2001年初中数学竞赛试题
求不定方程的整数解(含答案)-
求不定方程整数解有三对夫妻一同上商店买东西.男的分别姓孙、姓陈、姓金,女的分别姓李、•姓赵、姓尹。
他们每人只买一种商品,并且每人所买商品的件数正好等于那种商品的单价(元数).现在知道每一个丈夫都比他的妻子多花63元,并且孙先生所买的商品比赵女士多23件,金先生所买的商品比李女士多11件,问孙先生、陈先生、金先生的爱人各是谁?例1.若b a ,都是正整数,且2001500143=+b a ,求b a +的值.(2001年北京市初中数学竞赛)例2 设m 为正整数,且方程组⎩⎨⎧-==+17001113mx y y x ()()21 有整数解,求m 的值。
(“希望杯”数学竞赛试题)例3 已知自然数y x ,满足789=+yx ,求y x +的值.(五羊杯数学竞赛试题) 【例1】若关于x 的方程054)15117()9)(6(2=+----x k x k k 的解都是整数,则符合条件的整数k 的值有 个.思路点拨 用因式分解法可得到根的简单表达式,因方程的类型未指明,故须按一次方程、二次方程两种情形讨论,这样确定是的值才能全面而准确.注:系数含参数的方程问题,在没有指明是二次方程时,要注意有可能是一次方程,根据问题的题设条件,看是否要分类讨论.【例2】 已知a 、b 为质数且是方程0132=+-c x x 的根,那么ba ab +的值是( ) A .22127 B .22125 C .22123 D .22121 思路点拨 由韦达定理a 、b 的关系式,结合整数性质求出a 、b 、c 的值.【例4】 当m 为整数时,关于x 的方程01)12()12(2=++--x m x m 是否有有理根?如果有,求出m 的值;如果没有,请说明理由.思路点拨 整系数方程有有理根的条件是△为完全平方数.设△=22224)12(544)12(4)12(n m m m m m =+-=+-=--+(n 为整数)解不定方程,讨论m 的存在性. 注:一元二次方程02=++c bx ax (a ≠0)而言,方程的根为整数必为有理数,而△=ac b 42-为完全平方数是方程的根为有理数的充要条件.【例5】 若关于x 的方程0)13()3(22=-+--a x a ax 至少有一个整数根,求非负整数a 的值. 思路点拨 因根的表示式复杂,从韦达定理得出的a 的两个关系式中消去a 也较困难,又因a 的次数低于x 的次数,故可将原方程变形为关于a 的一次方程.1.已知关于x 的方程012)1(2=--+-a x x a 的根都是整数,那么符合条件的整数a 有 .2.已知方程019992=+-m x x 有两个质数解,则m = .3.给出四个命题:①整系数方程02=++c bx ax (a ≠0)中,若△为一个完全平方数,则方程必有有理根;②整系数方程02=++c bx ax (a ≠0)中,若方程有有理数根,则△为完全平方数;③无理数系数方程02=++c bx ax (a ≠0)的根只能是无理数;④若a 、b 、c 均为奇数,则方程02=++c bx ax 没有有理数根,其中真命题是 .4.已知关于x 的一元二次方程0)12(22=+-+a x a x (a 为整数)的两个实数根是1x 、2x ,则21x x -= . 5.设rn 为整数,且4<m<40,方程08144)32(222=+-+--m m x m x 有两个整数根,求m 的值及方程的根1.已知实数x,y,z 适合x+y=6,z 2=xy -9,则z 等于( )A.±1B.0C.1D.-12.方程组44,23.ab bc ac bc +=⎧⎨+=⎩的正整数解(a,b,c)的组数是( ) A.4 B.3 C.2 D.13.方程xy=x+y 的整数解有_____组.4.设x,y 都是正整数,且使,则y=+的最大值为________.5.求满足1116x y -=的所有正整数x,y.1.( )A.不存在B.仅有1组C.有2组D.至少有4组2.设a 、b 、c 为有理数,且等式则2a+999b+1 001c 的值是( )A.1 999B.2 000C.2 001D.2 0033.满足方程11x 2+2xy+9y 2+8x -12y+6=0的实数对(x,y)的个数等于_____.4.实数x,y 满足x ≥y ≥1和2x 2-xy -5x+y+4=0,则x+y=_________.5.a 、b 、c 都是正整数,且满足ab+bc=3 984,ac+bc=1 993,则abc•的最大值是______.6.象棋比赛共有奇数个选手参加,每位选手都同其他选手比赛一盘,记分办法是胜一盘得1分,平一盘各得0.5分,输一盘得0分,已知其中两名选手共得8分,其他人的平均分为整数,求参加此次比赛共有多少人?、。
代数式恒等变形及答案
代数式恒等变形A 卷1、若3265122-+-+=+--x bx a M x x x ,a 、b 是常数,则( ) A 、M 是一个二次多项式 B 、M 是一个一次多项式 C 、6=++b a M D 、10=-+M b a 答案:C解答:由已知等式得:()()6522656512222+---+++-+=+--x x b M x b a M Mx x x x ∴()()b M x b a M Mx x 226522--+++-+= ∴⎪⎩⎪⎨⎧-=--=++-=1236051b a M b a M M ,解得:⎪⎩⎪⎨⎧=-==831b a M 提示:利用待定系数法解决问题。
2、(2002年重庆市初中竞赛题)若012192=+-x x ,则=+441xx ( ) A 、411 B 、16121 C 、1689 D 、427答案:C 解答:∵0≠x ∴2191=+x x ,411122=+xx ∴168921122244=-⎪⎭⎫ ⎝⎛+=+x x x x提示:本题的关键是利用211222-⎪⎭⎫⎝⎛+=+x x x x 进行化简。
3、(2001年全国初中数学竞赛)若143=-x x ,则552128234+--+x x x x 的值是( ) A 、2 B 、4 C 、6 D 、8 答案:D解答:∵143=-x x∴()()8523252434255212833234=+-+=+--+-=+--+x x x x x x x x x x x x提示:本题利用添项与拆项进行分解整体代入,本题也可以利用已知逐步降次解决问题。
4、(全国竞赛题)如果52332412---=----+cc b a b a ,则c b a ++的值是( ) A 、6 B 、8 C 、20 D 、24 答案:C解答:∵52332412---=----+cc b a b a ∴()[]()[]()[]053293632142421121=+--+----+---++---c c b b a a∴()()()033212211222=-----+--c b a∴011=--a ,022=--b ,033=--c ∴2=a ,6=b ,12=c ∴20=++c b a提示:本题利用添项构造完全平方式解决问题。
初中数学 一元二次方程根与系数的关系
内容 基本要求略高要求较高要求一元二次方程了解一元二次方程的概念,会将一元二次方程化为一般形式,并指出各项系数;了解一元二次方程的根的意义能由一元二次方程的概念确定二次项系数中所含字母的取值范围;会由方程的根求方程中待定系数的值一元二次方程的解法理解配方法,会用直接开平方法、配方法、公式法、因式分解法解简单的数字系数的一元二次方程,理解各种解法的依据能选择恰当的方法解一元二次方程;会用方程的根的判别式判别方程根的情况能利用根的判别式说明含有字母系数的一元二次方程根的情况及由方程根的情况确定方程中待定系数的取值范围;会用配方法对代数式做简单的变形;会应用一元二次方程解决简单的实际问题如果一元二次方程20ax bx c ++=(0a ≠)的两根为12x x ,,那么,就有()()212ax bx c a x x x x ++=--比较等式两边对应项的系数,得1212b x x ac x x a ⎧+=-⎪⎪⎨⎪⋅=⋅⎪⎩①,② ①式与②式也可以运用求根公式得到.人们把公式①与②称之为韦达定理,即根与系数的关系.因此,给定一元二次方程20ax bx c ++=就一定有①与②式成立.反过来,如果有两数1x ,2x 满足①与②,那么这两数12x x ,必是一个一元二次方程20ax bx c ++=的根.利用这一基本知识常可以简捷地处理问题. 利用根与系数的关系,我们可以不求方程20ax bx c ++=的根,而知其根的正、负性. 在24b ac ∆=-≥0的条件下,我们有如下结论: 当0c a<时,方程的两根必一正一负.若0b a -≥,则此方程的正根不小于负根的绝对值;若0ba -<,则此方程的正根小于负根的绝对值. 当0c a>时,方程的两根同正或同负.若0b a ->,则此方程的两根均为正根;若0ba -<,则此方程的两根均为负根.⑴ 韦达定理:如果20(0)ax bx c a ++=≠的两根是1x ,2x ,则12b x x a +=-,12cx x a=.(隐含的条件:0∆≥)⑵ 若1x ,2x 是20(0)ax bx c a ++=≠的两根(其中12x x ≥),且m 为实数,当0∆≥时,一般地: ① 121()()0x m x m x m --<⇔>,2x m <中考要求一元二次方程根与系数的关系及其应用特殊地:当0m =时,上述就转化为20(0)ax bx c a ++=≠有两异根、两正根、两负根的条件. ⑶ 以两个数12,x x 为根的一元二次方程(二次项系数为1)是:21212()0x x x x x x -++=. ⑷ 其他:①若有理系数一元二次方程有一根aa a ,b 为有理数). ② 若0ac <,则方程20(0)ax bx c a ++=≠必有实数根. ③ 若0ac >,方程20(0)ax bx c a ++=≠不一定有实数根. ④ 若0a b c ++=,则20(0)ax bx c a ++=≠必有一根1x =.⑤ 若0a b c -+=,则20(0)ax bx c a ++=≠必有一根1x =-. ⑸ 韦达定理主要应用于以下几个方面:① 已知方程的一个根,求另一个根以及确定方程参数的值; ② 已知方程,求关于方程的两根的代数式的值; ③ 已知方程的两根,求作方程;④ 结合根的判别式,讨论根的符号特征;⑤ 逆用构造一元二次方程辅助解题:当已知等式具有相同的结构时,就可以把某两个变元看作某个一元二次方程的两根,以便利用韦达定理;⑤ 利用韦达定理求出一元二次方程中待定系数后,一定要验证方程的∆.一些考试中,往往利用这一点设置陷阱.【例 1】 ⑴若方程240x x c -+=的一个根为2+,则方程的另一个根为 ,c = .⑵已知方程2350x x +-=的两根为1x 、2x ,则2212x x += .⑶已知α、β是方程2250x x +-=的两个实数根,22ααβα++的值为 . ⑷已知α、β是方程2520x x ++=+【巩固】 已知12,x x 为方程20x px q ++=的两根,且126x x +=,221220x x +=,求,p q 的值.【例 2】 已知方程22350x x --=的两根为12x x ,,求:⑴2212x x +; ⑵3312x x + ⑶5512x x +【巩固】1x 、2x 是方程22350x x --=的两个根,不解方程,求下列代数式的值: (1)2212x x + (2)12x x - (3)2212233x x x +-【例 3】 已知1x ,2x 是方程2310x x -+=的两个实数根,则2212x x += ,12(2)(2)x x -⋅-= ,221122x x x x +⋅+= ,2112x xx x += ,12x x -= ,2212x x -= ,1211x x -= ,2112x x x x -= .【巩固】 (2005年温州市中考试题)已知1x ,2x 方程2310x x -+=两个实数根,则1211x x += .【例 4】 关于x 的方程22410x kx +-=的一个根是-2,则方程的另一根是 ;k = 。
一元二次方程根的判别式
第二讲一元二次方程根的判别式【趣题引路】话说小精灵拜数学高手为师,苦练了十八般数学技艺。
一日师傅韦达对小精灵道:“师傅给你一件随身法宝━━“△”,出去闯荡一下吧!”小精灵拜别师傅韦达,来到“方程堡”,守门将喝道:“来者何人!”小精灵拱手答道:“晚辈小精灵奉师傅之命前来方程堡见识见识。
”守门将道:“先要破我一方程方能进堡!”说时迟,那时快,只见守门将挥手将许多数字、字母和符号排成2x2+2xy+7y2-10x-18y+19=0,并且问道:“你能说出实数x、y的值吗?”小精灵取出法宝灵机一动,将上式中的y看成已知数,把它整理成关于x的一元二次方程2x2+(2y-10)x+(7y2-18y+19)=0。
好哇!因为x是实数,上面的方程必有实数根,所以△≥0,即(2y-10)2-4×2(7y2-18y+19)≥0,可得(y-1)2≤0,一下子便得到了y=•1,再将y=1代入原方程就可得x=2.小精灵这里用的法宝“△”是什么呢?它就是一元二次方程根的判别式。
一元二次方程ax2+bx+c=0(a≠0),当△〉0时,有两个不相等的实数根;当△=0时,有两个相等的实数根;当△〈0时,没有实数根,反过来也成立。
【知识延伸】例1已知关于x的二次方程x2+p1x+q1=0与x2+p2x+q2=0,求证:当p1p2=2(q1+q2)时,这两个方程中至少有一个方程有实根.证明设这两个方程的判别式为△1,△2,则△1+△2=p12+p22-4(q1+q2).∵p1p2=2(q1+q2),∴△1+△2=p12+p22-2p1p2=(p1-p2)2≥0.∴△1≥0与△2≥0中至少有一个成立,即两个方程中必有一个方程有实根.点评两个方程中至少有一个方程有实根,可转化为证明△1+△2≥0;本题还可用反证法来证明,即假设△1<0且△2<0,则△1+△2<0,但△1+△2=(p1-p2)2≥0,两者矛盾,从而导出原题结论还成立。
历届(第1-23届)希望杯数学竞赛初一七年级真题及答案
“希望杯”全国数学竞赛(第1-23届)初一年级/七年级第一/二试题目录1.希望杯第一届(1990年)初中一年级第一试试题......................003-0052.希望杯第一届(1990年)初中一年级第二试试题......................010-0123.希望杯第二届(1991年)初中一年级第一试试题...... 0错误!未定义书签。
-0204.希望杯第二届(1991年)初中一年级第二试试题...... 0错误!未定义书签。
-0265.希望杯第三届(1992年)初中一年级第一试试题...... 0错误!未定义书签。
-0326.希望杯第三届(1992年)初中一年级第二试试题...... 0错误!未定义书签。
-0407.希望杯第四届(1993年)初中一年级第一试试题...... 0错误!未定义书签。
-0508.希望杯第四届(1993年)初中一年级第二试试题...... 0错误!未定义书签。
-0589.希望杯第五届(1994年)初中一年级第一试试题...... 0错误!未定义书签。
-06610.希望杯第五届(1994年)初中一年级第二试试题..... 0错误!未定义书签。
-07311.希望杯第六届(1995年)初中一年级第一试试题..... 0错误!未定义书签。
-080 12希望杯第六届(1995年)初中一年级第二试试题..... 0错误!未定义书签。
-08713.希望杯第七届(1996年)初中一年级第一试试题..... 0错误!未定义书签。
-09814.希望杯第七届(1996年)初中一年级第二试试题....... 错误!未定义书签。
-10515.希望杯第八届(1997年)初中一年级第一试试题....... 错误!未定义书签。
-11316.希望杯第八届(1997年)初中一年级第二试试题....... 错误!未定义书签。
-12017.希望杯第九届(1998年)初中一年级第一试试题....... 错误!未定义书签。
2001年第16届江苏省初中数学竞赛试卷(初三C卷)
2001年第16届江苏省初中数学竞赛试卷(初三C卷)一、选择题(共6小题,每小题6分,满分36分)1.(2005•菏泽)已知,则的值为()A.5 B.6 C.3 D.42.若两个方程x2+ax+b=0和x2+bx+a=0只有一个公共根,则()A.a=b B.a+b=0 C.a+b=1 D.a+b=﹣13.下列给出的4个命题:命题1 若|a|=|b|,则a|a|=b|b|;命题2 若a2﹣5a+5=0,则;命题3 若x的不等式(m+3)x>1的解集是x<,则m<﹣3;命题4 若方程x2+mx﹣1=0中m>0,则该方程有一正根和一负根,且负根的绝对值较大.其中正确的命题的个数是()A.1 B.2 C.3 D.44.如图,四边形ABCD中,∠BAD=90°,AB=BC=2,AC=6,AD=3,则CD的长为()A.4 B.4C.3D.35.已知三角形的每条边长的数值都是2001的质因数,那么这样的不同的三角形共有()A.6 B.7 C.5 D.96.12块规格完全相同的巧克力,每块至多被分为两小块(可以不相等),如果这12块巧克力可以平均分给n名同学,则n可以为()A.26 B.23 C.17 D.15二、填空题(共8小题,每小题5分,满分40分)7.若=3,=2,且ab<0,则a﹣b=_________.8.如图,D、E、F分别是△ABC的边BC、CA、AB上的点,且DE∥BA,DF∥CA,(1)要使四边形AFDE是菱形,则要增加条件:_________;(2)要使四边形AFDE是矩形,则要增加条件:_________.9.方程的解是_________.10.要使26+210+2x为完全平方数,那么非负整数x可以是_________.(要求写出x的3个值)11.如图,直线y=﹣2x+6与x轴、y轴分别交于P、Q两点,把△POQ沿PQ翻折,点O落在R处,则点R的坐标是_________.12.如图,已知八边形ABCDEFGH中4个正方形的面积分别为25,144,48,121个平方单位,PR=13(单位),则该八边形的面积=_________平方单位.13.如图,设△ABC的两边AC与BC之和为a,M是AB的中点,MC=MA=5,则a的取值范围是_________.14.如图,一个田字形的区域A、B、C、D栽种观赏植物,要求同一个区域中种同一种植物,相邻的两块种不同的植物,现有4种不同的植物可供选择,那么有_________种栽种方案.三、解答题(共4小题,满分64分)15.某商店有A种练习本出售,每本零售价为0.30元,1打(12本)售价为3.00元,买10打以上的,每打还可以按2.70付款.(1)初三(1)班共57人,每人需要1本A种练习本,则该班集体去买时,最少需付多少元?(2)初三年级共227人,每人需要1本A种练习本,则该年级集体去买时,最少需付多少元?16.设x1、x2是方程2x2﹣4mx+2m2+3m﹣2=0的两个实根,当m为何值时,x12+x22有最小值,并求这个最小值.17.(1)已知:如图1,在四边形ABCD中,BC⊥CD,∠ACD=∠ADC.求证:AB+AC>;(2)已知:如图2,在△ABC中,AB上的高为CD,试判断(AC+BC)2与AB2+4CD2之间的大小关系,并证明你的结论.18.编号为1到25的25个弹珠被分放在两个篮子A和B中.15号弹珠在篮子A中,把这个弹珠从篮子A移至篮子B中,这时篮子A中的弹珠号码数的平均数等于原平均数加,篮子B中弹珠号码数的平均数也等于原平均数加.问原来在篮子A中有多少个弹珠?2001年第16届江苏省初中数学竞赛试卷(初三C卷)参考答案与试题解析一、选择题(共6小题,每小题6分,满分36分)1.(2005•菏泽)已知,则的值为()A.5 B.6 C.3 D.4考点:二次根式的化简求值。
初二数学竞赛题(含答案)
初中数学竞赛初二第1试试题一、选择题(每小题7分共56分)1、某商店售出两只不同的计算器,每只均以90元成交,其中一只盈利20%,另一只亏本20%,则在这次买卖中,该店的盈亏情况是( )A 、不盈不亏B 、盈利2.5元C 、亏本7.5元D 、亏本15元2、设20012000,20001999,19991998===c b a ,则下列不等关系中正确的是( ) A 、c b a << B 、b c a << C 、a c b << D 、a b c <<3、已知,511ba b a +=+则b a a b +的值是( ) A 、5 B 、7 C 、3 D 、31 4、已知xB x A x x x +-=--1322,其中A 、B 为常数,那么A +B 的值为( ) A 、-2 B 、2C 、-4D 、45、已知△ABC 的三个内角为A 、B 、C ,令B A A C C B +=+=+=γβα,,则γβα,,中锐角的个数至多为( )A 、1B 、2C 、3D 、06、下列说法:(1)奇正整数总可表示成为14+n 或34+n 的形式,其中n 是正整数;(2)任意一个正整数总可表示为n 3或13+n 或23+n 的形式,其中;(3)一个奇正整数的平方总可以表示为18+n 的形式,其中n 是正整数;(4)任意一个完全平方数总可以表示为n 3或13+n 的形式A 、0B 、2C 、3D 、47、本题中有两小题,请你选一题作答:(1)在19991002,1001,1000 这1000个二次根式中,与2000是同类二次根式的个数共有……………………( )A 、3B 、4C 、5D 、6(2)已知三角形的每条边长是整数,且小于等于4,这样的互不全等的三角形有( )A 、10个B 、12个C 、13个D 、14个8、钟面上有十二个数1,2,3,…,12。
将其中某些数的前面添上一个负号,使钟面上所有数之代数和等于零,则至少要添n 个负号,这个数n 是( )A 、4B 、5C 、6D 、7二、填空题(每小题7分共84分)9、如图,XK ,ZF 是△XYZ 的高且交于一点H ,∠XHF =40°,那么∠XYZ = °。
历年初中数学竞赛真题库含答案
1991年全国初中数学联合竞赛决赛试题第一试一、选择题本题共有8个小题,每小题都给出了(A )、(B )(C )、(D )四个答案结论,其中只有一个是正确的.请把正确结论的代表字母写在题后的圆括号内.1. 设等式y a a x a y a a x a ---=-+-)()(在实数范围内成立,其中a ,x ,y 是两两不同的实数,则22223yxy x y xy x +--+的值是 (A )3 ; (B )31; (C )2; (D )35. 答( )2. 如图,AB ‖EF ‖CD ,已知AB =20,CD =80,BC =100,那么EF 的值是(A ) 10; (B )12;(C ) 16; (D )18.答( )3. 方程012=--x x 的解是(A )251±; (B )251±-; (C )251±或251±-; (D )251±-±. 答( )4.已知:)19911991(2111n n x --=(n 是自然数).那么n x x )1(2+-,的值是(A)11991-; (B)11991--;(C)1991)1(n -; (D)11991)1(--n .答( )5. 若M n 1210099321=⨯⨯⨯⨯⨯ ,其中M为自然数,n 为使得等式成立的最大的自然数,则M(A)能被2整除,但不能被3整除;(B)能被3整除,但不能被2整除;(C)能被4整除,但不能被3整除;(D)不能被3整除,也不能被2整除.答( )6. 若a ,c ,d 是整数,b 是正整数,且满足c b a =+,d c b =+,a d c =+,那么 d c b a +++的最大值是(A)1-;(B)5-;(C)0;(D)1.答( )7. 如图,正方形OPQR 内接于ΔABC .已知ΔAOR 、ΔBOP 和ΔCRQ 的面积分别是11=S ,32=S 和13=S ,那么,正方形OPQR 的边长是 (A)2;(B)3;(C)2 ;(D)3.答( )8. 在锐角ΔABC 中,1=AC ,c AB =, 60=∠A ,ΔABC 的外接圆半径R ≤1,则 (A)21< c < 2 ; (B)0< c ≤21; 答( )(C )c > 2; (D )c = 2.答( )二、填空题1.E是平行四边形ABCD 中BC 边的中点,AE 交对角线BD 于G ,如果ΔBEG 的面积是1,则平行四边形ABCD 的面积是 . 2.已知关于x 的一元二次方程02=++c bx ax 没有实数解.甲由于看错了二次项系数,误求得两根为2和4;乙由于看错了某一项系数的符号,误求得两根为-1和4,那么,=+ac b 32 .3.设m ,n ,p ,q 为非负数,且对一切x >0,qpn m x x x x )1(1)1(+=-+恒成立,则 =++q p n m 22)2( .4.四边形ABCD 中,∠ ABC 135=,∠BCD 120=,AB 6=,BC 35-=,CD = 6,则AD = .第二试x + y , x - y , x y , yx 四个数中的三个又相同的数值,求出所有具有这样性质的数对(x , y ).二、ΔABC中,AB<AC<BC,D点在BC上,E点在BA的延长线上,且BD=BE=AC,ΔBDE的外接圆与ΔABC的外接圆交于F点(如图).求证:BF=AF+CF三、将正方形ABCD分割为2n个相等的小方格(n是自然数),把相对的顶点A,C染成红色,把B,D染成蓝色,其他交点任意染成红、蓝两色中的一种颜色.证明:恰有三个顶点同色的小方格的数目必是偶数.1992年全国初中数学联合竞赛决赛试题第一试一.选择题本题共有8个题,每小题都给出了(A), (B), (C), (D)四个结论,其中只有一个是正确的.请把正确结论的代表字母写在题后的圆括号内.1.满足1=+-ab b a 的非负整数),(b a 的个数是(A)1; (B)2; (C)3; (D)4.2.若0x 是一元二次方程)0(02≠=++a c bx ax 的根,则判别式ac b 42-=∆与平方式20)2(b ax M +=的关系是(A)∆>M (B)∆=M (C)∆>M ; (D)不确定.3.若01132=+-x x ,则44-+x x 的个位数字是(A)1; (B)3; (C)5; (D)7.答( )4.在半径为1的圆中有一内接多边形,若它的边长皆大于1且小于2,则这个多边形的边数必为(A)7; (B)6; (C)5; (D)4.答( )5.如图,正比例函数)0(>==a ax y x y 和的图像与反比例函数)0(>=k xk y 的图像分别相交于A 点和C 点.若AOB Rt ∆和COD ∆的面积分别为S 1和S 2,则S 1与S 2的关系是 (A)21S S > (B)21S S =(C)21S S < (D)不确定 答( )6.在一个由88⨯个方格组成的边长为8的正方形棋盘内放一个半径为4的圆,若把圆周经过的所有小方格的圆内部分的面积之和记为1S ,把圆周经过的所有小方格的圆内部分的面积之和记为2S ,则21S S 的整数部分是 (A)0; (B)1; (C)2; (D)3.答( )7.如图,在等腰梯形ABCD 中, AB //CD , AB=2CD ,︒=∠60A ,又E 是底边AB 上一点,且FE=FB=AC , FA=AB .则AE :EB 等于(A)1:2 (B)1:3(C)2:5 (D)3:10答( )8.设9321,,,,x x x x ⋅⋅⋅均为正整数,且921x x x <⋅⋅⋅<<,220921=+⋅⋅⋅++x x x ,则当54321x x x x x ++++的值最大时,19x x -的最小值是(A)8; (B)9; (C)10; (D)11.答( )二.填空题1.若一等腰三角形的底边上的高等于18cm ,腰上的中线等15cm ,则这个等腰三角形的面积等于________________.2.若0≠x ,则x x x x 44211+-++的最大值是__________.3.在ABC ∆中,B A C ∠∠=∠和,90 的平分线相交于P 点,又AB PE ⊥于E 点,若3,2==AC BC ,则=⋅EB AE .4.若b a ,都是正实数,且0111=+--b a b a ,则=+33)()(ba ab . 第二试一、设等腰三角形的一腰与底边的长分别是方程062=+-a x x 的两根,当这样的三角形只有一个时,求a 的取值范围.二、如图,在ABC ∆中,D AC AB ,=是底边BC 上一点,E 是线段AD 上一点,且A CED BED ∠=∠=∠2.求证:CD BD 2=.三、某个信封上的两个邮政编码M 和N 均由0,1,2,3,5,6这六个不同数字组成,现有四个编码如下:A :320651B :105263C :612305D :316250已知编码A 、B 、C 、D 各恰有两个数字的位置与M 和N 相同.D 恰有三个数字的位置与M 和N 相同.试求:M 和N.1993年全国初中数学联合竞赛决赛试题第一试一.选择题本题共有8个小题,每小题都给出了(A), (B), (C), (D)四个结论,其中只有一个是正确的.请把正确结论的代表字母写在题后的圆括号内.1.多项式1612+-x x 除以12-x 的余式是(A)1; (B)-1; (C)1-x ; (D)1+x ;2.对于命题Ⅰ.内角相等的圆内接五边形是正五边形.Ⅱ.内角相等的圆内接四边形是正四边形,以下四个结论中正确的是(A )Ⅰ,Ⅱ都对 (B )Ⅰ对,Ⅱ错 (C )Ⅰ错,Ⅱ对. (D )Ⅰ,Ⅱ都错.3.设x 是实数,11++-=x x y .下列四个结论:Ⅰ.y 没有最小值;Ⅱ.只有一个x 使y 取到最小值;Ⅲ.有有限多个x (不止一个)使y 取到最大值;Ⅳ.有无穷多个x 使y 取到最小值.其中正确的是(A )Ⅰ (B )Ⅱ (C )Ⅲ (D )Ⅳ4.实数54321,,,,x x x x x 满足方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=++=++=++=++=++.;;;;52154154354324321321a x x x a x x x a x x x a x x x a x x x其中54321,,,,a a a a a 是实常数,且54321a a a a a >>>>,则54321,,,,x x x x x 的大小顺序是(A)54321x x x x x >>>>; (B )53124x x x x x >>>>;(C )52413x x x x x >>>>; (D )24135x x x x x >>>>.5.不等式73)1(12+<-<-x x x 的整数解的个解(A )等于4 (B )小于4 (C )大于5 (D )等于56.在ABC ∆中,BC AO O A =∠,,是垂心是钝角,则)cos(OCB OBC ∠+∠的值是 (A)22- (B)22 (C)23 (D)21-. 答( )7.锐角三角ABC 的三边是a , b , c ,它的外心到三边的距离分别为m , n ,p ,那么m :n :p 等于 (A)c b a 1:1:1; (B)c b a :: (C)C B A cos :cos :cos (D)C B A sin :sin :sin .答( )8.13333)919294(3-+-可以化简成 (A))12(333+; (B))12(333- (C)123- (D)123+答( )二.填空题1. 当x 变化时,分式15632212++++x x x x 的最小值是___________. 2.放有小球的1993个盒子从左到右排成一行,如果最左面的盒里有7个小球,且每四个相邻的盒里共有30个小球,那么最右面的盒里有__________个小球.3.若方程k x x =--)4)(1(22有四个非零实根,且它们在数轴上对应的四个点等距排列,则k =____________.4.锐角三角形ABC 中,︒=∠30A .以BC 边为直径作圆,与AB , AC分别交于D , E ,连接DE , 把三角形ABC 分成三角形ADE 与四边形BDEC ,设它们的面积分别为S 1, S 2,则S 1:S 2=___________. 第二试一.设H 是等腰三角形ABC 垂心,在底边BC 保持不变的情况下让顶点A 至底边BC 的距离变小,这时乘积HBC ABC S S ∆∆⋅的值变小,变大,还是不变?证明你的结论.二.ABC ∆中, BC =5, AC =12, AB =13, 在边AB ,AC 上分别取点D , E , 使线段DE 将ABC ∆分成面积相等的两部分.试求这样的线段DE 的最小长度.三.已知方程0022=++=++b cx x c bx x 及分别各有两个整数根21,x x 及21,x x '',且,021>x x 021>''x x . (1)求证:;0,0,0,02121<'<'<<x x x x (2)求证:1-b ≤c ≤1+b ; (3)求c b ,所有可能的值.1994年全国初中数学联赛试题第一试(4月3日上午8:30—9:30)考生注意:本试共两道大题,满分80分.一、选择题(本题满分48分,每小题6分)本题共有8个小题都给出了A,B、C,D,四个结论,其中只有一个是正确的,请把你认为正确结论的代表字母写在题后答案中的圆括号内,每小题选对得6分;不选、选错或选出的代表字母超过一个(不论是否写在圆括号内),一律得0分.〔答〕( )2.设a,b,c是不全相等的任意实数,若x=a2-bc,y=b2-ca,z=c2-ab,则x,y,zA.都不小于0B.都不大于0C.至少有一个小0于D.至少有一个大于0〔答〕( )3.如图1所示,半圆O的直径在梯形ABCD的底边AB上,且与其余三边BC,CD,DA相切,若BC=2,DA=3,则AB的长A.等于4B.等于5C.等于6D.不能确定〔答〕( )A.1 B.-1 C.22001D.-22001〔答〕( )5.若平行直线EF,MN与相交直线AB,CD相交成如图2所示的图形,则共得同旁内角A.4对B.8对C.12对D.16对〔答〕( )〔答〕( )7.设锐角三角形ABC的三条高AD,BE,CF相交于H。
江苏省历年初中数学竞赛试题及解答(23份)
第十五届江苏省初中数学竞赛试题初一年级第一试 (1)第十五届江苏省初中数学竞赛试卷初一年级 第二试 (3)江苏省第十五届初中数学竞赛初二第1试试题 (6)江苏省第十五届初中数学竞赛初二年级 第二试 (8)江苏省第十五届初中数学竞赛初三年级 (14)2001年第十六届江苏省初中数学竞赛A 卷 (19)2001年第十六届江苏省初中数学竞赛B 卷 (24)第十六届江苏省初中数学竞赛试题(C 卷)初三年级 (29)江苏省第十七届初中数学竞赛 初一年级 第l 试 (33)江苏省第十七届初中数学竞赛试卷 初一年级(第2试) (35)江苏省第十七届初中数学竞赛 初二年级 第l 试 (38)江苏省第十七届初中数学竞赛试卷 初二年级(第2试) (40)江苏省第十七届初中数学竞赛试卷 初三年级 (43)江苏省第十八届初中数学竞赛初一年级第1试 (46)2003年江苏省第十八届初中数学竞赛初中一年级 第2试 (48)2003年江苏省第十八届初中数学竞赛初中二年级 第2试 (52)2003年江苏省第十八届初中数学竞赛初中三年级 (57)江苏省第十九届初中数学竞赛初一年级 第1试 (60)江苏省第十九届初中数学竞赛初二年级第1试 (62)江苏省第十九届初中数学竞赛试卷初二年级第2试 (65)江苏省第十九届初中数学竞赛初三年级(第1试) (71)江苏省第十九届初中数学竞赛(保留)初三年级第l 试 (73)江苏省第十九届初中数学竞赛试题与答案初三年级(第2试) (80)第十五届江苏省初中数学竞赛试题初一年级第一试一、选择题(每小题7分,共56分.以下每题的4个结论中,仅有一个是正确的,请将正确答案的英文字母填在题后的圆括号内)1.在-|-3|3,-(-3)3,(-3)3,-33中,最大的是( ).(A)-|-3|3 (B)-(-3)3 (C)(-3)3 (D)-332. “a 的2倍与b 的一半之和的平方,减去a 、b 两数平方和的4倍”用代数式表示应为( )(A)2a+(21b 2)-4(a+b)2 (B)(2a+21b)2-a+4b 2 (c)(2a+21b)2-4(a 2+b 2) (D)(2a+21b)2-4(a 2+b 2)2 3.若a 是负数,则a+|-a|( ),(A)是负数 (B)是正数 (C)是零 (D)可能是正数,也可能是负数4.如果n 是正整数,那么表示“任意负奇数”的代数式是( ).(A)2n+l (B)2n-l (C)-2n+l (D)-2n-l5.已知数轴上的三点A 、B 、C 分别表示有理数a 、1、-l ,那么|a+1|表示( ).(A)A 、B 两点的距离 (B)A 、C 两点的距离(C)A 、B 两点到原点的距离之和(D)A 、C 两点到原点的距离之和6.如图,数轴上标出若干个点,每相邻两点相距1个单位,点A 、B 、C 、D 对应的数分别是整数a 、b 、c 、d ,且d-2a =10,那么数轴的原点应是( ).(A)A 点 (B)B 点 (C)C 点 (D)D 点7.已知a+b =0,a≠b ,则化简a b (a+1)+ba (b+1)得( ). (A)2a (B)2b (C)+2 (D)-28.已知m<0,-l<n<0,则m ,mn ,mn 2由小到大排列的顺序是 ( ).(A)m ,mn ,mn 2 (B)mn ,mn 2,m (C)mn 2,mn ,m (D)m ,mn 2,mn二、填空题(每小题?分,共84分)9.计算:31a -(21a -4b -6c)+3(-2c+2b)= 10.计算:0.7×194+243×(-15)+0.7×95+41×(-15)= ll.某班有男生a(a>20)人,女生20人,a-20表示的实际意义是12.在数-5,-3,-1,2,4,6中任取三个相乘,所得的积中最大的是13.下表中每种水果的重量是不变的,表的左边或下面的数是所在行或所在列水果的总重量,0.25,则正确结果应是 .15.在数轴上,点A 、B 分别表示-31和51,则线段AB 的中点所表示的数是 . 16.已知2a x b n-1与-3a 2b 2m (m 是正整数)是同类项,那么(2m-n)x =17.王恒同学出生于20世纪,他把他出生的月份乘以2后加上5,把所得的结果乘以50后加上出生年份,再减去250,最后得到2 088,则王恒出生在 年 月.18.银行整存整取一年期的定期存款年利率是2.25%,某人1999年12月3日存入1 000元,2000年12月3日支取时本息和是 元,国家利息税税率是20%,交纳利息税后还有 元.19.有一列数a 1,a 2,a 3,a 4,…,a n ,其中a 1=6×2+l ;a 2=6×3+2;a 3=6×4+3;a 4=6×5+4;则第n 个数a n = ;当a n =2001时,n = .20.已知三角形的三个内角的和是180°,如果一个三角形的三个内角的度数都是小于120的质数,则这个三角形三个内角的度数分别是第十五届江苏省初中数学竞赛参考答案初一年级第一试一、1.B 2.C 3.C 4.C 5.B 6.B 7.D 8.D二、9.一6a +1 06. 10.一43.6. 11.男生比女生多的人数.1 2.90. 1 3.1 6. 1 4.0.1 2 5. 1 5.-151 1 6.1. 1 7.1988;1.18.1022.5;101 8.1 9.7n+6;2 8 5.2 O .2,8 9,8 9或2,7 1,1 07(每填错一组另扣2分).第十五届江苏省初中数学竞赛试卷初一年级 第二试一、选择题1.已知x=2是关于x 的方程3x-2m=4的根,则m 的值是( )(A)5 (B)-5 (C)1 (D)-12.已知a+2=b-2=2c =2001,且a+b+c=2001k ,那么k 的值为( )。
历届(1-23)希望杯数学竞赛初一七年级真题及答案(最新整理WORD版)
“希望杯”全国数学竞赛(第1-23届)初一年级/七年级第一/二试题第 1 页共277 页目录1.希望杯第一届(1990年)初中一年级第一试试题............................................. 003-0052.希望杯第一届(1990年)初中一年级第二试试题............................................. 010-0123.希望杯第二届(1991年)初中一年级第一试试题............................................. 016-0204.希望杯第二届(1991年)初中一年级第二试试题............................................. 022-0265.希望杯第三届(1992年)初中一年级第一试试题............................................. 029-0326.希望杯第三届(1992年)初中一年级第二试试题............................................. 034-0407.希望杯第四届(1993年)初中一年级第一试试题............................................. 044-0508.希望杯第四届(1993年)初中一年级第二试试题............................................. 051-0589.希望杯第五届(1994年)初中一年级第一试试题............................................. 058-06610.希望杯第五届(1994年)初中一年级第二试试题 .......................................... 065-07311.希望杯第六届(1995年)初中一年级第一试试题 ........................................... 072-080 12希望杯第六届(1995年)初中一年级第二试试题........................................... 079-08713.希望杯第七届(1996年)初中一年级第一试试题........................................... 089-09814.希望杯第七届(1996年)初中一年级第二试试题............................................. 95-10515.希望杯第八届(1997年)初中一年级第一试试题........................................... 103-11316.希望杯第八届(1997年)初中一年级第二试试题........................................... 110-12017.希望杯第九届(1998年)初中一年级第一试试题........................................... 119-12918.希望杯第九届(1998年)初中一年级第二试试题........................................... 128-13819.希望杯第十届(1999年)初中一年级第二试试题........................................... 135-14720.希望杯第十届(1999年)初中一年级第一试试题........................................... 148-15121.希望杯第十一届(2000年)初中一年级第一试试题....................................... 148-16122.希望杯第十一届(2000年)初中一年级第二试试题....................................... 155-16923.希望杯第十二届(2001年)初中一年级第一试试题....................................... 159-17424.希望杯第十二届(2001年)初中一年级第二试试题....................................... 163-17825.希望杯第十三届(2002年)初中一年级第一试试题....................................... 169-18426.希望杯第十三届(2001年)初中一年级第二试试题....................................... 173-18927.希望杯第十四届(2003年)初中一年级第一试试题....................................... 180-19628.希望杯第十四届(2003年)初中一年级第二试试题....................................... 184-200第 2 页共277 页29.希望杯第十五届(2004年)初中一年级第一试试题 (188)30.希望杯第十五届(2004年)初中一年级第二试试题 (189)31.希望杯第十六届(2005年)初中一年级第一试试题....................................... 213-21832.希望杯第十六届(2005年)初中一年级第二试试题 (189)33.希望杯第十七届(2006年)初中一年级第一试试题....................................... 228-23334.希望杯第十七届(2006年)初中一年级第二试试题....................................... 234-23835.希望杯第十八届(2007年)初中一年级第一试试题....................................... 242-246 26.希望杯第十八届(2007年)初中一年级第二试试题....................................... 248-25137.希望杯第十九届(2008年)初中一年级第一试试题....................................... 252-25638.希望杯第十九届(2008年)初中一年级第二试试题....................................... 257-26239.希望杯第二十届(2009年)初中一年级第一试试题....................................... 263-26620.希望杯第二十届(2009年)初中一年级第二试试题....................................... 267-27121.希望杯第二十一届(2010年)初中一年级第一试试题 ................................... 274-27622.希望杯第二十二届(2011年)初中一年级第二试试题 ................................... 285-28823.希望杯第二十三届(2012年)初中一年级第二试试题 ................................... 288-301第 3 页共277 页第 4 页 共 277 页希望杯第一届(1990年)初中一年级第1试试题一、选择题(每题1分,共10分)1.如果a ,b 都代表有理数,并且a +b=0,那么 ( )A .a ,b 都是0.B .a ,b 之一是0.C .a ,b 互为相反数.D .a ,b 互为倒数.2.下面的说法中正确的是 ( )A .单项式与单项式的和是单项式.B .单项式与单项式的和是多项式.C .多项式与多项式的和是多项式.D .整式与整式的和是整式.3.下面说法中不正确的是 ( )A. 有最小的自然数. B .没有最小的正有理数.C .没有最大的负整数.D .没有最大的非负数.4.如果a ,b 代表有理数,并且a +b 的值大于a -b 的值,那么( ) A .a ,b 同号. B .a ,b 异号.C .a >0. D .b >0.5.大于-π并且不是自然数的整数有( ) A .2个. B .3个.C .4个. D .无数个.6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身.这四种说法中,不正确的说法的个数是 ( )A .0个.B .1个.C .2个.D .3个.7.a 代表有理数,那么,a 和-a 的大小关系是 ( )A .a 大于-a .B .a 小于-a .C .a 大于-a 或a 小于-a .D .a 不一定大于-a .8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( )A .乘以同一个数.B .乘以同一个整式.C .加上同一个代数式.D .都加上1.9.杯子中有大半杯水,第二天较第一天减少了10%,第三天又较第二天增加了10%,那么,第三天杯中的水量与第一天杯中的水量相比的结果是( )A .一样多.B .多了.C .少了.D .多少都可能.10.轮船往返于一条河的两码头之间,如果船本身在静水中的速度是固定的,那么,当这条河的水流速度增大时,船往返一次所用的时间将( )A .增多.B .减少.C .不变.D .增多、减少都有可能.二、填空题(每题1分,共10分)1. 21115160.01253(87.5)(2)4571615⨯-⨯-÷⨯+--= ______. 2.198919902-198919892=______.第 5 页 共 277 页 3.2481632(21)(21)(21)(21)(21)21+++++-=________. 4. 关于x 的方程12148x x +--=的解是_________. 5.1-2+3-4+5-6+7-8+…+4999-5000=______.6.当x=-24125时,代数式(3x 3-5x 2+6x -1)-(x 3-2x 2+x -2)+(-2x 3+3x 2+1)的值是____. 7.当a=-0.2,b=0.04时,代数式272711()(0.16)()73724a b b a a b --++-+的值是______. 8.含盐30%的盐水有60千克,放在秤上蒸发,当盐水变为含盐40%时,秤得盐水的重是______克.9.制造一批零件,按计划18天可以完成它的13.如果工作4天后,工作效率提高了15,那么完成这批零件的一半,一共需要______天.10.现在4点5分,再过______分钟,分针和时针第一次重合.答案与提示一、选择题1.C 2.D 3.C 4.D 5.C 6.B 7.D 8.D 9.C 10.A提示:1.令a=2,b=-2,满足2+(-2)=0,由此2.x2,2x2,x3都是单项式.两个单项式x3,x2之和为x3+x2是多项式,排除A.两个单项式x2,2x2之和为3x2是单项式,排除B.两个多项式x3+x2与x3-x2之和为2x3是个单项式,排除C,因此选D.3.1是最小的自然数,A正确.可以找到正所以C“没有最大的负整数”的说法不正确.写出扩大自然数列,0,1,2,3,…,n,…,易知无最大非负数,D正确.所以不正确的说法应选C.5.在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,-1,0共4个.选C.6.由12=1,13=1可知甲、乙两种说法是正确的.由(-1)3=-1,可知丁也是正确的说法.而负数的平方均为正数,即负数的平方一定大于它本身,所以“负数平方不一定大于它本身”的说法不正确.即丙不正确.在甲、乙、丙、丁四个说法中,只有丙1个说法不正确.所以选B.7.令a=0,马上可以排除A、B、C,应选D.8.对方程同解变形,要求方程两边同乘不等于0的数.所以排除A.我们考察方程x-2=0,易知其根为x=2.若该方程两边同乘以一个整式x-1,得(x-1)(x -2)=0,其根为x=1及x=2,不与原方程同解,排除B.若在方程x-2=0两边加上同一个代数式去了原方程x=2的根.所以应排除C.事实上方程两边同时加上一个常数,新方程与原方程同解,对D,这里所加常数为1,因此选D.9.设杯中原有水量为a,依题意可得,第二天杯中水量为a×(1-10%)=0.9a;第 6 页共277 页第三天杯中水量为(0.9a)×(1+10%)=0.9×1.1×a;第三天杯中水量与第一天杯中水量之比为所以第三天杯中水量比第一天杯中水量少了,选C.10.设两码头之间距离为s,船在静水中速度为a,水速为v0,则往返一次所用时间为设河水速度增大后为v,(v>v0)则往返一次所用时间为由于v-v0>0,a+v0>a-v0,a+v>a-v所以(a+v0)(a+v)>(a-v0)(a-v)∴t0-t<0,即t0<t.因此河水速增大所用时间将增多,选A.二、填空题第7 页共277 页提示:2.198919902-198919892=(19891990+19891989)×(19891990-19891989)=(19891990+19891989)×1=39783979.3.由于(2+1)(22+1)(24+1)(28+1)(216+1)=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)=(22-1)(22+1)(24+1)(28+1)(216+1)=(24-1)(24+1)(28+1)(216+1)=(28-1)(28+1)(216+1)=(216-1)(216+1)=232-1.2(1+x)-(x-2)=8,2+2x-x+2=8解得;x=45.1-2+3-4+5-6+7-8+…+4999-50005000)=(1-2)+(3-4)+(5-6)+(7-8)+…+(4999-=-2500.+1)=5x+26.(3x3-5x2+6x-1)-(x3-2x2+x-2)+(-2x3+3x27.注意到:当a=-0.2,b=0.04时,a2-b=(-0.2)2-0.04=0,b+a+0.16=0.04-0.2+0.16=0.第8 页共277 页8.食盐30%的盐水60千克中含盐60×30%(千克)设蒸发变成含盐为40%的水重x克,即0.001x千克,此时,60×30%=(0.001x)×40%解得:x=45000(克).10.在4时整,时针与分针针夹角为120°即第9 页共277 页希望杯第一届(1990年)初中一年级第2试试题一、选择题(每题1分,共5分)以下每个题目里给出的A,B,C,D四个结论中有且仅有一个是正确的.请你在括号填上你认为是正确的那个结论的英文字母代号.1.某工厂去年的生产总值比前年增长a%,则前年比去年少的百分数是( )A.a%.B.(1+a)%. C.1100aa+D.100aa+2.甲杯中盛有2m毫升红墨水,乙杯中盛有m毫升蓝墨水,从甲杯倒出a毫升到乙杯里, 0<a<m,搅匀后,又从乙杯倒出a毫升到甲杯里,则这时( )A.甲杯中混入的蓝墨水比乙杯中混入的红墨水少.B.甲杯中混入的蓝墨水比乙杯中混入的红墨水多.C.甲杯中混入的蓝墨水和乙杯中混入的红墨水相同.D.甲杯中混入的蓝墨水与乙杯中混入的红墨水多少关系不定.3.已知数x=100,则( )A.x是完全平方数.B.(x-50)是完全平方数.C.(x-25)是完全平方数.D.(x+50)是完全平方数.4.观察图1中的数轴:用字母a,b,c依次表示点A,B,C对应的数,则111,,ab b a c-的大小关系是( )A.111ab b a c<<-; B.1b a-<1ab<1c; C.1c<1b a-<1ab; D.1c<1ab<1b a-.5.x=9,y=-4是二元二次方程2x2+5xy+3y2=30的一组整数解,这个方程的不同的整数解共有( )A.2组.B.6组.C.12组.D.16组.二、填空题(每题1分,共5分)1.方程|1990x-1990|=1990的根是______.2.对于任意有理数x,y,定义一种运算*,规定x*y=ax+by-cxy,其中的a,b,c表示已知数,等式右边是通常的加、减、乘运算.又知道1*2=3,2*3=4,x*m=x(m≠0),则m 的数值是______.3.新上任的宿舍管理员拿到20把钥匙去开20个房间的门,他知道每把钥匙只能开其中第10 页共277 页的一个门,但不知道每把钥匙是开哪一个门的钥匙,现在要打开所有关闭着的20个房间,他最多要试开______次.4.当m=______时,二元二次六项式6x2+mxy-4y2-x+17y-15可以分解为两个关于x,y 的二元一次三项式的乘积.5.三个连续自然数的平方和(填“是”或“不是”或“可能是”)______某个自然数的平方.三、解答题(写出推理、运算的过程及最后结果.每题5分,共15分)1.两辆汽车从同一地点同时出发,沿同一方向同速直线行驶,每车最多只能带24桶汽油,途中不能用别的油,每桶油可使一辆车前进60公里,两车都必须返回出发地点,但是可以不同时返回,两车相互可借用对方的油.为了使其中一辆车尽可能地远离出发地点,另一辆车应当在离出发地点多少公里的地方返回?离出发地点最远的那辆车一共行驶了多少公里?2.如图2,纸上画了四个大小一样的圆,圆心分别是A,B,C,D,直线m通过A,B,直线n通过C,D,用S表示一个圆的面积,如果四个圆在纸上盖住的总面积是5(S-1),直线m,n之间被圆盖住的面积是8,阴影部分的面积S1,S2,S3满足关系式S3=13S1=13S2,求S.3.求方程11156x y z++=的正整数解.第11 页共277 页答案与提示一、选择题1.D 2.C 3.C 4.C 5.D提示:1.设前年的生产总值是m ,则去年的生产总值是前年比去年少这个产值差占去年的应选D.2.从甲杯倒出a毫升红墨水到乙杯中以后:再从乙杯倒出a毫升混合墨水到甲杯中以后:乙杯中含有的红墨水的数量是①乙杯中减少的蓝墨水的数量是②∵①=②∴选C.∴x-25=(10n+2+5)2可知应当选C.4.由所给出的数轴表示(如图3):可以看出第12 页共277 页∴①<②<③,∴选C.5.方程2x2+5xy+3y2=30可以变形为(2x+3y)(x+y)=1·2·3·5∵x,y是整数,∴2x+3y,x+y也是整数.由下面的表可以知道共有16个二元一次方程组,每组的解都是整数,所以有16组整数组,应选D.二、填空题提示:1.原方程可以变形为|x-1|=1,即x-1=1或-1,∴x=2或0.2.由题设的等式x*y=ax+by-cxy及x*m=x(m≠0)得a·0+bm-c·0·m=0,∴bm=0.∵m≠0,∴b=0.∴等式改为x*y=ax-cxy.∵1*2=3,2*3=4,解得a=5,c=1.∴题设的等式即x*y=5x-xy.在这个等式中,令x=1,y=m,得5-m=1,∴m=4.第13 页共277 页3.∵打开所有关闭着的20个房间,∴最多要试开4.利用“十字相乘法”分解二次三项式的知识,可以判定给出的二元二次六项式6x2+mxy-4y2-x+17y-15中划波浪线的三项应当这样分解:3x -52x +3现在要考虑y,只须先改写作然后根据-4y2,17y这两项式,即可断定是:由于(3x+4y-5)(2x-y+3)=6x2+5xy-4y2-x+17y-15就是原六项式,所以m=5.5.设三个连续自然数是a-1,a,a+1,则它们的平方和是(a-1)2+a2+(a+1)2=3a2+2,显然,这个和被3除时必得余数2.另一方面,自然数被3除时,余数只能是0或1或2,于是它们可以表示成3b,3b+1,3b+2(b是自然数)中的一个,但是它们的平方(3b)2=9b2(3b+1)2=9b2+6b+1,(3b+2)2=9b2+12b+4=(9b2+12b+3)+1被3除时,余数要么是0,要么是1,不能是2,所以三个连续自然数平方和不是某个自然数的平方.三、解答题1.设两辆汽车一为甲一为乙,并且甲用了x升汽油时即回返,留下返程需的x桶汽油,将多余的(24-2x)桶汽油给乙.让乙继续前行,这时,乙有(24-2x)+(24-x)=48-3x桶汽油,依题意,应当有48-3x≤24,∴x≥8.甲、乙分手后,乙继续前行的路程是这个结果中的代数式30(48-4x)表明,当x的值愈小时,代数式的值愈大,因为x≥8,所以当x=8时,得最大值30(48-4·8)=480(公里),因此,乙车行驶的路程一共是2(60·8+480)=1920(公里).2.由题设可得第14 页共277 页即2S-5S3=8……②∴x,y,z都>1,因此,当1<x≤y≤z时,解(x,y,z)共(2,4,12),(2,6,6),(3,3,6),(3,4,4)四组.由于x,y,z在方程中地位平等.所以可得如下表所列的15组解.第15 页共277 页希望杯第二届(1991年)初中一年级第1试试题一、选择题(每题1分,共15分)以下每个题目的A,B,C,D四个结论中,仅有一个是正确的,请在括号内填上正确的那个结论的英文字母代号.1.数1是( )A.最小整数.B.最小正数.C.最小自然数.D.最小有理数.2.若a>b,则( )A.11a b; B.-a<-b.C.|a|>|b|.D.a2>b2.3.a为有理数,则一定成立的关系式是( )A.7a>a.B.7+a>a.C.7+a>7.D.|a|≥7.4.图中表示阴影部分面积的代数式是( )A.ad+bc.B.c(b-d)+d(a-c).C.ad+c(b-d).D.ab-cd.5.以下的运算的结果中,最大的一个数是( )A.(-13579)+0.2468; B.(-13579)+12468;C.(-13579)×12468; D.(-13579)÷124686.3.1416×7.5944+3.1416×(-5.5944)的值是( ) A.6.1632. B.6.2832.C.6.5132.D.5.3692.7.如果四个数的和的14是8,其中三个数分别是-6,11,12,则笫四个数是( )A.16. B.15. C.14. D.13.8.下列分数中,大于-13且小于-14的是( )A.-1120; B.-413; C.-316; D.-617.9.方程甲:34(x-4)=3x与方程乙:x-4=4x同解,其根据是( )A.甲方程的两边都加上了同一个整式x.B.甲方程的两边都乘以43x;C. 甲方程的两边都乘以43; D. 甲方程的两边都乘以34.第16 页共277 页第 17 页 共 277 页10.如图: ,数轴上标出了有理数a ,b ,c 的位置,其中O是原点,则111,,a b c的大小关系是( ) A.111a b c>>; B.1b >1c >1a ; C. 1b >1a >1c ; D. 1c >1a >1b .11.方程522.2 3.7x =的根是( ) A .27. B .28. C .29. D .30. 12.当x=12,y=-2时,代数式42x y xy -的值是( )A .-6.B .-2.C .2.D .6.13.在-4,-1,-2.5,-0.01与-15这五个数中,最大的数与绝对值最大的那个数的乘积是( )A .225.B .0.15.C .0.0001.D .1.14.不等式124816x x x xx ++++>的解集是( ) A .x <16. B .x >16.C .x <1. D.x>-116. 15.浓度为p%的盐水m 公斤与浓度为q%的盐水n 公斤混合后的溶液浓度是 ( )A.%2p q +;B.()%mp nq +;C.()%mp nq p q ++;D.()%mp nq m n++. 二、填空题(每题1分,共15分)1. 计算:(-1)+(-1)-(-1)×(-1)÷(-1)=______. 2. 计算:-32÷6×16=_______. 3. 计算:(63)36162-⨯=__________.4. 求值:(-1991)-|3-|-31||=______. 5. 计算:1111112612203042-----=_________. 6.n 为正整数,1990n-1991的末四位数字由千位、百位、十位、个位、依次排列组成的四位数是8009.则n 的最小值等于______.7. 计算:19191919199191919191⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭=_______.8. 计算:15[(-1989)+(-1990)+(-1991)+(-1992)+(-1993)]=________.9.在(-2)5,(-3)5,512⎛⎫-⎪⎝⎭,513⎛⎫-⎪⎝⎭中,最大的那个数是________.10.不超过(-1.7)2的最大整数是______.11.解方程21101211,_____. 3124x x xx-++-=-=12.求值:355355113113355113⎛⎫---⎪⎝⎭⎛⎫- ⎪⎝⎭=_________.13.一个质数是两位数,它的个位数字与十位数字的差是7,则这个质数是______.14.一个数的相反数的负倒数是119,则这个数是_______.15.如图11,a,b,c,d,e,f均为有理数.图中各行,各列、两条对角线上三个数之和都相等,则ab cd efa b c d e f+++++++=____.第18 页共277 页答案与提示一、选择题1.C 2.B 3.B 4.C 5.C 6.B 7.B 8.B 9.C 10.B 11.D 12.A 13.B 1 4.A 15.D提示:1.整数无最小数,排除A;正数无最小数,排除B;有理数无最小数,排除D.1是最小自然数.选C.有|2|<|-3|,排除C;若2>-3有22<(-3)2,排除D;事实上,a>b必有-a<-b.选B.3.若a=0,7×0=0排除A;7+0=7排除C|0|<7排除D,事实上因为7>0,必有7+a>0+a=a.选B.4.把图形补成一个大矩形,则阴影部分面积等于ab-(a-c)(b-d)=ab-[ab-ad-c(b-d)]=ab-ab+ad+c(b-d)=ad+c(b-d).选C.5.运算结果对负数来说绝对值越小其值越大。
全国初中数学联赛数论题目汇编
33. (1998 联赛)1, 2, 3, · · · , 98 共 98 个自然数中, 能够表示成两整数的平方差的个数是
34. (1998 联赛) 每一本书都有一个国际书号:ABCDEF GHIJ , 其中 ABCDEF GHI 由九个数字排列而 成, J 是检查号码. 令 S = 10A + 9B + 8C + 7D + 6E + 5F + 4G + 3H + 2I ,r 是 S 除以 11 所得的 余数, 若 r 不等于 0 或 1, 则规定 J = 11 − r. (若 r = 0, 则规定 J = 0; 若 r = 1, 规定 J 用 x 表示) 现有一本书的书号是 962y 707015, 那么 y = .
20. (1990 联赛)12 , 22 , 32 , · · · , 1234567892 的和的个位数的数字是 21. (1990 联赛)[x] 表示不超过实数 x 的最大整数, 令 {x} = x − [x] 1 (1) 找出一个实数 x, 满足 {x} + { } = 1 x (2) 证明: 满足上述等式的 x, 都不是有理数.
3 29. (1997 联赛) 若正整数 x,y 满足 x2 + y 2 = 1997, 则 x + y 等于 .
30. (1997 联赛) 已知定理:“若三个大于 3 的质数,a, b, c 满足关系式 2a + 5b = c, 则 a + b + c 是整数 n 的倍数”. 试问: 上述定理中的整数 n 的最大可能值是多少? 并证明你的结论. 31. (1998 联赛) 满足 19982 + m2 = 19972 + n2 (0 < m < n < 1998) 的整数对 (m, n), 共有 32. (1998 联赛) 设平方数 y 2 是 11 个相继整数的平方和, 则 y 的最小值是 . . 个.
初中数学竞赛1.3 整式的除法(含答案)
1.3 整式的除法◆赛点归纳整式的除法包括单项式除以单项式,多项式除以单项式,多项式除以多项式.多项式恒等定理:(1)多项式f(x)=g(x),•需且只需这两个多项式的同类项的系数相等;(2)若f(x)=g(x),则对于任意一个值a,都有f(a)=g(a).余数定理:多项式f(x)除以x-a所得的余数等于f(a).特别地,当f(x)•能被x-a整除时,有f(a)=0.◆解题指导例1设a、b为整数,观察下列命题:①若3a+5b为偶数,则7a-9b也为偶数;②若a2+b2能被3整除,则a和b也能被3整除;③若a+b是质数,则a-b不是质数;④若a3-b3是4的倍数,则a-b也是4的倍数.其中正确的命题有().A.0个B.1个C.2个D.3个以上【思路探究】对于①看7a-9b与3a+5b的和或差是不是偶数.对于②根据整数n的平方数的特征去判断.对于③、④若不能直接推导是否成立,也可举出反例证明不成立.例2 若2x3-kx2+3被2x+1除后余2,则k的值为().A.k=5 B.k=-5 C.k=3 D.k=-3【思路探究】要求k的值,须找到关于k的方程.由2x3-kx2+3被2x+1除后余2,可知2x3-kx2+1能被2x+1整除,由此就可得关于k的一次方程.例3计算:(3x6-2x5-5x4+7x3-19x2+12x)÷(x4-2x2+x-5).【思路探究】被除式是一个6次六项式,除式是一个4次四项式,直接计算比较复杂,应列竖式计算.例4若多项式x4-x3+ax2+bx+c能被(x-1)3整除,求a、b、c的值.【思路探究】由条件知x4-x3+ax2+bx+c能被x3-3x2+3x-1整除,列竖式可知x4-x3+ax2+bx+c的商式和余式.根据一个多项式被另一个多项式整除,余式恒为零可求a、•b、c的值.【拓展题】设x1,x2,…,x7都是整数,并且x1+4x2+9x3+16x4+25x5+36x6+49x7=1,①4x1+9x2+16x3+25x4+35x5+49x6+64x7=12,②9x1+16x2+25x3+36x4+49x5+64x6+81x7=123,③求16x1+25x2+36x3+49x4+64x5+81x6+100x7的值.◆探索研讨整式除法的综合运用大多与多项式除以多项式相关.多项式除法运算实际上是它们的系数运算.在进行多项式乘除法恒等变形时,它们对应项系数是相等的,由此列方程可求解待定系数.请结合本节的例题,总结自己的发现.◆能力训练1.下列四个数中,对于任一个正整数k,哪个数一定不是完全平方数().A.16k B.16k+8 C.4k+1 D.32k+42.要使3x3+mx2+nx+42能被x2-5x+6整除,则m、n应取的值是().A.m=8,n=17 B.m=-8,n=17C.m=8,n=-17 D.m=-8,n=-173.(2001,武汉市竞赛)如果x3+ax2+bx+8有两个因式x+1和x+2,则a+b=().A.7 B.8 C.15 D.214.对任意有理数x,若x3+ax2+bx+c都能被x2-bx+x整除,则a-b+c的值是().A.1 B.0 C.-1 D.-25.满足方程x3+6x2+5x=27y3+9y2+9y+1的正整数对(x,y)有().A.0对B.1对C.3对D.无穷多对6.(2003,四川省竞赛)若(3x+1)4=ax4+bx3+cx2+dx+e,则a-b+c-d+e=________.7.(2004,北京市竞赛)用正整数a去除63,91,129所得的3个余数的和是25,则a 的值为________.8.已知多项式3x3+ax2+bx+1能被x2+1整除,且商式是3x+1,那么(-a)b的值是_____.9.若多项式x4+mx3+nx-16含有因式(x-1)和(x-2),则mn=________.10.多项式x135+x125-x115+x5+1除以多项式x3-x所得的余式是_______.11.计算:(1)(6x5-7x4y+x3y2+20x2y3-22xy4+8y5)÷(2x2-3xy+y2);(2)(41m-m3+15m4-70-m2)÷(3m2-2m+7).12.已知a、b、c为有理数,且多项式x3+ax2+bx+c能够被x2+3x-4整除.(1)求4a+c的值;(2)求2a-2b-c的值;(3)若a、b、c为整数,且c≥a>1,试确定a、b、c的大小.13.(2000,“五羊杯”,初二)已知x6+4x5+2x4-6x3-3x2+2x+1=[f(x)] 2,其中f(x)是x的多项式,求这个多项式.14.已知一个矩形的长、宽分别为正整数a、b,其面积的数值等于它的周长数值的2倍,求a+b的值.15.(2004,北京市竞赛)能将任意8个连续的正整数分为两组,使得每组4•个数的平方和相等吗?如果能,请给出一种分组法,并加以验证;如果不能,请说明理由.答案:解题指导例1 C [提示:命题①成立.因为(7a-9b)-(3a+5b)=2(2a-7b)是偶数;命题②也成立.因为整数n的平方被3除余数只能为0或1,3整除a2+b2,表明a2、b2被3除的余数都是0,所以a和b都能被3整除;命题③不成立.如5+2=7和5-2=3都是质数;命题④也不成立.例如a=2,b=0.]例2 C [提示:∵2x3-kx2+3被2x+1除后余2,∴2x3-kx2+1能被2x+1整除.令2x+1=0,得x=-12.代入2x3-kx2+1=0,得2×(-12)3-k(-12)2+1=0,即-14-14k+1=0,解得k=3.]例3(3x6-2x5-5x4+7x3-19x2+12x)÷(x4-2x2+x-5)=3x2-2x+1……x+5.例4 x4-x3+ax2+bx+c=(x3-3x2+3x-1)(x+2)+(a+3)x2+(b-5)x+(c+2).由余式恒等于0,得a+3=0,b-5=0,c+2=0.∴a=-3,b=5,c=-2.【拓展题】设四个连续自然数的平方为:n2、(n+1)2、(n+2)2、(n+3)2,则(n+3)2=a(n+2)2+b(n+1)2+cn2.整理得n2+6n+9=(a+b+c)n2+(4a+2b)n+4a+b.∴a+b+c=1,4a+2b=6,4a+b=9.解得a=3,b=-3,c=1,∴16x1+25x2+36x3+49x4+64x5+81x6+100x7=③×3-②×3+①=123×3-12×3+1=334.能力训练1.B [提示:16k+8=8(2k+1).因2k+1是奇数,8•乘以一个奇数一定不是完全平方数.] 2.D [提示:∵3x3+mx2+nx+42=(x2-5x+6)(3x+7)+(m+8)x2+(n+17)x.∴80,8,170,17.m mn n+==-⎧⎧⎨⎨+==-⎩⎩解得.]3.D [提示:∵(x+1)(x+2)=x2+3x+2,∴x3+ax2+bx+8=(x2+3x+2)(x+4)+(a-7)x2+(b-14)x.∴70,7,140,14.a ab b-==⎧⎧∴⎨⎨-==⎩⎩∴a+b=21.]4.A [提示:∵x3+ax2+bx+c=(x2-bx+c)(x+1)+(a+b-1)x2+(2b-c)x,∴10,(1)20.(2)a bb c+-=⎧⎨-=⎩(1)-(2),得a-b+c=1.]5.A [提示:原方程可变形为x(x+1)(x+5)=3(9y3+3y2+3y)+1.①如果有正整数x、y使①成立,那么由于x,x+1,x+5=(x+2)+3这3个数除以3所得余数互不相同,所以其中必有一个被3整除,即①的左边被3整除,而①的右边不被3整除,这就产生矛盾.所以原方程没有正整数解.]6.16 [提示:令x=-1,得a-b+c-d+e=16.]7.43 [提示:由题意,有63=a×k1+r1,91=a×k2+r2,129=a×k3+r3.(0≤r1、r2、r3<a)相加得63+91+129=a(k1+k2+k3)+(r1+r2+r3)=a(k1+k2+k3)+25.故258被a整除.由于258=2×3×43,a大于余数,且3个余数的得25,所以a>8.•又a不超过63、91、129中的最小者63,故258的因数中符合要求的只有a=43.]8.-1 [提示:∵(x2+1)(3x+1)=3x3+x2+3x+1,∴3x3+ax2+bx+1=3x3+x2+3x+1.∴a=1,b=3,即(-a)b=(-1)3=-1.]9.-100 [提示:∵(x-1)(x-2)=x2-3x+2,x4+mx3+nx-16=(x2-3x+2)[x2+(m+3)x-8]+(3m+15)x2+(n-2m-30)x,∴3150,5,2300,20.m mn m n+==-⎧⎧⎨⎨--==⎩⎩解得∴mn=-100.]10.2x+1 [提示:设x135+x125-x115+x5+1=(x3-x)f(x)+ax2+bx+c,其中f(x)为商式.取x=0,得c=1;取x=1,得a+b+c=3.取x=-1,得a-b+c=-1.解得a=0,b=2,c=1.故所求余式为2x+1.]11.(1)商式为3x3+x2y+12xy2+34133,44y余式为xy4-94y5.(2)商式为5m2+3m-10,余式为0.12.(1)∵(x-1)(x+4)=x2+3x-4,令x-1=0,得x=1;令x+4=0,得x=-4.当x=1时,得1+a+b+c=0;①当x=-4时,得-64+16a-4b+c=0.②②-①,得15a-5b=65,即3a-b=13.③①+③,得4a+c=12.(2)③-①,得2a-2b-c=14.(3)∵c≥a>1,4a+c=12,a、b、c为整数,∴a≥2,c≥2,则a=2,c=4,又a+b+c=-1,∴b=-7.13.设f(x)=±(x3+Ax2+Bx+1)或±(x3+Ax2+Bx-1).先设f(x)=x3+Ax2+Bx+1,则[f(x)] 2=x6+2Ax5+(A2+2B)x4+(2AB+2)x3+(2A+B2)x2+2Bx+1,故2A=4,A2+2B=2,2AB+2=-6,2A+B2=-3,2B=2,无解.再设f(x)=x3+Ax2+Bx-1,则[f(x)] 2=x6+2Ax5+(A2+2B)x4+(2AB-2)x3+(B2-2A)x2-2Bx+1,故2A=4,A2+2B=2,2AB-2=-6,B2-2A=-3,-2B=2.解得A=2,B=-1.故所求的多项式为±(x3+2x2-x-1).14.由题意得ab=2(2a+2b).∴ab-4a=4b,∴a=416444bb b=+--.∵a、b均为正整数,且a>b.∴(b-4)一定是16的正约数.当(b-4)分别取1、2、4、8、16时,代入上式,得b-4=1时,b=5,a=20;b-4=2时,b=6,a=12;b-4=4时,b=8,a=8(舍去);b-4=8时,b=12,a=6(舍去);b-4=16时,b=20,a=5(舍去).∴只有a=20,b=5或a=12,b=6符合题意,把a+b=25或18.15.能设任意8个连续的正整数为a,a+1,a+2,a+3,a+4,a+5,a+6,a+7.将其分为如下两组:{a+1,a+2,a+4,a+7},{a,a+3,a+5,a+6}即满足要求.验证如下:先将任意8个连续的正整数按如下分为等和的两组,满足a+(a+1)+(a+6)+(a+7)=(a+2)+(a+3)+(a+4)+(a+5)则[(a)+(a+1)]·[(a+6)+(a+7)]·1=[(a+2)+(a+3)]·1+[(a+4)+(a+5)]·1 即[(a)+(a+1)][(a+1)-(a)]+[(a+6)+(a+7)][(a+7)-(a+6)]=[(a+2)+(a+3)][(a+3)-(a+2)]+[(a+4)+(a+5)]·[(a+5)-(a+4)].故(a+1)2-a2+(a+7)2-(a+6)2=(a+3)2-(a+2)2+(a+5)2-(a+4)2.也就是(a+1)2+(a+2)2+(a+4)2+(a+7)2=a2+(a+3)2+(a+5)2+(a+6)2.于是,分任意8个连续的正整数为如下两组:{a+1,a+2,a+4,a+7},{a,a+3,a+5,a+6}.则满足(a+1)2+(a+2)2+(a+4)2+(a+7)2=a2+(a+3)2+(a+5)2+(a+6)2.。
初中数学竞赛题详细解析全套(完整版)
都是锐角。已知 EG=k,FH= l ,四边形 EFGH 的面积为 s.
(1)求证: sin 2s ; kl
(2)试用 k, l, s 表示正方形 ABCD 的面积.
物超过 200 元但不超过 500 元的,按标价给予九折优惠;③如一次购物超过 500 元的,其中
500 元按第②条给予优惠,超过 500 元的部分则给予八折优惠。某人两次去购物,分别付款
-7-
初中数学竞赛题详解
168 元和 423 元;如果他只去一次购物同样的商品,则应付款是【
】
(A)522.8 元
】
b
(A) 9 5
(B) 5 9
(C) 2001 5
(D) 2001 9
3、已知在△ABC 中,∠ACB=900,∠ABC=150,BC=1,则 AC 的长为【
】
(A) 2 3
(B) 2 3
(C) 0 3
(D) 3 2
4、如图,在△ABC 中,D 是边 AC 上的一点,下面四种情况中,△ABD∽△ACB 不一定成立的
二、1、20;2、150;3、4;4、
详解 一、1.(C) ∵ 14 6 5 (3 5)2 ,
,∴ 原式
2. (A ). 由 已 知 条 件 知 x≠0, y≠0 . 把 已 知 等 式 变 形 并 利 用 等 比 消 去 y, 得
则 x=3y .
故
3. (C )
设 a = 1 , b = 3 ,得 x = 1 0 , y = 2 . 从 而 否 定 ( A ) 及 ( B ) . 设 a = 3 , b = 4 ,得 x = 17 ,
2001年全国初中数学竞赛(答案)
答:B
设小矩形的长为 ,宽为 ,根据题意,可得
解得
几何计数
5、如图,若PA=PB, AC与PB交于点D,且PB=4,
PD=3,则 等于()
A、6 B、7
C、12 D、16
答:B
如图,以点P为圆心,PA为半径作圆,
因为 ,所以点C的圆周上,延长BP交⊙P于点E,由相交弦定理,得 。
由勾股定理,得
(10分)
利用切割线定理和相交弦定理,有
(20分)
证法二:连PO交ST于点D,则 ,连SO,作 ,垂直为点E,则E为AB中点,于是
因为C,E,O,D四点共圆,所以
又 ∽
而由切割线定理知
圆切割线相似三角形
15、已知关于 的方程 的实数根。
(1)求 的取值范围。(2)若原方程的两个实数根为 ,且 ,求 的值。
于是可知 是关于 的方程 的两个实数根
综上所述, 的取值范围是
解法二:由
(当 时等号成立)
代数最值基本不等式
三、解答题(本题共3小题,每小题20分,满分60分)
13、某个学生参加军训,进行打靶训练,必须射击10次,在第6、第7、第8、第9次射击中,分别得了9.0环、8.4环、8.1环、9.3环,他的前9次射击所得的平均环数高于前5次射击所得的平均环数。如果他要使10次射击的平均环数超过8.8环,那么他在第10次射击中至少要得多少环?(每次射击所得环数都精确到0.1环)
题号
1
2
3
4
5
6
答案
C
C
B
B
B
A
1、化简: ,得()
A、 B、 C、 D、
答:C
将原式化简,
2001年河北省中考数学试题及参考答案(word解析版)
2001年河北省中考数学试题及参考答案一、填空题(本大题共10小题,每小题2分,满分20分)1.(2分)用科学记数法表示12 700的结果是 .2.(2= . 3.(2分)分解因式:x 2﹣xy+xz ﹣yz= .4.(2分)如果∠A=35°18′,那么∠A 的余角等于 .5.(2分)用换元法解分式方程22301x x x x -++=-时,若设1x y x =-,则原方程化成的关于y 的整式方程是 .6.(2分)若三角形的三边长分别为3、4、5,则其外接圆直径的长等于 .7.(2分)如图,AB 是⊙O 的弦,AC 切⊙O 于点A ,且∠BAC=45°,AB=2,则⊙O 的面积为 .8.(2分)点A (a ,b )、B (a ﹣1,c )均在函数1y x=的图象上.若a <0,则b c (填“>”、“<”或”=”).9.(2分)在Rt △ABC 中,锐角A 的平分线与锐角B 的邻补角的平分线相交于点D ,则∠ADB= 度.10.(2分)在一次“人与自然”知识竞赛中,竞赛试题共有25道题.每道题都给出4个答案,其中只有一个答案正确.要求学生把正确答案选出来.每道题选对得4分,不选或选错倒扣2分.如果一个学生在本次竞赛中的得分不低于60分,那么,他至少选对了 道题.二、选择题(本大题共10小题,每小题2分,满分20分)11.(2分)计算(2﹣1)2结果等于( )A .2B .4C .14D .1212.(2分)有一边长为4的正n 边形,它的一个内角为120°,则其外接圆的半径为( )A. B .4 C. D .213.(2分)若x 1,x 2是一元二次方程3x 2+x ﹣1=0的两个根,则1211x x +的值是( ) A .﹣1 B .0 C .1 D .214.(2分)已知三角形三条边的长分别是2、3和a ,则a 的取值范围是( )A .2<a <3B .0<a <5C .a >2D .1<a <515.(2分)在一元二次方程ax 2+bx+c=0(a≠0)中,若a 与c 异号,则方程( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .根的情况无法确定16.(2分)如图所示,在△ABC 中,D 为AC 边上一点,∠DBC=∠A ,AC=3,则CD的长为( )A .1B .4C .3D .217.(2分)某所中学现有学生4200人,计划一年后初中在校生增加8%,高中在校生增加11%,这样全校学生将增加10%,则这所中学现在的初中在校生和高中在校生人数分别是( )A .1400人和2800人B .1900人和2300人C .2800人和1400人D .2300人和1900人18.(2分)已知二次函数的图象经过(1,0)、(2,0)和(0,2)三点,则该函数的解析式是( )A .y=2x 2+x+2B .y=x 2+3x+2C .y=x 2﹣2x+3D .y=x 2﹣3x+219.(2分)如图,在矩形ABCD 中,横向阴影部分是矩形,另一阴影部分是平行四边形.依照图中标注的数据,计算图中空白部分的面积,其面积是( )A .bc ﹣ab+ac+c 2B .ab ﹣bc ﹣ac+c 2C .a 2+ab+bc ﹣acD .b 2﹣bc+a 2﹣ab20.(2分)已知等腰三角形三边的长为a 、b 、c ,且a=c .若关于x 的一元二次方程20ax c +=)A .15°B .30°C .45°D .60°三、解答题(本大题共8小题,满分80分)21.(7分)先化简,再求值:2222x x x x -+-+-,其中x = 22.(7分)已知:P 是正方形ABCD 的边BC 上的点,且BP=3PC ,M 是CD 的中点,试说明:△ADM ∽△MCP .23.(7分)如图,⊙O 表示一个圆形工件,图中标注了有关尺寸AB=15cm ,OM=8cm ,并且MB :MA=1:4.求工件半径的长.24.(8分)某班同学参加环保知识竞赛,将学生的成绩(得分取整数)进行整理后分成五组,绘成频率分布直方图(如图)图中从左到右各小组的小长方形的高的比为1:3:6:4:2,最右边一组的频数是6,结合直方图提供的信息,解答下列问题:(1)该班共有多少名同学参赛?(2)成绩落在哪组数据范围内的人数最多,是多少?(3)求成绩在60分以上(不含60分)的学生占全班参赛人数的百分率.25.(12分)甲乙两辆汽车在一条公路上匀速行驶.为了确定汽车的位置,我们用数轴Ox表示这条公路,原点O为零千米路标(如图),并作如下约定:①速度v>0.表示汽车向数轴正方向行驶;速度v<0,表示汽车向数轴负方向行驶;速度v=0,表示汽车静止.②汽车位置在数轴上的坐标s>0,表示汽车位于零千米路标的右侧;汽车位置在数轴上的坐标s<0,表示汽车位于零千米路标的左侧;汽车位置在数轴上的坐标s=0,表示汽车恰好位于零千米路标处.遵照上述约定,将这两辆汽车在公路上匀速行驶的情况,以一次函数图象的形式画在了同一直角坐标系中,如图请解答下列问题:(1(2)甲乙两车能否相遇如能相遇,求相遇时的时刻及在公路上的位置;如不能相遇,请说理由.26.(12分)在△ABC中,D为BC边的中点,E为AC边上的任意一点,BE交AD于点O.某学生在研究这一问题时,发现了如下的事实:(1)当11211AEAC==+时,有22321AOAD==+(如图)(2)当11312AEAC==+时,有22422AOAD==+(如图)(3)当11413AEAC==+时,有22523AOAD==+(如图)在图中,当11AEAC n=+时,参照上述研究结论,请你猜想用n表示AOAD的一般结论,并给出证明(其中n是正整数)27.(13分)某化工材料经销公司购进了一种化工原料共7000千克,购进价格为每千克30元.物价部门规定销售单价不得高于每千克70元,也不得低于30元.市场调查发现:单价为70元时,日均销售60千克;单价每降低1元,日均多销售出2千克.在销售过程中,每天还要支出其他费用500元(天数不足一天时,按整天计算).设销售单价为x元,日均获利为y元.(1)求y与x的二次函数关系式,并指出自变量x的取值范围;(2)将(1)中所求出的二次函数配方成y=a(x﹣h)2+k的形式.写出顶点坐标,并在图中画出草图;观察图象,指出单价定为多少时日均获利最多是多少?(3)若将这种化工原料全部售出,比较日均获利最多和销售单价最高这两种销售方式,哪一种获总利较多,多多少?28.(14分)如图,在菱形ABCD中,AB=10,∠BAD=60度.点M从点A以每秒1个单位长的速度沿着AD边向点D移动;设点M移动的时间为t秒(0≤t≤10).(1)点N为BC边上任意一点,在点M移动过程中,线段MN是否一定可以将菱形分割成面积相等的两部分并说明理由;(2)点N从点B(与点M出发的时刻相同)以每秒2个单位长的速度沿着BC边向点C移动,在什么时刻,梯形ABNM的面积最大并求出面积的最大值;(3)点N从点B(与点M出发的时刻相同)以每秒a(a≥2)个单位长的速度沿着射线BC方向(可以超越C点)移动,过点M作MP∥AB,交BC于点P.当△MPN≌△ABC时,设△MPN与菱形ABCD重叠部分的面积为S,求出用t表示S的关系式,井求当S=0时的值.参考答案与解析一、填空题(本大题共10小题,每小题2分,满分20分)1.(2分)用科学记数法表示12 700的结果是.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:用科学记数法表示12 700的结果是1.27×104.【点评】用科学记数法表示一个数的方法是:(1)确定a:a是只有一位整数的数;(2)确定n:当原数的绝对值≥1时,n为非负整数,n等于原数的整数位数减1;当原数的绝对值<1时,n为负整数,n的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).2.(2=.【考点】分母有理化.【分析】分母有理化就是指通过分子分母同时乘以同一个数,来消去分母中的根号,从而使分母变为有理数.完成分母有理化,常要用到平方差公式.【解答】解:原式1==,【点评】要正确使用平方差公式,去掉分母中的根号.3.(2分)分解因式:x2﹣xy+xz﹣yz=.【考点】56:因式分解﹣分组分解法.【分析】当被分解的式子是四项时,应考虑运用分组分解法进行分解.本题前两项、后两项都有公因式,且分解后还能继续分解,故使前两项一组,后两项一组.【解答】解:x2﹣xy+xz﹣yz,=(x2﹣xy)+(xz﹣yz),=x(x﹣y)+z(x﹣y),=(x﹣y)(x+z).【点评】本题考查用分组分解法进行因式分解.难点是采用两两分组还是三一分组.本题前两项、后两项都有公因式,且分解后还能继续分解,故使前两项一组,后两项一组.4.(2分)如果∠A=35°18′,那么∠A的余角等于.【考点】余角和补角.【分析】根据余角的定义计算.【解答】解:如果∠A=35°18′,那么∠A的余角等于90°﹣35°18′=54°42′.故填54°42′.【点评】本题考查余角的定义,和为90°的两角互为余角.5.(2分)用换元法解分式方程22301x xx x-++=-时,若设1xyx=-,则原方程化成的关于y的整式方程是.【考点】换元法解分式方程.。
初中数学竞赛试题及答案大全
全国初中数学竞赛初赛试题汇编(1998-2018)目录1998年全国初中数学竞赛试卷 (1)1999年全国初中数学竞赛试卷 (6)2000年全国初中数学竞赛试题解答 (9)2001年TI杯全国初中数学竞赛试题B卷 (14)20022003200420052006200720082009201020112012201320142015年全国初中数学竞赛预赛 (85)2016年全国初中数学联合竞赛试题 (94)2017年全国初中数学联赛初赛试卷 (103)2018 年初中数学联赛试题 (105)1998年全国初中数学竞赛试卷一、选择题:(每小题6分,共30分)1、已知a 、b 、c 都是实数,并且c b a >>,那么下列式子中正确的是( ) (A)bc ab >(B)c b b a +>+(C)c b b a ->-(D)cbc a > 2、如果方程()0012>=++p px x 的两根之差是1,那么p 的值为( ) (A)2(B)4(C)3(D)53、的面积等于( ) 4 5a 、b )共有( 6E 、F 分别是垂足,那么7、___________。
89、a=___________。
10、B 船在A 船的西偏北450处,两船相距210km ,若A 船向西航行,B 船同时向南航行,且B 船的速度为A 船速度的2倍,那么A 、B 两船的最近距离是___________km 。
三、解答题:(每小题20分,共60分)11、如图,在等腰三角形ABC 中,AB=1,∠A=900,点E 为腰AC 中点,点F在底边BC 上,且FE ⊥BE ,求△CEF 的面积。
12、设抛物线()452122++++=a x a x y 的图象与x 轴只有一个交点,(1)求a 的值;(2)求618323-+a a 的值。
13、A 市、B 市和C 市有某种机器10台、10台、8台,现在决定把这些机器ABCEF支援给D市18台,E市10台。
全国初一初中数学竞赛测试带答案解析
全国初一初中数学竞赛测试班级:___________ 姓名:___________ 分数:___________一、填空题1.如果x,y满足2x+3y=15,6x+13y=41,则x+2y的值是。
A.5B.7C.D.9 。
2.-2和2对应的点将数轴分成3段,如果数轴上任意n个不同的点中至少有3个在其中之ㄧ段,那么n的最小值是。
A.5B.6C.7D.8 。
3.满足 || x-1 |-| x ||-| x-1 +| x |=1的x的值是。
A.0B.±C.D.±。
4.乘积为-240的不同五个整数的平均值最大是。
A.B.C.7D.9 。
5.如果x+y+z=a,++=0,那么x2+y2+z2的值为。
6.如图,甲,乙两人分别从A、B两地同时出发去往C地,在距离C地2500米处甲追上乙;若乙提前10分钟出发,则在距离C地1000米处甲追上乙。
已知,乙每分钟走60米,那么甲的速度是每分钟米。
7.在2001、2002、…、2010这10个数中,不能表示成两个平方数差的数有个。
8.如图,某风景区的沿湖公路AB=3千米,BC=4千米,CD=12千米,AD=13千米,其中AB^BC,图中阴影是草地,其余是水面。
那么乘游艇游点C出发,行进速度为每小时11千米,到达对岸AD最少要用小时。
二、解答题用甲乙两种饮料按照x:y(重量比)混合配制成一种新饮料,原来两种饮料成本是:甲每500克5元,乙每500克4元。
现甲成本上升10%,乙下降10%,而新饮料成本恰好保持不变,则x:y= 。
A.4:5B.3:4C.2:3D.1:2 。
三、选择题一个立方体的每一个面都写有一个自然数,并且相对的两个面内的两数之和都相等,下图是这个立方体的平面展开图,若20、0、9的对面分别写的是a、b、c,则a2+b2+c2-ab-bc-ca的值为。
A.481B.301C.602D.962 。
全国初一初中数学竞赛测试答案及解析一、填空题1.如果x,y满足2x+3y=15,6x+13y=41,则x+2y的值是。
历年初中数学竞赛试题精选
初中数学竞赛专项训练1、一个六位数,如果它的前三位数码与后三位数码完全相同,顺序也相同,由此六位数可以被( )整除。
A. 111B. 1000C. 1001D. 1111 解:依题意设六位数为abcabc ,则abcabc =a ×105+b ×104+c ×103+a ×102+b ×10+c =a ×102(103+1)+b ×10(103+1)+c (103+1)=(a ×103+b ×10+c )(103+1)=1001(a ×103+b ×10+c ),而a ×103+b ×10+c 是整数,所以能被1001整除。
故选C方法二:代入法2、若2001119811198011⋯⋯++=S ,则S 的整数部分是____________________解:因1981、1982……2001均大于1980,所以9022198019801221==⨯>S ,又1980、1981……2000均小于2001,所以22219022*********221==⨯<S ,从而知S 的整数部分为90。
3、设有编号为1、2、3……100的100盏电灯,各有接线开关控制着,开始时,它们都是关闭状态,现有100个学生,第1个学生进来时,凡号码是1的倍数的开关拉了一下,接着第二个学生进来,由号码是2的倍数的开关拉一下,第n 个(n ≤100)学生进来,凡号码是n 的倍数的开关拉一下,如此下去,最后一个学生进来,把编号能被100整除的电灯上的开关拉了一下,这样做过之后,请问哪些灯还亮着。
解:首先,电灯编号有几个正约数,它的开关就会被拉几次,由于一开始电灯是关的,所以只有那些被拉过奇数次的灯才是亮的,因为只有平方数才有奇数个约数,所以那些编号为1、22、32、42、52、62、72、82、92、102共10盏灯是亮的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2001年初中数学竞赛模拟试卷 (考试时间两小时,满分120分)
一、 ,请将正确结论的代号填在题后的括号内)
1. 若方程0122
=--x x 的二根为21,x x ,则代数式2111x x +的值为 ( ) (A) 1 (B) 1- (C) 2 (D)2- 2. 已知ABC Rt ∆中,∠C 为直角,设A A x cos sin +=,B B y cos sin +=,则y x ,的大小关系为 ( ) (A)y x > (B)y x = (C)y x < (D)以上情况都有可能 3. 下列几何图形中,既是轴对称图形又是中心对称图形的是 ( ) (A )等边三角形 (B )等腰梯形 (C )平行四边形 (D )菱形 4. 已知 ,012=-+m m 那么代数式2001223-+m m 的值是 ( ) (A)2000 (B)-2000 (C)2001 (D)-2001 5. 如图1,梯形ABCD 中,CD AB //,AC 平分BAD ∠,且BC AC ⊥,3=BC 厘米,
6=AC 厘米,则ACD ∆的面积是
(A )29平方厘米 (B )9 (C )6平方厘米 (D )3 图1 学 姓 编号
密 封 线 内 不 要 答 题 封 线 内
6. 已知当1=x 时,代数式43++x b ax 的值为5,则当1-=x ,代数式43++x b ax 的值为 ( )
(A)-5 (B)0 (C)3 (D)4
7. 若关于x 的方程a x =--12有三解,则a 的值为 ( )
(A)0 (B)1 (C)2 (D)3
8. 《中华人民共和国个人所得税法》规定:公民全月工资、薪金所得不超过800元的部分不纳税,超过800元的部分为全月应纳税所得额,此项税款按下表分段累进计算
( )
(A)800~900元 (B) 900~1300元 (C) 1300~1500元 (D)1500~1800元
二 填空题(每小题5分,共30分,直接将答案填在横线上)
1.方程 x x x x x -=-+-+713222 的解为
2.如图,在高为2米,坡角为030的楼梯表面铺地毯,地毯
的长度至少需 米?(精确到0.1米,取73.13=)
3.已知y x ,为实数,则代数式122222--++x y xy x 的最小值为
4.若139+与139-
的小数部分分别为,a 与b ,则=+b a
5.已知1352++n n 是完全平方数,则自然数n 的值为
2米 030
五、(本题满分12分两题任选一题)某校原有教室若干个,各教室的课桌数相等,课桌总数为539张,现新增9个教室,课桌也增至1080个,此时,每个教室的课桌数仍相等,但每个教室的课桌数增加了,问现有教室多少个?
在抗洪抢险中,江堤边某蛙池地发生管涌,江水已涌进了x立方米,并且还以每分钟y立方米的速度不停地进水,现在要进行抽水堵涌工程,若用1台抽水机工作,需30分钟才能将水抽完,投入施工, 若用2台抽水机同时工作,需10分钟即可将水抽完,投入施工,因形势紧急,指挥部要求5分钟将水抽完立即投入施工,则至少需要组织多少台抽水机同时工作?(假设每台抽水机的抽水量均为每分钟抽水z立方米)
六、(本题满分12分)如图,在∆ABC中,D为BC边上一点,过点D作AC、AB的平行线分别交AB、AC于F、E
(1)若∆BFD的面积为4,∆DEC的面积为9,求∆ABC的面积.
(2) 设∆BDF 与∆DEC 的面积分别为21,S S ,平行四边形AFDE 的面积为3S ,
求证:321S S S ≥+,并指出点D 位于BC 的何处时321S S S =+成立?
A B C D E F。