20元,结果该公司出资10000元就购买了和原计划一样多的篮球,每个篮球的原价是多少元?17.科学规范戴口罩是阻断新冠病毒传播的有效措施之一,某口罩生产厂家接到一公司的订单,生产一段时间后,还剩280万个口罩未生产,厂家因更换设备,生产效率比更换设备前提高了40%.结果刚好提前2天完成订单任务.求该厂家更换设备前和更换设备后每天各生产多少万个口罩?18.为了让学生崇尚劳动,尊重劳动,在劳动中提升综合素质,某校定期开展劳动实践活动.甲、乙两班在一次体验挖土豆的活动中,甲班挖1500千克土豆与乙班挖1200千克土豆所用的时间相同.已知甲班平均每小时比乙班多挖100千克土豆,问乙班平均每小时挖多少千克土豆?19.某校田径队的小明同学参加了两次有氧耐力训练,每一次训练内容都是在400米环形跑道上慢跑10圈.若第二次慢跑速度比第一次慢跑速度提高了20%,则第二次比第一次提前5分钟跑完.(1)小勇同学一次有氧耐力训练慢跑是米;(2)小勇同学两次慢跑的速度各是多少?20.某药店在今年3月份,购进了一批口罩,这批口罩包括有一次性医用外科口罩和N95口罩,且两种口罩的只数相同.其中购进一次性医用外科口罩花费1600元,N95口罩花费9600元.已知购进一次性医用外科口罩的单价比N95口罩的单价少10元.(1)求该药店购进的一次性医用外科口罩和N95口罩的单价各是多少元?(2)该药店计划再次购进两种口罩共2000只,预算购进的总费用不超过1万元,问至少购进一次性医用外科口罩多少只?参考答案1.D2.C3.B4.D5.D6.A7.D8.A9.-310.12-##0.5-11.1或13-##13-或112.30013.1 3 -14.-1或5或1 3 -15.方程2312xx x--=-,224432x x x x x-+-=-,54x-=-,45x=,经检验45x=是分式方程的解,∴原分式方程的解为45x=.16.解:设每个篮球的原价是x元,则每个篮球的实际价格是(x﹣20)元,根据题意,得12000x=1000020x-.解得x=120.经检验x=120是原方程的解.答:每个篮球的原价是120元.17.解:设该厂家更换设备前每天生产口罩x万只,则该厂家更换设备后每天生产口罩(1+40%)x万只,依题意得:2802(140%2)80x x-=+,解得:x=40,经检验,x=40是原方程的解,且符合题意.答:该厂家更换设备前每天生产口罩40万只,更换设备后每天生产口罩56万只.18.设乙班每小时挖x千克的土豆,则甲班每小时挖(100+x)千克的土豆,根据题意有:15001200100x x=+,解得:x=400,经检验,x=400是原方程的根,故乙班每小时挖400千克的土豆.19.(1)解:小勇一圈跑400米,一共跑了10圈,共400×10=4000米.(2)解:设第一次慢跑速度为每分钟x米,由于第二次慢跑速度比第一次慢跑速度提高了20%,故第二次慢跑速度为每分钟1.2x米.由题意可得:4000400051.2x x-= 解得:4003x = 经检验得:4003x =是原分式方程的解. ∴ 第一次慢跑速度为每分钟4003米,第二次慢跑速度为每分钟4001.21603⨯=米. 答:小勇同学两次慢跑的速度各是4003米/分、160米/分. 20.解:(1)设一次性医用口罩单价为x 元,则N95口罩的单价为()10x +元 由题意可知,1600960010x x =+, 解方程 得2x =.经检验2x =是原方程的解,当2x =时,1012x +=.答:一次性医用口罩和N95口单价分别是2元,12元.(2)设购进一次性医用口罩y 只根据题意得212(2000)10000y y +-≤,解不等式得1400y ≥.答:药店购进一次性医用口罩至少1400只.。

人教版八年级上册数学 第十五章分式同步复习题(含详细答案)

人教版八年级上册数学 第十五章分式同步复习题(含详细答案)

人教版八年级上册数学第十五章分式复习题一.选择题1.关于x的分式方程﹣=0的解为()A.﹣3 B.﹣2 C.2 D.32.某学校食堂需采购部分餐桌,现有A、B两个商家,A商家每张餐桌的售价比B商家的优惠13元.若该校花费2万元采购款在B商家购买餐桌的张数等于花费1.8万元采购款在A商家购买餐桌的张数,则A商家每张餐桌的售价为()A.117元B.118元C.119元D.120元3.使分式的值为0,这时x应为()A.x=±1 B.x=1C.x=1 且x≠﹣1 D.x的值不确定4.一个圆柱形容器的容积为Vm3,开始用一根小水管向容器内注水,水面高度达到容器高度一半后,改用一根口径为小水管2倍的大水管注水,向容器中注满水的全过程共用时间t 分钟.设小水管的注水速度为x立方米/分钟,则下列方程正确的是()A.+=t B.+=tC.•+•=t D.+=t5.春节期间,文具店的一种笔记本8折优惠出售.某同学发现,同样花12元钱购买这种笔记本,春节期间正好可比春节前多买一本.这种笔记本春节期间每本的售价是()A.2元B.3元C.2.4元D.1.6元6.已知关于x的方程的解是正整数,且k为整数,则k的值是()A.0 B.﹣2 C.0或6 D.﹣2或67.已知,则的值为()A.5 B.6 C.7 D.88.已知关于x的方程=3的解是负数,那么m的取值范围是()A.m>﹣6且m≠﹣2 B.m<﹣6 C.m>﹣6且m≠﹣4 D.m<﹣6且m≠﹣29.要使分式有意义,x的取值是()A.x≠1 B.x≠﹣1 C.x≠±1 D.x≠±1且x≠﹣2 10.随着电子技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占有面积0.00000065mm2,0.00000065用科学记数法表示为()A.6.5×107B.6.5×10﹣6C.6.5×10﹣8D.6.5×10﹣711.下列各式中,正确的是()A.B.C.=b+1 D.=a+b12.如果分式方程无解,则a的值为()A.﹣4 B.C.2 D.﹣213.已知关于x的分式方程的解为正数,则k的取值范围为()A.﹣2<k<0 B.k>﹣2且k≠﹣1 C.k>﹣2 D.k<2且k≠1 14.某车间接了生产12000只口罩的订单,加工4800个口罩后,采用了的新的工艺,效率是原来的1.5倍,任务完成后发现比原计划少用了2个小时.设采用新工艺之前每小时可生产口罩x个,依据题意可得方程()A.=2B.=2C.=2D.=2二.填空题15.分式的值比分式的值大3,则x的值为.16.若关于x的分式方程,有负数解,则实数a的取值范围是.17.已知分式,当x=1时,分式无意义,则a=.18.清代诗人袁枚的一首诗《苔》中写到:“白日不到处,青春恰自来.苔花如米小,也学牡丹开”,若苔花的花粉直径约为0.0000084米,用科学记数法表示为米.19.对和进行通分,需确定的最简公分母是.20.已知关于x的分式方程+=.若方程有增根,则m的值为.三.解答题21.计算(1)﹣(2)+﹣(3)(+)÷22.化简求值:,其中x=.23.中国是最早发现并利用茶的国家,形成了具有独特魅力的茶文化.2020年5月21日以“茶和世界共品共享”为主题的第一届国际茶日在中国召开.某茶店用4000元购进了A 种茶叶若干盒,用8400元购进B种茶叶若干盒,所购B种茶叶比A种茶叶多10盒,且B 种茶叶每盒进价是A种茶叶每盒进价的1.4倍.(1)A,B两种茶叶每盒进价分别为多少元?(2)第一次所购茶叶全部售完后,第二次购进A,B两种茶叶共100盒(进价不变),A 种茶叶的售价是每盒300元,B种茶叶的售价是每盒400元.两种茶叶各售出一半后,为庆祝国际茶日,两种茶叶均打七折销售,全部售出后,第二次所购茶叶的利润为5800元(不考虑其他因素),求本次购进A,B两种茶叶各多少盒?24.甲、乙两个服装厂加工同种型号的防护服,甲厂每天加工的数量是乙厂每天加工数量的1.5倍,两厂各加工600套防护服,甲厂比乙厂要少用4天.(1)求甲、乙两厂每天各加工多少套防护服?(2)已知甲、乙两厂加工这种防护服每天的费用分别是150元和120元,疫情期间,某医院紧急需要3000套这种防护服,甲厂单独加工一段时间后另有安排,剩下任务只能由乙单独完成.如果总加工费不超过6360元,那么甲厂至少要加工多少天?25.新型冠状病毒肺炎疫情发生后,全社会积极参与疫情防控工作,某市为了尽快完成100万只口罩的生产任务,安排甲、乙两个大型工厂完成.已知甲厂每天能生产口罩的数量是乙厂每天能生产口罩的数量的1.5倍,并且在独立完成60万只口罩的生产任务时,甲厂比乙厂少用5天.问至少应安排两个工厂工作多少天才能完成任务?参考答案一.选择题1.解:去分母得:2x﹣6﹣5x=0,解得:x=﹣2,经检验x=﹣2是分式方程的解,故选:B.2.解:设A商家每张餐桌的售价为x元,则B商家每张餐桌的售价为(x+13),根据题意列方程得:=,解得:x=117,经检验:x=117是原方程的解.故选:A.3.解:∵分式的值为0,∴x2﹣1=0,且x+1≠0,解得:x=1.故选:B.4.解:设小水管的注水速度为x立方米/分钟,可得:,故选:C.5.解:设这种笔记本节日前每本的售价是x元,根据题意得:,解得:x=3,经检验,x=3是原方程的解,∴0.8x=0.8×3=2.4(元),答:这种笔记本节日期间每本的售价是2.4元,故选:C.6.解:方程去分母,得9﹣3x=kx,即kx+3x=9,∴x=因为原分式方程的解为正整数,且x≠3.所以x==1、2、4、5、6、7、8、9,又因为k为整数,所以k=﹣2或6.故选:D.7.解:∵,∴(a+)2=9,即a2+2+=9,则=7,故选:C.8.解:去分母,得2x﹣m=3x+6,∴x=﹣m﹣6.由于方程的解为负数,∴﹣m﹣6<0且﹣m﹣6≠﹣2,解得m>﹣6且m≠﹣4.故选:C.9.解:要使分式有意义,则x+1≠0,解得:x≠﹣1,故选:B.10.解:0.00000065=6.5×10﹣7.故选:D.11.解:与在a=0或a=b时才成立,故选项A不正确;==,故选项B正确;=b+,故选项C不正确;不能化简,故选项D不正确;故选:B.12.解:去分母得:x=2(x﹣4)﹣a解得:x=a+8根据题意得:a+8=4解得:a=﹣4.故选:A.13.解:去分母得:x﹣2(x﹣1)=k,去括号得:x﹣2x+2=k,解得:x=2﹣k,由分式方程的解为正数,得到2﹣k>0,且2﹣k≠1,解得:k<2且k≠1,故选:D.14.解:设采用新工艺之前每小时可生产口罩x个,则采用新工艺之后每小时可生产口罩1.5x个,依题意,得:﹣=2.故选:D.二.填空题(共6小题)15.解:根据题意得:﹣=3,去分母得:x﹣3﹣1=3x﹣6,移项合并得:﹣2x=﹣2,解得:x=1,经检验x=1是分式方程的解,故答案为:1.16.解:,分式方程去分母得:1﹣x﹣3=a,移项合并得:﹣x=a+2,解得:x=﹣a﹣2,∵分式方程的解为负数,∴﹣a﹣2<0且﹣a﹣2+3≠0,解得:a>﹣2且a≠1.故答案为:a>﹣2且a≠1.17.解:把x=1代入得:,此时分式无意义,∴a﹣3=0,解得a=3.故答案为:3.18.解:0.0000084=8.4×10﹣6,故答案为:8.4×10﹣6.19.解:分式和的分母分别是2(x+y)、(x+y)(x﹣y).则最简公分母是2(x+y)(x﹣y).故答案是:2(x+y)(x﹣y).20.解:若原分式方程有增根,则(x+2)(x﹣2)=0,所以x=﹣2 或x=2,当x=﹣2 时,﹣2m=﹣8.得m=4,当x=2 时,2m=﹣8.得m=﹣4,所以若原分式方程有增根,则m=±4;故答案为:±4.三.解答题(共5小题)21.解:(1)﹣=+=;(2)+﹣=+﹣===﹣;(3)(+)÷=•=x﹣1.22.解:原式=•==﹣x(x+1)=﹣x2﹣x当x=时,原式=﹣2﹣.23.解:(1)设A种茶叶每盒进价为x元,则B种茶叶每盒进价为1.4x元,依题意,得:﹣=10,解得:x=200,经检验,x=200是原方程的解,且符合题意,∴1.4x=280.答:A种茶叶每盒进价为200元,B种茶叶每盒进价为280元.(2)设第二次购进A种茶叶m盒,则购进B种茶叶(100﹣m)盒,依题意,得:(300﹣200)×+(300×0.7﹣200)×+(400﹣280)×+(400×0.7﹣280)×=5800,解得:m=40,∴100﹣m=60.答:第二次购进A种茶叶40盒,B种茶叶60盒.24.解:(1)设乙厂每天加工x套防护服,则甲厂每天加工1.5x套防护服,根据题意,得﹣=4.解得x=50.经检验:x=50是所列方程的解.则1.5x=75.答:甲厂每天加工75套防护服,乙厂每天加工50套防护服;(2)设甲厂要加工m天,根据题意,得150m+120×≤6360.解得m≥28.答:甲厂至少要加工28天.25.解:设乙厂每天能生产口罩x万只,则甲厂每天能生产口罩1.5x万只,依题意,得:﹣=5,解得:x=4,经检验,x=4是原方程的解,且符合题意,∴1.5x=6.再设应安排两个工厂工作y天才能完成任务,依题意,得:(6+4)y≥100,解得:y≥10.答:至少应安排两个工厂工作10天才能完成任务.。

人教版八年级上册 第15章《分式》 实际方程类应用题专项练习(一)【有答案】

人教版八年级上册 第15章《分式》 实际方程类应用题专项练习(一)【有答案】

第15章《分式》实际方程类应用题专项练习(一)1.平价大药房准备购进KN95、一次性医用两种口罩.两种口罩的进价和售价如表.已知:用1800元购进一次性医用口罩的数量是用2000元购进KN95口罩的数量的5倍.KN95口罩一次性医用口罩进价(元/个)m+1 0.2m售价(元/个)15 2.5(1)求m的值;(2)要使购进的KN95、一次性医用两种口罩共1000个的总利润不少于1560元,且不超过1603元,问该药店共有多少种进货方案?2.某快餐店欲购进A、B两种型号的餐盘,每个A种型号的餐盘比每个B种型号的餐盘费用多10元,且用120元购进的A种型号的餐盘与用90元购进的B餐盘的数量相同.(1)A、B种两型号的餐盘单价为多少元?(2)若该快餐店决定在成本不超过3000元的前提购进A、B两种型号的餐盘80个,求最多购进A种型号餐盘多少个?3.在党中央的正确领导下,在全体医护人员的努力下,新冠肺炎疫情在我国得到有效控制,学生复课指日可待,某班级班委会计划从商店购买同一种品牌的一次性医用口罩和消毒液,已知购买一包一次性医用口罩比购买一瓶消毒液多用20元,若用400元购买一次性医用口罩和用160元购买消毒液,则购买一次性医用口罩的包数是购买消毒液瓶数的一半.(1)求购买该品牌的一包一次性医用口罩、一瓶消毒液各需要多少元?(2)经商谈,商店给予该班级购买一包该品牌的一次性医用口罩赠送一瓶该品牌的消毒液的优惠,如果该班级需要消毒液的瓶数是一次性医用口罩包数的2倍还多8,且该班级购买一次性医用口罩和消毒液的总费用不超过670元,那么该班级最多可以购买多少包该品牌的一次性医用口罩?4.为应对新冠疫情,某药店到厂家选购A、B两种品牌的医用外科口罩,B品牌口罩每个进价比A品牌口罩每个进价多0.7元,若用7200元购进A品牌数量是用5000元购进B品牌数量的2倍.(1)求A、B两种品牌的口罩每个进价分别为多少元?(2)若A品牌口罩每个售价为2元,B品牌口罩每个售价为3元,药店老板决定一次性购进A、B两种品牌口罩共6000个,在这批口罩全部出售后所获利润不低于1800元.则最少购进B品牌口罩多少个?5.某服装厂准备加工400套运动装,原计划由甲组单独完成,甲组加工完160套后,因有其他任务改由乙组完成剩下的运动装加工,因乙组每天加工的数量比甲组多20%,故提前了2天完成任务,问甲组每天加工运动装多少套?6.甲、乙两地相距600千米,一辆货车和一辆小汽车同时从甲地出发开往乙地,小汽车的速度是货车的1.2倍,结果小汽车比货车早1个小时到达乙地,求两辆车的速度.7.从贵阳到广州,乘特快列车的行程约为1800km,高铁开通后,高铁列车的行程约为900km,运行时间比特快列车所用的时间减少了16h.若高铁列车的平均速度是特快列车平均速度的2.5倍,求特快列车的平均速度.8.“垃圾分一分,环境美十分”.某校为积极响应有关垃圾分类的号召,从百货商场购进了A,B两种品牌的垃圾桶作为可回收垃圾桶和其他垃圾桶.已知B品牌垃圾桶比A品牌垃圾桶每个贵50元,用4000元购买A品牌垃圾桶的数量是用3000元购买B品牌垃圾桶数量的2倍.(1)求购买一个A品牌、一个B品牌的垃圾桶各需多少元?(2)若该中学决定再次准备用不超过6000元购进A,B两种品牌垃圾桶共50个,恰逢百货商场对两种品牌垃圾桶的售价进行调整:A品牌按第一次购买时售价的九折出售,B 品牌比第一次购买时售价提高了20%,那么该学校此次最多可购买多少个B品牌垃圾桶?9.2020年新冠肺炎疫情影响全球,各国感染人数持续攀升,医用口罩供不应求,很多企业纷纷加入生产口罩的大军中来,苏州某企业临时增加甲、乙两个厂房生产口罩,甲厂房每天生产的数量是乙厂房每天生产数量的2倍,两厂房各加工6000箱口罩,甲厂房比乙厂房少用5天.求甲、乙两厂房每天各生产多少箱口罩.10.某物业公司计划对所管理的小区3000m2区域进行绿化,经投标由甲、乙两个工程队来完成,甲、乙两个工程队每天共完成绿化面积150m2,甲队完成600m2区域的绿化面积与乙队完成300m2区域的绿化面积所用的天数相同.(1)求甲、乙两个工程队每天各能完成多少面积的绿化?(2)若甲队每天绿化费用是0.6万元,乙队每天绿化费用是0.2万元,该物业公司要使这次绿化总费用不超过17万元,则至少安排乙工程队绿化多少天?参考答案1.解:(1)由题意得:=×5,解得:m=9,经检验,m=3是原方程的解,且符合题意,∴m=9;(2)∵m=9,∴m+1=10,0.2m=1.8,设购进的KN95口罩为x个,一次性医用口罩为(1000﹣x)个,由题意得:1560≤(15﹣10)x+(2.5﹣1.8)×(1000﹣x)≤1603,解得:200≤x≤210,即x的取值有11个,∴药店共有11种进货方案.2.解:(1)设A型号的餐盘单价为x元,则B型号的餐盘单价为(x﹣10)元,由题意可列方程=,解得x=40.经检验:x=40是原分式方程的根.则x﹣10=40﹣10=30.答:A型号的餐盘单价为40元,B型号的餐盘单价为30元;(2)设购进A种型号餐盘m个,由题可知40m+30(80﹣m)≤3000,解得m≤60.答:最多购进A种型号餐盘60个.3.解:(1)设购买该品牌的一包一次性医用口罩需要x元,则一瓶消毒液需要(x﹣20)元,依题意有×2=,解得x=25,经检验,x=25是原方程的解,x﹣20=25﹣20=5.故购买该品牌的一包一次性医用口罩需要25元,一瓶消毒液需要5元;(2)设该班级可以购买y包该品牌的一次性医用口罩,则该班级需要消毒液的瓶数是(2y+8)瓶,依题意有25y+5(2y﹣8﹣y)≤670,解得y≤,∵y是整数,∴y最大为23.故该班级最多可以购买23包该品牌的一次性医用口罩.4.解:(1)设A品牌口罩每个进价为x元,则B品牌口罩每个进价为(x+0.7)元,依题意,得:=2×,解得:x=1.8,经检验,x=1.8是原方程的解,且符合题意,∴x+0.7=2.5,答:A品牌口罩每个进价为1.8元,B品牌口罩每个进价为2.5元.(2)设购进B品牌口罩m个,则购进A品牌口罩(6000﹣m)个,依题意,得:(2﹣1.8)(6000﹣m)+(3﹣2.5)m≥1800,解得:m≥2000.答:最少购进B品牌口罩2000个.5.解:设甲组每天加工运动装x套,由题意得:﹣2=+.解得:x=20,经检验:x=20是原方程的解.答:甲组每天加工运动装20套.6.解:设货车的速度为x千米/时,则小汽车的速度为1.2千米/时,依题意,得:﹣=1,解得:x=100,经检验,x=100是原方程的解,且符合题意,∴1.2x=120.答:货车的速度为100千米/时,小汽车的速度为120千米/时.7.解:设特快列车的平均速度为x km/h,根据题意可列出方程为=+16,解得x=90.检验:当x=90时,2.5x≠0.所以x=90是方程的解.答:特快列车的平均速度为90km/h.8.解:(1)设购买一个A品牌垃圾桶需x元,则购买一个B品牌垃圾桶需(x+50)元,依题意,得:=2×,解得:x=100,经检验,x=100是原方程的解,且符合题意,∴x+50=150.答:购买一个A品牌垃圾桶需100元,购买一个B品牌垃圾桶需150元.(2)设该学校此次购买m个B品牌垃圾桶,则购买(50﹣m)个A品牌垃圾桶,依题意,得:100×0.9(50﹣m)+150×(1+20%)m≤6000,解得:m≤16.因为m是正整数,所以m最大值是16.答:该学校此次最多可购买16个B品牌垃圾桶.9.解:设乙厂房每天生产x箱口罩,则甲厂房每天生产2x箱口罩,依题意,得:﹣=5,解得:x=600,经检验,x=600是原分式方程的解,且符合题意,∴2x=1200.答:甲厂房每天生产1200箱口罩,乙厂房每天生产600箱口罩.10.解:(1)设乙工程队每天能完成xm2的绿化的面积,则甲工程队每天能完成(150﹣x)m2的绿化的面积,根据题意可得:=,解得:x=50,经检验得:x=50是所列方程的解,150﹣x=150﹣50=100,答:乙工程队每天能完成50m2的绿化的面积,甲工程队每天能完成100m2的绿化的面积;(2)设安排乙工程队绿化y天,根据题意可得:×0.6+0.2y≤17,解得:y≥10,答:至少安排乙工程队绿化10天.。

人教版八年级上册数学第十五章 分式 含答案

人教版八年级上册数学第十五章 分式 含答案

人教版八年级上册数学第十五章分式含答案一、单选题(共15题,共计45分)1、下列运算正确的是()A.a 2+a 3=a 5B.a(b﹣1)=ab﹣aC.3a ﹣1=D.(3a 2﹣6a+3)÷3=a 2﹣2a2、计算,结果正确的是()A. B. C. D.3、小华在做解方程作业时,不小心将方程中的一个常数弄脏了而看不清楚,被弄脏的方程是.( - +x)=1-,这该怎么办呢?他想了一想,然后看了一下书后面的答案,知道此方程的解是x=5,于是,他很快便补好了这个常数,并迅速地做完了作业。

同学们,你能补出这个常数吗?它应该是()A.2B.3C.4D.54、若式子有意义,则x的取值范围是()A. x≠-1B. x≠1C.x>1D.x≠05、已知a= +2,b= ﹣2,则(﹣)÷的值为()A.1B.C.D.6、下面是李刚同学在一次测验中解答的填空题,其中答对的是A.若,则B.方程的解为C.若的两根的倒数和等于4,则 D.若分式的值为零,则7、要使分式有意义,则x的取值范围是()A.x≠1B.x>1C.x<1D.x≠-18、函数中自变量x的取值范围是()A.x≠﹣1B.x>﹣1C.x≠1D.x≠09、下列变形正确的是().A. B. C. &nbsp;D.10、下列计算正确的是()A.a 3+a 2=a 5B.a 6÷(﹣a 3)=﹣a 3C.(﹣a 2)3=a6 D.11、关于分式方程的解的情况,下列说法正确的是()A.有一个解是x=2B.有一个解是x=-2C.有两个解是x=2和x=-2 D.没有解12、如果把中的x和y都扩大5倍,那么分式的值()A.扩大5倍B.不变C.缩小5倍D.扩大10倍13、下列式子是分式的是()A. B. C. D.14、若把分式中的x和y都扩大到原来的3倍,那么分式的值(A.扩大3倍B.缩小3倍C.缩小6倍D.不变15、某工厂生产一种零件,计划在20天内完成,若每天多生产4个,则15天完成且还多生产10个.设原计划每天生产x个,根据题意可列分式方程为()A. B. C. D.二、填空题(共10题,共计30分)16、一种病毒近似于球体,它的半径为0.00000000375,用科学记数法表示为________17、分式方程:的解为 ________18、函数y 的定义域是________.19、分式,,的最简公分母是________.20、若分式的值为零,则x的值为________ .21、若分式的值为,则________;22、计算:=________23、计算:=________24、计算:÷(-18ax3)=________25、分式与的最简公分母是________三、解答题(共5题,共计25分)26、计算:+(﹣)﹣2﹣(﹣1)0﹣2sin60°.27、先化简,再求值(a﹣)(﹣1)÷,其中a,b分别为关于x的一元二次方程x2﹣x+1=0的两个根.28、我市新城区环形路的拓宽改造工程项目,经投标决定由甲、乙两个工程队共同完成这一工程项目.已知乙队单独完成这项工程所需天数是甲队单独完成这项工程所需天数的2倍;该工程如果由甲队先做6天,剩下的工程再由甲、乙两队合作16天可以完成.求甲、乙两队单独完成这项工程各需要多少天?29、计算30、在创建文明城市的进程中,我市为美化城市环境,计划种值树木60万棵,由于志愿者的加入,实际每天植树比原计划多20%,结果提前5天完成任务,求原计划每天植树多少万棵?参考答案一、单选题(共15题,共计45分)1、B2、D4、B5、B6、C7、A8、A9、B10、B11、D12、B13、B14、B15、A二、填空题(共10题,共计30分)16、17、18、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。

人教版八年级数学上册《15.3 分式方程》练习题-附参考答案

人教版八年级数学上册《15.3 分式方程》练习题-附参考答案

人教版八年级数学上册《15.3 分式方程》练习题-附参考答案一、选择题1.下列关于x的方程是分式方程的是()A.2+x5=3+x6B.x2−3=x3C.x−17+x=3D.35x=12.某园林公司增加了人力进行园林绿化,现在平均每天比原计划多植树50棵,现在植树600棵所需的时间与原计划植树450棵所需的时间相同,如果设原计划平均每天植树x棵,那么下面所列方程中,正确的是()A.600x−50=450xB.600x+50=450xC.600x =450x+50D.600x=450x−503.若关于x的分式方程x−3x−1=mx−1+2产生增根,则m的值为()A.−1B.−2C.1 D.24.解分式方程2x−1+x+21−x=3时,去分母后变形正确的是()A.2+(x+2)=3(x−1)B.2−(x+2)=3(1−x) C.2+(x+2)=3(1−x)D.2−(x+2)=3(x−1)6.关于x的方程2x+ax−1=1的解是正数,则a的取值范围是()A.a>−1B.a>−1且a≠0C.a<−1D.a<−1且a≠−27.若关于x的分式方程6x−1=x+3x(x−1)−kx无解,则k的取值是()A.k=−3B.k=−3或k=−5 C.k=1D.k=1或k=−58.已知x=1是方程m2−x −1x−2=3的解,那么实数m的值为()A.−2B.2 C.−4D.4整数a的值之积是()A.0 B.4 C.5 D.6二、填空题9.若关于x 的方程2x−2+2x−m 2−x=3有增根,则m 的值是 .10.若yx+y =12.则xy = .11.某化肥厂原计划五月份生产化肥120吨,由于采用了新技术,每天多生产化肥3吨,实际生产180吨.设原计划每天生产化肥x 吨.根据题意,列方程为 .12.若关于x 的分式方程3xx−1=m1−x +4的解为正数,则m 的取值范围是 .13.为深入践行“绿水青山就是金山银山”的发展理念,我国绿色发展成就显著,在今年的植树造林活动期间,某苗圃公司第一天卖出一批小叶榄仁树苗共收款8000元,第二天又卖出同样的树苗收款17000元,所卖数量是第一天的2倍,售价比第一天每棵多了5元,第二天每棵树苗售价是 元. 三、解答题 14. 解方程. (1)x2x−1+21−2x =3; (2)4x 2−4−1x−2=0.15.某玩具店用2000元购进一批玩具,面市后,供不应求,于是店主又购进同样的玩具,所购的数量是第一批数量的3倍,但进价贵了4元,结果购进第二批玩具共用了6300元,若两批玩具的售价都是120元,且两批玩具全部售完,求该玩具店销售这两批玩具共盈利多少?16.某快餐店欲购进A 、B 两种型号的餐盘,每个A 种型号的餐盘比每个B 种型号的餐盘费用多10元,且用120元购进的A 种型号的餐盘与用90元购进的乙餐盘的数量相同. (1)A 、B 两型号的餐盘单价为多少元?(2)若该快餐店决定在成本不超过3000元的前提购进A .B 两种型号的餐盘80个,求最多购进A 种型号餐盘多少个?17.为了提高服务质量,某宾馆决定对甲、乙两种套房进行星级提升,已知甲种套房提升费用比乙种套房提升费用少3万元,如果提升相同数量的套房,甲种套房费用为625万元,乙种套房费用为700万元. (1)甲、乙两种套房每套提升费用各多少万元?(2)如果需要甲、乙两种套房共80套,市政府筹资金不少于2090万元,但不超过2096万元,且所筹资金全部用于甲、乙种套房星级提升,市政府对两种套房的提升有哪几种方案?参考答案1.C 2.B 3.B 4.D 6.D 7.B 8.BD9.2 10.111.120x =180x+312.m>−4且m≠−313.8514.(1)解:原方程去分母得:x﹣2=3(2x﹣1)去括号得:x﹣2=7x﹣3移项,合并同类项得:﹣5x=﹣4系数化为1得:x=12经检验,x=15故原方程的解为x=45;(2)解:原方程去分母得:4﹣(x+2)=0去括号得:4﹣x﹣3=0移项,合并同类项得:x=2经检验,x=3是分式方程的增根故原方程无解.15.解:设第一批购进书包的单价是x元.则:.解得:x=80.经检验:x=80是原方程的根.则 ×(120﹣80)+ ×(120﹣84)=3700(元).答:商店共盈利3700元.16.(1)解:设A 型号的餐盘单价为x 元,则B 型号的餐盘单价为元,解得经检验是方程的解且符合实际情况∴B 型号的餐盘单价为(元);答:A 、B 两型号的餐盘单价分别为40元、30元. (2)解:设购进A 种型号餐盘m 个解得;答:最多购进A 种型号餐盘60个17.(1)解:设甲种套房每套提升费用为x 万元,乙种套房每套提升费用为(x +3)万元 依题意,可得625x=700x+3解得:x =25经检验:x =25符合题意 x +3=28;答:甲,乙两种套房每套提升费用分别为25万元,28万元. (2)解:设甲种套房提升m 套,那么乙种套房提升(80−m)套 依题意,得{25m +28×(80−m)≥209025m +28×(80−m)≤2096 解得:48≤m ≤50 因为m 取整数即m =48或49或50,所以有三种方案方案一:甲种套房提升48套,乙种套房提升32套. 方案二:甲种套房提升49套,乙种套房提升31套 方案三:甲种套房提升50套,乙种套房提升30套.。

八年级数学上册《第十五章 分式方程》同步训练题及答案(人教版)

八年级数学上册《第十五章 分式方程》同步训练题及答案(人教版)

八年级数学上册《第十五章 分式方程》同步训练题及答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题1.将关于x 的分式方程3x−2−2=52−x 去分母后所得整式方程正确的是( ) A .3(2−x)−2(x −2)=5 B .3−2(x −2)=−5 C .−3−2(x −2)=5D .3−2(x −2)=52.《九章算术》之“均输篇”中记载了中国古代的“运粟之法”:今有一批公粮,需运往距出发地420km 的储粮站,若运输这批公粮比原计划每日多行10km ,则提前1日到达储粮站.设运输这批公粮原计划每日行xkm ,则根据题意可列出的方程是( ) A .420x=420x+10+1 B .420x+1=420x+10 C .420x=420x−10+1D .420x+1=420x−103.方程2x−1x+2=1的解是( ) A .x =2B .x =−2C .x =3D .x =−34.若关于x 的分式方程x−1x+1=ax+1−2有增根,则a 的值是( ) A .−2 B .−1C .0D .15.解方程x−1x−2x x−1=3时,设x−1x=y ,则原方程可化为关于y 的整式方程是( )A .y −2y =3B .y 2−2y =3C .y 2+3y −2=0D .y 2−3y −2=06.已知关于x 的分式方程mx−1+61−x =1的解是正数,则m 的取值范围是( ) A .m >5B .m ≥5C .m ≥5且m ≠6D .m >5且m ≠67.为治理城市污水,需铺设一段全长300米的污水排放管道,由于情况有变,….设原计划铺设管道x 米,列方程为300x−300(1+25%)x =3,根据方程,可知省略的部分是( )A .实际工作时每天铺设的管道比原计划降低了25%,结果延误3天完成了这一任务B .实际工作时每天铺设的管道比原计划降低了25%,结果提前3天完成了这一任务C .实际工作时每天铺设的管道比原计划提高了25%,结果延误3天完成了这一任务D .实际工作时每天铺设的管道比原计划提高了25%,结果提前3天完成了这一任务8.某运输公司运输一批货物,已知大货车比小货车每辆多运输5吨货物,且大货车运输75吨货物所用车辆数与小货车运输50吨货物所用车辆数相同,设有大货车每辆运输x吨,则所列方程正确的是().A.75x−5=50xB.75x=50x−5C.75x+5=50xD.75x=50x+5二、填空题9.已知方程xx2−1+x2−1x=3,如果设y=xx2−1,那么原方程转化为关于y的整式方程为.10.关于x的分式方程mx−1+31−x=1的解为负数,则m的取值范围是.11.关于x的分式方程x+mx−2+12−x=3有增根,则m=.12.某传染病传播期间为尽快完成病人检测任务,某地组织甲、乙两支医疗队,分別开展检测工作,甲队比乙队每小时多检测15人,甲队检测600人,比乙队检测500人所用的时间少10%,则甲队每小时检测的人数是人.13.若关于x的分式方程1−xx−2=m2−x−2的解小于3,则m的取值范围是三、解答题14.解分式方程:(1)2−xx−3=43−x−2;(2)4xx2−4=2x+2.15.先化简:若a是方程1a =2a+3的解,求代数式(1−3a+2)÷a2−2a+1a2−4的值.16.某公司计划购买A、B两种型号的机器人搬运材料.已知A型机器人比B型机器人每小时多搬运30kg材料,且A型机器人搬运1000kg材料所用的时间与B型机器人搬运800kg材料所用的时间相同.求A、B两种型号的机器人每小时分别搬运多少材料?17.2023年5月15日,辽宁男篮取得第三次CBA总冠军,辽篮运动员的拼搏精神感染了众多球迷.某校篮球社团人数迅增,急需购进A,B两种品牌篮球,已知A品牌篮球单价比B品牌篮球单价的2倍少48元,采购相同数量的A,B两种品牌篮球,分别需要花费9600元和7200元.求A,B两种品牌篮球的单价分别是多少元?18.某水果店用1350元购进一批车厘子,受到消费者的欢迎,于是又用了2450元购进第二批,由于第二批的采购量是第一批的2倍,所以比第一批车厘子每斤的进价便宜了5元.(1)求第一批和第二批车厘子的进价分别为每斤多少元;(2)在销售过程中,水果店以每斤80元的价格销售完了第一批车厘子和第二批车厘子的3,为了回5流资金,决定降价销售余下的车厘子,若两批车厘子的总利润不低于1800元,求降价后的车厘子售价每斤至少多少元;参考答案 1.B 2.A 3.C 4.A 5.D 6.D 7.D 8.B9.y 2−3y +1=0 10.m <2 11.-1 12.6013.m >0且m ≠114.(1)解:方程两边同乘(x −3),得 2−x =−4−2(x −3). 解这个一元一次方程,得x =0.检验:当x =0时x −3=−3≠0,x =0是原方程的解. (2)解:方程两边同乘(x 2−4),得 4x =2(x −2).解这个一元一次方程,得 x =−2.检验:当x =−2时x 2−4=0,x =−2是增根,原方程无解. 15.解:(1−3a+2)÷a 2−2a+1a 2−4=a+2−3a+2×(a+2)(a−2)(a−1)2=(a−1)a+2×(a+2)(a−2)(a−1)2=a −2a −1又∵1a =2a+3∴a +3=2a ∴a =3经检验,a =3是1a =2a+3的解; 将a =3代入a−2a−1中,原式=3−23−1=12.16.解:设B 型机器人每小时搬运xkg 材料,则A 型机器人每小时搬运(x +30)kg 材料 根据题意得:1000x+30=800x解得:x =120经检验:x =120是原分式方程的解且符合题意. 当x =120时x +30=150答:A 型机器人每小时搬运150kg 材料,B 型机器人每小时搬运120kg 材料. 17.解:设B 品牌篮球单价为x 元,则A 品牌篮球单价为(2x −48)元 根据题意,得96002x−48=7200x.解这个方程,得x =72. 经检验,x =72是所列方程的根. 2×72−48=96(元).所以,A 品牌篮球单价为96元,B 品牌篮球单价为72元.18.(1)解:第一批车厘子的进价为每斤x 元,则第二批车厘子的进价为每斤(x −5)元1350x×2=2450x−5,解得x =54经检验:x =54是原分式方程的解,54−5=49(元) 答:第批车厘子的进价为每斤54元 第二批车厘子的进价为每斤49元 (2)解:降价后的车厘子售价每斤为a 元1350÷54=25斤,25×2=50斤,50×35=30斤,50×(1−35)=20斤.(80−54)×25+(80−49)×30+20(a −49)≥1800解得,a ≥60答:降价后的车厘子售价每斤至少60元.。

人教版八年级上册数学 15.3分式方程(应用题) 同步练习(含解析)

人教版八年级上册数学 15.3分式方程(应用题) 同步练习(含解析)

15.3分式方程(应用题) 同步练习一.选择题1.甲、乙二人做某种机械零件,已知每小时甲比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等,设乙每小时做x个零件,以下所列方程正确的是()A.B.C.D.2.成都西站至成飞工业园之间在建的9号地铁,现有甲、乙两个工程队从两头开始施工,已知,每天甲队比乙队多修8米,甲施工150米所用的时间与乙施工120米所用的时间相等,设甲每天施工x米,下列方程正确的是()A.=B.=C.=D.=3.某公益组织在国外采购某医疗物资,每名志愿者平均每天只能采购到该物资1万个,原计划采购该物资200万个.实际采购中,在当地又招募到10名志愿者,结果比原计划推迟一天结束采购任务并实际购得300万个.设原有采购志愿者x名.则据题意可列方程为()A.=1B.=1C.=1D.=14.在2018年太原国际马拉松赛中,小张参加了迷你马拉松(全程约4.2km)项目,已知小张全程匀速前进,若将速度每小时加快2km,则正好比实际提前10min到达终点.设小张的速度为xkm/h,那么可列方程为()A.B.C.D.5.南京市某花卉种植基地欲购进甲、乙两种兰花进行培育,每株甲种兰花的成本比每株乙种兰花的成本多100元,且用1200元购进的甲种兰花与用900元购进的乙种兰花数量相同,求甲、乙两种兰花每株成本分别为多少元?若设乙种兰花的成本是x元.则下列方程正确的是()A.=B.=C.=D.=6.某校为了丰富学生的校园生活,准备购进一批篮球和足球,其中篮球的单价比足球的单价多20元.李老师购买篮球花费900元,购买足球花费400元,结果购得的篮球数量是足球数量的1.5倍.设购买的足球数量是x个,则下列选项中所列方程正确的是()A.=+20B.=+20C.=+20D.=+207.某玩具厂生产一种玩具,甲车间计划生产500个,乙车间计划生产400个,甲车间每天比乙车间多生产10个,两车间同时开始生产且同时完成任务.设乙车间每天生产x个,可列方程为()A.B.C.D.8.圣湖路全长为600米,路面需整改,为了尽量减少施工对城市交通所造成的影响,实际施工时,每天的工效比原计划增加20%,结果提前5天完成这一任务,设原计划每天整改x米,则下列方程正确的是()A.﹣=5B.﹣=5C.﹣=5D.﹣=59.疫情期间嘉祥外国语学校用4200元钱到商场去购买“84”消毒液,经过协商议价,每瓶便宜1元,结果比用原价多买了140瓶,求原价每瓶多少元?若设原价每瓶x元,则可列出方程为()A.﹣=140B.﹣=140C.﹣=1D.﹣=110.“绿水青山就是金山银山”.为改造太湖水质,某工程队对2400平方公里的水域进行水质净化,实际工作时每天的工作效率比原计划提高了20%,结果提前了40天完成任务.设实际每天净化的水域面积为x平方公里,则下列方程中正确的是()A.﹣=40B.﹣=40C.﹣=40D.﹣=40二.填空题11.甲、乙两组学生去距学校4千米的敬老院开展慰问活动,甲组学生步行出发20分钟后,乙组学生骑自行车开始出发,两组学生同时到达敬老院.已知骑自行车速度是步行速度的3倍,设步行速度为x千米/时,则根据题意可以列出方程.12.某工程队修建一条长1200m的道路;采用新的施工方式,工效提升了50%,结果提前4天完成任务,设这个工程队原计划每天修建道路xm,则列出的方程为.13.甲和乙同时从A地出发,匀速行走到B地.甲走完一半路程时,乙才走了4千米,乙走完一半路程时,甲已走了9千米.当甲走完全程时,乙未走完的路程还有千米.14.某工程队由甲乙两队组成,承包我市河东东街改造工程,规定若干天完成,已知甲队单独完成这项工程所需时间比规定时间多32天,乙队单独完成这项工程所需时间比规定时间多12天,如果甲乙两队先合作20天,剩下的甲队单独做,则延误两天完成,那么规定时间是天.15.小明坐滴滴打车前去火车高铁站,小明可以选择两条不同路线:路线A的全程是25千米,但交通比较拥堵,路线B的全程比路线A的全程多7千米,但平均车速比走路线A 时能提高60%,若走路线B的全程能比走路线A少用15分钟,若设走路线A时的平均速度为x千米/小时,根据题意,可列分式方程.三.解答题16.李明到离家2.1千米的学校参加初三联欢会,到学校时发现演出道具还放在家中,此时距联欢会开始还有48分钟,于是他立即步行(匀速)回家,在家拿道具用了2分钟,然后立即骑自行车(匀速)返回学校.已知李明骑自行车到学校比他从学校步行到家用时少20分钟,且骑自行车的速度是步行速度的3倍.(1)李明步行的速度是多少?(2)李明能否在联欢会开始前赶到学校?17.某商店计划今年的圣诞节购进A、B两种纪念品若干件.若花费480元购进的A种纪念品的数量是花费480元购进B种纪念品的数量的,已知每件A种纪念品比每件B种纪念品多4元.(1)求购买一件A种纪念品、一件B种纪念品各需多少元?(2)若商店一次性购买A、B纪念品共200件,要使总费用不超过3000元,最少要购买多少件B种纪念品?参考答案一.选择题1.解:设乙每小时做x个零件,则甲每小时做(x+6)个零件,依题意,得:=.故选:C.2.解:根据题意得,=,故选:C.3.解:设原有采购志愿者x名.根据题意,得=1.故选:B.4.解:设小张的速度为xkm/h,则加快后的速度是(x+2)km/h,根据题意,得.故选:C.5.解:设乙种兰花的成本是x元,则甲种兰花的成本为(x+100)元,根据题意可得:=.故选:B.6.解:设购买的足球数量是x个,则购买篮球数量是1.5x个,根据题意,得=+20.故选:C.7.解:设乙车间每天生产x个,则=.故选:C.8.解:设原计划每天铺设x米管道,则实际施工每天铺设(1+20%)x米管道,根据题意列得:﹣=5.故选:C.9.解:设原价每瓶x元,根据题意,得﹣=140.故选:B.10.解:设实际每天净化的水域面积为x平方公里,根据题意可得:﹣=40.故选:A.二.填空题11.解:设步行速度为x千米/时,则骑自行车速度为3x千米/时,依题意,得:﹣=.故答案为:﹣=.12.解:设原计划每天修建道路x米,则实际每天修建道路(1+50%)x米,根据题意,列方程为:﹣=4.故答案是:﹣=4.13.解:设A,B两地之间的路程为x千米,依题意,得:=,化简,得:x2=144,解得:x1=12,x2=﹣12,经检验,x1=12,x2=﹣12均为原方程的解,x1=12符合题意,x2=﹣12不符合题意,舍去,∴x﹣4×2=4.故答案为:4.14.解:设规定的时间是x天,则甲队单独完成需要(x+32)天,乙队单独完成需要(x+12天),由题意,得20×+=1,解得:x=28.经检验,x=28是元方程的解.答:规定的时间是28天.故答案是:28.15.解:设走路线A时的平均速度为x千米/小时,则走路线B时的平均速度为(1+60%)x 千米/小时,依题意,得:﹣=.故答案为:﹣=.三.解答题16.解:(1)设李明步行的速度为x米/分,则骑自行车的速度为3x米/分.依题意,得:﹣=20,解得:x=70,经检验,x=70是原方程的解,且符合题意.答:李明步行的速度是70米/分.(2)++2=42(分钟),∵42<48,∴李明能在联欢会开始前赶到学校.17.解:(1)设购买一件B种纪念品需x元,则购买一件A种纪念品需(x+4)元,依题意,得:=×,解得:x=12,经检验,x=12是原方程的解,且符合题意,∴x+4=16.答:购买一件A种纪念品需16元,购买一件B种纪念品需12元.(2)设购买m件B种纪念品,则购买(200﹣m)件A种纪念品,依题意,得:16(200﹣m)+12m≤3000,解得:m≥50.答:最少要购买50件B种纪念品.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教八年级数学上册第15章《分式方程》同步练习及(含
答案)1
15.3 第1课时 分式方程
一﹨选择题
1.下列方程是分式方程的是( ) (A)2513x x =+- (B)31
5
226y y -+=- (C)21
2302x x +-= (D)81
257x x +-=
2.若分式的值为0,则x 的值是( )
A . x =3
B . x =0
C . x =﹣3
D . x =﹣4
3.分式方程的解是( )
A . x=3
B . x =﹣3
C . x =
D . x=
4.关于x 的方程43
3
2=-+x a ax 的解为x =1,则a 应取值( )
A.1
B.3
C.-1
D.-3
5.分式方程3
1
21x x =-的解为( )
A.1x =
B. 2x =
C. 4x =
D. 3x =
6.把分式方程x x 1
42=+转化为一元一次方程时,方程两边需同乘以(

A.x
B.2x
C.x+4
D.x (x+4)
7.要使x x --44
2与x x --54
互为倒数,则x 的值是( )
A 0
B 1
C 1-
D 21
8.若3
x 与6
1x -互为相反数,则x 的值为( )
A.1
3 B.-1
3 C.1 D.-1
二﹨填空题
9.方程的解是 .
10.方程
= 的解为 . 11.分式方程112x =-的解是 . 12.方程x
x 132=-的解为x =___________. 13.方程x
x 527=-的解是 . 14.分式方程=3的解是 .
15.若分式方程
2()2(1)5x a a x -=--的解为3x =,则a 的值为__________. 16.若方程212
x a x +=--的解是最小的正整数,则a 的值为________. 17.如果424x x --的值与54
x x --的值相等,则x =___________. 18.观察分析下列方程:①32=+x x 的解是21==x x 或,②56=+x
x 的解是32==x x 或,③712=+x
x 的解是43==x x 或;请利用它们所蕴含的规律,求关于x 的方程2243
n n x n x ++=+-(n 为正整数)的解,你的答案是: .
三﹨解答题
19.解方程:
x x 332=-.
20.解方程:
123-=x x .
21.已知方程
5
31)1()(2-=-+x a a x 的解为2=x ,则a 的值时多少?
22.如图,点A ,B 在数轴上,它们所对应的数分别是3-和x x --21,且点A ,B 到原点的距离相等,求x 的值.
23.若方程k
x x +=+233有负数解,则k 的取值范围是 什么?
15.3 分式方程
第1课时 分式方程
一﹨选择题
1.A 2.A 3.B 4.D 5.D 6. D 7. C 8.A 二﹨填空题
9.2-=x 10.2=x 11.3=x 12.—3 13.5-=x 14.3=x 15.5 16.1- 17.1- 18.43+=+=n x n x 或
三﹨解答题
19.9=x 20.3=x
21.把2=x 代入原分式方程得
()5822-=+a a ,解得9
10-=a 22.根据题意可知321=--x x ,解得25=x 23.解原分式方程得k x 36-=,
2,036,0><-<∴解得即原分式方程有负解,k x
-3 x
x --21 B . 0 A .。

相关文档
最新文档