《 圆的有关性质》ppt课件
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 学习重点: 圆的有关概念.
1.阅读材料 引入新知
古代人最早是从太阳,阴历十五的月亮得到圆的概 念的.那么是什么人做出第一个圆的呢?18 000 年前的 山顶洞人用一种尖状的石器来钻孔,一面钻不透,再从 另一面钻,石器的尖是圆心,它的宽度的一半就是半径, 这样以同一个半径和圆心一圈圈地转,就可以钻出一个 圆的孔.到了陶器时代,许多陶器都是圆的,圆的陶器 是将泥土放在一个转盘上制成的.
3.与圆有关的概念
弦 连接圆上任意两点的线段叫做弦,如图中的 AC. 经过圆心的弦叫做直径,如图中的 AB.
B
O
A
C
3.与圆有关的概念
弧 圆上任意两点间的部分叫做圆弧,简称弧.以 A、B 为端点的弧记作 AB,读作“圆弧 AB”或“弧 AB”. 圆的任意一条直径的两个端点把圆分成两条弧,每 一条弧都叫做半圆.
九年级 上册
24.1 圆的有关性质(第1课时)
课件说明
• 圆是继三角形、四边形等基本图形后的又一个重要内 容,圆的有关概念为今后学习圆的知识奠定了基础.
课件说明
• 学习目标: 1.通过观察实验操作,感受圆的定义,结合图形认 识弧,半圆,弦,直径,等圆,等弧,优弧,劣 弧等有关概念; 2.在具体情景中,通过探究、交流、反思等活动获 得圆的有关定义,体验探求规律的思想方法.
2.合作交流,学习新知
生活中的数学问题
手拉手友好学校的小强同学今天给我们发出了一个求助 电话,问题是这样的: 他们学校的破旧篮球场地只有篮球架,没有场地线。 为了开展初三同学的篮球比赛,他们打算自己画个场地, 你能帮助他们自己动手画出场地中的圆吗?
学校现有场地
改造参考图
2.合作交流,学习新知
圆的概念 如图,在一个平面内,线段 OA 绕它固定的一个端 点 O 旋转一周,另一个端点 A 所形成的图形叫做圆.
动态:在一个平面内,线段 OA 绕它固定的一个端 点 O 旋转一周,另一个端点 A 所形成的图形叫做圆.
静态:圆心为 O、半径为 r 的圆可以看成是所有到 定点 O 的距离等于定长 r 的点的集合.
让我们成为会学习的孩子
自学教材80页最后三个段落,弄清楚以下问题: 1、介绍了圆中的那几个相关概念。 2、这几个概念的表示方法是怎样的。 3、提醒同学们区分这几个概念应注意什么。
×
(4)半圆是最长的弧;
×
(5)圆心相同,半径相等的两个圆是同心圆;×
(6)半径相等的两个半圆是等弧. √
4.应用拓展,培养能力
2.写出图中的弧、弦.
A
O
B
C
5.归纳小结
(1)通过今天的学习,你有哪些收获? (2)你是否明确圆的两种定义、弦、 弧等概念?
6.布置作业
教科书第 81 页 练习 第 1,2 题.
B
O
A
C
3.与圆有关的概念
劣弧与优弧 小于半圆的弧(如图中的 AC)叫做劣弧. 大于半圆的弧(用三个字母表示,如图中的 ABC) 叫做优弧.
B
O
A
C
3.与圆有关的概念
等弧 在同圆或等圆中,能重合的弧叫等弧.
4.应用拓展,培养能力
1.判断下列说法的正误:
(1)弦是直径;
×
(2)半圆是弧;
√பைடு நூலகம்
(3)过圆心的线段是直径;
的集合.
学以致用 学习了圆的概念,你能说说这个 生活实例中的数学奥秘吗? 车轮为什么圆的,而不是椭圆或其他图形呢?
为什么车轮是圆的
把车轮做成圆形,车轮上各点到车轮中心(圆 心)的距离都等于车轮的半径,当车轮在平面上滚 动时,车轮中心与平面的距离保持不变,因此,当
平稳 车辆在平坦的路上行驶时,坐车的人会感觉到非常
平稳,这也是车轮都做成圆形的数学道理.
2.合作交流,学习新知
O
同心圆 圆心相同,半径不同
等圆 半径相同,圆心不同
确定一个圆的两个要素: 一是圆心, 二是半径.
2.合作交流,学习新知
A ·r O
问题1:圆上各点到定点(圆心 O)的距离有什么 规律?
问题2:到定点的距离等于定长的点又有什么特点?
2.合作交流,学习新知
1.阅读材料 引入新知
我国古代,半坡人就已经会造圆形的房顶了.大约 在同一时代,美索不达米亚人做出了世界上第一个轮 子——圆的木轮.很早之前,人们将圆的木轮固定在木 架上,这样就成了最初的车子. 2 000 多年前,墨子给 出圆的定义“一中同长也”,意思是说,圆有一个圆心, 圆心到圆周的长都相等.这个定义比古希腊数学家欧几 里得给圆下的定义要早很多年.
固定的端点 O 叫做圆心;
A
线段 OA 叫做半径;
r
以点 O 为圆心的圆,记作
·
⊙O,读作“圆O”.
O
从画圆的过程可以看出:
(1)圆上各点到定点(圆心O)的距离都等 于定长(半径r);
(2)到定点的距离等于定长的点都在同一个圆 上.
归纳:圆心为O、半径为r的圆可以
看成是所有到定点O的距离等于定长r 的点
1.阅读材料 引入新知
古代人最早是从太阳,阴历十五的月亮得到圆的概 念的.那么是什么人做出第一个圆的呢?18 000 年前的 山顶洞人用一种尖状的石器来钻孔,一面钻不透,再从 另一面钻,石器的尖是圆心,它的宽度的一半就是半径, 这样以同一个半径和圆心一圈圈地转,就可以钻出一个 圆的孔.到了陶器时代,许多陶器都是圆的,圆的陶器 是将泥土放在一个转盘上制成的.
3.与圆有关的概念
弦 连接圆上任意两点的线段叫做弦,如图中的 AC. 经过圆心的弦叫做直径,如图中的 AB.
B
O
A
C
3.与圆有关的概念
弧 圆上任意两点间的部分叫做圆弧,简称弧.以 A、B 为端点的弧记作 AB,读作“圆弧 AB”或“弧 AB”. 圆的任意一条直径的两个端点把圆分成两条弧,每 一条弧都叫做半圆.
九年级 上册
24.1 圆的有关性质(第1课时)
课件说明
• 圆是继三角形、四边形等基本图形后的又一个重要内 容,圆的有关概念为今后学习圆的知识奠定了基础.
课件说明
• 学习目标: 1.通过观察实验操作,感受圆的定义,结合图形认 识弧,半圆,弦,直径,等圆,等弧,优弧,劣 弧等有关概念; 2.在具体情景中,通过探究、交流、反思等活动获 得圆的有关定义,体验探求规律的思想方法.
2.合作交流,学习新知
生活中的数学问题
手拉手友好学校的小强同学今天给我们发出了一个求助 电话,问题是这样的: 他们学校的破旧篮球场地只有篮球架,没有场地线。 为了开展初三同学的篮球比赛,他们打算自己画个场地, 你能帮助他们自己动手画出场地中的圆吗?
学校现有场地
改造参考图
2.合作交流,学习新知
圆的概念 如图,在一个平面内,线段 OA 绕它固定的一个端 点 O 旋转一周,另一个端点 A 所形成的图形叫做圆.
动态:在一个平面内,线段 OA 绕它固定的一个端 点 O 旋转一周,另一个端点 A 所形成的图形叫做圆.
静态:圆心为 O、半径为 r 的圆可以看成是所有到 定点 O 的距离等于定长 r 的点的集合.
让我们成为会学习的孩子
自学教材80页最后三个段落,弄清楚以下问题: 1、介绍了圆中的那几个相关概念。 2、这几个概念的表示方法是怎样的。 3、提醒同学们区分这几个概念应注意什么。
×
(4)半圆是最长的弧;
×
(5)圆心相同,半径相等的两个圆是同心圆;×
(6)半径相等的两个半圆是等弧. √
4.应用拓展,培养能力
2.写出图中的弧、弦.
A
O
B
C
5.归纳小结
(1)通过今天的学习,你有哪些收获? (2)你是否明确圆的两种定义、弦、 弧等概念?
6.布置作业
教科书第 81 页 练习 第 1,2 题.
B
O
A
C
3.与圆有关的概念
劣弧与优弧 小于半圆的弧(如图中的 AC)叫做劣弧. 大于半圆的弧(用三个字母表示,如图中的 ABC) 叫做优弧.
B
O
A
C
3.与圆有关的概念
等弧 在同圆或等圆中,能重合的弧叫等弧.
4.应用拓展,培养能力
1.判断下列说法的正误:
(1)弦是直径;
×
(2)半圆是弧;
√பைடு நூலகம்
(3)过圆心的线段是直径;
的集合.
学以致用 学习了圆的概念,你能说说这个 生活实例中的数学奥秘吗? 车轮为什么圆的,而不是椭圆或其他图形呢?
为什么车轮是圆的
把车轮做成圆形,车轮上各点到车轮中心(圆 心)的距离都等于车轮的半径,当车轮在平面上滚 动时,车轮中心与平面的距离保持不变,因此,当
平稳 车辆在平坦的路上行驶时,坐车的人会感觉到非常
平稳,这也是车轮都做成圆形的数学道理.
2.合作交流,学习新知
O
同心圆 圆心相同,半径不同
等圆 半径相同,圆心不同
确定一个圆的两个要素: 一是圆心, 二是半径.
2.合作交流,学习新知
A ·r O
问题1:圆上各点到定点(圆心 O)的距离有什么 规律?
问题2:到定点的距离等于定长的点又有什么特点?
2.合作交流,学习新知
1.阅读材料 引入新知
我国古代,半坡人就已经会造圆形的房顶了.大约 在同一时代,美索不达米亚人做出了世界上第一个轮 子——圆的木轮.很早之前,人们将圆的木轮固定在木 架上,这样就成了最初的车子. 2 000 多年前,墨子给 出圆的定义“一中同长也”,意思是说,圆有一个圆心, 圆心到圆周的长都相等.这个定义比古希腊数学家欧几 里得给圆下的定义要早很多年.
固定的端点 O 叫做圆心;
A
线段 OA 叫做半径;
r
以点 O 为圆心的圆,记作
·
⊙O,读作“圆O”.
O
从画圆的过程可以看出:
(1)圆上各点到定点(圆心O)的距离都等 于定长(半径r);
(2)到定点的距离等于定长的点都在同一个圆 上.
归纳:圆心为O、半径为r的圆可以
看成是所有到定点O的距离等于定长r 的点