《数值分析》杨大地-答案(第八章)

合集下载

数值分析课后习题及答案

数值分析课后习题及答案

第一章 绪论(12) 第二章 插值法(40-42)2、当2,1,1-=x 时,4,3,0)(-=x f ,求)(x f 的二次插值多项式。

[解]372365)1(34)23(21)12)(12()1)(1(4)21)(11()2)(1()3()21)(11()2)(1(0))(())(())(())(())(())(()(2221202102210120120102102-+=-++--=+-+-⨯+------⨯-+-+-+⨯=----+----+----=x x x x x x x x x x x x x x x x x x x y x x x x x x x x y x x x x x x x x y x L 。

3、给出x x f ln )(=的数值表用线性插值及二次插值计算54.0ln 的近似值。

X 0.4 0.5 0.6 0.7 0.8 x ln -0.916291 -0.693147 -0.510826 -0.357765 -0.223144[解]若取5.00=x ,6.01=x ,则693147.0)5.0()(00-===f x f y ,510826.0)6.0()(11-===f x f y ,则604752.182321.1)5.0(10826.5)6.0(93147.65.06.05.0510826.06.05.06.0693147.0)(010110101-=---=--⨯---⨯-=--+--=x x x x x x x x x y x x x x y x L ,从而6202186.0604752.19845334.0604752.154.082321.1)54.0(1-=-=-⨯=L 。

若取4.00=x ,5.01=x ,6.02=x ,则916291.0)4.0()(00-===f x f y ,693147.0)5.0()(11-===f x f y ,510826.0)6.0()(22-===f x f y ,则 217097.2068475.404115.2)2.09.0(5413.25)24.0(3147.69)3.01.1(81455.45)5.06.0)(4.06.0()5.0)(4.0()510826.0()6.05.0)(4.05.0()6.0)(4.0()693147.0()6.04.0)(5.04.0()6.0)(5.0(916291.0))(())(())(())(())(())(()(22221202102210120120102102-+-=+--+-⨯++-⨯-=----⨯-+----⨯-+----⨯-=----+----+----=x x x x x x x x x x x x x x x x x x x x x x y x x x x x x x x y x x x x x x x x y x L ,从而61531984.0217097.21969765.259519934.0217097.254.0068475.454.004115.2)54.0(22-=-+-=-⨯+⨯-=L补充题:1、令00=x ,11=x ,写出x e x y -=)(的一次插值多项式)(1x L ,并估计插值余项。

数值分析第8章答案

数值分析第8章答案

第八章 常微分方程初值问题数值解法1、解:欧拉法公式为221(,)(100),0,1,2+=+=++=n n n n n n n y y hf x y y h x y n代00y =入上式,计算结果为 123(0.1)0.0,(0.2)0.0010,(0.3)0.00501≈=≈=≈=y y y y y y2、解:改进的欧拉法为1112[(,)(,(,))]n n n n n n n n y y h f x y f x y hf x y ++=+++将2(,)=+-f x y x x y 代入上式,得2111111221n n n n n n h hh x x x x y h y +++)+[(-)(+)+(+)]=(-+ 同理,梯形法公式为 211122[(1)(1)]-+++++=++++h h n nn n n n h h y y x x x x 将00,0.1y h ==代入上二式,,计算结果见表9—53、证明:梯形公式为111[(,)(,)]2n n n n n n hy y f x y f x y +++=++代(,)f x y y =-入上式,得11[]2++=+--n n n n hy y y y解得 21110222()()()222n n n n h h h y y y y h h h++----===⋯=+++ 因为01y =,故2()2nn h y h-=+ 对0x∀>,以h 为步长经n 步运算可求得()y x 的近似值n y ,故,,xx nh n h==代入上式有2()2x hnh y h-=+22220000222lim lim()lim(1)lim[(1)]222x x h h xx h h h h hn h h h h h h h y e h h h+-+→→→→-==-=-=+++4、解:令2()xt y x e dt =⎰,则有初值问题2',(0)0x y e y ==对上述问题应用欧拉法,取h=0.5,计算公式为 210.5,0,1,2,3n x n n y y e n +=+=由0(0)0,y y ==得1234(0.5)0.5,(1.0) 1.142012708(1.5) 2.501153623,(2.0)7.245021541≈=≈=≈=≈=y y y y y y y y5、解: 四阶经典龙格-库塔方法计算公式见式(9.7)。

数值分析课后答案8

数值分析课后答案8

第八章习题解答1、已知方程3210x x --=在 1.5x =附近有根,将方程写成以下三种不同的等价形式:①211x x=+;②x =x =试判断以上三种格式迭代函数的收敛性,并选出一种较好的格式。

解:①令121()1x x ϕ=+,则'132()x x ϕ=-,'132(1.5)0.592611.5ϕ=≈<,故迭代收敛;②令2()x ϕ=2'2322()(1)3x x x ϕ-=+,'2(1.5)0.45581ϕ≈<,故迭代收敛;③令3()x ϕ='3()x ϕ=,'3(1.5) 1.41421ϕ≈>,故迭代发散。

以上三中以第二种迭代格式较好。

2、设方程()0f x =有根,且'0()m f x M <≤≤。

试证明由迭代格式1()k k k x x f x λ+=-(0,1,2,)k = 产生的迭代序列{}0k k x ∞=对任意的初值0(,)x ∈-∞+∞,当20Mλ<<时,均收敛于方程的根。

证明:设()()x x f x ϕλ=-,则''()1()x f x ϕλ=-,故'1()1M x m λϕλ-<<-,进而可知, 当20Mλ<<时,'1()1x ϕ-<<,即'()1x ϕ<,从而由压缩映像定理可知结论成立。

3、试分别用Newton 法和割线法求以下方程的根cos 0x x -=取初值010.5,4x x π==,比较计算结果。

解:Newton 法:1230.75522242,=0.73914166,=0.73908513x x x =;割线法:23450.73638414,=0.73905814,=0.73908515,=0.73908513x x x x =; 比较可知Newton 法比割线法收敛速度稍快。

《数值分析》杨大地-答案(第七章)

《数值分析》杨大地-答案(第七章)

数值分析 第7章7.1 填空题:(1)设f (x )=x ,x ∈[-1,1],则‖f ‖1= 1 , ‖f ‖2=‖f ‖∞(2)x=(-1,0,1)T,y=(0,1,0)T,作一次多项式拟合时,正项方程为=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛01200321a a ,,,一次最(3)求二次平方逼近多项式时,若f (x )=[-1,1],正规方程组的系数矩阵为⎪⎪⎪⎭⎫ ⎝⎛5/203/203/203/202,,,,,,若f (x )∈[0,2],正规方程的系数矩阵为:⎪⎪⎪⎭⎫ ⎝⎛4.643/843/823/822,,,,,,则有⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛4.1552.11a a 8606262510,,解得:x 1811.0006.0-y 1811.0a 006.0-a 10+===所以,(2) 计算拟合值填入上表的空格,看是否与实际值基本吻合。

拟合值如表所示。

(3) 企业计划2005年实现产值240万元,计划需要多少供电量(万千瓦时)?解:y (24)=0.1811×24-0.006=4.34(万千万时)7.4 已知:某小水库容(km 3)与水位(m )有如下实数据:i x /m 6 8 10 12 14 16 i f /km 3 4.6 4.9 5.5 6.8 8.1 10.2拟合值: 4.608 4.876 5.566 6.678 8.21 10.165 作最小二乘二次多项式拟合,并计算拟合值填入上表第三行。

解:正规方程为:⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛2.62074801.40a a a 140080102967961029679666796666210,,,,,,解得:05268.06032.033.6210=-==a a a∴ 最小二乘二次代入多项式为:y=6.33-0.6032x+0.05268x 2。

7.5 某品牌的电热沐浴器进行保温测试,当室温保持为20℃时,水温加热到80℃切断电源,每隔6小时测量水温,时间x 和水温y 如下表,时间x/h 0 6 12 18 24 水温y/℃ 80 62 49 40 34 据传热理论:应有公式20+=bx ae y。

数值分析习题解答

数值分析习题解答

6.(1)设(1,0,5,2)Tx =-,试求12,,x x x∞(2)设40004402A -⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦,试求12,,,F A A A A ∞ 解12128,5;6,8,FxxxA AAA∞∞=======;4.设05813622,10612422A b ⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦, (1)试对A 进行PLU 分解:PA LU =; (2)根据PLU 分解求解Ax b =。

解 (1)162201011,102,00100.517100L U P ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(2)(1,1,1)Tx =8.分别用Householder 变换法和MGS 法对A 进行QR 分解⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=542112111A解 (1) Householder 法对A 进行QR 分解[]()()()123123,,,1,2,2,1,1,4,1,1,5T T TααααααA ===--=-令()11,2,2Tαα==,调用算法2.1有[]13,,42212Tu ρβ=-==,所以 []1122333100412210102422123330012212333T uu β---⎡⎤⎢⎥⎡⎤⎡⎤⎢⎥--⎢⎥⎢⎥⎢⎥H =I -=-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦--⎢⎥⎢⎥⎣⎦, 故1333003033--⎡⎤⎢⎥H A =-⎢⎥⎢⎥-⎣⎦再令()0,3Tα'=-,调用算法2.1得20110H ⎡⎤'=⎢⎥⎣⎦,则 2100001010⎡⎤⎢⎥H =⎢⎥⎢⎥⎣⎦,21333033003--⎡⎤⎢⎥H H A =-⎢⎥⎢⎥-⎣⎦故121223331212,0333221003T TQ R -----⎡⎤⎡⎤⎢⎥⎢⎥=H H =--=-⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦. 10.设131112000,110001A b ⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦求Ax b =的最小二乘问题的全部解。

最新(完美版)第八章习题答案_数值分析

最新(完美版)第八章习题答案_数值分析

第八章习题解答3、设方程()0f x =有根,且'0()m f x M <≤≤。

试证明由迭代格式1()k k k x x f x λ+=- (0,1,2,)k =产生的迭代序列{}0k k x ∞=对任意的初值0(,)x ∈-∞+∞,当20M λ<<时,均收敛于方程的根。

证明:设()()x x f x ϕλ=-,可知()x ϕ在(,)-∞∞上可导对于任意给定的λ值,满足条件'0()m f x M <≤≤时(1)''()1()x f x ϕλ=- 则1'()11M x m λϕλ-≤≤-< 又20Mλ<<,M>0 则02M λ<<时,11M λ-<- 所以11'()11M x m λϕλ-<-≤≤-< 若令max{1,1}L M m λλ=--,则可知'()1x L ϕ≤<(2)由0()(0)'()(0)'()xx x dx x ϕϕϕϕϕε=+=+⎰ 则()lim 1x x L x ϕ→∞⎛⎫≤< ⎪⎝⎭所以,存在一个数a ,当x a >时,()x x ϕ<同时,()x ϕ在[,]a a -内有界,即存在0b >使得[,]x a a ∀∈-,()x b ϕ<我们选取 max{,}c a b =,则对任意x 有0()max{,}x c x ϕ<则对给定的任意初值0x ,设0max{,}d c x =则0[,]x d d ∈-,于是在区间[,]d d -上有()x d ϕ<即满足映内性有(1)、(2)可知,()x ϕ满足收敛定理迭代序列0{}k k x ∞=收敛于方程的根6. 给出计算...222+++=x 的迭代格式,讨论迭代格式的收敛性,并证明2=x解:构造迭代格式10,1,2,k x k +==∙∙∙2k x ≤令()x ϕ=x ⎤∈⎦时,()x ϕ⎤∈⎦'()x ϕ=,当x ⎤∈⎦时,1'()12x ϕ<<所以,迭代格式收敛,且收敛于()x xϕ=在⎤⎦上的根,即x=x=2。

数值分析习题(含答案)

数值分析习题(含答案)

第一章 绪论姓名 学号 班级习题主要考察点:有效数字的计算、计算方法的比较选择、误差和误差限的计算。

1 若误差限为5105.0-⨯,那么近似数0.003400有几位有效数字?(有效数字的计算) 解:2*103400.0-⨯=x ,325*10211021---⨯=⨯≤-x x 故具有3位有效数字。

2 14159.3=π具有4位有效数字的近似值是多少?(有效数字的计算) 解:10314159.0⨯= π,欲使其近似值*π具有4位有效数字,必需41*1021-⨯≤-ππ,3*310211021--⨯+≤≤⨯-πππ,即14209.314109.3*≤≤π即取(3.14109 , 3.14209)之间的任意数,都具有4位有效数字。

3 已知2031.1=a ,978.0=b 是经过四舍五入后得到的近似值,问b a +,b a ⨯有几位有效数字?(有效数字的计算)解:3*1021-⨯≤-aa ,2*1021-⨯≤-b b ,而1811.2=+b a ,1766.1=⨯b a 2123****102110211021)()(---⨯≤⨯+⨯≤-+-≤+-+b b a a b a b a故b a +至少具有2位有效数字。

2123*****10210065.01022031.1102978.0)()(---⨯≤=⨯+⨯≤-+-≤-b b a a a b b a ab 故b a ⨯至少具有2位有效数字。

4 设0>x ,x 的相对误差为δ,求x ln 的误差和相对误差?(误差的计算) 解:已知δ=-**xx x ,则误差为 δ=-=-***ln ln xx x x x则相对误差为******ln ln 1ln ln ln xxx x xxx x δ=-=-5测得某圆柱体高度h 的值为cm h 20*=,底面半径r 的值为cm r 5*=,已知cm h h 2.0||*≤-,cm r r 1.0||*≤-,求圆柱体体积h r v2π=的绝对误差限与相对误差限。

数值分析-课后习题答案

数值分析-课后习题答案
(2)如果A为对称正定矩阵,则Cond2(A)=1/n,1和n 分别为A的最大和最小特征值.
证明 (1)A正交,则ATA=AAT=E,Cond2(A)=A2A-12=1. (2)A对称正定,ATA=A2, A2=1. A-12=1/n.
精选课件
12
三.习题3 (第75页)
3-2.讨论求解方程组Ax=b的J迭代法和G-S迭代法的收
计算结果如下:
x x 1 2 ( (k k 1 1 ) ) 3 2 1 2 .x 5 2 (x k ) 1 (k 1 )
k
J法x1(k)
0
1.01
1
0.98
2
2.03
3
1.94
4
5.09
5
4.82
6
14.27
J法x2(k) 1.01 0.485 0.53 -1.045 -0.91 -5.635精选课件 -5.23
1.01
1.01
1
0.66
0.995
0.66
1.17
2
0.67
1.17
0.553333
1.223333
3
0.553333
1.165
0.517778
1.241111
4
0.556667
1.223333
0.505926
1.247037
5
0.517778
1.221667
0.501975
1.249012
6
0.518889
3 4精1选 课件
1
1
5
2-5.对矩阵A进行LDLT分解和GGT分解,并求解方程组
Ax=b,其中
16 4 8
1

数值分析习题集及答案[1](精)

数值分析习题集及答案[1](精)

数值分析习题集(适合课程《数值方法A 》和《数值方法B 》)长沙理工大学第一章 绪 论1. 设x >0,x 的相对误差为δ,求ln x 的误差.2. 设x 的相对误差为2%,求nx 的相对误差.3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位有效数字: *****123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====⨯4. 利用公式(3.3)求下列各近似值的误差限:********12412324(),(),()/,i x x x ii x x x iii x x ++其中****1234,,,x x x x 均为第3题所给的数.5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少?6. 设028,Y =按递推公式1n n Y Y -= ( n=1,2,…)计算到100Y .27.982(五位有效数字),试问计算100Y 将有多大误差?7. 求方程25610x x -+=的两个根,使它至少具有四位有效数字≈27.982).8. 当N 充分大时,怎样求211Ndx x +∞+⎰?9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝2?10. 设212S gt =假定g 是准确的,而对t 的测量有±0.1秒的误差,证明当t 增加时S 的绝对误差增加,而相对误差却减小.11. 序列{}n y 满足递推关系1101n n y y -=-(n=1,2,…),若0 1.41y =≈(三位有效数字),计算到10y 时误差有多大?这个计算过程稳定吗?12. 计算61)f =, 1.4≈,利用下列等式计算,哪一个得到的结果最好?3--13. ()ln(f x x =,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?若改用另一等价公式ln(ln(x x =-计算,求对数时误差有多大?14. 试用消元法解方程组{101012121010;2.x x x x +=+=假定只用三位数计算,问结果是否可靠?15. 已知三角形面积1sin ,2s ab c =其中c 为弧度,02c π<<,且测量a ,b ,c 的误差分别为,,.a b c ∆∆∆证明面积的误差s ∆满足.s a b c s a b c ∆∆∆∆≤++第二章 插值法1. 根据(2.2)定义的范德蒙行列式,令2000011211121()(,,,,)11n n n n nn n n n x x x V x V x x x x x x x xx x ----==证明()n V x 是n 次多项式,它的根是01,,n x x -,且 101101()(,,,)()()n n n n V x V x x x x x x x ---=--.2. 当x = 1 , -1 , 2 时, f (x)= 0 , -3 , 4 ,求f (x )的二次插值多项式.3.4. 给出cos x ,0°≤x ≤90°的函数表,步长h =1′=(1/60)°,若函数表具有5位有效数字,研究用线性插值求cos x 近似值时的总误差界.5. 设0k x x kh =+,k =0,1,2,3,求032max ()x x x l x ≤≤.6. 设jx 为互异节点(j =0,1,…,n ),求证:i) 0()(0,1,,);nk kj jj x l x x k n =≡=∑ii) 0()()1,2,,).nk jj j xx l x k n =-≡0(=∑7. 设[]2(),f x C a b ∈且()()0f a f b ==,求证21()()().8max max a x ba xb f x b a f x ≤≤≤≤≤-"8. 在44x -≤≤上给出()xf x e =的等距节点函数表,若用二次插值求xe 的近似值,要使截断误差不超过610-,问使用函数表的步长h 应取多少? 9. 若2nn y =,求4n y ∆及4n y δ. 10. 如果()f x 是m 次多项式,记()()()f x f x h f x ∆=+-,证明()f x 的k 阶差分()(0)k f x k m ∆≤≤是m k -次多项式,并且()0(m l f x l +∆=为正整数).11. 证明1()k k k k k k f g f g g f +∆=∆+∆. 12. 证明110010.n n kkn n k k k k f gf g f g g f --+==∆=--∆∑∑13. 证明1200.n j n j y y y -=∆=∆-∆∑14. 若1011()n n n n f x a a x a x a x --=++++有n 个不同实根12,,,n x x x ,证明{10,02;, 1.1()n k njk n a k n j jx f x -≤≤-=-=='∑15. 证明n 阶均差有下列性质: i)若()()F x cf x =,则[][]0101,,,,,,n n F x x x cf x x x =;ii) 若()()()F x f x g x =+,则[][][]010101,,,,,,,,,n n n F x x x f x x x g x x x =+.16. 74()31f x x x x =+++,求0172,2,,2f ⎡⎤⎣⎦及0182,2,,2f ⎡⎤⎣⎦.17. 证明两点三次埃尔米特插值余项是(4)22311()()()()/4!,(,)k k k k R x f x x x x x x ++=ξ--ξ∈并由此求出分段三次埃尔米特插值的误差限.18. 求一个次数不高于4次的多项式()P x ,使它满足(0)(1)P P k =-+并由此求出分段三次埃尔米特插值的误差限. 19. 试求出一个最高次数不高于4次的函数多项式()P x ,以便使它能够满足以下边界条件(0)(0)0P P ='=,(1)(1)1P P ='=,(2)1P =.20. 设[](),f x C a b ∈,把[],a b 分为n 等分,试构造一个台阶形的零次分段插值函数()n x ϕ并证明当n →∞时,()n x ϕ在[],a b 上一致收敛到()f x .21. 设2()1/(1)f x x =+,在55x -≤≤上取10n =,按等距节点求分段线性插值函数()h I x ,计算各节点间中点处的()h I x 与()f x 的值,并估计误差.22. 求2()f x x =在[],a b 上的分段线性插值函数()h I x ,并估计误差.23. 求4()f x x =在[],a b 上的分段埃尔米特插值,并估计误差.试求三次样条插值并满足条件i) (0.25) 1.0000,(0.53)0.6868;S S '='= ii)(0.25)(0.53)0.S S "="=25. 若[]2(),f x C a b ∈,()S x 是三次样条函数,证明i)[][][][]222()()()()2()()()bbbbaaaaf x dx S x dx f x S x dx S x f x S x dx"-"="-"+""-"⎰⎰⎰⎰;ii) 若()()(0,1,,)i i f x S x i n ==,式中i x 为插值节点,且01n a x x x b =<<<=,则[][][]()()()()()()()()()b aS x f x S x dx S b f b S b S a f a S a ""-"="'-'-"'-'⎰.26. 编出计算三次样条函数()S x 系数及其在插值节点中点的值的程序框图(()S x 可用(8.7)式的表达式).第三章 函数逼近与计算1. (a)利用区间变换推出区间为[],a b 的伯恩斯坦多项式.(b)对()sin f x x =在[]0,/2π上求1次和三次伯恩斯坦多项式并画出图形,并与相应的马克劳林级数部分和误差做比较. 2. 求证:(a)当()m f x M ≤≤时,(,)n m B f x M ≤≤. (b)当()f x x =时,(,)n B f x x =. 3. 在次数不超过6的多项式中,求()sin 4f x x =在[]0,2π的最佳一致逼近多项式. 4. 假设()f x 在[],a b 上连续,求()f x 的零次最佳一致逼近多项式. 5. 选取常数a ,使301max x x ax≤≤-达到极小,又问这个解是否唯一?6. 求()sin f x x =在[]0,/2π上的最佳一次逼近多项式,并估计误差.7. 求()xf x e =在[]0,1上的最佳一次逼近多项式.8. 如何选取r ,使2()p x x r =+在[]1,1-上与零偏差最小?r 是否唯一?9. 设43()31f x x x =+-,在[]0,1上求三次最佳逼近多项式.10. 令[]()(21),0,1n n T x T x x =-∈,求***0123(),(),(),()T x T x T x T x .11. 试证{}*()nTx 是在[]0,1上带权ρ=的正交多项式.12. 在[]1,1-上利用插值极小化求11()f x tg x -=的三次近似最佳逼近多项式.13. 设()xf x e =在[]1,1-上的插值极小化近似最佳逼近多项式为()n L x ,若nf L ∞-有界,证明对任何1n ≥,存在常数n α、n β,使11()()()()(11).n n n n n T x f x L x T x x ++α≤-≤β-≤≤14. 设在[]1,1-上234511315165()128243843840x x x x x x ϕ=-----,试将()x ϕ降低到3次多项式并估计误差.15. 在[]1,1-上利用幂级数项数求()sin f x x =的3次逼近多项式,使误差不超过0.005.16. ()f x 是[],a a -上的连续奇(偶)函数,证明不管n 是奇数或偶数,()f x 的最佳逼近多项式*()n n F x H ∈也是奇(偶)函数.17. 求a 、b 使[]220sin ax b x dx π+-⎰为最小.并与1题及6题的一次逼近多项式误差作比较.18. ()f x 、[]1(),g x C a b ∈,定义 ()(,)()();()(,)()()()();b baaa f g f x g x dxb f g f x g x dx f a g a =''=''+⎰⎰问它们是否构成内积?19. 用许瓦兹不等式(4.5)估计6101x dx x +⎰的上界,并用积分中值定理估计同一积分的上下界,并比较其结果.20. 选择a ,使下列积分取得最小值:1122211(),x ax dx x ax dx----⎰⎰.21. 设空间{}{}10010121,,,span x span x x 1ϕ=ϕ=,分别在1ϕ、2ϕ上求出一个元素,使得其为[]20,1x C ∈的最佳平方逼近,并比较其结果.22. ()f x x =在[]1,1-上,求在{}2411,,span x x ϕ=上的最佳平方逼近.23.sin (1)arccos ()n n x u x +=是第二类切比雪夫多项式,证明它有递推关系()()()112n n n u x xu x u x +-=-.24. 将1()sin2f x x=在[]1,1-上按勒让德多项式及切比雪夫多项式展开,求三次最佳平方逼近多项式并画出误差图形,再计算均方误差.25. 把()arccos f x x =在[]1,1-上展成切比雪夫级数.26.2y a bx =+.27.用最小二乘拟合求.29. 编出用正交多项式做最小二乘拟合的程序框图. 30. 编出改进FFT 算法的程序框图. 31. 现给出一张记录{}{}4,3,2,1,0,1,2,3k x =,试用改进FFT 算法求出序列{}k x 的离散频谱{}k C (0,1,,7).k =第四章 数值积分与数值微分1. 确定下列求积公式中的待定参数,使其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度:(1)101()()(0)()hhf x dx A f h A f A f h --≈-++⎰; (2)21012()()(0)()hh f x dx A f h A f A f h --≈-++⎰;(3)[]1121()(1)2()3()/3f x dx f f x f x -≈-++⎰;(4)[][]20()(0)()/1(0)()hf x dx h f f h ah f f h ≈++'-'⎰.2. 分别用梯形公式和辛普森公式计算下列积分:(1)120,84xdx n x =+⎰; (2)1210(1),10x e dx n x --=⎰;(3)1,4n =⎰;(4),6n =.3. 直接验证柯特斯公式(2.4)具有5次代数精度.4. 用辛普森公式求积分10x e dx-⎰并计算误差. 5. 推导下列三种矩形求积公式:(1)2()()()()()2ba f f x dxb a f a b a 'η=-+-⎰; (2)2()()()()()2baf f x dx b a f b b a 'η=---⎰; (3)3()()()()()224baa b f f x dx b a f b a +"η=-+-⎰. 6. 证明梯形公式(2.9)和辛普森公式(2.11)当n →∞时收敛到积分()baf x dx⎰.7. 用复化梯形公式求积分()baf x dx⎰,问要将积分区间[],a b 分成多少等分,才能保证误差不超过ε(设不计舍入误差)?8.1x e dx-,要求误差不超过510-.9. 卫星轨道是一个椭圆,椭圆周长的计算公式是S a =θ,这里a 是椭圆的半长轴,c 是地球中心与轨道中心(椭圆中心)的距离,记h 为近地点距离,H 为远地点距离,6371R =公里为地球半径,则(2)/2,()/2a R H h c H h =++=-.我国第一颗人造卫星近地点距离439h =公里,远地点距离2384H =公里,试求卫星轨道的周长.10. 证明等式3524sin3!5!n n nnππππ=-+-试依据sin(/)(3,6,12)n n n π=的值,用外推算法求π的近似值.11. 用下列方法计算积分31dyy ⎰并比较结果.(1) 龙贝格方法;(2) 三点及五点高斯公式;(3) 将积分区间分为四等分,用复化两点高斯公式.12. 用三点公式和五点公式分别求21()(1)f x x =+在x =1.0,1.1和1.2处的导数值,并估计误()f x第五章 常微分方程数值解法1. 就初值问题0)0(,=+='y b ax y 分别导出尤拉方法和改进的尤拉方法的近似解的表达式,并与准确解bx ax y +=221相比较。

数值分析第四版习题及答案

数值分析第四版习题及答案

第四版数值分析习题第一章 绪 论1. 设x >0,x 的相对误差为δ,求ln x 的误差.2. 设x 的相对误差为2%,求nx 的相对误差.3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位有效数字: *****123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====⨯4. 利用公式(3.3)求下列各近似值的误差限:********12412324(),(),()/,i x x x ii x x x iii x x ++其中****1234,,,x x x x 均为第3题所给的数.5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少?6. 设028,Y =按递推公式1n n Y Y -=( n=1,2,…)计算到100Y .27.982(五位有效数字),试问计算100Y 将有多大误差?7. 求方程25610x x -+=的两个根,使它至少具有四位有效数字27.982).8. 当N 充分大时,怎样求211Ndx x +∞+⎰?9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝2? 10. 设212S gt =假定g 是准确的,而对t 的测量有±0.1秒的误差,证明当t 增加时S 的绝对误差增加,而相对误差却减小.11. 序列{}n y 满足递推关系1101n n y y -=-(n=1,2,…),若0 1.41y =≈(三位有效数字),计算到10y 时误差有多大?这个计算过程稳定吗?12. 计算61)f =, 1.4≈,利用下列等式计算,哪一个得到的结果最好?3--13.()ln(f x x =,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?若改用另一等价公式ln(ln(x x =-计算,求对数时误差有多大?14. 试用消元法解方程组{101012121010;2.x x x x +=+=假定只用三位数计算,问结果是否可靠?15. 已知三角形面积1sin ,2s ab c =其中c 为弧度,02c π<<,且测量a ,b ,c 的误差分别为,,.a b c ∆∆∆证明面积的误差s ∆满足.s a b cs a b c ∆∆∆∆≤++第二章 插值法1. 根据(2.2)定义的范德蒙行列式,令2000011211121()(,,,,)11n n n n n n n n n x x x V x V x x x x x x x xx x ----==L L L L L L L L L证明()n V x 是n 次多项式,它的根是01,,n x x -L ,且101101()(,,,)()()n n n n V x V x x x x x x x ---=--L L .2. 当x = 1 , -1 , 2 时, f (x)= 0 , -3 , 4 ,求f (x )的二次插值多项式.3.4. 给出cos x ,0°≤x ≤90°的函数表,步长h =1′=(1/60)°,若函数表具有5位有效数字,研究用线性插值求cos x 近似值时的总误差界.5. 设0k x x kh =+,k =0,1,2,3,求032max ()x x x l x ≤≤.6. 设jx 为互异节点(j =0,1,…,n ),求证:i) 0()(0,1,,);nk kj j j x l x xk n =≡=∑Lii) 0()()1,2,,).nk jj j xx l x k n =-≡0(=∑L7. 设[]2(),f x C a b ∈且()()0f a f b ==,求证21()()().8max max a x ba xb f x b a f x ≤≤≤≤≤-"8. 在44x -≤≤上给出()xf x e =的等距节点函数表,若用二次插值求xe 的近似值,要使截断误差不超过610-,问使用函数表的步长h 应取多少?9. 若2n n y =,求4n y ∆及4n y δ.10. 如果()f x 是m 次多项式,记()()()f x f x h f x ∆=+-,证明()f x 的k 阶差分()(0)k f x k m ∆≤≤是m k -次多项式,并且()0(m l f x l +∆=为正整数).11. 证明1()k k k k k k f g f g g f +∆=∆+∆.12. 证明110010.n n kkn n k k k k f gf g f g g f --+==∆=--∆∑∑13. 证明1200.n j n j y y y -=∆=∆-∆∑14. 若1011()n nn n f x a a x a x a x --=++++L 有n 个不同实根12,,,n x x x L ,证明{10,02;, 1.1()n k njk n a k n j jx f x -≤≤-=-=='∑15. 证明n 阶均差有下列性质: i)若()()F x cf x =,则[][]0101,,,,,,n n F x x x cf x x x =L L ;ii) 若()()()F x f x g x =+,则[][][]010101,,,,,,,,,n n n F x x x f x x x g x x x =+L L L .16. 74()31f x x x x =+++,求0172,2,,2f ⎡⎤⎣⎦L 及0182,2,,2f ⎡⎤⎣⎦L . 17. 证明两点三次埃尔米特插值余项是(4)22311()()()()/4!,(,)k k k k R x f x x x x x x ++=ξ--ξ∈并由此求出分段三次埃尔米特插值的误差限.18. 求一个次数不高于4次的多项式()P x ,使它满足(0)(1)P P k =-+并由此求出分段三次埃尔米特插值的误差限. 19. 试求出一个最高次数不高于4次的函数多项式()P x ,以便使它能够满足以下边界条件(0)(0)0P P ='=,(1)(1)1P P ='=,(2)1P =.20. 设[](),f x C a b ∈,把[],a b 分为n 等分,试构造一个台阶形的零次分段插值函数()n x ϕ并证明当n →∞时,()n x ϕ在[],a b 上一致收敛到()f x .21. 设2()1/(1)f x x =+,在55x -≤≤上取10n =,按等距节点求分段线性插值函数()h I x ,计算各节点间中点处的()h I x 与()f x 的值,并估计误差. 22. 求2()f x x =在[],a b 上的分段线性插值函数()h I x ,并估计误差. 23. 求4()f x x =在[],a b 上的分段埃尔米特插值,并估计误差.试求三次样条插值并满足条件 i) (0.25) 1.0000,(0.53)0.6868;S S '='= ii)(0.25)(0.53)0.S S "="=25. 若[]2(),f x C a b ∈,()S x 是三次样条函数,证明 i)[][][][]222()()()()2()()()bbbbaaaaf x dx S x dx f x S x dx S x f x S x dx"-"="-"+""-"⎰⎰⎰⎰;ii) 若()()(0,1,,)i i f x S x i n ==L ,式中i x 为插值节点,且01n a x x x b =<<<=L ,则[][][]()()()()()()()()()baS x f x S x dx S b f b S b S a f a S a ""-"="'-'-"'-'⎰.26. 编出计算三次样条函数()S x 系数及其在插值节点中点的值的程序框图(()S x 可用(8.7)式的表达式).第三章 函数逼近与计算1. (a)利用区间变换推出区间为[],a b 的伯恩斯坦多项式.(b)对()sin f x x =在[]0,/2π上求1次和三次伯恩斯坦多项式并画出图形,并与相应的马克劳林级数部分和误差做比较. 2. 求证:(a)当()m f x M ≤≤时,(,)n m B f x M ≤≤. (b)当()f x x =时,(,)n B f x x =.3. 在次数不超过6的多项式中,求()sin 4f x x =在[]0,2π的最佳一致逼近多项式.4. 假设()f x 在[],a b 上连续,求()f x 的零次最佳一致逼近多项式.5. 选取常数a ,使301max x x ax≤≤-达到极小,又问这个解是否唯一?6. 求()sin f x x =在[]0,/2π上的最佳一次逼近多项式,并估计误差.7. 求()xf x e =在[]0,1上的最佳一次逼近多项式.8. 如何选取r ,使2()p x x r =+在[]1,1-上与零偏差最小?r 是否唯一? 9. 设43()31f x x x =+-,在[]0,1上求三次最佳逼近多项式.10. 令[]()(21),0,1n n T x T x x =-∈,求***0123(),(),(),()T x T x T x T x .11. 试证{}*()nT x 是在[]0,1上带权ρ=的正交多项式.12. 在[]1,1-上利用插值极小化求11()f x tg x -=的三次近似最佳逼近多项式. 13. 设()xf x e =在[]1,1-上的插值极小化近似最佳逼近多项式为()n L x ,若n f L ∞-有界,证明对任何1n ≥,存在常数n α、n β,使11()()()()(11).n n n n n T x f x L x T x x ++α≤-≤β-≤≤14. 设在[]1,1-上234511315165()128243843840x x x x x x ϕ=-----,试将()x ϕ降低到3次多项式并估计误差. 15. 在[]1,1-上利用幂级数项数求()sin f x x =的3次逼近多项式,使误差不超过0.005.16. ()f x 是[],a a -上的连续奇(偶)函数,证明不管n 是奇数或偶数,()f x 的最佳逼近多项式*()n n F x H ∈也是奇(偶)函数.17. 求a 、b 使[]22sin ax b x dx π+-⎰为最小.并与1题及6题的一次逼近多项式误差作比较.18. ()f x 、[]1(),g x C a b ∈,定义()(,)()();()(,)()()()();b baaa f g f x g x dxb f g f x g x dx f a g a =''=''+⎰⎰问它们是否构成内积?19. 用许瓦兹不等式(4.5)估计6101x dx x +⎰的上界,并用积分中值定理估计同一积分的上下界,并比较其结果.20. 选择a ,使下列积分取得最小值:1122211(),x ax dx x ax dx----⎰⎰.21. 设空间{}{}10010121,,,span x span x x 1ϕ=ϕ=,分别在1ϕ、2ϕ上求出一个元素,使得其为[]20,1x C ∈的最佳平方逼近,并比较其结果.22. ()f x x =在[]1,1-上,求在{}2411,,span x x ϕ=上的最佳平方逼近.23.sin (1)arccos ()n n x u x +=是第二类切比雪夫多项式,证明它有递推关系()()()112n n n u x xu x u x +-=-.24. 将1()sin 2f x x=在[]1,1-上按勒让德多项式及切比雪夫多项式展开,求三次最佳平方逼近多项式并画出误差图形,再计算均方误差.25. 把()arccos f x x =在[]1,1-上展成切比雪夫级数.26.2y a bx =+.27.用最小二乘拟合求.29. 编出用正交多项式做最小二乘拟合的程序框图. 30. 编出改进FFT 算法的程序框图. 31. 现给出一张记录{}{}4,3,2,1,0,1,2,3k x =,试用改进FFT 算法求出序列{}k x 的离散频谱{}k C (0,1,,7).k =L第四章 数值积分与数值微分1. 确定下列求积公式中的待定参数,使其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度:(1)101()()(0)()hh f x dx A f h A f A f h --≈-++⎰; (2)21012()()(0)()hh f x dx A f h A f A f h --≈-++⎰;(3)[]1121()(1)2()3()/3f x dx f f x f x -≈-++⎰;(4)[][]20()(0)()/1(0)()hf x dx h f f h ah f f h ≈++'-'⎰.2. 分别用梯形公式和辛普森公式计算下列积分:(1)120,84xdx n x =+⎰; (2)1210(1),10x e dx n x --=⎰;(3)1,4n =⎰;(4),6n =.3. 直接验证柯特斯公式(2.4)具有5次代数精度.4. 用辛普森公式求积分10xedx-⎰并计算误差.5. 推导下列三种矩形求积公式:(1)2()()()()()2ba f f x dxb a f a b a 'η=-+-⎰; (2)2()()()()()2baf f x dx b a f b b a 'η=---⎰;(3)3()()()()()224baa b f f x dx b a f b a +"η=-+-⎰. 6. 证明梯形公式(2.9)和辛普森公式(2.11)当n →∞时收敛到积分()baf x dx⎰.7. 用复化梯形公式求积分()baf x dx⎰,问要将积分区间[],a b 分成多少等分,才能保证误差不超过ε(设不计舍入误差)?8.1x e dx-,要求误差不超过510-.9. 卫星轨道是一个椭圆,椭圆周长的计算公式是S a =θ,这里a 是椭圆的半长轴,c 是地球中心与轨道中心(椭圆中心)的距离,记h 为近地点距离,H 为远地点距离,6371R =公里为地球半径,则(2)/2,()/2a R H h c H h =++=-.我国第一颗人造卫星近地点距离439h =公里,远地点距离2384H =公里,试求卫星轨道的周长.10. 证明等式3524sin3!5!n nn n ππππ=-+-L试依据sin(/)(3,6,12)n n n π=的值,用外推算法求π的近似值.11. 用下列方法计算积分31dyy ⎰并比较结果.(1) 龙贝格方法;(2) 三点及五点高斯公式;(3) 将积分区间分为四等分,用复化两点高斯公式.12. 用三点公式和五点公式分别求21()(1)f x x =+在x =1.0,1.1和1.2处的导数值,并估计误()f x第五章 常微分方程数值解法1. 就初值问题0)0(,=+='y b ax y 分别导出尤拉方法和改进的尤拉方法的近似解的表达式,并与准确解bx ax y +=221相比较。

数值分析李庆杨版习题及答案

数值分析李庆杨版习题及答案

第四版数值分析习题答案第一章 绪论习题参考答案1. ε(lnx )≈***()()r x x xεεδ==。

2.1******()()()()0.02n nnr nn n x x x n x x n xxxεεεε-=≈==。

3. *1x 有5位有效数字,*2x 有2位有效数字,*3x 有4位有效数字,*4x 有5位有效数字,*5x 有2位有效数字。

4.******4333124124()()()()0.5100.5100.510 1.0510x x x x x x εεεε----++≈++=⨯+⨯+⨯=⨯************123231132123()()()()0.214790825x x x x x x x x x x x x εεεε≈++=****62224***24441()()()8.85566810x x x x x x x εεε-≈-=⨯。

5.1()1()()()0.00333333r r r V R V V V εεεε=≈===。

6.33100111()100101010022Y ε--=⨯⨯⨯=⨯。

7.12855.982x =≈,21280.0178655.982x ==≈≈。

8. 21arc 12N dx tgN x π+∞=-+⎰9.121()()0.0052x S S εεε-=≈=。

10. ()()0.1S g t t g t εε≈=,2()2()0.2()12r g t t t S t t gt εεε≈==,故t 增加时S 的绝对误差增加,相对误差减小。

11. 1081001()10()102y y εε==⨯,计算过程不稳定。

12.61)0.005051f =≈,1.4=,则611)0.004096f ==,20.005233f ==,33(30.008f =-=,40.005125f ==,5991f =-=,4f 的结果最好。

13.(30) 4.094622f =-,开平方时用六位函数表计算所得的误差为41102ε-=⨯,分别代入等价公式)1x x (ln )x (f ),1x x (ln )x (f 2221++-=--=中计算可得411()ln(1(60103102f x εε--=+≈=+=⨯⨯=⨯,47211()ln(1108.3310602f ε--=+≈=⨯⨯=⨯。

数值分析参考答案

数值分析参考答案

数值分析参考答案1.4 习题解答或提示1、解:(1)>> a=[1 2 3 ;4 5 6 ]'a =1 42 53 6(2)>> b=[9;7;5;3;1]b =97531(3)>> c=b(2:4)c =753(4)>> d=b(4:-1:1)d =3579(5)>> e=sort(b)e =13579(6)>> f=[3:b']f =3 4 5 6 7 8 92、解:>> x=[7 4 3 ];y=[-1 -2 -3];(1)>> u=[y,x]u =-1 -2 -3 7 4 3 (2)>> u=[x,y]u =7 4 3 -1 -2 -33、解:sum=0;a=[4 -1 2 -8 4 5 -3 -1 6 -7]; for i=1 : length(a)if a(i)>0, sum=sum+a(i); endendsumsum =214、解:m=input('input an array:')input an array:[1 2 5;3 1 2;4 1 3]m =1 2 53 1 24 1 35、解:sum(m)ans =8 4 10>> max(m)ans =4 2 5>> min(m)ans =1 1 26、解:function y=fun_es(x)y=0.5.*exp(x./3)-x.^2.*sin(x);>> fun_es(3)ans =0.0891>> fun_es([1 2 3])ans =-0.1437 -2.6633 0.08917、提示:本题主要考查的是随机数生成函数rand的使用方法,以及选取种子数的方法之一:使用clock命令。

可以参照课本的例1.5来编写函数。

8、解:function y=fun_xa()x=input('input the value of x:');n=input('input the value of n:');y=1;for i=1:1:ny=y+x^i/factorial(i); end>> fun_xa()input the value of x :1 input the value of n :4ans =2.70832.4 习题解答1 解:E(lnx)=(ln ’E(x)=)(1x E x =xδ=Er(x) 2. 解 Er(x 2)=)(22x Er x xx ⨯=4% 3. 解:123451.1021,0.031,385.6,56.430,7 1.0x x x x x *****=====⨯分别有5 位,2位,4位,5位,2位有效数字4 解 4*1105.0)(-⨯=x E3*2105.0)(-⨯=x E1*3105.0)(-⨯=x E3*4105.0)(-⨯=x E=++)(*4*2*1x x x E +)(*1x E +)(*2x E )(*4x E =0.00105))()((*4*2x E x E E =)()()(*42*4*2*4*2x E x x x x E -5. 解 V=334r π Er(v)=)(//x Er V x dx dV ⨯⨯=3Er(x)%1)(3≤x Er%33.0)(≤x Er6. 解 7830100-=Y Y)783()(100E Y E ==0.00057.解 x 1,2=24561122-±=56783±21,2105.0)x (-⨯=E 2105.0)783(-⨯=E98.27783≈x 1,2=83.98 或 28.02 8.略。

数值分析课后习题及答案

数值分析课后习题及答案

数值分析课后习题及答案第一章绪论(12)第二章插值法(40-42)2、当时,,求的二次插值多项式。

[解]。

3、给出的数值表用线性插值及二次插值计算的近似值。

X 0.4 0.5 0.6 0.7 0.8 -0.916291 -0.693147 -0.510826 -0.357765 -0.223144 [解]若取,,则,,则,从而。

若取,,,则,,,则,从而补充题:1、令,,写出的一次插值多项式,并估计插值余项。

[解]由,可知,,余项为,故。

2、设,试利用拉格朗日插值余项定理写出以为插值节点的三次插值多项式。

[解]由插值余项定理,有,从而。

5、给定数据表:,1 2 4 6 7 4 1 0 1 1 求4次牛顿插值多项式,并写出插值余项。

[解]一阶差商二阶差商三阶差商四阶差商 1 42 1 -34 0 6 17 1 0 由差商表可得4次牛顿插值多项式为:,插值余项为。

第三章函数逼近与计算(80-82)26、用最小二乘法求一个形如的经验公式,使它与下列数据相拟合,并求均方误差。

19 25 31 38 44 19.0 32.3 49.0 73.3 97.8[解]由。

又,,,故法方程为,解得。

均方误差为。

27、观测物体的直线运动,得出以下数据:时间t(秒)0 0.9 1.9 3.0 3.9 5.0 距离s(米)0 10 30 5080 110 [解]设直线运动为二次多项式,则由。

,。

又,,,故法方程为,解得。

故直线运动为。

补充题:1、现测得通过某电阻R的电流I及其两端的电压U如下表:I ……U ……试用最小二乘原理确定电阻R的大小。

[解]电流、电阻与电压之间满足如下关系:。

应用最小二乘原理,求R使得达到最小。

对求导得到:。

令,得到电阻R为。

2、对于某个长度测量了n次,得到n个近似值,通常取平均值作为所求长度,请说明理由。

[解]令,求x使得达到最小。

对求导得到:,令,得到,这说明取平均值在最小二乘意义下误差达到最小。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数值分析第8章 数值积分与数值微分8.1 填空题(1)n+1个点的插值型数值积分公式∫f(x)dx ba ≈∑A j n j=0f(x j )的代数精度至少是 n ,最高不超过 2n+1 。

【注:第1空,见定理8.1】(2)梯形公式有 1 次代数精度,Simpson 公司有 3 次代数精度。

【注:分别见定理8.1,8.3】 (3)求积公式∫f(x)dx h0≈h2[f (0)+f (h )]+ah 2[f ′(0)−f ′(h)]中的参数a= 1/12 时,才能保证该求积公式的代数精度达到最高,最高代数精度为 3 。

解:令f(x)=1,x,x 2带入有,{h 2[1+1]+ah 2[0−0]=hh 2[0+h ]+ah 2[1−1]=12(h 2)h2[0+h 2]+ah 2[0−2h ]=13(h 3)//注:x 的导数=1解之得,a=1/12,此时求积公式至少具有2次代数精度。

∴ 积分公式为:∫f(x)dxh0≈h2[f (0)+f (h )]+h 212[f ′(0)−f ′(h)]令f(x)= x 3带入求积公式有:h2[0+h 3]+h 212[0−3h 2]=14(h 4),与f(x)= x 4的定积分计算值14(h 4)相等,所以,此求积公式至少具有3次代数精度。

令f(x)= x 4带入求积公式有,h2[0+h 4]+h 212[0−4h 3]=16(h 5),与f(x)= x 5的定积分计算值15(h 5)不相等,所以,此求积公式的最高代数精度为3次代数精度。

8.2 确定下列求积公式的求积系数和求积节点,使其代数精度尽量高,并指出其最高代数精度。

解题思路:按照P149 中8.3式进行求解,根据求积公式中未知量n 的数量决定代入多少f(x),当积分公式代入求积节点x n 的计算结果与定积分的计算结果一致,继续代入求积节点X n+1,,若计算结果与对应的定积分计算结果不一致时,求积公式拥有最高n 次的代数精度。

(1)∫f(x)dx 2h0≈A 0f (0)+A 1f (h )+A 2f(2h)解:令f(x)=1,x,x 2代入有,【注:本例中需求解A 0、A 1、A 2共3个未知量,故需3个相异求积节点f(x)】{A 0+A 1+A 2=2hA 1h +A 22h =12(2h )2A 1h 2+A 2(2h )2=13(2h )3求解得A 0=13h ,A 1=43h ,A 2=13h ,∴求积公式为:∫f(x)dx 2h 0≈13hf (0)+43hf (h )+13hf(2h)∵该求积公式对3个相异节点1,x,x 2均有余项E (f )=0, //注:参见P149定理8.1∴该求积公式至少具有2次代数精度。

令f(x)= x 3,代入求积公式有:43hh 3+13h (2h )3=4h 4∵函数f(x) = x 3的定积分结果为:∫x 3dx 2h0=14(2h )4=4h 4 ,与求积公式计算值相等, ∴该求积公式具有3次代数精度。

令f(x)= x 4,代入求积公式有:43hh 4+13h (2h )4=203h 5∵函数f(x) = x 4的定积分结果为∫x 4dx 2h0=15[(2h )5−05]=325h 5,与求积公式计算值不相等,∴该求积公式的最高代数精度为3次代数精度。

(2)∫f(x)dx 1−1≈A [f (−1)+2f (x 1)+3f(x 2)]解:令f(x)=1,x,x 2代入有,【注:本例中需求解A 、X1、X2共3个未知量,故需3个相异求积节点f(x)】{A [1+2+3]=2A [−1+2x 1+3x 2]=0A [(−1)2+2x 12+3x 22]=13[13−(−1)3]=23求解得 A =13,x 1=0.6899,x 2=−0.1260,或A =13,x 1=−0.2899,x 2=0.5266∴求积公式为:求积公式1:∫f (x )dx 1−1≈13[f (−1)+2f (0.6899)+3f (−0.1260)] 求积公式1:∫f(x)dx 1−1≈13[f (−1)+2f (−0.2899)+3f (0.5266)]∵该求积公式对3个相异节点1,x,x 2均有余项E (f )=0,//注:参见P149定理8.1 ∴该求积公式至少具有2次代数精度。

令f(x)= x 3代入求积公式1有:13[(−1)3+2(0.6899)3+3(−0.1260)3]=−0.2245 令f(x)= x 3代入求积公式2有:13[(−1)3+2(−0.2899)3+3(0.5266)3]=−0.2928∵函数f(x) = x 3的定积分结果为:∫x 3dx 1−1=14[(1)4—(−1)4]=0 ,与求积公式计算值均不相等, ∴该求积公式的最高代数精度为2次代数精度。

(3)∫f(x)dx 1−1≈A 1f (−1)+A 2f (−13)+A 3f(13)解:令f(x)=1,x,x 2代入有,【注:本例中需求解A 1、A 2、A 3共3个未知量,故需3个相异求积节点f(x)】 {A 1+A 2+A 3=[1−(−1)]=2A 1(−1)+A 2(−13)+A 3(13)=12[12−(−1)2]=0A 1(−1)2+A 2(−13)2+A 3(13)2=13[13−(−1)3]=23求解得A 1=12,A 2=0,A 3=32, ∴求积公式为: ∫f(x)dx 1−1≈12f (−1)+32f(13)∵ 该求积公式对3个相异节点1,x,x 2均有余项E (f )=0,//注:参见P149定理8.1 ∴ 该求积公式至少具有2次代数精度。

令f(x)= x 3,代入求积公式有:12(−1)3+32(13)3=−0.4444∵ 函数f(x) = x 3的定积分结果为:∫x 3dx 1−1=14[(1)4—(−1)4]=0,与求积公式计算值不相等,∴ 该求积公式的最高代数精度为2次代数精度。

(4)∫f(x)dx 1−1≈A 1f (x 1)+A 2f (0)+A 3f(1)解:令f(x)=1,x,x 2,x 3代入有,【注:本例中需求解A 1、A 2、A 3、X 1共4个未知量,故需4个相异求积节点f(x)】{A 1+A 2+A 3=2A 1x 1+0+A 3=0A 1x 12+0+A 3(1)2=23A 1x 13+0+A 3(1)3=0求解得A 1=13,A 2=43,A 3=13,x 1=−1 ∴求积公式为: ∫f(x)dx 1−1≈13f (−1)+43f (0)+13f(1)∵该求积公式对4个相异节点1,x,x 2,x 3均有余项E (f )=0,//注:参见P149定理8.1 ∴该求积公式至少具有3次代数精度。

令f(x)= x 4,代入求积公式有:13(−1)4+0+13(1)4=23∵ 函数f(x) = x 4的定积分结果为:∫x 4dx 1−1=15[(1)5—(−1)5]=25,与求积公式计算值不相等, ∴ 该求积公式的最高代数精度为3次代数精度。

(5)∫f(x)dx 20≈f (x 1)+f (x 2)解:令f(x)=1,x,x 2代入有,{1+1=2x 1+x 2=2x 12+x 22=83求解得{x 1=1−√33x 2=1+√33或{x 1=1+√33x 2=1−√33∴求积公式为: ∫f(x)dx 20≈f (1−√33)+f (1+√33)∵该求积公式对3个相异节点1,x,x 2均有余项E (f )=0,//注:参见P149定理8.1 ∴该求积公式至少具有2次代数精度。

令f(x)= x 3,代入求积公式有:(1−√33)3+(1+√33)3=14[24—04]=4∵函数f(x) = x 4的积分结果为:∫x 3dx 20=14[24—04]=4 ,与求积公式计算值相等, ∴该求积公式具有3次代数精度。

令f(x)= x 4,代入求积公式有:(1−√33)4+(1+√33)4=6.2222∵函数f(x) = x 4的积分结果为:∫x 4dx 20=15[25—05]=6.4 ,与求积公式的计算结果不相等, ∴该求积公式的最高代数精度为3次代数精度。

8.3 分别用复化梯形公式,复化Simpson 公式,复化Cotes 公式计算下列积分:解题要点:复化梯形公式【Tn ,Un 】-P154\P155,复化Simpson 公式【Sn 】-P155\P156,复化Cotes公式【Cn】-P156。

若在积分范围内划分的小区间数n=2k,则直接用对应的公式从T1、U1开始计算,然后按照T2n、T4n的公式利用前面计算的数据进行计算,若n≠2k,在直接利用梯形求积公式8.7直接计算Tn和Un,再利用Tn、Un求解Sn、Cn。

(1)∫x4+x2dx1, n=8解:由题,设f(x)=x4+x21)用复化梯形公式求解有//因为n=8=23,本题从T1、U1开始计算,然后按照T2n、T4n的公式利用前面计算的数据进行计算得到T10∵T1=12[f(0)+f(1)]=0.1,//见P154 公式8.7,n=1U1=f(12)=0.11764706//见P154 Un的计算公式,n=1∴T2=12[T1+U1]=0.10882353//见P155 公式8.8∵U2=12[f(14)+f(34)]=0.11296096∴T4=12[T2+U2]=0.11089224∵U4==14[f(18)+f(38)+f(58)+f(78)]=0.11191244∴T8=12[T4+U4]=0.111402352)用复化Simpson公式求解有:∵S n=4T2n−T n3//见P155 公式8.12∴S8=4T16−T83//由此可知,要求出S8,必须先求出T16,进而得先求出U8∵U8=18∑f(x i+1/2)7i=1=18[f(116)+f(316)+f(516)+f(716)+f(916)+f(1116)+f(1316)+f(1516)]=0.11165540∴T16=12[T8+U8]=0.11152888∴S8=4T16−T83=0.111571063)用复化Cotes公式求解有:∵C n=16S2n−S n15//见P156 公式8.14∴C8=16S16−S815//由此可知需先求出S16,由复化Simpson公式可知需先求出T32,进而得知需先求U16。

∵U16=116∑f(x i+1/2)15i=1=116[f(132)+f(332)+f(532)+f(732)+f(932)+f(1132)+f(1332)+f(1532)+f(1732)+f(1932)+f(21 32)+f(2332)+f(2532)+f(2732)+f(2932)+f(3132)]=0.11159294∴T32=12[T16+U16]=0.11156091∴S16=4T32−T163=0.11157159∴ C 8=16S 16−S 815=0.11157163(3)∫e −x 2dx 10, n =10解:由题,设f(x)=e −x 21)用复化梯形公式求解有 //因为n=10≠2n ,故本题直接用复化梯形公式直接计算得到T10 ∵ T n =h2[f (a )+f (b )+2∑f(x i )n−1i=1] , h =b−a n=110∴ T 10=120[f (0)+f (1)+2∑f(x i )9i=1],其中x i =a +ih =0.1i∴ T 10=120{f (0)+f (1)+2[f (0.1)+f (0.2)+f (0.3)+f (0.4)+f (0.5)+f (0.6)+f (0.7)+f (0.8)+f (0.9)]}=0.746210802)用复化Simpson 公式求解有: ∵ S n =4T 2n −T n3//见P155 公式8.12∴ S 10=4T 20−T 103//由此可知,要求出S 10,必须先求出T 20,进而得先求出U 10∵ U 10=110∑f(x i+1/2)7i=1=110[f (0.05)+f(0.15)+f(0.25)+f(0.35)+f(0.45)+f(0.55)+f(0.65)+f(0.75)+f(0.85)+f(0.95)]=0.74713088∴ T 20=12[T 10+U 10]=0.74667084 ∴ S 10=4T 20−T 103=0.746824193)用复化Cotes 公式求解有: ∵ C n =16S 2n −S n15//见P156 公式8.14∴ C 10=16S 20−S 1015//由此可知需先求出S 20,由复化Simpson 公式可知需先求出T 40,进而得知需先求U 20。

相关文档
最新文档