(完整word版)九年级数学教学案例

合集下载

初中数学教学案例分析完整版

初中数学教学案例分析完整版

初中数学教学案例分析完整版1. 引言初中数学教学案例分析是一项重要的教学研究工作,通过分析教学案例,可以深入理解数学教学的原理和策略,并提升教师的教学能力。

本文将从教学目标、教学内容、教学方法、教学评价等方面对一个初中数学教学案例进行全面的分析。

2. 教学背景与情况教学案例为一堂关于线性方程组的解法的课堂教学。

该教学案例是在一所初中九年级的班级中进行的,班级人数为45人,学生数学基础普遍较好。

教师依据课标要求,进行了精心设计的教学活动。

3. 教学目标分析通过分析教学目标,可以了解教学案例的教学重点和难点。

教学案例的目标是使学生掌握线性方程组的解法,并能够运用所学知识解决实际问题。

通过这样的研究,学生可以提高他们的逻辑思维能力和解决问题的能力。

4. 教学内容分析教学案例所涉及的教学内容主要包括线性方程组的概念、解法和应用。

教师采用了多种教学手段,如演示、练、讨论等,有助于学生全面地理解和掌握相关知识。

5. 教学方法与策略分析教学案例采用了多种教学方法来实现教学目标。

教师采用启发式教学法,引导学生发现问题和解决问题的方法。

教师还使用了情境教学法,将抽象的数学概念与实际问题相结合,使学生更易于理解和接受。

6. 教学评价分析教学案例在教学评价上采用了多种评价方式,包括学生讨论、课堂问答、小组合作等。

教师通过观察和记录学生的表现来评估他们的研究情况,并根据评价结果做出调整,以提高教学效果。

7. 结论通过对该初中数学教学案例的分析,我们可以看到教师在教学目标、教学内容、教学方法和教学评价等方面做了周详的安排和设计。

这种综合性的教学方案不仅有助于学生的研究,也对教师的教学能力有一定的要求。

有了这样的教学案例分析,教师可以更好地改进教学方法,提升教学质量。

8. 参考文献[1] 教育部. (2008). 《数学课程标准(2010年版)》. 人民教育出版社.[2] 张三, 李四. (2016). 初中数学教学案例分析研究. 数学教育研究, 10(2), 20-35.。

人教版九年级数学上册优秀教学案例:24.1.4圆周角圆内接四边形

人教版九年级数学上册优秀教学案例:24.1.4圆周角圆内接四边形
4.反思与评价的深刻性:在教学过程中,我引导学生及时进行反思,回顾和巩固所学知识,提高学生的自我监控和自我调整能力。通过定期的自我评价和同伴评价,学生能够反思自己的学习过程和成果,发现自己的不足并进行改进。这种深刻性的反思与评价使学生能够更好地认识自己的学习情况,提高学习效果。
5.教学策略的灵活性:在教学过程中,我根据学生的学习情况和反馈,灵活调整教学策略。我注重关注每个学生的学习情况,给予个性化的指导,确保他们能够在理解的基础上掌握所学知识。同时,我也注重激发学生的学习兴趣和好奇心,创设有趣的教学活动,使学生在轻松愉快的氛围中学习和探索。这种灵活性的教学策略能够更好地满足学生的学习需求,提高他们的数学素养。
4.注重学生的反思与评价,培养学生的自我监控和自我调整能力。
五、教学延伸
1.设计与圆周角和圆内接四边形相关的拓展问题,提高学生的思维能力和问题解决能力。
2.引导学生运用圆周角和圆内接四边形的性质解决实际问题,培养学生的应用能力。
3.组织学生进行研究性学习,鼓励他们深入探究圆周角和圆内接四边形的性质,提高学生的研究能力。
2.引导学生运用圆周角定理和圆内接四边形的性质进行几何证明,提高学生的推理能力。
3.培养学生的合作学习能力,学会与他人交流、分享和合作解决问题。
(三)情感态度与价值观
1.激发学生对数学的兴趣和好奇心,培养他们积极主动学习数学的态度。
2.培养学生的自信心,让他们相信自己能够通过努力学习和思考解决问题。
四、教学内容与过程
(一)导入新课
1.利用实物模型或几何图形,展示一个与圆周角和圆内接四边形相关的实际问题,激发学生的兴趣和好奇心。
2.引导学生观察和思考问题,提出问题引导词,如“你能看到哪些角度?它们之间有什么关系?”等,引发学生对圆周角和圆内接四边形的关注。

人教版九年级数学上册优秀教学案例:23.1图形的旋转

人教版九年级数学上册优秀教学案例:23.1图形的旋转
2.练习作业:检查学生完成作业的质量,巩固学生对旋转性质的掌握;
3.小组讨论:评价学生在团队合作中的表现,培养学生的团队合作精神。
二、教学目标
(一)知识与技能
1.理解旋转的定义及性质,掌握旋转变换的方法。
2.能够运用旋转变换解决实际问题,提高解决问题的能力。
3.培养学生的空间想象能力,提高学生对几何图形的认识和理解。
2.讨论问题:每组选择一个实际问题,运用旋转变换解决,讨论解决问题的方法和过程。
3.讨论成果分享:各小组代表汇报本组讨论成果,分享解决问题的方法,促进学生之间的交流与合作。
(四)总结归纳
1.教师总结:教师对旋转变换的性质及应用进行总结,强调重点和难点,帮助学生形成知识体系。
2.学生归纳:让学生归纳总结本节课所学内容,加深对旋转变换性质的理解和记忆。
3.教师评价:教师对学生的学习过程和成果进行评价,给予肯定和鼓励,激发学生的学习兴趣和自信心。
作为一名特级教师,我深知教学策略的重要性。在教学过程中,我将根据学生的实际情况,灵活运用情景创设、问题导向、小组合作和反思与评价等教学策略,激发学生的学习兴趣,培养学生的思维能力、团队合作精神和解决问题的能力。同时,我将以学生为主体,关注每一个学生的成长,尊重学生的个性差异,激发学生的潜能,让每个学生都能在学习中感受到快乐和成就感。通过科学合理的教学策略,引导学生积极参与课堂活动,提高学生的学习效果,为学生的可持续发展奠定基础。
3.结合实际例子,让学生感受数学与生活的紧密联系;
4.采用小组合作、讨论交流的方式,培Βιβλιοθήκη 学生的团队合作精神。教学过程:
1.导入新课:以生活中常见的旋转现象为例,如旋转门、风车等,引导学生思考旋转的定义及性质;
2.自主学习:让学生通过阅读教材,了解旋转的基本性质;

九年级数学上册《相似多边形》优秀教学案例

九年级数学上册《相似多边形》优秀教学案例
4.引导学生运用比较、分析、综合等思维方法,提高解决几何问题的能力。
(三)情感态度与价值观
1.培养学生热爱数学、勇于探究的情感态度,增强他们学习数学的兴趣和自信心。
2.通过解决实际问题,使学生感受到数学知识的价值,培养他们的成就感和责任感。
3.注重培养学生的合作精神,让他们在小组活动中学会相互尊重、相互帮助,提高团队协作能力。
4.引导学生树立正确的价值观,认识到学习数学不仅仅是为了应付考试,更是为了提高自己的思维品质和解决实际问题的能力。
三、教学策略
(一)情景创设
为了让学生更好地理解相似多边形的概念,我将采用生活情景的创设方法,引导学生从现实生活中发现相似多边形的例子。例如,通过展示一组不同大小的矩形或三角形图片,让学生观察并思考它们之间的关系。这种情景创设可以激发学生的学习兴趣,使他们感受到数学与生活的紧密联系。
2.问题导向,培养探究能力
本案例通过设计具有启发性和挑战性的问题,引导学生主动探究相似多边能力,使他们在探究过程中加深对数学知识的理解。
3.小组合作,提高团队协作能力
小组合作是本案例的一大亮点。学生通过小组讨论、交流,共同解决问题,分享学习心得。这种教学策略有助于培养学生的团队协作能力,提高他们在探究过程中的参与度和积极性。
小组合作的主要任务包括:
1.共同探究相似多边形的性质和判定方法。
2.通过讨论、交流,解决教师提出的问题。
3.相互评价,总结小组在解决问题过程中的优点和不足。
4.分享学习心得,促进小组内成员的共同进步。
小组合作有助于培养学生的团队协作能力,提高他们在探究过程中的参与度和积极性。
(四)反思与评价
在课堂的最后阶段,我将组织学生进行反思与评价,以巩固所学知识,提高教学效果。

华师大九年级数学教案(上)25章优秀教学案例

华师大九年级数学教案(上)25章优秀教学案例
(二)过程与方法
1.通过观察、操作、猜想、验证等方法,引导学生主动探究平面几何图形的性质和规律,培养学生的探究能力和问题解决能力。
2.运用小组合作、讨论交流的方式,培养学生的团队合作意识和沟通能力,提高学生解决问题的能力。
3.运用数学软件或工具,如几何画板等,辅助学生进行图形变换实验,增强学生对图形变换的理解和应用能力。
4.引导学生总结三角形性质的运用方法,培养学生的逻辑思维能力。
(三)学生小组讨论
1.教师提出讨论话题:“三角形和四边形之间有什么联系和区别?请结合所学知识进行讨论。”
2.学生分组进行讨论,鼓励每个小组成员发表自己的观点和见解。
3.教师巡回指导,给予学生适当的提示和帮助,引导小组讨论深入进行。
4.选取小组代表进行汇报,总结讨论成果。
4.教师根据评价结果,调整教学策略和教学内容,以满足学生的个性化学习需求。
四、教学内容与过程
(一)导入新课
1.利用多媒体课件展示生活中常见的三角形和四边形,引导学生关注这些图形在我们日常生活中的应用。
2.提出问题:“你们对这些图形有哪些了解?它们有哪些特殊的性质?”激发学生对平面几何图形的兴趣。
3.回顾之前学过的几何知识,如直线、射线、线段的性质,为导入新课做好铺垫。
3.提醒学生在完成作业过程中,注意培养自己的空间想象能力和逻辑思维能力。
4.教师对作业进行批改,了解学生掌握知识的情况,为下一步教学提供依据。
五、案例亮点
1.情境创设贴近生活:本案例以生活实际为背景,创设有趣、富有挑战性的问题情景,让学生感受到数学与生活的紧密联系,激发学生的学习兴趣和好奇心。这种情境创设的方式有助于提高学生的学习积极性,培养学生的实际问题解决能力。
二、教学目标

九年级数学上册《解一元二次方程》优秀教学案例

九年级数学上册《解一元二次方程》优秀教学案例
二、教学目标
(一)知识与技能
1.理解一元二次方程的概念,掌握其标准形式,并能识别一元二次方程的系数及常数项。
2.学会使用直接开平方法、配方法、公式法等解一元二次方程,并能够灵活运用这些方法解决实际问题。
3.掌握一元二次方程的根的判别式,了解判别式的应用,能够判断一元二次方程的根的性质(如实数根、无实数根、重根等)。
(二)讲授新知
在讲授新知的环节,我会首先明确一元二次方程的定义,如ax^2 + bx + c = 0(a≠0),并解释各个参数的含义。接着,我会通过具体的例子,如x^2 - 5x + 6 = 0,来讲解直接开平方法、配方法、公式法等解一元二次方程的步骤和技巧。
1.直接开平方法:我会展示如何将方程x^2 - 5x + 6 = 0转化为(x - 2)(x - 3) = 0,从而快速得出解x = 2或x = 3。
(三)小组合作
小组合作是一种有效的教学策略,能够培养学生的团队协作能力和沟通能力。我将根据学生的学习特点和兴趣,合理分组,让每个学生在小组内发挥自己的优势。在教学过程中,我会布置一些具有挑战性的任务,让学生在小组内共同探讨、共同解决。例如,让学生小组合作探究一元二次方程的不同解法,并总结各种解法的优缺点。这样既能提高学生的解题能力,又能培养学生的团队合作精神。
九年级数学上册《解一元二次方程》优秀教学案例
一、案例背景
在我国九年级数学课程中,一元二次方程是学生必须掌握的重要知识点,它既是初中数学的难点,也是高中数学的基础。在教学过程中,如何引导学生理解并熟练运用一元二次方程的解法,成为特级教师关注的焦点。本教学案例以人教版九年级数学上册《解一元二次方程》为背景,针对学生实际情况,设计了一系列实用性强的教学活动,旨在帮助学生克服恐惧心理,掌握解题方法,提高解题能力。通过本案例的学习,学生将能够熟练运用直接开平方法、配方法、公式法等解一元二次方程,并能在实际问题中运用所学知识解决问题。本案例注重激发学生的学习兴趣,培养学生的逻辑思维能力和团队合作精神,使学生在轻松愉快的氛围中掌握数学知识。

九年级数学上册《黄金分割》优秀教学案例

九年级数学上册《黄金分割》优秀教学案例
2.布置开放性作业,如让学生收集生活中的黄金分割实例,进行分享和交流,培养学生的观察力和创新能力。
3.要求学生在课后进行自我反思,总结学习黄金分割的收获和不足,为下一步学习打下基础。
4.教师对作业进行及时批改和反馈,了解学生的学习情况,调整教学策略。
五、案例亮点
1.生活化的情境导入:本案例从学生熟悉的生活实例出发,如自然景观、艺术作品等,以多媒体手段呈现黄金分割的美,激发学生的好奇心和学习兴趣。这种导入方式使学生能够迅速进入学习状态,感受到数学与现实生活的紧密联系。
(二)过程与方法
1.通过观察和分析自然、艺术及建筑等领域的实例,引导学生发现黄金分割的普遍性和美观性,培养学生从生活中发现数学现象的习惯。
2.采用小组合作、讨论交流等形式,让学生在互动中探索黄金分割的性质和应用,提高学生的合作意识和解决问题的能力。
3.设计丰富的实践活动,如制作黄金分割比例的模型、绘制黄金分割图案等,让学生在实践中掌握黄金分割的方法,培养学生的动手操作能力和创新精神。
(二)问题导向
1.提出富有启发性的问题,如“为什么黄金分割被认为是最美、最和谐的比例?”“黄金分割在生活中的应用有哪些?”等,引导学生进行深入思考。
2.设计不同难度层次的问题,让学生在解决问题的过程中,逐步掌握黄金分割的知识点。
3.鼓励学生提出自己的疑问,引导学生通过查阅资料、讨论交流等方式,寻求解决问题的方法。
4.利用现代教育技术手段,如多媒体、网络等资源,拓展学生的知识视野,提高他们对黄金分割在科学、艺术等领域应用的了解。
(三)情感态度与价பைடு நூலகம்观
1.培养学生对数学美的感知和欣赏能力,激发他们对数学学科的兴趣和热爱。
2.通过探索黄金分割在各个领域的应用,让学生认识到数学知识在实际生活中的价值,增强他们的学习动力。

(word版)浙教版数学九年级上《圆》精品教案3

(word版)浙教版数学九年级上《圆》精品教案3

3.1圆课题 3.1圆教学目的知识点1.理解圆、弧、弦等有关概念.2.学会圆、弧、弦等的表示方法.3.掌握点和圆的位置关系及其判定方法.能力点进一步培养学生分析问题和解决问题的能力.德育点用生活和生产中的实例激发学生学习兴趣从而唤起学生尊重知识尊重科学,更加热爱生活重点弦和弧的概念、弧的表示方法和点与圆的位置关系.难点点和圆的位置关系及判定.教法操作、讨论、归纳、巩固学法通过日常生活在生产中的实例引导学生对学习圆的兴趣教具画圆工具教学设计进程教师活动学生活动设计意图达到效果一复习引入二新课讲述1.展示幻灯片,教师指出,日常生活和生产中的许多问题都与圆有关.如(1)一个破残的轮片(课本P62图),怎样测出它的直径?如何补全?(2)圆弧形拱桥(课本P63图),设计时桥拱圈(AB)的半径该怎样计算?(3)如何躲避圆弧形暗礁区(课本P60、P74图),不使船触礁?(4)自行车轮胎为什么做成圆的而不做成方的?2.上述这些问题都与圆的问题有关,在小学我们已经认识过圆,回会用圆规画圆,问:圆上的点有什么特性吗?圆、圆心、圆的半径、圆的直径各是怎样定义的?这节课我们用另一种方法来定义圆的有关概念。

(板书)3.1 圆1.师生一起用圆规画圆:取一根绳子,把一端固定在画板上,另一端缚在粉笔上,然后拉紧绳子,并使它绕固定的一端旋转一周,即得一个圆(课本图3—1、3-2).归纳:在同一平面内,一条线段OP绕它固定的一个端点O旋转一周,另一个端点P所经过的封闭曲线叫做圆.定点O就是圆心,线段OP就是圆的半径.以点O为圆心的圆,记作“⊙O”,读作“圆O”.如图所示.2圆的有关概念(如图3-3)(1)连结圆上任意两点的线段叫做弦,如图BC.经过圆心的弦是直径,图中的AB。

直径等于半径的2倍.(2)圆上任意两点间的部分叫做圆弧,简称弧.弧用学生观察讨论回答定圆心半径三点确定一个圆垂径定理利用圆周角半径定长重心稳定学生口答学生观察并比较熟记圆的有关概念通过设问,目的是唤起对学习圆的兴趣通过比较回答,引起对圆的有关概念的认识。

人教版数学九年级上册24.2.1点和圆的位置关系(第一课时)优秀教学案例

人教版数学九年级上册24.2.1点和圆的位置关系(第一课时)优秀教学案例
(二)问题导向
1.教师可以通过提出引导性的问题,引导学生思考和探究点与圆的位置关系。例如,可以提问:“点在圆内、点在圆上、点在圆外分别意味着什么?如何判断一个点与圆的位置关系?”
2.教师可以设计一系列递进式的问题,让学生逐步深入思考和理解点与圆的位置关系。例如,可以先提问:“点与圆的位置关系有哪些?”,然后逐步引导学生思考:“如何用数学方法描述和解释点与圆的位置关系?”、“如何运用点与圆的位置关系解决实际问题?”
3.教师可以通过提问引导学生反思和评价自己的学习过程和结果。例如,可以提问:“你在解题过程中遇到了哪些困难?如何克服的?”、“你认为自己的解题方法是否合理?还有没有更好的解决方式?”
(三)小组合作
1.教师可以组织学生进行小组合作,鼓励学生之间的交流和合作,培养学生的团队协作能力和沟通能力。例如,可以让学生分组讨论和探究点与圆的位置关系,每个小组共同完成一个实际问题的解题过程和结果展示。
2.教师可以利用多媒体课件展示各种实际场景,如学校平面图、城市地图等,让学生在直观的情境中理解点和圆的位置关系,增强学生的实际应用能力。
3.教师可以通过创设互动性的情景,让学生参与其中,提高学生的参与度和积极性。例如,可以组织学生分组讨论,每组设计一个实际问题,并展示解题过程和结果,促进学生之间的交流和合作。
五、案例亮点
1.情境创设贴近生活:通过设计一个学校计划在新学期开始前,在校内找一个合适的位置设立一个圆形报亭的实际问题,让学生思考如何确定报亭的最佳位置,从而引发学生的兴趣和好奇心,激发学生主动探究的欲望。这样的情境创设不仅贴近学生的生活实际,而且能够让学生感受到数学与现实生活的紧密联系,增强学生对数学学科的兴趣和认同感。
2.问题导向引导学生思考:通过提出引导性的问题,如点在圆内、点在圆上、点在圆外分别意味着什么?如何判断一个点与圆的位置关系?引导学生思考和探究点与圆的位置关系。通过设计一系列递进式的问题,让学生逐步深入思考和理解点与圆的位置关系,从而培养学生的问题解决能力和思维能力。

【湘教版】九年级上册数学教案(全册)(Word版,158页)

【湘教版】九年级上册数学教案(全册)(Word版,158页)

第1章反比例函数1.1 反比例函数教学目标【知识与技能】理解反比例函数的概念,根据实际问题能列出反比例函数关系式.【过程与方法】经历从实际问题抽象出反比例函数的探索过程,发展学生的抽象思维能力.【情感态度】培养观察、推理、分析能力,体会由实际问题转化为数学模型,认识反比例函数的应用价值.【教学重点】理解反比例函数的概念,能根据已知条件写出函数解析式.【教学难点】能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想.教学过程一、情景导入,初步认知1.复习小学已学过的反比例关系,例如:(1)当路程s一定,时间t与速度v成反比例,即vt=s(s是常数)(2)当矩形面积一定时,长a和宽b成反比例,即ab=S(S是常数)2、电流I、电阻R、电压U之间满足关系式U=IR,当U=220V时,请你用含R的代数式表示I吗?【教学说明】对相关知识的复习,为本节课的学习打下基础.二、思考探究,获取新知探究1:反比例函数的概念(1)一群选手在进行全程为3000米的赛马比赛时,各选手的平均速度v(m/s)与所用时间t(s)之间有怎样的关系?并写出它们之间的关系式.(2)利用(1)的关系式完成下表:(3)随着时间t 的变化,平均速度v 发生了怎样的变化? (4)平均速度v 是所用时间t 的函数吗?为什么?(5)观察上述函数解析式,与前面学的一次函数有什么不同?这种函数有什么特点? 【归纳结论】一般地,如果两个变量x,y 之间可以表示成y=kx(k 为常数且k ≠0)的形式,那么称y 是x 的反比例函数.其中x 是自变量,常数k 称为反比例函数的比例系数.【教学说明】先让学生进行小组合作交流,再进行全班性的问答或交流.学生用自己的语言说明两个变量间的关系为什么可以看作函数,了解所讨论的函数的表达形式.探究2:反比例函数的自变量的取值范围思考:在上面的问题中,对于反比例函数v=3000/t ,其中自变量t 可以取哪些值呢?分析:反比例函数的自变量的取值范围是所有非零实数,但是在实际问题中,应该根据具体情况来确定该反比例函数的自变量取值范围.由于t 代表的是时间,且时间不能为负数,所有t 的取值范围为t>0.【教学说明】教师组织学生讨论,提问学生,师生互动. 三、运用新知,深化理解 1.见教材P3例题.2.下列函数关系中,哪些是反比例函数?(1)已知平行四边形的面积是12cm 2,它的一边是acm ,这边上的高是hcm ,则a 与h 的函数关系;(2)压强p 一定时,压力F 与受力面积S 的关系;(3)功是常数W 时,力F 与物体在力的方向上通过的距离s 的函数关系.(4)某乡粮食总产量为m 吨,那么该乡每人平均拥有粮食y(吨)与该乡人口数x 的函数关系式.分析:确定函数是否为反比例函数,就是看它们的解析式经过整理后是否符合y=kx(k 是常数,k ≠0).所以此题必须先写出函数解析式,后解答.解:(1)a=12/h ,是反比例函数; (2)F =pS ,是正比例函数; (3)F=W/s ,是反比例函数; (4)y=m/x ,是反比例函数. 3.当m 为何值时,函数y=224m x -是反比例函数,并求出其函数解析式.分析:由反比例函数的定义易求出m 的值.解:由反比例函数的定义可知:2m -2=1,m=3/2.所以反比例函数的解析式为y=4x. 4.当质量一定时,二氧化碳的体积V 与密度ρ成反比例.且V=5m 3时,ρ=1.98kg /m 3 (1)求p 与V 的函数关系式,并指出自变量的取值范围. (2)求V=9m 3时,二氧化碳的密度. 解:略5.已知y =y 1+y 2,y 1与x 成正比例,y 2与x 2成反比例,且x =2与x =3时,y 的值都等于19.求y 与x 间的函数关系式.分析:y1与x 成正比例,则y1=k1x ,y2与x2成反比例,则y2=k2x2,又由y =y1+y2,可知,y=k1x+k2x2,只要求出k1和k2即可求出y 与x 间的函数关系式.解:因为y 1与x 成正比例,所以y 1=k 1x ;因为y 2与x 2成反比例,所以y 2=22k x,而y =y 1+y 2,所以y=k 1x+22k x,当x =2与x =3时,y 的值都等于19.【教学说明】加深对反比例函数概念的理解,及掌握如何求反比例函数的解析式. 四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.课后作业布置作业:教材“习题1.1”中第1、3、5题.教学反思学生对于反比例函数的概念理解的都很好,但在求函数解析式时,解题不够灵活,如解答第5题时,不知如何设未知数.在这方面应多加练习.1.2 反比例函数的图象与性质第1课时反比例函数的图象与性质(1)教学目标【知识与技能】1.会用描点法画反比例函数图象;2.理解反比例函数的性质.【过程与方法】观察、比较、合作、交流、探索.【情感态度】通过对反比例函数的图象的分析,探索并掌握反比例函数的图象的性质.【教学重点】画反比例函数的图象,理解反比例函数的性质.【教学难点】理解反比例函数的性质,并能灵活应用.教学过程一、情景导入,初步认知你还记得一次函数的图象吗?一次函数的图象怎样画呢?一次函数有什么性质呢?反比例函数的图象又会是什么样子呢?【教学说明】在回忆与交流中,进一步认识函数,图象的直观有助于理解函数的性质.二、思考探究,获取新知探究1:反比例函数图象的画法画出反比例函数y=6x的图象.分析∶画出函数图象一般分为列表、描点、连线三个步骤.(1)列表:取自变量x的哪些值?x是不为零的任何实数,所以不能取x的值为零,但仍可以以零为基准,左右均匀,对称地取值.(2)描点:用表里各组对应值作为点的坐标,在直角坐标系中描出各点(-6,-1)、(-3,-2)、(-2,-3)等.(3)连线:用平滑的曲线将第一象限各点依次连起来,得到图象的第一个分支;用平滑的曲线将第三象限各点依次连起来,得到图象的另一个分支.这两个分支合起来,就是反比例函数的图象.思考:(1)观察上图,y轴右边的各点,当横坐标x逐渐增大时,纵坐标y如何变化?y轴左边的各点是否也有相同的规律?(2)这两条曲线会与x轴、y轴相交吗?为什么?探究2:反比例函数所在的象限画出函数y=3x的图形,并思考下列问题:(1)函数图形的两个分支分别位于哪些象限?(2)在每一象限内,函数值y随自变量x的变化是如何变化的?【归纳结论】一般地,当k>0时,反比例函数y=kx的图象由分别在第一、三象限内的两支曲线组成,它们与x轴、y轴都不相交,在每个象限内,函数值y随自变量x的增大而减小.探究3:反比例函数y=-6x的图象.可以引导学生采用多种方式进行自主探索活动:(1)可以用画反比例函数y=-6x的图象的方式与步骤进行自主探索其图象;(2)可以通过探索函数y=6x与y=-6x之间的关系,画出y=-6x的图象.【归纳结论】一般地,当k<0时,反比例函数y=kx的图象由分别在第二、四象限内的两支曲线组成,它们与x轴、y轴都不相交,在每个象限内,函数值y随自变量x的增大而增大.探究4:反比例函数的性质反比例函数y=-6x与y=6x的图象有什么共同特征?【教学说明】引导学生从通过与一次函数的图象的对比感受反比例函数图象“曲线”及“两支”的特征.【归纳结论】反比例函数y=kx(k≠0)的图象是由两个分支组成的曲线.当k>0时,图象在一、三象限;当k<0时,图象在二、四象限.反比例函数y=kx与y=-kx(k≠0)的图象关于x轴或y轴对称.【教学说明】学生动手画反比函数图象,进一步掌握画函数图象的步骤.观察函数图象,掌握反比例函数的性质.三、运用新知,深化理解1.教材P9例1.2.如果函数y=2x k+1的图象是双曲线,那么k=.【答案】-23.如果反比例函数y=3kx-的图象位于第二、四象限内,那么满足条件的正整数k的值是.【答案】1,24.已知直线y=kx+b的图象经过第一、二、四象限,则函数y=kbx的图象在第象限.【答案】二、四5.反比例函数y=1x的图象大致是图中的( ).解析:因为k=1>0,所以双曲线的两支分别位于第一、三象限. 【答案】 C6.下列反比例函数图象一定在第一、三象限的是( )【答案】 C7.已知函数23()2m y m x --为反比例函数.(1)求m 的值;(2)它的图象在第几象限内?在各象限内,y 随x 的增大如何变化? (3)当-3≤x ≤-12时,求此函数的最大值和最小值.8.作出反比例函数y=12x的图象,并根据图象解答下列问题: (1)当x =4时,求y 的值; (2)当y =-2时,求x 的值; (3)当y >2时,求x 的范围. 解:列表:由图知:(1)y=3;(2)x=-6;(3)0<x<69.作出反比例函数y=-4x的图象,结合图象回答:(1)当x=2时,y的值;(2)当1<x≤4时,y的取值范围;(3)当1≤y<4时,x的取值范围.解:列表:由图知:(1)y=-2;(2)-4<y≤-1;(3)-4≤x<-1.【教学说明】为了让学生灵活的用反比例函数的性质解决问题,在研究每一题时,要紧扣性质进行分析,达到理解性质的目的.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.课后作业布置作业∶教材“习题1.2”中第1、2、4题.教学反思通过本节课的学习使学生理解了反比例函数的意义和性质,并掌握了用描点法画函数图象的方法.同时也为后面的学习奠定基础.从练习上来看,学生掌握的不够好,应多加练习.第2课时反比例函数的图象与性质(2)教学目标【知识与技能】1.会求反比例函数的解析式;2.巩固反比例函数图象和性质,通过对图象的分析,进一步探究反比例函数的增减性.【过程与方法】经历观察、分析、交流的过程,逐步提高运用知识的能力.【情感态度】提高学生的观察、分析能力和对图形的感知水平.【教学重点】会求反比例函数的解析式.【教学难点】反比例函数图象和性质的运用.教学过程一、情景导入,初步认知1.反比例函数有哪些性质?2.我们学会了根据函数解析式画函数图象,那么你能根据一些条件求反比例函数的解析式吗?【教学说明】复习上节课的内容,同时引入新课.二、思考探究,获取新知1.思考:已知反比例函数y=kx的图象经过点P(2,4)(1)求k的值,并写出该函数的表达式;(2)判断点A(-2,-4),B(3,5)是否在这个函数的图象上;(3)这个函数的图象位于哪些象限?在每个象限内,函数值y随自变量x 的增大如何变化?分析:(1)题中已知图象经过点P(2,4),即表明把P点坐标代入解析式成立,这样能求出k,解析式也就确定了.(2)要判断A、B是否在这条函数图象上,就是把A、B的坐标代入函数解析式中,如能使解析式成立,则这个点就在函数图象上.否则不在.(3)根据k的正负性,利用反比例函数的性质来判定函数图象所在的象限、y随x的值的变化情况.【归纳结论】这种求解析式的方法叫做待定系数法求解析式.2.下图是反比例函数y=kx的图象,根据图象,回答下列问题:(1)k的取值范围是k>0还是k<0?说明理由;(2)如果点A(-3,y1),B(-2,y2)是该函数图象上的两点,试比较y1,y2的大小.分析:(1)由图象可知,反比例函数y=kx的图象的两支曲线分别位于第一、三象限内,在每个象限内,函数值y随自变量x的增大而减小,因此,k>0.(2)因为点A(-3,y1),B(-2,y2)是该函数图象上的两点且-3<0,-2<0.所以点A、B都位于第三象限,又因为-3<-2,由反比例函数的图像的性质可知:y1>y2.【教学说明】通过观察图象,使学生掌握利用函数图象比较函数值大小的方法.三、运用新知,深化理解1.若点A(7,y1),B(5,y2)在双曲线y=-3x上,则y1、y2中较小的是.【答案】y22.已知点A(x1,y1),B(x2,y2)是反比例函数y=kx(k>0)的图象上的两点,若x1<0<x2,则有( ).A.y1<0<y2B.y2<0<y1C.y1<y2<0D.y2<y1<0【答案】A3.若A(a1,b1),B(a2,b2)是反比例函数图象上的两个点,且a1<a2,则b1与b2的大小关系是( )A.b1<b2B.b1=b2C.b1>b2D.大小不确定【答案】D4.函数y=-1x的图象上有两点A(x1,y1),B(x2,y2),若0<x1<x2,则( )A.y1<y2B.y1>y2C.y1=y2D.y1、y2的大小不确定【答案】A5.已知点P(2,2)在反比例函数y=kx(k≠0)的图象上,(1)当x=-3时,求y的值;(2)当1<x<3时,求y的取值范围.6.已知y=kx(k≠0,k为常数)过三个点A(2,-8),B(4,b),C(a,2).(1)求反比例函数的表达式;(2)求a与b的值.解:(1)将A(2,-8)代入反比例解析式得:k=-16,则反比例解析式为y=-16x; (2)将B (4,b )代入反比例解析式得:b=-4;将C (a ,2)代入反比例解析式得:2=-16a,即a=-8. 7.已知反比例函数的图象过点(1,-2). (1)求这个函数的解析式,并画出图象;(2)若点A(-5,m)在图象上,则点A 关于两坐标轴和原点的对称点是否还在图象上?分析:(1)反比例函数的图象过点(1,-2),即当x =1时,y =-2.由待定系数法可求出反比例函数解析式;再根据解析式,通过列表、描点、连线可画出反比例函数的图象;(2)由点A 在反比例函数的图象上,易求出m 的值,再验证点A 关于两坐标轴和原点的对称点是否在图象上.解:(1)设:反比例函数的解析式为:y=kx (k ≠0).而反比例函数的图象过点(1,-2),即当x =1时,y =-2.所以-2=1k,k =-2.即反比例函数的解析式为:y=-2x.(2)点A(-5,m)在反比例函数y=-2x图象上,所以m=25--=25,点A的坐标为(-5, 25).点A关于x轴的对称点(-5,-25)不在这个图象上;点A关于y轴的对称点(5, 25)不在这个图象上;点A关于原点的对称点(5,-25)在这个图象上;【教学说明】通过练习,巩固本节课数学内容.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.课后作业布置作业:教材“习题1.2”中第7题.教学反思教学中,我深深地体会到:要想让学生真正掌握求函数解析式的方法,教师应在给出相应的典型例题的条件下,让学生自己去寻找答案,自己去发现规律.最后,教师清楚地向学生总结每一种函数解析式的适用范围,以及一般应告知的条件.在信息社会飞速发展的今天,教师要从以前的教师教、学生学的观念中解放出来,教会学生如何学,让学生自己去探究,自己去学习,去获取知识.在《中学数学课程标准》中明确规定:教师不仅是学生的引导者,也是学生的合作者.教学中,要让学生通过自主讨论、交流,来探究学习中碰到的问题、难题,教师从中点拨、引导,并和学生一起学习,探讨,才能真正做到教学相长,也才能真正让每一个学生都学有所获.第3课时反比例函数的图象与性质(3)教学目标【知识与技能】1.综合运用一次函数和反比例函数的知识解决有关问题;2.借助一次函数和反比例函数的图象解决某些简单的实际问题.【过程与方法】经历观察、分析、交流的过程,逐步提高运用知识的能力.【情感态度】能灵活运用函数图象和性质解决一些较综合的问题,培养学生看图(象)、识图(象)能力、体会用“数、形”结合思想解答函数题.【教学重点】理解并掌握一次函数,反比例函数的图象和性质,并能利用它们解决一些综合问题.【教学难点】学会从图象上分析、解决问题,理解反比例函数的性质.教学过程一、情景导入,初步认知1.正比例函数有哪些性质?2.一次函数有哪些性质?3.反比例函数有哪些性质?【教学说明】对所学的三种函数的性质教学复习,让学生对它们的性质有系统的了解.二、思考探究,获取新知1.已知一个正比例函数与一个反比例函数的图象交于P(-3,4),试求出它们的表达式,并在同一坐标系内画出这两个函数的图象.解:设正比例函数,反比例函数的表达式分别为y=k 1x,y=2k x,其中,k 1,k 2是常数,且均不为0. 由于这两个函数的图象交于P (-3,4),则P (-3,4)是这两个函数图象上的点,即点P 的坐标分别满足这两个表达式.因此,4=k 1×(-3),4=23k -解得,k 1=43- k 2=-12所以,正比例函数解析式为y=43-x,反比例函数解析式为y=-12x.函数图象如下图.【教学说明】通过图象,让学生掌握一次函数与反比例函数的综合应用.2.在反比例函数y=6x的图象上取两点P(1,6),Q(6,1),过点P分别作x 轴、y 轴的平行线,与坐标轴围成的矩形面积为S 1= ;过点Q分别作x 轴、y 轴的平行线,与坐标轴围成的矩形面积为S2= ;S 1与S 2有什么关系?为什么?【归纳结论】反比例函数y=kx(k ≠0)中比例系数k 的几何意义:过双曲线y=kx(k ≠0)上任意一点引x 轴、y 轴的平行线,与坐标轴围成的矩形面积为k 的绝对值.【教学说明】引导学生根据一定的分类标准研究反比例函数的性质,同时鼓励学生用自己的语言进行表述,从而提高学生的表达能力与数学语言的组织能力.三、运用新知,深化理解1.已知如图,A 是反比例函数y=kx 的图象上的一点,AB 丄x 轴于点B ,且△ABO 的面积是3,则k 的值是( )A.3B.-3C.6D.-6分析:过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S=12|k|.解:根据题意可知:S△AOB=12|k|=3,又反比例函数的图象位于第一象限,k>0,则k=6.【答案】C2.反比例函数y=6x与y=2x在第一象限的图象如图所示,作一条平行于x轴的直线分别交双曲线于A、B两点,连接OA、OB,则△AOB的面积为( )A. 12B.2C.3D.1分析:分别过A、B作x轴的垂线,垂足分别为D、E,过B作BC⊥y 轴,点C为垂足,再根据反比例函数系数k的几何意义分别求出四边形OEAC、△AOE、△BOC的面积,进而可得出结论.解:分别过A、B作x轴的垂线,垂足分别为D、E,过B作BC⊥y轴,点C为垂足,∵由反比例函数系数k的几何意义可知,S四边形OEAC =6,S△AOE=3,S △BOC =1,∴S △AOB =S 四边形OEAC -S △AOE -S △BOC =6-3-1=2.【答案】 B3.已知直线y =x +b 经过点A(3,0),并与双曲线y=kx的交点为B(-2,m)和C ,求k 、b 的值.解:点A(3,0)在直线y =x +b 上,所以0=3+b ,b =-3.一次函数的解析式为:y =x -3.又因为点B(-2,m)也在直线y =x -3上,所以m =-2-3=-5,即B(-2,-5).而点B(-2,-5)又在反比例函数y=kx上,所以k =-2×(-5)=10.4.已知反比例函数y=1k x的图象与一次函数y =k 2x -1的图象交于A(2,1). (1)分别求出这两个函数的解析式;(2)试判断A 点关于坐标原点的对称点与两个函数图象的关系.分析: (1)因为点A 在反比例函数和一次函数的图象上,把A 点的坐标代入这两个解析式即可求出k 1、k 2的值.(2)把点A 关于坐标原点的对称点A ′坐标代入一次函数和反比例函数解析式中,可知A ′是否在这两个函数图象上.解:(1)因为点A(2,1)在反比例函数和一次函数的图象上,所以k1=2×1=2. 1=2k 2-1,k 2=1.所以反比例函数的解析式为:y=2x;一次函数解析式为:y =x -1.(2)点A(2,1)关于坐标原点的对称点是A ′(-2,-1).把A ′点的横坐标代入反比例函数解析式得,y=22=-1,所以点A在反比例函数图象上.把A′点的横坐标代入一次函数解析式得,y=-2-1=-3,所以点A′不在一次函数图象上.5.已知一次函数y=kx+b的图象经过点A(0,1)和点B(a,-3a),a<0,且点B在反比例函数的y=-3x的图象上.(1)求a的值.(2)求一次函数的解析式,并画出它的图象.(3)利用画出的图象,求当这个一次函数y的值在-1≤y≤3范围内时,相应的x的取值范围.(4)如果P(m,y1)、Q(m+1,y2)是这个一次函数图象上的两点,试比较y1与y2的大小.分析:(1)由于点A、点B在一次函数图象上,点B在反比例函数图象上,把这些点的坐标代入相应的函数解析式中,可求出k、b和a的值.(2)由(1)求出的k、b、a的值,求出函数的解析式,通过列表、描点、连线画出函数图象.(3)和(4)都是利用函数的图象进行解题.一次函数和反比例函数的图象为:(3)从图象上可知,当一次函数y的值在-1≤y≤3范围内时,相应的x的值为:-1≤x≤1.(4)从图象可知,y随x的增大而减小,又m+1>m,所以y1>y2.或解:当x1=m时,y1=-2m+1;当x2=m+1时,y2=-2×(m+1)+1=-2m-1所以y1-y2=(-2m+1)-(-2m-1)=2>0,即y1>y2.6.如图,一次函数y=kx+b的图象与反比例函数y=mx的图象交于A、B两点.(1)利用图象中的条件,求反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值大于反比例函数值的x的取值范围.分析:(1)把A、B两点坐标代入两解析式,即可求得一次函数和反比例函数解析式.(2)因为图象上每一点的纵坐标与函数值是相对应的,一次函数值大于反比例函数值,反映在图象上,自变量取相同的值时,一次函数图象上点的纵坐标大于反比例函数图象上点的纵坐标.【教学说明】检测题采取多种形式呈现,增加了灵活性,以基础题为主,也有少量综合问题,可使不同层次水平的学生均有机会获得成功的体验.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.课后作业布置作业:教材“习题1.2”中第6题.通过本节课的学习,发现了一些问题,因此必须强调:教学反思1.综合运用一次函数和反比例函数求解两种函数解析式,往往用待定系数法.2.观察图象,把图象中提供、展现的信息转化为与两函数有关的知识来解题.1.3反比例函数的应用教学目标【知识与技能】经历通过实验获得数据,然后根据数据建立反比例函数模型的一般过程,体会建模思想.【过程与方法】观察、比较、合作、交流、探索.【情感态度】体验数形结合的思想.【教学重点】建立反比例函数的模型,进而解决实际问题.【教学难点】经历探索的过程,培养学生学习数学的主动性和解决问题的能力.教学过程一、情景导入,初步认知复习回顾1.什么是反比例函数?2.反比例函数的图象是什么?3.反比例函数图象有哪些性质?4.反比例函数的图象对称性如何?【教学说明】通过提出问题,引发学生思考,培养学生解决问题的能力.二、思考探究,获取新知1.某校科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地,为了安全、迅速通过这片湿地,他们沿着前进路线铺垫了若干块木板,构筑成一条临时通道,从而顺利完成了任务.你能解释他们这样做的道理吗?(1)根据压力F(N)、压强p(Pa)与受力面积S(m2)之间的关系式p=FS,请你判断:当F一定时,p是S的反比例函数吗?(2)如人对地面的压力F=450N,完成下表:(3)当F=450N时,试画出该函数的图象,并结合图象分析当受力面积S 增大时,地面所受压强p是如何变化的,据此,请说出它们铺垫木板通过湿地的道理.解:(1)对于p=FS,当F一定时,根据反比例函数的定义可知,p是S的反比例函数.(2)因为F=450N,所以当S=0.005m2时,由p=FS得:p=450/0.005=90000(Pa)类似的,当S=0.01m2时,p=45000Pa;当S=0.02m2时,p=22500Pa;当S=0.04m2时,p=11250Pa(3)当F=450N时,该反比例函数的表达式为p=450/S,它的图象如下图所示,由图象的性质可知,当受力面积S增大时,地面所受压强p会越来越小,因此,该科技小组通过铺垫木板的方法来增大受力面积.以减小地面所受压强,从而可以顺利地通过湿地.2.你能根据玻意耳定律(在温度不变的情况下,气体的压强p与它的体积V的乘积是一个常数K(K>0),即pV=K)来解释:为什么使劲踩气球时,气体会爆炸?【教学说明】逐步提高学生从函数图象中获取信息的能力,提高感知水平;此外,在解决实际问题时,要引导学生体会知识之间的联系及知识的综合运用.三、运用新知,深化理解1.教材P15例题.2.一个水池装水12m3,如果从水管中每小时流出xm3的水,经过yh可以把水放完,那么y与x的函数关系式是,自变量x的取值范围是.【答案】y=12x;x>03.若梯形的下底长为x,上底长为下底长的13,高为y,面积为60,则y与x的函数关系是(不考虑x的取值范围).【答案】y=90 x4.某一数学课外兴趣小组的同学每人制作一个面积为200cm2的矩形学具进行展示.设矩形的宽为xcm,长为ycm,那么这些同学所制作的矩形的长y(cm)与宽x(cm)之间的函数关系的图象大致是( )【答案】A5.下列各问题中两个变量之间的关系,不是反比例函数的是( )A.小明完成百米赛跑时,所用时间t(s)与他的平均速度v(m/s)之间的关系B.长方形的面积为24,它的长y与宽x之间的关系C.压力为600N时,压强p(Pa)与受力面积S(m2)之间的关系D.一个容积为25L的容器中,所盛水的质量m(kg)与所盛水的体积V(L)之间的关系【答案】D6.在温度不变的条件下,通过一次又一次地对汽缸顶部的活塞加压,测出每一次加压后缸内气体的体积和气体对汽缸壁所产生的压强,如下表:则可以反映y与x之间的关系的式子是( ).A.y=3000xB.y=6000xC.y=3000xD.y=6000x【答案】D7.一张正方形的纸片,剪去两个一样的小矩形得到一个“E”图案,如图所示,设小矩形的长和宽分别为x、y,剪去部分的面积为20,若2≤x≤10,则y 与x的函数图象是( )【答案】A8.一个长方体的体积是100cm3,它的长是y(cm),宽是5cm,高是x(cm).(1)写出长y(cm)关于高x(cm)的函数关系式,以及自变量x的取值范围;(2)画出(1)中函数的图象;(3)当高是3cm时,求长.解:(1)y=20x(x>0);(2)图象略;(3)长为203cm.【教学说明】用函数观点来处理实际问题的应用,加深对函数的认识.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补。

人教版数学九年级上册第23章旋转数学活动优秀教学案例

人教版数学九年级上册第23章旋转数学活动优秀教学案例
5.作业小结的针对性:布置具有针对性的作业,让学生巩固所学知识,提高他们的数学应用能力。同时,要求学生在作业中运用旋转知识解决实际问题,培养他们的实践能力。教师及时批改作业,给予学生反馈,帮助他们改进学习方法,提高学习效果。这样的作业小结有助于学生对所学知识的巩固和应用,提高他们的数学素养。
4.教师对各小组的成果进行评价,及时给予反馈,提高学生的学习积极性。
(四)反思与评价
1.教师引导学生对自己的学习过程进行反思,总结自己在学习旋转知识中的优点和不足。
2.组织学生进行自我评价,鼓励他们发现自己的长处,增强自信心。
3.教师对学生的学习成果进行评价,关注学生的全面发展,不仅重视知识的掌握,还要注重能力的培养。
2.通过设计有趣的数学故事或问题,激发学生的学习兴趣,使他们主动参与到课堂活动中。
3.创设具有挑战性的数学问题,让学生在解决问题的过程中,自然地引入旋转知识,提高他们的思维能力。
(二)问题导向
1.设计一系列由浅入深的问题,引导学生逐步深入探讨旋转的性质和运算,培养学生的问题解决能力。
2.鼓励学生提出自己的疑问,教师及时解答,确保学生对旋转知识的理解。
人教版数学九年级上册第23章旋转数学活动优秀教学案例
一、案例背景
本节内容是“人教版数学九年级上册第23章旋转”,旋转是几何中的一个重要概念,也是中考的热点之一。学生需要通过本节学习,理解旋转的定义、性质和基本运算。在实际教学中,我发现许多学生在学习旋转时,容易与其生活实际脱节,难以理解旋转的本质,因此,我设计了一份数学活动,旨在让学生在实践中理解旋转,提高他们的空间想象能力和数学思维能力。
3.总结学生提出的旋转现象,引出本节课的主题——旋转。
(二)讲授新知
1.介绍旋转的定义:在平面内,将一个图形绕着某一个点旋转一个角度的图形变换叫做旋转。

九年级数学上册《一元二次方程》优秀教学案例

九年级数学上册《一元二次方程》优秀教学案例
4.通过对一元二次方程的求解与应用,培养学生的运算能力、数据处理能力以及逻辑推理能力。
(二)过程与方法
1.通过小组合作、讨论交流等形式,引导学生主动探索一元二次方程的求解方法,提高学生的合作意识和解决问题的能力。
2.运用比较、分析、归纳等教学方法,帮助学生掌握一元二次方程的求解技巧,并能够将这些方法灵活应用于实际问题中。
二、教学目标
(一)知识与技能
1.理解一元二次方程的定义及其一般形式,掌握判别式的计算方法,了解一元二次方程的根的判别法则。
2.学会使用直接开平方法、因式分解法、配方法、求根公式等方法求解一元二次方程,并能熟练运用这些方法解决具体问题。
3.能够根据实际问题的情境列出相应的一元二次方程,并运用所学的求解方法解决实际问题,提高学生的数学建模能力。
(三)小组合作,提高合作能力
小组合作的教学模式,有助于培养学生的合作意识和团队精神。学生在小组内共同探讨问题、分享观点,既能提高自己的表达能力,又能学习他人的优点,从而实现共同成长。
(四)注重反思,促进自我完善
本案例强调学生的反思与评价,帮助他们认识到自己在学习过程中的优点与不足。通过课后总结、小组互评、教师评价等多种方式,引导学生从不同角度审视自己的学习,促进自我完善。
(五)分层作业,满足个性化需求
针对学生的不同学习水平,本案例设计了基础、提高、拓展三个层次的作业。这种分层作业的设置,既能巩固学生的基础知识,又能提高他们的解题能力,还能激发学生的创新思维,满足个性化学习需求。
3.教师对学生的学习过程和结果进行全面评价,既要关注学生的知识与技能掌握情况,也要关注他们的情感态度与价值观发展。
4.定期组织学生进行阶段性的总结与反思,帮助他们梳理所学知识,形成系统化的知识结构。

人教版九年级数学上册优秀教学案例:21.3实际问题与一元二次方程(面积)

人教版九年级数学上册优秀教学案例:21.3实际问题与一元二次方程(面积)
五、案例亮点
1.实际问题引入:通过设计具有挑战性和启发性的实际问题,如“一个长方形的长比宽多20%,求长方形的面积”,引导学生主动探索、思考和解决问题。这种教学方法能够激发学生的学习兴趣,培养他们的数学思维水平,提高他们运用数学知识解决实际问题的能力。
2.一元二次方程的解法展示:在教学过程中,我通过示例演示了一元二次方程的解题过程,让学生掌握解题方法。我详细解释了一元二次方程的公式法、因式分解法等解法,并通过步骤演示了如何应用这些解法解决实际问题。这种教学方法有助于学生理解和掌握一元二次方程的解法,提高他们的数学素养。
(三)小组合作
1.将学生分成小组,鼓励他们合作交流、共同解决问题。教师给予适当的引导和指导,帮助学生建立合作学习的意识。
2.设计小组讨论的问题,如“你们小组认为一元二次方程在解决实际问题中的应用有哪些?”引导学生进行深入讨论和思考。
3.组织小组展示和分享,鼓励学生表达自己的观点和解决问题的方法,培养他们的沟通能力和团队合作精神。
2.引导学生运用一元二次方程的解法,通过实践操作和合作交流,提高他们的数学操作能力和团队协作能力。
3.设计拓展问题,让学生尝试运用一元二次方程解决更复杂的问题,培养他们的创新思维和拓展能力。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣和自信心,使他们能够积极主动地参与数学学习。
2.培养学生勇于尝试、不断探索的精神,让他们在解决实际问题的过程中感受到数学的价值。
三、教学策略
(一)情景创设
1.利用多媒体展示实际问题,如动画演示一个长方形的长比宽多20%,让学生直观地感受一元二次方程在解决实际问题中的应用。
2.通过生活实例,如测量教室的长和宽,计算教室的面积,让学生感受到数学与生活的紧密联系。

九年级数学上册《统计的简单应用》优秀教学案例

九年级数学上册《统计的简单应用》优秀教学案例
3. 设计具有挑战性的合作任务,激发小组成员的合作欲望,培养他们的团队精神;
4. 引导学生在合作过程中相互交流、讨论,提高他们的沟通能力和表达能力;
5. 教师在合作过程中给予适当指导,确保小组合作的顺利进行,提高学生的合作效果。
(四)反思与评价
为了提高学生的学习效果,我将实施以下反思与评价策略:
1. 鼓励学生在学习过程中进行自我反思,总结自己的学习方法和经验,提高学习效率;
4. 结合实际问题,引导学生运用所学知识进行数据分析,培养学生的实际问题解决能力。
(三)小组合作
小组合作策略在本章节的教学中具有重要意义,我将采取以下措施:
1. 合理分组,确保每个小组成员在能力、性格等方面的互补,促进学生间的优势互补;
2. 明确小组成员的职责,确保每个成员在合作中发挥自己的作用,提高团队协作效率;
1. 结合学生生活实际,设计具有趣味性、挑战性的统计问题,如学校运动会成绩统计、班级学生身高体重分布等,激发学生的探究欲望;
2. 利用多媒体手段,如图片、视频、实物等,展示统计案例,使学生身临其境,提高他们对统计学的兴趣;
3. 创设互动环节,如角色扮演、现场调查等,让学生在实际操作中感受统计的魅力,培养他们的数据分析能力;
四、教学内容与过程
(一)导入新课
1. 教师通过展示一组关于学校运动会成绩的数据,引导学生思考如何描述这组数据,激发学生的好奇心和求知欲。
2. 提问:“同学们,你们在生活中还遇到过类似的数据描述问题吗?”让学生分享自己的经历,为新课的学习做好铺垫。
3. 通过对学生的回答进行总结,引出本节课的主题——《统计的简单应用》。
4. 定期对学生的作业进行总结和评价,激励学生在课后继续学习和实践,不断提高自己的统计学素养。

九年级数学上册(人教版)21.2解一元二次方程(直接开平方法)优秀教学案例

九年级数学上册(人教版)21.2解一元二次方程(直接开平方法)优秀教学案例
(二)过程与方法
1.通过举例、讲解等方式,引导学生理解平方根的概念,为学习直接开平方法打下基础。
2.设计多个层次的练习题,让学生在练习中掌握直接开平方法的基本步骤,注意一些易错点。
3.引导学生总结直接开平方法的应用规律,提高解题效率。
在教学过程中,我将采用“问题-探究”的教学方法,引导学生通过举例、观察、分析等方法,自主地发现和总结平方根的概念。然后,我将结合学生的认知规律,设计一系列由浅入深的练习题,让学生在实践中逐步掌握直接开平方法的基本步骤,并注意一些易错点。在学生掌握基本方法后,我将引导学生总结直接开平方法的应用规律,提高他们在解题过程中的效率。
2.直接开平方法:在学生理解平方根的概念后,我会引入直接开平方法。我会通过讲解和示例,引导学生掌握直接开平方法的基本步骤。首先,我会让学生观察和分析一些具体的一元二次方程,使他们能够发现直接开平方法的应用规律。然后,我会引导学生总结直接开平方法的一般步骤,如确定方程的根的性质、求出方程的平方根、检验平方根是否为方程的解等。
(三)学生小组讨论
1.设计讨论问题:我会提出一些与本节课内容相关的问题,让学生进行小组讨论。例如,探讨直接开平方法在实际问题中的应用,讨论解一元二次方程时可能遇到的问题及解决方法等。
2.组织学生进行讨论:我会让学生分组进行讨论,鼓励他们积极发表自己的观点和想法。在讨论过程中,我会巡回指导,给予学生必要的帮助和提示。
二、教学目标
(一)知识与技能
1.理解直接开平方法的概念,掌握其解题步骤。
2.能够运用直接开平方法解一元二次方程。
3.了解直接开平方法在实际问题中的应用。
在教学过程中,我将以生动的语言、形象的比喻和具体的例子,帮助学生理解直接开平方法的概念,使他们能够清晰地认识到直接开平方法的特点和作用。通过大量的练习题,让学生在实践中掌握直接开平方法的解题步骤,使他们能够熟练地运用该方法解决实际问题。

九年级数学上册《三条边对应成比例的两个三角形相似》优秀教学案例

九年级数学上册《三条边对应成比例的两个三角形相似》优秀教学案例
4.关注学生个体差异,实施差异化教学
本案例中,教师关注学生的个体差异,针对不同层次的学生布置难易适度的习题。这种差异化教学策略使每个学生都能在课堂上找到适合自己的学习节奏,提高学习效果。
5.反思与评价相结合,促进学生的自主学习
本案例强调反思与评价的重要性,教师通过课堂观察、学生自评和互评等多种方式,全面评估学生的学习效果。这种评价方式有助于学生认识到自己的优点和不足,培养自我反思、自主学习的习惯,为学生的终身学习打下坚实基础。
此外,我还会要求学生在课后进行自我反思,总结自己在课堂上的收获和不足,为下一节课的学习做好准备。通过这样的方式,使学生在完成作业的过程中,进一步巩固和深化对相似三角形性质的理解。
五、案例亮点
1.生活化的情景创设
本教学案例的最大亮点之一是紧密联系学生的生活实际,通过展示校园内外的三角形物体,引导学生从生活中发现数学问题。这种情景创设使得学生对相似三角形的概念有了更直观、生动的认识,激发了他们的学习兴趣,提高了课堂的吸引力。
(三)学生小组讨论
在学生小组讨论的环节,我会将学生分成小组,每组挑选一道具有代表性的习题进行讨论。讨论过程中,学生需要共同分析问题,探讨解题思路,并尝试用相似三角形的性质来解决问题。
我会在各组之间巡回指导,提供必要的帮助和提示,鼓励学生发表自己的观点,倾听他人的意见,通过合作交流,共同解决问题。
(四)总结归纳
(二)过程与方法
1.通过观察、发现、讨论等教学活动,培养学生独立思考、合作交流的能力。
2.引导学生运用已学的几何知识和方法,探索相似三角形的性质,培养学生的创新精神和实践能力。
3.通过解答例题、习题,让学生掌握相似三角形性质的应用,提高学生分析问题和解决问题的能力。
4.鼓励学生将所学知识运用到实际生活中,培养学生的数学应用意识和实际操作能力。

九年级数学上册《中位线》优秀教学案例

九年级数学上册《中位线》优秀教学案例
九年级数学上册《中位线》优秀教学案例
一、案例背景
在我国初中数学教育中,九年级的学生已经具备了较为扎实的数学基础和逻辑思维能力。《中位线》作为九年级数学上册的教学内容,旨在帮助学生理解几何图形中的特殊线段——中位线,并运用中位线的性质解决实际问题。本案例以九年级数学上册《中位线》为背景,结合学生的实际水平和教学目标,设计了一系列具有实用性和启发性的教学活动。通过引导学生探索中位线的性质,培养他们的空间想象力和几何直观,进一步提高学生的数学素养和解决问题的能力。在教学过程中,教师将采用人性化的语言,激发学生的学习兴趣,营造轻松愉快的教学氛围,让九年级学生在掌握知识的同时,感受到数学学习的乐趣。
四、教学内容与过程
(一)导入新课
在导入新课环节,我将通过一个简单的实际问题和一则相关的数学故事来吸引学生的注意力,为新课的学习做好铺垫。
1.实际问题:向学生展示一个关于土地划分的问题,提出如何公平地划分一块三角形的土地给三个人的问题。这个问题与学生的生活息息相关,可以激发他们的好奇心和探究欲望。
2.数学故事:讲述古希腊数学家欧几里得如何运用中位线原理解决土地划分问题的故事,以此来引出中位线的概念,让学生感受到数学的实用性和历史渊源。
-鼓励学生在学习过程中积极提问、勇于挑战,培养他们面对困难的勇气。
-对学生的每一次进步给予肯定和表扬,增强他们的自信心。
2.引导学生认识到数学学习的价值,激发他们的学习兴趣和动力。
-通过实例讲解,让学生感受到数学在生活中的重要作用。
-举办数学知识竞赛、讲座等活动,拓宽学生的知识视野,提高他们的学习兴趣。
1.创设生活情境:以学生熟悉的生活场景为例,如校园里的操场、家庭房间布局等,引导学生发现中位线在生活中的பைடு நூலகம்用,从而引出中位线的概念。

九年级数学上册《配紫色游戏》优秀教学案例

九年级数学上册《配紫色游戏》优秀教学案例
(四)总结归纳
1.教师引导学生回顾本节课所学的内容,总结概率的基本概念、计算方法以及在配紫色游戏中的应用。
2.强调概率问题在实际生活中的重要性,激发学生学习数学的兴趣。
3.鼓励学生提出自己在学习过程中遇到的困难和问题,组织全班同学共同解决,提高学生的合作能力。
(五)作业小结
1.布置一些关于概率计算的练习题,巩固所学知识,提高学生的解题能力。
2.以问题为导向的教学方法
案例中,教师通过一系列富有启发性的问题,引导学生主动探究、思考。这种问题导向的教学方法,有助于培养学生的逻辑思维和解决问题的能力,让学生在解决问题的过程中掌握概率的计算方法和应用。
3.小组合作学习,促进交流与合作
本案例强调小组合作学习,让学生在组内共同探讨问题、分享想法。这种学习方式不仅有助于提高学生的合作能力和团队精神,还能够培养学生的沟通能力和组织协调能力,使学生在互动交流中共同成长。
4.最后,强调概率在实际生活中的应用,让学生认识到学习概率的重要性。
(三)学生小组讨论
1.将学生分成若干小组,让他们共同探讨配紫色游戏中可能出现的各种情况,并运用树状图或列表法进行表示和分析。
2.各小组在讨论过程中,要关注如何计算各种情况的概率,以及如何提高配紫色的成功率。
3.各小组在讨论结束后,分享自己的成果,其他小组可以进行补充和提问,共同进步。
(二)讲授新知
1.首先介绍概率的基本概念,如随机事件、必然事件、不可能事件等,并通过实际例子进行解释,让学生理解这些概念。
2.接着,讲解树状图、列表法等表示和分析随机事件的方法,并结合配紫色游戏进行具体演示,让学生学会如何运用这些方法进行概率计算。
3.然后,通过讲解配紫色游戏的概率计算,引导学生运用所学知识解决实际问题,提高学生的数学应用能力。

人教版数学九年级下册优秀教学案例29.2三视图(第1课时)

人教版数学九年级下册优秀教学案例29.2三视图(第1课时)
在实际教学中,我发现许多学生在学习三视图时,难以理解其本质内涵,容易将三视图与实物图形混淆。针对这一问题,我设计了本节优秀教学案例,旨在帮助学生更好地理解和掌握三视图的知识,提高他们的空间想象能力。
二、教学目标
(一)知识与技能
1.理解三视图的概念,掌握三视图的基本画法,能够将立体图形正确地画出三视图。
(二)过程与方法
1.通过观察实物、模型等,培养学生的空间感知能力,提高他们对三视图的认识。
2.运用小组合作、讨论交流等教学方法,培养学生团队合作精神和沟通能力。
3.采用启发式教学,引导学生主动探究、发现和解决问题,培养他们的创新思维能力。
在教学过程中,我会组织学生观察实物,让他们感受三视图的内涵。同时,我会将学生分成小组,让他们在合作、讨论中共同完成任务,从而培养他们的团队协作能力。此外,我会设置一些富有启发性的问题,引导学生进行思考,激发他们的创新思维。
三、教学策略
(一)情景创设
1.利用实物、模型等展示三视图的实际应用,让学生感受三视图在生活中的重要性。
2.创设有趣的情境,引导学生主动探究三视图的奥秘,激发他们的学习兴趣。
3.通过多媒体课件展示三视图的动态变化,提高学生的空间想象能力。
在教学过程中,我会充分利用实物、模型等资源,让学生直观地感受三视图的实际应用,从而激发他们的学习兴趣。同时,我会运用多媒体课件展示三视图的动态变化,丰富教学手段,提高学生的空间想象能力。
四、教学内容与过程
(一)导入新课
1.利用实物展示三视图的实际应用,引发学生对三视图的兴趣。
2.创设有趣的情境,如动画、故事等,激发学生的学习欲望。
3.提出引导性问题,如“你们在生活中见过三视图吗?它们有什么作用?”等,引起学生思考。

九年级数学上册《切线的判定定理》优秀教学案例

九年级数学上册《切线的判定定理》优秀教学案例
九年级数学上册《切线的判定定理》优秀教学案例
一、案例背景
在我国九年级数学上册的教学中,平面几何占据了重要的地位,其中切线的判定定理是学生难以掌握的一个知识点。针对这一情况,本教学案例旨在通过生活实例引入,激发学生兴趣,运用探究与合作的学习方式,帮助学生理解并掌握切线的判定定理。本案例结合教材内容,注重培养学生的几何直观和逻辑思维能力,提高他们解决实际问题的能力。
3.能够运用圆的性质和切线的判定定理推导出相关结论,如圆的切线垂直于过切点的半径等。
4.掌握切线方程的求解方法,能够根据实际问题列出切线方程并求解。
5.提高学生的几何直观和空间想象能力,培养他们在解决几何问题时运用直观和逻辑思维的能力。
(二)过程与方法
在本章节的教学过程中,教师将采用以下方法引导学生学习:
1.采用生活实例引入切线的概念,激发学生的学习兴趣。
2.通过观察、猜想、验证、总结等步骤,引导学生发现并掌握切线的判定定理。
3.创设问题情境,鼓励学生独立思考、合作交流,培养他们的探究能力和团队协作精神。
4.设置不同难度的练习题,使学生在实践中巩固所学知识,提高解决问题的能力。
5.引导学生运用所学知识解决实际问题,培养学生的创新意识和实践能力。
a.除了判定定理,还有哪些方法可以判断直线是否为圆的切线?
b.在解决实际问题时,如何灵活运用切线的判定定理?
3.提醒学生注意作业的规范性和解题思路的清晰性,培养良好的学习习惯。
五、案例亮点
1.生活情境的巧妙运用
本教学案例的最大亮点之一是巧妙地运用生活情境导入新课。通过引入公园湖泊与直线的图片,激发学生的好奇心,使他们在生活实例中感受数学的魅力。这种情境创设不仅拉近了数学与生活的距离,还激发了学生的学习兴趣,提高了课堂参与度。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学教学案例
——“直线与圆的位置关系”
一、教学设计
本节课是在学习了点和圆的位置关系的基础上,进行的为后面的圆与圆的位置关系作铺垫的一节课。

它体现了运动几何的观点,通过直线与圆的相对运动,揭示直线与圆的位置关系,对它的学习和研究,可以拓展学生的思维空间,培养学生的观察、分析、归纳能力,并向学生渗透"数形结合"、"类比"、"转化"的数学思想,培养学生运动变化的辨证唯物主义观点;通过对研究过程的反思,进一步强化对分类和化归思想的认识。

“直线与圆的位置关系”地探索要通过学生动手实践和合作探究来完成,这有利于激发学生学习数学的兴趣,让学生积极主动地参与数学教学的全过程,使每个学生都在原有的基础上得到发展,获得成功的体验,树立学好数学的自信心。

二、教学过程
1、教学目标
(1)从具体的事例理解直线与圆的三种位置关系,并会判断直线与圆的位置关系;(2)探索圆心到直线的距离与半径之间的数量关系和直线与圆的位置关系之间的内在联系;
(3)通过直线与圆的位置关系的探究,向学生渗透分类、数形结合的思想,培养学生观察、分析、概括和合作交流的能力;
(4)使学生从运动的观点来观察直线与圆相交、相切、相离的关系,培养学生的辩证唯物主义观点。

2、重点、难点分析
(1)教学重点:经历探索直线与圆的位置关系的过程,理解直线与圆有三种位置关系,了解切线的概念;
(2)教学难点: 探索圆心到直线的距离与半径之间的数量关系和直线与圆的位置关系之间的内在联系。

3、教学过程:
1、在探索直线和圆位置关系所对应的数量关系时,我先引导学生回顾点和圆的位置关系所对应的数量关系,启发学生运用类比的思想来思考问题,解决问题,学生很轻松的就能够得出结论,从而突破本节课的难点,使学生充分理解位置关系与数量关系的相互转化,这种等价关系是研究切线的理论基础,为下节课探索切线的性质打好基础。

2、在教学过程中注重知识的获得过程,为学生提供探索知识的机会,让学生参与到问题的探究中去,给学生思考,动手的时间和空间,让学生在探究中学习,在学习中探究,让学生摸着石头过河,这样加深了学生的记忆,激发了学生的学习兴趣和求知欲,让他们觉得这些知识不是我教给他们的,而是他们自己探索发现的。

着既使得每个学生在原有的基础上得到了发展,又让每个学生获得了成功的体验。

3、在教学活动中,让学生经历观察操作,实践验证等活动,在合作与交流中获得了良好的情感体验,体会数学的作用。

4、我认为美中不足之处是,练习没设计与实际生活相关的问题,另外作业设计过于传统,如果适当的分层会更些。

总之,新课程的课堂教学要让学生作为课堂教学的主体参与到课堂教学过程中来,充分展现自己的个性,施展自己的才华,使学生在参与和体验的过程中真正成为学习的主人,养成勇于探索、敢于实践的个性品质。

与此同时,教师还要为学生的学习创造探究的环境,营造探究的氛围,促进探究的开展,把握探究的深度,评价探究的效果。

相关文档
最新文档