七大中值定理的理解与运用

合集下载

数学竞赛专题辅导——中值定理上课用

数学竞赛专题辅导——中值定理上课用

f (a) F (a)
,
(a,b)
3
泰勒中值定理:若函数 f ( x)在 ( x0 ) 内具有 n + 1 阶导数,
则当 x ( x0 )时,有公式:
f (x)
f (x0)
f ( x0 )( x x0 )
f
( x0 2!
)
(
x
x0
)2
f
(n) ( x0 n!
)
(x
x0 )n
Rn ( x)
n1
nn
11
例2 证明:0 a b,
2a ln b ln a a2 b2 b a
1 ab
证明 : f ( x) ln x在[a, b]利用拉格日朗日中值定 理
ln b ln a 1 , (a, b)
ba
a2 b2 2ab 2a
ln b ln a ba
1
2a a2 b2
对F ( x)在[ ,1]上用罗尔定理:
2 ( ,1) (0,1)使 F (2 ) 0,即f (2 ) 0.
例2. 设f ( x) C[0 ,1]且 1 f ( x)dx 0, g( x)在[0 ,1]上有连续导数
在(0,1)内g( x) 0, 又
1 0
0
f ( x)g( x)dx
(1) 对f ( x)用费马定理,罗尔定理.
(2) 需找三个点a, b, c,使f (a) f (b) f (c),(a b c)
则1 (a, b)使f (1 ) 0;2 (b, c)使f (2 ) 0;
对f ( x)在[1,2 ]上用罗尔定理即得结论.
常用的构造函数的几种模型
19
例4.
lim
2! 4!

关于高等数学常见中值定理证明及应用

关于高等数学常见中值定理证明及应用

中值定理首先我们来看看几大定理:1、介值定理:设函数fx在闭区间a,b上连续,且在该区间的端点取不同的函数值fa=A及fb=B,那么对于A与B之间的任意一个数C,在开区间a,b内至少有一点ξ使得fξ=Ca<ξ<b.Ps:c是介于A、B之间的,结论中的ξ取开区间;介值定理的推论:设函数fx在闭区间a,b上连续,则fx在a,b上有最大值M,最小值m,若m≤C≤M,则必存在ξ∈a,b, 使得fξ=C;闭区间上的连续函数必取得介于最大值M与最小值m之间的任何值;此条推论运用较多Ps:当题目中提到某个函数fx,或者是它的几阶导函数在某个闭区间上连续,那么该函数或者其几阶导函数必可以在该闭区间上取最大值和最小值,那么就对于在最大值和最小值之间的任何一个值,必存在一个变量使得该值等于变量处函数值;2、零点定理:设函数fx在闭区间a,b上连续,且fa与fb异号,即fa.fb<0,那么在开区间内至少存在一点ξ使得fξ=0.Ps:注意条件是闭区间连续,端点函数值异号,结论是开区间存在点使函数值为0.3、罗尔定理:如果函数fx满足:1、在闭区间a,b上连续;2、在开区间a,b内可导;3、在区间端点处函数值相等,即fa=fb.那么在a,b内至少有一点ξ<aξ<b,使得f`x=0;4、 拉格朗日中值定理:如果函数fx 满足:1、在闭区间a,b 上连续;2、在开区间a,b 内可导;那么在a,b 内至少有一点ξ<a ξ<b,使得fb-fa=f`ξ.b-a.5、 柯西中值定理:如果函数fx 及gx 满足1、在闭区间a,b 上连续;2、在开区间a,b 内可导;3、对任一xa<x<b,g`x ≠0,那么在a,b 内至少存在一点ξ,使得Ps :对于罗尔定理、拉格朗日中值定理、柯西中值定理结论都是开开区间内取值;6、 积分中值定理:若函数fx 在a,b 上连续,则至少存在一点],[b a ∈ξ使得)()()(a b f dx x f ba -=⎰ξPs :该定理课本中给的结论是在闭区间上成立;但是在开区间上也是满足的,下面我们来证明下其在开区间内也成立,即定理变为:若函数fx 在a,b 上连续,则至少存在一点),(b a ∈ξ使得)()()(a b f dx x f b a -=⎰ξ证明:设⎰=x a dx x f x F )()(,],[b a x ∈因为)(x f 在闭区间上连续,则)(x F 在闭区间上连续且在开区间上可导导函数即为)(x f ;则对)(x F 由拉格朗日中值定理有:),(b a ∈∃ξ使得a b dxx f a b a F b F F b a -=--=⎰)()()()`(ξ而)()`(ξξf F =所以),(b a ∈∃ξ使得)()()(a b f dx x f ba -=⎰ξ;在每次使用积分中值定理的时候,如果想在开区间内使用,我们便构造该函数,运用拉格朗日中值定理来证明下使其在开区间内成立即可;千万不可直接运用,因为课本给的定理是闭区间;定理运用:1、设)(x f 在0,3上连续,在0,3内存在二阶导函数,且⎰+==20)3()2()()0(2f f dx x f f . 证明:1)2,0(∈∃η使)0()(f f =η2)3,0(∈∃ξ使0)``(=ξf证明:先看第一小问题:如果用积分中指定理似乎一下子就出来了,但有个问题就是积分中值定理是针对闭区间的;有的人明知这样还硬是这样做,最后只能是0分;具体证明方法在上面已经说到,如果要在开区间内用积分中指定理,必须来构造函数用拉格朗日中值定理证明其在开区间内符合;1、令]2,0[),()(0∈=⎰x x F dt t f x则由题意可知)2,0(]2,0[)(上连续,在x F 内可导. 则对)(x F 由拉格朗日中值定理有:2、对于证明题而言,特别是真题第一问证明出来的结论,往往在第二问中都会有运用,在做第二问的时候我们不要忘记了第一问证明出来的东西,我们要时刻注意下如何将第一问的东西在第二问中进行运用:第二问是要证明存在点使得函数二阶倒数为0,这个很容易想到罗尔定理来证明零点问题,如果有三个函数值相等,运用两次罗尔定理那不就解决问题啦,并且第一问证明出来了一个等式,如果有fa=fb=fc,那么问题就解决了;第一问中已经在0,2内找到一点,那么能否在2,3内也找一点满足结论一的形式呢,有了这样想法,就得往下寻找了,)3()2()0(2f f f +=,看到这个很多人会觉得熟悉的,和介值定理很像,下面就来证明:]3,0[)(在x f 上连续,则在]3,2[上也连续,由闭区间上连续函数必存在最大值和最小值,分别设为M,m;则.)3(,)2(M f m M f m ≤≤≤≤从而,M f f m ≤+≤2)3()2(,那么由介值定理就有: 则有罗尔定理可知:0)`(),,0(11=∈∃ξηξf ,0)`(),,(22=∈∃ξηξf cPs :本题记得好像是数三一道真题,考察的知识点蛮多,涉及到积分中值定理,介值定理,最值定理,罗而定理,思路清楚就会很容易做出来;2、设fx 在0,1上连续,在0,1内可导,且f0=0,f1=1.证明:ξξξ-=∈∃1)()1,0()1(f 使得、本题第一问较简单,用零点定理证明即可;1、首先构造函数:]1,0[,1)()(∈-+=x x x f x F由零点定理知:ξξξξ-==∈∃1)(,0)()1,0(f F 即使得2、初看本问貌似无从下手,但是我们始终要注意,对于真题这么严谨的题目,他的设问是一问紧接一问,第一问中的结论或多或少总会在第二问中起到作用;在想想高数定理中的就这么些定理,第一问用到的零点定理,从第二问的结论来看,也更本不涉及什么积分问题,证明此问题也只可能从三大中值定理出发,具体是哪个定理,得看自己的情况,做题有时候就是慢慢试,一种方法行不通,就换令一种方法,有想法才是最重要的,对于一道题,你没想法,便无从下手;另外在说一点,在历年证明题中,柯西中值定理考的最少;本题结论都涉及一阶倒数,乘积之后为常数,很可能是消去了变为1你题目做多了,肯定就知道事实就是这样.并且第一问中0与1之间夹了个ξ,如果我们在0与ξ,ξ与1上对)(x f 运用拉格朗日中值定理似乎有些线索;写一些简单步骤,具体详细步骤就不多写了:将第一问中)(ξf 代入即可;Ps :本题是05年数一的一道真题,第一问是基本问题,送分的,第二问有一定区分度,对定理熟练的会容易想到拉格朗日定理,不熟练的可能难以想到方法;做任何题,最重要的不是你一下子就能把题目搞出来,而是你得有想法,有想法才是最重要的,有了想法你才能一步步的去做,如果行不通了,在改变思路,寻求新的解法,如果你没想法,你就根本无从下手;3、设函数fx 在闭区间0,1上连续,在开区间0,1内可导,且f0=0,f1=1/3.对于这道题的结论比较有意思,比较对称,另外一个就是结论的条件,为何要把ηξ、放在两个范围内,不像上一题中直接来个)1,0(∈ξη、,这个分界点1/2 的作用是干吗的;很可能也是把1 /2当做某一个点就像上一题中的ξ,是否要用到拉格朗日中值定理呢,这是我们的一个想法;那具体的函数如何来构造呢,这个得从结论出发,22)`()`(ηξηξ+=+f f我们把等式变一下:0)`()`(22=-+-ηηξξf f ,2)`(ξξ-f 这个不就是331)(ξξ-f 关于ξ的导数而且题目中f1=1/3,貌似这样有点想法了,本题会不会也像上一题那样,运用拉格朗日中值定理后相互消掉变为0呢,有了这些 想法我们就要开始往下走了:先来构造一个函数:0)`()`(=+ξηF F 刚好证明出来;Ps :本题是近几年数二的一道真题,只有一问,有比较大区分度的,得从条件结论互相出发,如何构造出函数是关键;做出来之后我们反过来看这个1/2的作用就知道了,如果只给)1,0(∈ξη、,那就更难了 得自己找这个点,既然题中给了这个点,并且把两个变量分开在两个区间内,我们就对这两个变量在对应区间用相应定理;说明真题出的还是很有技巧的;一般设计难一点的中值定理证明,往往得用拉格朗日定理来证明,两个变量,都涉及到导数问题,这是因为拉格朗日中值定理条件要少些,只需连续,可导即可,不像罗尔定理得有式子相等才可进一步运用;4.设fx 在区间-a,aa>0上具有二阶连续导数,f0=01、写出fx 的带拉格朗日余项的一阶麦克劳林公式2、证明在-a,a 上至少存在一点η使得⎰-=aa dx x f f a )(3)``(3η第一问课本上记住了写出来就行,考的很基础1、22!2)``()0`(!2)``(!1)0`()0()(x f x f x f x f f x f ξξ+⋅=++=2、第二问先将第一问的式子fx 代入看看有什么结果出来⎰⎰--⋅=a a aa dx x f dx x f 22)``()(ξ,)``(ξf 此处不能直接拿到积分号外面,因为他不是与x 无关的数;做到这儿,我们想办法把他弄到积分号外面似乎就能出来,有了这样想法就得寻求办法;题目中说道fx 有二阶连续导数,为何要这样说呢,我们知道连续函数有最大值,最小值,往往会接着和介值定理一起运用;所以有:因为fx 有二阶连续导数,所以存在最大值和最小值,设为M,m 则对于区间-a,a,222)``(,)``(Mx x f mx M x f m ≤⋅≤≤≤ξ所以由介值定理有结论成立;Ps :本题是以前的一道真题,具体哪年也记不得了,主要就是考到介值定理的运用;题目中说的很明白的,有二阶连续导数,往往当题目中提及到什么连续啊,特别是对于导函数连续的,我们总得注意下他有最大值,最小值,进而与介值定理联合运用;5、设fx 在],0[π上连续,且0cos )(,0)(00=⋅=⎰⎰ππxdx x f dx x f .证明:在),0(π内至少存在两个不同点0)()(2121==ξξξξf f 使得、本题看似很简洁,但做起来去不容易;结论是证明等式成立且为0,很容易让我们想到罗尔定理,我们如果能找到三个点处函数值相等,那么是不是就能有些思路了呢;令:],0[,)()(0π∈=⎰x dt t f x F x ,0)()0(==πF F似乎只需在找出一点Fc=0即可;,如果一切如我们所想,证明也就完成了;0)(sin )(cos )(cos cos )(0000=⋅+⋅==⋅⎰⎰⎰ππππdx x F x x F x x xdF xdx x f 似乎已经找到这个点了;但是积分中值定理中,是取闭区间,如果要用的话得先构造函数用拉格朗日中值定理来证明其在开区间内成立;构造函数],0[,)(sin )(0π∈⋅=⎰x dt t F t x G x 具体的证明步骤和上面涉及到的一样,自己去证;证完后就得到所以有:),0(,0)()()0(ππ∈===c F c F F接下来的证明就和第一题中第二小问一样了,具体就不去证明了,自己证,关键掌握方法,思路;Ps :本题是02年左右的数一一道证明题,看看题目很简洁,但具体来做,如果对定理的运用不熟练,还是不好弄出来;本题中涉及到积分,而且又要证明等式成立且为0,容易想到积分中值定理,以及罗尔定理;但是积分中值定理是对于闭区间而言,而我们要用到开区间,只能自己构造函数来证明其在开区间内成立,如果在实际做题的时候你不证明直接用,估计一半的分都没了;本题关键的就是寻找这个点C,找出来了其他的都不是问题,既然是关键点,那得分点也肯定最多了,你不证明这个点,直接套用课本中定理如果用的话,得分类讨论了,硬是说C 点就成立,那估计一半的分都没了;对于中值定理这章,就先给出上面一些经典的题目,大家好好体会下,多做些题,多思考;下面来讲讲对于证明题中的,函数如何来构造:基本上都是从结论出发,运用求导或是积分,或是求微分方程,解出来也可;本人自己总结了一些东西,与大家交流下:首先我们来看看一些构造函数基本方法:一、要证明的等式是一阶导数与原函数之间的关系:一般都会构造出为任意常数或者或者n x e e XXX x g n x x ,)(-⋅=1、如果只是单纯导函数和原函数之间关系,想想构造带有x x e e -或者)()`(x f x f = 可以构造x e x f x g -⋅=)()(0)()`(=+x f x f 可构造x e x f x g ⋅=)()(λ=+)()`(x f x f 可构造x x e e x f x g ⋅-⋅=λ)()()()(x f dt t f xa =⎰这个也是原函数与一阶导函数问题,构造函数⎰⋅=-x a x dt t f e x g )()( 先将其变形下:x x f x f λλ-=-1)()`(左边是导函数与原函数关系可构造:x e x f λ-⋅)(右边可以看成是x x λ-`也成了导函数和原函数之间关系,如是可以构造:x e x λ-⋅从而要构造的函数就是:x e x x f x g λ--=))(()(2、如果还涉及到变量X,想想构造n x0)()`(=+x f x xf 可构造x x f x g ⋅=)()(xx f x f )(2)(-=可构造2)()(x x f x g ⋅= 0)()`(=+x nf x xf 可构造n x x f x g ⋅=)()(3、另外还可以解微分方程来构造函数:如0)`()(=+x f x xf二、二阶导数与原函数之间关系构造带有x x e e -或者如何构造如下:)()`()`()``(x f x f x f x f +=+对于此式子,你会不会有所想法呢,在上面讲到一阶导函数与原函数之间的构造方法,等式前面也可以看成是一阶导函数与原函数只不过原函数是)`(x f 之间关系,从而等式左边可以构造x e x f ⋅)`(等式右边可以构造x e x f ⋅)(总的构造出来函数为:x e x f x f x g ⋅-=))()`(()(另:如果这样变形:构造函数如下:x e x f x f x g -⋅+=))()`(()(,可以看上面原函数与导函数之间关系如何构造的;从而对于此函数构造有两种方法,具体用哪一种构造得看题目给的条件了;如果题目给了)()`(x f x f -为什么值可以考虑第一中构造函数,如果题目给了)()`(x f x f +,则可以考虑第二种构造方法;先变形:变成一阶导函数和原函数之间关系这个函数确实不好构造,如果用微分方程来求会遇到复数根;实际做的时候还得看题目是否给了)`(x f 的一些条件,如果在某个开区间内不为0,而构造出来的函数在闭区间端点取值相等,便可用罗而定理来证明;具体来看看题目:1、 设)(x f 在0,1上连续,在0,1内可导,且f0=f1=0,f1/2=1证明:2、存在1)()`(),,0(+-=∈ηηηξηf f 使得1、对一问直接构造函数用零点定理:x x f x F -=)()(具体详细步骤就不写了;2、该问主要问题是如何构造函数:如果熟练的话用上面所讲方法来构造: 1)()`(+-=ηηηf f 先变形 另:用微分方程求解法来求出要构造的函数把常数退换掉之后就是要构造的函数函数构造出来了,具体步骤自己去做;2、设)`(x f 在a,b 上连续,fx 在a,b 内二阶可导,fa=fb=0,0)(=⎰b a dx x f证明:1存在)`()(),`()(),(,221121ξξξξξξf f f f b a ==∈使得2存在)()``(,),,(21ηηξξηηf f b a =≠∈使得1、第一问中的函数构造:2、第二问中函数构造有两种构造方法,上面讲解中说道了我们在这用第一种原因在于第一问中)()`(x f x f -=0符合此题构造; 具体详细步骤自己去写写;3、设奇函数]1,1[)(-在x f 上具有二阶导数,且f1=1,证明:(1) 存在1)`(),1,0(=∈ξξf 使得(2) 存在1)`()``(),1,1(=+-∈ηηηf f 使得第一问中证明等式,要么用罗尔定理,要么介值定理,要么零点本题很容易想到用罗尔定理构造函数来求,因为涉及到了导函数1、x x f x F -=)()(,题目中提到奇函数,f0=0有F0=F1=0从而用罗尔定理就出来了;2、第二问中的结论出发来构造函数,从上面讲的方法来看,直接就可以写出要构造的函数先变形下:x xx e x f x G e e x f f f ⋅-==⋅=+)1)`(()()`(1)`()``(ηη函数构造出来,并且可以用到第一问的结论,我们只需要在-1,0之间在找一个点也满足1的结论即可;也即1)`(),0,1(=-∈ζζf从而可以对)1,1(),(-⊆∈ξζη运用罗尔定理即可;Ps :本题为13年数一真题,第一问基础题,但要看清题目为奇函数,在0点处函数值为0.第二问关键是构造函数,函数构造出来了就一步步往下做,缺什么条件就去找什么条件或者证明出来,13年考研前我给我的几个考研小伙伴们讲过构造函数的一些方法,考场上都很快就搞出来了;以上是关于中值定理这章的一些小小的讲解,由于科研实践很忙,这些都是今天抽出时间写出来的,Word 上写,真心费时间,如果大家还有什么问题,可以来讨论下;。

中值定理及其应用

中值定理及其应用

中值定理及其应用中值定理是微积分中的一项重要定理,它在数学和物理学等领域有着广泛的应用。

本文将对中值定理的概念、原理以及其在实际问题中的应用进行探讨。

一、中值定理的概念和原理中值定理是微积分中的一个基本定理,它涉及到函数的导数和函数的连续性。

中值定理包括拉格朗日中值定理和柯西中值定理两个重要的定理。

1. 拉格朗日中值定理拉格朗日中值定理是微积分中的一个基本定理,它是由法国数学家拉格朗日提出的。

该定理表明,如果函数f(x)在闭区间[a, b]上连续,在开区间(a, b)上可导,则在(a, b)内至少存在一点c,使得函数在c处的导数等于函数在区间[a, b]上的平均变化率。

数学表达式为:f'(c) = (f(b) - f(a))/(b - a),其中a < c < b其中f'(c)表示函数f(x)在点c处的导数。

2. 柯西中值定理柯西中值定理是中值定理的另一种表达形式,由法国数学家柯西提出。

柯西中值定理表明,如果两个函数在闭区间[a, b]上连续且可导,并且其中一个函数在开区间(a, b)上不为零,则存在一点c在(a, b)内,使得函数的导数之比等于函数值之比:(f(b) - f(a))/(g(b) - g(a)) = f'(c)/g'(c),其中a < c < b其中f'(c)和g'(c)分别表示两个函数在点c处的导数。

二、中值定理的应用中值定理在实际问题中具有广泛的应用,下面将以一些具体的例子来说明其应用。

1. 函数图像的研究通过中值定理,我们可以研究函数在区间内的性质,例如函数的单调性、极值点的位置以及图像的凹凸性等。

通过计算函数的导数和应用中值定理,可以得到函数在不同区间的性质,并进一步绘制函数的图像。

2. 物理学中的应用在物理学中,很多物理量都可以通过导数和中值定理来描述。

例如,在描述物体的运动过程中,我们可以通过速度函数的导数来计算物体的加速度,而中值定理则可以用来描述物体在某一时间段内的平均速度和瞬时速度之间的关系。

中值定理大全

中值定理大全

中值定理大全中值定理是微积分中的一组重要定理,包括了拉格朗日中值定理、柯西中值定理和罗尔中值定理。

下面是这三个定理的详细介绍:1. 拉格朗日中值定理(Lagrange's Mean Value Theorem):如果一个函数在闭区间[a,b]上连续,在开区间(a,b)上可导,那么在开区间(a,b)上至少存在一个点c,使得函数的导数在这个点的值等于函数在区间[a,b]上的平均变化率。

即:若$f(x)$在$[a,b]$上连续,在$(a,b)$上可导,则至少存在一个$c \in (a,b)$,使得$f'(c)=\frac{f(b)-f(a)}{b-a}$。

2. 柯西中值定理(Cauchy's Mean Value Theorem):如果两个函数在闭区间[a,b]上连续,在开区间(a,b)上可导,并且其中一个函数在区间的每一点的导数都不为零,那么存在一个点c,使得这两个函数在这个点的导数之比等于它们在区间的函数值之比。

即:若$f(x)$和$g(x)$在$[a,b]$上连续,在$(a,b)$上可导,且$g'(x)$不为零,则存在一个$c \in (a,b)$,使得$\frac{f'(c)}{g'(c)}=\frac{f(b)-f(a)}{g(b)-g(a)}$。

3. 罗尔中值定理(Rolle's Mean Value Theorem):如果一个函数在闭区间[a,b]上连续,在开区间(a,b)上可导,并且在区间的两个端点处的函数值相等,那么至少存在一个点c,使得函数在这个点的导数为零。

即:若$f(x)$在$[a,b]$上连续,在$(a,b)$上可导,且$f(a)=f(b)$,则存在一个$c \in (a,b)$,使得$f'(c)=0$。

这些中值定理在微积分中有广泛的应用,可以用来证明诸如极值存在性、方程的根的存在性等问题,是微积分中的重要工具。

中值定理的内容及应用

中值定理的内容及应用

中值定理的内容及应用中值定理是微分学中的重要定理之一,它是基于连续函数的连续性与导数的连续性之间的关系而得出的。

中值定理包括鲁尔中值定理、拉格朗日中值定理和柯西中值定理。

这三个定理都是基于函数连续性与导数连续性的条件,从而得到函数在某一区间上的性质。

1. 鲁尔中值定理:设函数f(x)在[a,b]上连续,且在(a,b)内可导,则在(a,b)内至少存在一点c,使得f'(c) = (f(b) - f(a))/(b - a)。

鲁尔中值定理的几何意义是:存在一点c,使得函数在左右两个点的切线斜率等于函数在这两个点间的平均变化率。

2. 拉格朗日中值定理:设函数f(x)在[a,b]上连续,且在(a,b)内可导,则在(a,b)内至少存在一点c,使得f'(c) = (f(b) - f(a))/(b - a)。

拉格朗日中值定理的几何意义是:存在一点c,使得函数在左右两个点的切线斜率等于函数在这两个点间的平均变化率。

3.柯西中值定理:设函数f(x)和g(x)在[a,b]上连续,且在(a,b)内可导,并且g'(x)≠0,则在(a,b)内至少存在一点c,使得[f(b) - f(a)]/[g(b) - g(a)] = f'(c)/g'(c)。

柯西中值定理的几何意义是:存在一点c,使得函数f(x)和g(x)在左右两个点的切线斜率之比等于函数在这两个点间的平均变化率之比。

中值定理的应用非常广泛,其中最为常见的应用是求函数在某个区间内的极值和方程的根。

首先,中值定理可以用来证明函数在某个区间内的极值存在性。

根据鲁尔中值定理,如果函数在某个区间上连续,并在这个区间内可导,且函数的导数在这个区间内的某个点等于零,那么这个点就是函数在这个区间上的一个极值点。

其次,中值定理也可以用来求函数在某个区间内的极值。

首先可以根据拉格朗日中值定理找到函数在该区间内的一个极值点,然后再通过导数的正负性和二阶导数的存在性来确定这个点是极大值还是极小值。

高等数学常见中值定理证明及应用

高等数学常见中值定理证明及应用

中值定理首先我们来看看几大定理:1、介值定理:设函数f(x)在闭区间[a,b]上连续,且在该区间的端点取不同的函数值f(a)=A及f(b)=B,那么对于A与B之间的任意一个数C,在开区间(a,b)内至少有一点ξ使得f(ξ)=C(a<ξ<b).Ps:c是介于A、B之间的,结论中的ξ取开区间。

介值定理的推论:设函数f(x)在闭区间[a,b]上连续,则f(x)在[a,b]上有最大值M,最小值m,若m≤C≤M,则必存在ξ∈[a,b], 使得f(ξ)=C。

(闭区间上的连续函数必取得介于最大值M与最小值m之间的任何值。

此条推论运用较多)Ps:当题目中提到某个函数f(x),或者是它的几阶导函数在某个闭区间上连续,那么该函数或者其几阶导函数必可以在该闭区间上取最大值和最小值,那么就对于在最大值和最小值之间的任何一个值,必存在一个变量使得该值等于变量处函数值。

2、零点定理:设函数f(x)在闭区间[a,b]上连续,且f(a)与f(b)异号,即f(a).f(b)<0,那么在开区间内至少存在一点ξ使得f(ξ)=0.Ps:注意条件是闭区间连续,端点函数值异号,结论是开区间存在点使函数值为0.3、罗尔定理:如果函数f(x)满足:(1)、在闭区间[a,b]上连续;(2)、在开区间(a,b)内可导;(3)、在区间端点处函数值相等,即f(a)=f(b).那么在(a,b)内至少有一点ξ(<aξ<b),使得f`(x)=0;4、拉格朗日中值定理:如果函数f(x)满足:(1)、在闭区间[a,b]上连续;(2)、在开区间(a,b)内可导;那么在(a,b)内至少有一点ξ(<aξ<b),使得f(b)-f(a)=f`(ξ).(b-a).5、柯西中值定理:如果函数f(x)及g(x)满足(1)、在闭区间[a,b]上连续;(2)、在开区间(a,b)内可导;(3)、对任一x(a<x<b),g`(x)≠0, 那么在(a,b)内至少存在一点ξ,使得)`()`()()()()(ξξg f a g b g a f b f =--Ps :对于罗尔定理、拉格朗日中值定理、柯西中值定理结论都是开开区间内取值。

考研数学高数有哪些中值定理的复习重点

考研数学高数有哪些中值定理的复习重点

考研数学高数有哪些中值定理的复习重点考研数学高数有哪些中值定理的复习重点高等数学七大中值定理是大家在学习过程中认为最难的部分,而中值定理一般是考试中必考的,得分率不高,希望考生好好把握。

店铺为大家精心准备了考研数学高数7大中值定理的复习要点,欢迎大家前来阅读。

考研数学高数7大中值定理重点详解七大定理的归属。

零点定理与介值定理属于闭区间上连续函数的性质。

三大中值定理与泰勒定理同属于微分中值定理,并且所包含的内容递进。

积分中值定理属于积分范畴,但其实也是微分中值定理的推广。

对使用每个定理的体会学生在看到题目时,往往会知道使用某个中值定理,因为这些问题有个很明显的特征—含有某个中值。

关键在于是对哪个函数在哪个区间上使用哪个中值定理。

1、使用零点定理问题的基本格式是“证明方程f(x)=0在a,b之间有一个(或者只有一个)根”。

从题目中我们一目了然,应当是对函数f(x)在区间[a,b]内使用零点定理。

应当注意的是零点定理只能说明零点在某个开区间内,当要求说明根在某个闭区间或者半开半闭区间内时,需要对这些端点做例外说明。

2、介值定理问题可以化为零点定理问题,也可以直接说明,如“证明在(a,b)内存在ξ,使得f(ξ)=c”,仅需要说明函数f(x)在[a,b]内连续,以及c位于f(x)在区间[a,b]的值域内。

3、用微分中值定理说明的问题中,有两个主要特征:含有某个函数的导数(甚至是高阶导数)、含有中值(也可能有多个中值)。

应用微分中值定理主要难点在于构造适当的函数。

在微分中值定理证明问题时,需要注意下面几点:(1)当问题的结论中出现一个函数的一阶导数与一个中值时,肯定是对某个函数在某个区间内使用罗尔定理或者拉格朗日中值定理;(2)当出现多个函数的一阶导数与一个中值时,使用柯西中值定理,此时找到函数是最主要的;(3)当出现高阶导数时,通常归结为两种方法,对低一阶的导函数使用三大微分中值定理、或者使用泰勒定理说明;(4)当出现多个中值点时,应当使用多次中值定理,在更多情况下,由于要求中值点不一样,需要注意区间的选择,两次使用中值定理的区间应当不同;(5)使用微分中值定理的难点在于如何构造函数,如何选择区间。

高等数学常见中值定理证明及应用

高等数学常见中值定理证明及应用

中值定理首先我们来看看几大定理:1、 介值定理:设函数f(x)在闭区间[a,b]上连续,且在该区间的端点取不同的函数值f(a)=A及f(b)=B ,那么对于A 与B 之间的任意一个数C ,在开区间(a,b)内至少有一点ξ使得f(ξ)=C(a<ξ<b).Ps:c 是介于A 、B 之间的,结论中的ξ取开区间。

介值定理的推论:设函数f(x)在闭区间[a,b]上连续,则f(x)在[a,b]上有最大值M ,最小值m,若m ≤C ≤M,则必存在ξ∈[a,b], 使得f(ξ)=C 。

(闭区间上的连续函数必取得介于最大值M 与最小值m 之间的任何值。

此条推论运用较多)Ps :当题目中提到某个函数f(x),或者是它的几阶导函数在某个闭区间上连续,那么该函数或者其几阶导函数必可以在该闭区间上取最大值和最小值,那么就对于在最大值和最小值之间的任何一个值,必存在一个变量使得该值等于变量处函数值。

2、 零点定理:设函数f(x)在闭区间[a,b]上连续,且f(a)与f(b)异号,即f(a).f(b)<0,那么在开区间内至少存在一点ξ使得f(ξ)=0.Ps:注意条件是闭区间连续,端点函数值异号,结论是开区间存在点使函数值为0.3、 罗尔定理:如果函数f(x)满足:(1)、在闭区间[a,b]上连续; (2)、在开区间(a,b)内可导; (3)、在区间端点处函数值相等,即f(a)=f(b).那么在(a,b)内至少有一点ξ(<a ξ<b),使得f`(x)=0;4、 拉格朗日中值定理:如果函数f(x)满足:(1)、在闭区间[a,b]上连续; (2)、在开区间(a,b)内可导;那么在(a,b)内至少有一点ξ(<a ξ<b),使得 f(b)-f(a)=f`(ξ).(b-a).5、 柯西中值定理:如果函数f(x)及g(x)满足(1)、在闭区间[a,b]上连续; (2)、在开区间(a,b)内可导; (3)、对任一x(a<x<b),g`(x)≠0,那么在(a,b)内至少存在一点ξ,使得)`()`()()()()(ξξg f a g b g a f b f =--Ps :对于罗尔定理、拉格朗日中值定理、柯西中值定理结论都是开开区间内取值。

高等数学常见中值定理证明及应用

高等数学常见中值定理证明及应用

中值定理首先我们来看看几大定理:1、 介值定理:设函数f(x)在闭区间[a,b]上连续,且在该区间的端点取不同的函数值f(a)=A及f(b)=B ,那么对于A 与B 之间的任意一个数C ,在开区间(a,b)内至少有一点ξ使得f(ξ)=C(a<ξ<b).Ps:c 是介于A 、B 之间的,结论中的ξ取开区间。

介值定理的推论:设函数f(x)在闭区间[a,b]上连续,则f(x)在[a,b]上有最大值M ,最小值m,若m ≤C ≤M,则必存在ξ∈[a,b], 使得f(ξ)=C 。

(闭区间上的连续函数必取得介于最大值M 与最小值m 之间的任何值。

此条推论运用较多)Ps :当题目中提到某个函数f(x),或者是它的几阶导函数在某个闭区间上连续,那么该函数或者其几阶导函数必可以在该闭区间上取最大值和最小值,那么就对于在最大值和最小值之间的任何一个值,必存在一个变量使得该值等于变量处函数值。

2、 零点定理:设函数f(x)在闭区间[a,b]上连续,且f(a)与f(b)异号,即f(a).f(b)<0,那么在开区间内至少存在一点ξ使得f(ξ)=0.Ps:注意条件是闭区间连续,端点函数值异号,结论是开区间存在点使函数值为0.3、 罗尔定理:如果函数f(x)满足:(1)、在闭区间[a,b]上连续; (2)、在开区间(a,b)内可导; (3)、在区间端点处函数值相等,即f(a)=f(b).那么在(a,b)内至少有一点ξ(<a ξ<b),使得f`(x)=0;4、 拉格朗日中值定理:如果函数f(x)满足:(1)、在闭区间[a,b]上连续; (2)、在开区间(a,b)内可导;那么在(a,b)内至少有一点ξ(<a ξ<b),使得 f(b)-f(a)=f`(ξ).(b-a).5、 柯西中值定理:如果函数f(x)及g(x)满足(1)、在闭区间[a,b]上连续; (2)、在开区间(a,b)内可导; (3)、对任一x(a<x<b),g`(x)≠0,那么在(a,b)内至少存在一点ξ,使得)`()`()()()()(ξξg f a g b g a f b f =--Ps :对于罗尔定理、拉格朗日中值定理、柯西中值定理结论都是开开区间内取值。

七大中值定理

七大中值定理

七大中值定理中值定理是微积分中的重要定理之一,它包括了七个不同的定理,分别是拉格朗日中值定理、柯西中值定理、罗尔中值定理、拉格朗日余项中值定理、泰勒中值定理、柯西-施瓦茨中值定理和费马中值定理。

这些定理都是基于函数在某个区间上的连续性和可导性来进行推导的。

1. 拉格朗日中值定理拉格朗日中值定理是微积分中最基本且最常用的中值定理之一。

它表明,如果一个函数在闭区间[a, b]上连续,在开区间(a, b)内可导,则在(a, b)内至少存在一个点c,使得函数的导数f'(c)等于函数在区间[a, b]上的平均变化率。

这个定理揭示了函数在某个区间上的平均变化率与函数在该区间上的瞬时变化率之间的关系。

2. 柯西中值定理柯西中值定理是微积分中的一个重要定理,它是拉格朗日中值定理的推广。

柯西中值定理表明,如果两个函数在闭区间[a, b]上连续,在开区间(a, b)内可导且导数不同时为零,则在(a, b)内至少存在一个点c,使得两个函数的导数之商等于两个函数在区间[a, b]上的函数值之商。

这个定理描述了两个函数在某个区间上的变化趋势是相似的。

3. 罗尔中值定理罗尔中值定理是微积分中的一个基本定理,它是拉格朗日中值定理的特殊情况。

罗尔中值定理表明,如果一个函数在闭区间[a, b]上连续,在开区间(a, b)内可导且在区间的两个端点处取相同的函数值,则在(a, b)内至少存在一个点c,使得函数的导数f'(c)等于零。

这个定理说明了一个函数在某个区间内的变化趋势是平缓的。

4. 拉格朗日余项中值定理拉格朗日余项中值定理是泰勒定理的推广形式,它描述了函数在某个点的函数值与其泰勒级数展开式的余项之间的关系。

根据拉格朗日余项中值定理,如果一个函数在闭区间[a, b]上具有(n+1)阶导数,在开区间(a, b)内具有n阶导数,则对于该函数的泰勒级数展开式,存在一个点c位于(a, b)内,使得函数的余项等于泰勒级数展开式的(n+1)项与函数在点c处的(n+1)阶导数的乘积。

高等数学常见中值定理证明及应用

高等数学常见中值定理证明及应用

中值定理首先我们来看看几大定理:1、 介值定理:设函数f (x)在闭区间[a ,b]上连续,且在该区间的端点取不同的函数值f(a)=A 及f (b)=B ,那么对于A 与B 之间的任意一个数C ,在开区间(a ,b )内至少有一点ξ使得f (ξ)=C(a<ξ<b )。

Ps:c 是介于A 、B 之间的,结论中的ξ取开区间。

介值定理的推论:设函数f(x)在闭区间[a,b]上连续,则f(x )在[a,b]上有最大值M ,最小值m ,若m ≤C≤M,则必存在ξ∈[a ,b], 使得f (ξ)=C 。

(闭区间上的连续函数必取得介于最大值M 与最小值m 之间的任何值.此条推论运用较多)Ps :当题目中提到某个函数f (x),或者是它的几阶导函数在某个闭区间上连续,那么该函数或者其几阶导函数必可以在该闭区间上取最大值和最小值,那么就对于在最大值和最小值之间的任何一个值,必存在一个变量使得该值等于变量处函数值。

2、 零点定理:设函数f(x)在闭区间[a ,b]上连续,且f (a)与f(b)异号,即f(a).f(b)<0,那么在开区间内至少存在一点ξ使得f(ξ)=0.Ps :注意条件是闭区间连续,端点函数值异号,结论是开区间存在点使函数值为0。

3、 罗尔定理:如果函数f(x)满足:(1)、在闭区间[a,b]上连续; (2)、在开区间(a ,b)内可导; (3)、在区间端点处函数值相等,即f (a )=f (b). 那么在(a ,b )内至少有一点ξ(〈a ξ<b ),使得f`(x)=0;4、 拉格朗日中值定理:如果函数f(x)满足:(1)、在闭区间[a ,b ]上连续; (2)、在开区间(a ,b)内可导;那么在(a ,b )内至少有一点ξ(〈a ξ<b),使得 f (b)—f(a )=f`(ξ).(b-a ).5、 柯西中值定理:如果函数f (x)及g (x)满足(1)、在闭区间[a ,b ]上连续; (2)、在开区间(a,b )内可导; (3)、对任一x(a 〈x<b ),g`(x)≠0, 那么在(a,b)内至少存在一点ξ,使得)`()`()()()()(ξξg f a g b g a f b f =--Ps :对于罗尔定理、拉格朗日中值定理、柯西中值定理结论都是开开区间内取值。

高等数学常见中值定理证明及应用

高等数学常见中值定理证明及应用

中值定理首先我们来看看几大定理:1、 介值定理:设函数f(x)在闭区间[a,b]上连续,且在该区间的端点取不同的函数值f(a)=A及f(b)=B ,那么对于A 与B 之间的任意一个数C ,在开区间(a,b)内至少有一点ξ使得f(ξ)=C(a<ξ<b).Ps:c 是介于A 、B 之间的,结论中的ξ取开区间。

介值定理的推论:设函数f(x)在闭区间[a,b]上连续,则f(x)在[a,b]上有最大值M ,最小值m,若m ≤C ≤M,则必存在ξ∈[a,b], 使得f(ξ)=C 。

(闭区间上的连续函数必取得介于最大值M 与最小值m 之间的任何值。

此条推论运用较多)Ps :当题目中提到某个函数f(x),或者是它的几阶导函数在某个闭区间上连续,那么该函数或者其几阶导函数必可以在该闭区间上取最大值和最小值,那么就对于在最大值和最小值之间的任何一个值,必存在一个变量使得该值等于变量处函数值。

2、 零点定理:设函数f(x)在闭区间[a,b]上连续,且f(a)与f(b)异号,即f(a).f(b)<0,那么在开区间内至少存在一点ξ使得f(ξ)=0.Ps:注意条件是闭区间连续,端点函数值异号,结论是开区间存在点使函数值为0.3、 罗尔定理:如果函数f(x)满足:(1)、在闭区间[a,b]上连续; (2)、在开区间(a,b)内可导; (3)、在区间端点处函数值相等,即f(a)=f(b).那么在(a,b)内至少有一点ξ(<a ξ<b),使得f`(x)=0;4、 拉格朗日中值定理:如果函数f(x)满足:(1)、在闭区间[a,b]上连续; (2)、在开区间(a,b)内可导;那么在(a,b)内至少有一点ξ(<a ξ<b),使得 f(b)-f(a)=f`(ξ).(b-a).5、 柯西中值定理:如果函数f(x)及g(x)满足(1)、在闭区间[a,b]上连续; (2)、在开区间(a,b)内可导; (3)、对任一x(a<x<b),g`(x)≠0,那么在(a,b)内至少存在一点ξ,使得)`()`()()()()(ξξg f a g b g a f b f =--Ps :对于罗尔定理、拉格朗日中值定理、柯西中值定理结论都是开开区间内取值。

关于高等数学常见中值定理证明及应用

关于高等数学常见中值定理证明及应用

关于高等数学常见中值定理证明及应用集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]中值定理首先我们来看看几大定理:1、介值定理:设函数f(x)在闭区间[a,b]上连续,且在该区间的端点取不同的函数值f(a)=A及f(b)=B,那么对于A与B之间的任意一个数C,在开区间(a,b)内至少有一点ξ使得f(ξ)=C(a<ξ<b).Ps:c是介于A、B之间的,结论中的ξ取开区间。

介值定理的推论:设函数f(x)在闭区间[a,b]上连续,则f(x)在[a,b]上有最大值M,最小值m,若m≤C≤M,则必存在ξ∈[a,b], 使得f(ξ)=C。

(闭区间上的连续函数必取得介于最大值M 与最小值m之间的任何值。

此条推论运用较多)Ps:当题目中提到某个函数f(x),或者是它的几阶导函数在某个闭区间上连续,那么该函数或者其几阶导函数必可以在该闭区间上取最大值和最小值,那么就对于在最大值和最小值之间的任何一个值,必存在一个变量使得该值等于变量处函数值。

2、零点定理:设函数f(x)在闭区间[a,b]上连续,且f(a)与f(b)异号,即f(a).f(b)<0,那么在开区间内至少存在一点ξ使得f(ξ)=0.Ps:注意条件是闭区间连续,端点函数值异号,结论是开区间存在点使函数值为0.3、罗尔定理:如果函数f(x)满足:(1)、在闭区间[a,b]上连续;(2)、在开区间(a,b)内可导;(3)、在区间端点处函数值相等,即f(a)=f(b).那么在(a,b)内至少有一点ξ(<aξ<b),使得f`(x)=0;4、拉格朗日中值定理:如果函数f(x)满足:(1)、在闭区间[a,b]上连续;(2)、在开区间(a,b)内可导;那么在(a,b)内至少有一点ξ(<aξ<b),使得f(b)-f(a)=f`(ξ).(b-a).5、柯西中值定理:如果函数f(x)及g(x)满足(1)、在闭区间[a,b]上连续;(2)、在开区间(a,b)内可导;(3)、对任一x(a<x<b),g`(x)≠0,那么在(a,b)内至少存在一点ξ,使得Ps :对于罗尔定理、拉格朗日中值定理、柯西中值定理结论都是开开区间内取值。

考研数学高数中值定理的详解

考研数学高数中值定理的详解

考研数学高数中值定理的详解考研数学高数中值定理的详解我们在准备考研数学高数的复习手,面对中值定理,我们应该掌握好它的方法。

店铺为大家精心准备了考研数学高数中值定理的解析,欢迎大家前来阅读。

考研数学高数7大中值定理详解七大定理的归属。

零点定理与介值定理属于闭区间上连续函数的性质。

三大中值定理与泰勒定理同属于微分中值定理,并且所包含的内容递进。

积分中值定理属于积分范畴,但其实也是微分中值定理的推广。

对使用每个定理的体会学生在看到题目时,往往会知道使用某个中值定理,因为这些问题有个很明显的特征—含有某个中值。

关键在于是对哪个函数在哪个区间上使用哪个中值定理。

1、使用零点定理问题的基本格式是“证明方程f(x)=0在a,b之间有一个(或者只有一个)根”。

从题目中我们一目了然,应当是对函数f(x)在区间[a,b]内使用零点定理。

应当注意的是零点定理只能说明零点在某个开区间内,当要求说明根在某个闭区间或者半开半闭区间内时,需要对这些端点做例外说明。

2、介值定理问题可以化为零点定理问题,也可以直接说明,如“证明在(a,b)内存在ξ,使得f(ξ)=c”,仅需要说明函数f(x)在[a,b]内连续,以及c位于f(x)在区间[a,b]的值域内。

3、用微分中值定理说明的问题中,有两个主要特征:含有某个函数的导数(甚至是高阶导数)、含有中值(也可能有多个中值)。

应用微分中值定理主要难点在于构造适当的函数。

在微分中值定理证明问题时,需要注意下面几点:(1)当问题的结论中出现一个函数的一阶导数与一个中值时,肯定是对某个函数在某个区间内使用罗尔定理或者拉格朗日中值定理;(2)当出现多个函数的一阶导数与一个中值时,使用柯西中值定理,此时找到函数是最主要的;(3)当出现高阶导数时,通常归结为两种方法,对低一阶的导函数使用三大微分中值定理、或者使用泰勒定理说明;(4)当出现多个中值点时,应当使用多次中值定理,在更多情况下,由于要求中值点不一样,需要注意区间的选择,两次使用中值定理的区间应当不同;(5)使用微分中值定理的难点在于如何构造函数,如何选择区间。

关于高等数学常见中值定理证明及应用

关于高等数学常见中值定理证明及应用

关于高等数学常见中值定理证明及应用中值定理是微积分中的重要定理之一,它包括了拉格朗日中值定理、柯西中值定理和罗尔中值定理。

这些定理在数学中有广泛的应用,尤其在求解函数的零点、证明不等式等问题上起到了重要的作用。

下面我将详细介绍这些中值定理的证明及应用。

1. 拉格朗日中值定理(Lagrange's Mean Value Theorem):拉格朗日中值定理是微积分中最基本的中值定理之一、设函数f(x)在闭区间[a, b]上连续,在开区间(a, b)上可导,则存在xi∈(a, b),使得f'(xi) = (f(b) - f(a))/(b - a)。

换句话说,函数在开区间内其中一点的导数等于函数在闭区间两端的函数值之差与区间长度的比值。

证明:我们可以通过引入辅助函数g(x)=f(x)-kx来证明,其中k是一个常数,使得g(a)=g(b)。

然后根据罗尔中值定理,我们得到存在一个ξ∈(a, b),使得g'(ξ)=0。

进而,我们得到f'(ξ)-k=0,即f'(ξ)=k。

由于k=(f(b)-f(a))/(b-a),得到f'(ξ)=(f(b)-f(a))/(b-a)。

应用:拉格朗日中值定理常用来证明不等式、求解方程和不定积分等问题。

例如,若函数在区间[a, b]上连续且处处大于零,则存在一个ξ∈(a, b),使得f(ξ)>(1/(b-a))∫[a,b]f(x)dx。

这可以直接利用拉格朗日中值定理证明。

2. 柯西中值定理(Cauchy's Mean Value Theorem):柯西中值定理是拉格朗日中值定理的推广,它描述的是两个函数之间的关系。

设函数f(x)和g(x)在闭区间[a, b]上连续,在开区间(a, b)上可导,并且g'(x)≠0,则存在xi∈(a, b),使得(f'(xi)/g'(xi))=(f(b)-f(a))/(g(b)-g(a))。

中值定理及其应用

中值定理及其应用

中值定理及其应用中值定理是微积分中的重要定理之一,它是高阶微积分的基础,被广泛应用于物理、经济、工程等领域。

在本文中,我们将介绍中值定理的概念、证明以及其在实际问题中的应用。

一、中值定理的概念中值定理是微积分中的一个基本定理,用来分析函数在某个区间上的平均变化率与瞬时变化率的关系。

它由罗尔定理、拉格朗日中值定理和柯西中值定理组成。

1. 罗尔定理罗尔定理是中值定理的基础,它主要用于研究函数在闭区间上连续且在开区间上可导的情况。

罗尔定理的表述为:设函数f(x)在闭区间[a, b]上连续,在开区间(a, b)上可导,并且满足f(a) = f(b),则存在c∈(a,b),使得f'(c) = 0。

2. 拉格朗日中值定理拉格朗日中值定理是中值定理的一种形式,它由罗尔定理推导而来。

拉格朗日中值定理的表述为:如果函数f(x)在闭区间[a, b]上连续,在开区间(a, b)上可导,则存在c∈(a, b),使得f'(c) = (f(b) - f(a))/(b - a)。

3. 柯西中值定理柯西中值定理是中值定理的另一种形式,它由拉格朗日中值定理推导而来。

柯西中值定理的表述为:如果两个函数f(x)和g(x)在闭区间[a,b]上连续,在开区间(a, b)上可导,并且g'(x)≠0,则存在c∈(a, b),使得[f(b) - f(a)]/g(b) - g(a) = f'(c)/g'(c)。

二、中值定理的证明中值定理的证明相对复杂,需要运用到微积分中的一些基本概念和定理。

在这里,我们将省略中值定理的详细证明过程。

三、中值定理的应用中值定理在实际问题中具有广泛的应用。

以下是几个常见的应用实例:1. 平均速度与瞬时速度根据拉格朗日中值定理,对于一段时间内的平均速度与某一时刻的瞬时速度,它们之间存在一个相等的关系。

这在物理学中有着重要的意义,可以通过计算平均速度来得到瞬时速度的近似值。

2. 函数求导与图像切线中值定理可以用于求解函数的导数以及函数图像的切线。

不容错过的~高等数学的七大中值定理~

不容错过的~高等数学的七大中值定理~

不容错过的~高等数学的七大中值定理~高等数学的七大中值定理~高等数学的七大中值定理一般是考试中必考的,包括零点定理、介值定理、三大微分中值定理【罗尔中值定理、拉格朗日中值定理、柯西中值定理】、泰勒中值定理与积分中值定理,但一般情况得分率普遍很低,希望考生好好把握,下面我们一起看看证明题有哪些的关键的特征可以提取,以便于我们固化求解模式,提高解题速度与准确率。

在看到题目时,往往会知道使用某个中值定理,因为这些问题有个很明显的特征—含有某个中值。

关键在于是对哪个函数在哪个区间上使用哪个中值定理。

➤使用零点定理问题的基本格式是“证明方程f(x)=0在a,b之间有一个(或者只有一个)根”。

从题目中我们一目了然,应当是对函数f(x)在区间[a,b]内使用零点定理。

应当注意的是零点定理只能说明零点在某个开区间内,当要求说明根在某个闭区间或者半开半闭区间内时,需要对这些端点做例外说明。

➤介值定理问题可以化为零点定理问题,也可以直接说明,如“证明在(a,b)内存在ξ,使得f(ξ)=c”,仅需要说明函数f(x)在[a,b]内连续,以及c位于f(x)在区间[a,b]的值域内。

➤用微分中值定理说明的问题中,有两个主要特征:含有某个函数的导数(甚至是高阶导数)、含有中值(也可能有多个中值)。

应用微分中值定理主要难点在于构造适当的函数。

在微分中值定理证明问题时,需要注意下面几点:(1)当问题的结论中出现一个函数的一阶导数与一个中值时,肯定是对某个函数在某个区间内使用罗尔定理或者拉格朗日中值定理;(2)当出现多个函数的一阶导数与一个中值时,使用柯西中值定理,此时找到函数是最主要的;(3)当出现高阶导数时,通常归结为两种方法,对低一阶的导函数使用三大微分中值定理、或者使用泰勒定理说明;(4)当出现多个中值点时,应当使用多次中值定理,在更多情况下,由于要求中值点不一样,需要注意区间的选择,两次使用中值定理的区间应当不同;(5)使用微分中值定理的难点在于如何构造函数,如何选择区间。

关于高等数学常见中值定理证明及应用

关于高等数学常见中值定理证明及应用

中值定理首先我们来看看几大定理:1、 介值定理:设函数f(x)在闭区间[a,b]上连续,且在该区间的端点取不同的函数值f(a)=A 及f(b)=B ,那么对于A 与B 之间的任意一个数C ,在开区间(a,b)内至少有一点ξ使得f(ξ)=C(a<ξ<b). Ps:c 是介于A 、B 之间的,结论中的ξ取开区间。

介值定理的推论:设函数f(x)在闭区间[a,b]上连续,则f(x)在[a,b]上有最大值M ,最小值m,若m ≤C ≤M,则必存在ξ∈[a,b], 使得f(ξ)=C 。

(闭区间上的连续函数必取得介于最大值M 与最小值m 之间的任何值。

此条推论运用较多)Ps :当题目中提到某个函数f(x),或者是它的几阶导函数在某个闭区间上连续,那么该函数或者其几阶导函数必可以在该闭区间上取最大值和最小值,那么就对于在最大值和最小值之间的任何一个值,必存在一个变量使得该值等于变量处函数值。

2、 零点定理:设函数f(x)在闭区间[a,b]上连续,且f(a)与f(b)异号,即f(a).f(b)<0,那么在开区间内至少存在一点ξ使得f(ξ)=0.Ps:注意条件是闭区间连续,端点函数值异号,结论是开区间存在点使函数值为0.3、 罗尔定理:如果函数f(x)满足:(1)、在闭区间[a,b]上连续; (2)、在开区间(a,b)内可导;(3)、在区间端点处函数值相等,即f(a)=f(b). 那么在(a,b)内至少有一点ξ(<a ξ<b),使得f`(x)=0;4、 拉格朗日中值定理:如果函数f(x)满足:(1)、在闭区间[a,b]上连续; (2)、在开区间(a,b)内可导;那么在(a,b)内至少有一点ξ(<a ξ<b),使得 f(b)-f(a)=f`(ξ).(b-a).5、 柯西中值定理:如果函数f(x)及g(x)满足(1)、在闭区间[a,b]上连续; (2)、在开区间(a,b)内可导; (3)、对任一x(a<x<b),g`(x)≠0, 那么在(a,b)内至少存在一点ξ,使得Ps :对于罗尔定理、拉格朗日中值定理、柯西中值定理结论都是开开区间内取值。

关于高等数学常见中值定理证明及应用

关于高等数学常见中值定理证明及应用

中值定理首先我们来看看几大定理:1、介值定理:设函数f(x)在闭区间[a,b]上连续,且在该区间的端点取不同的函数值f(a)=A及f(b)=B,那么对于A与B之间的任意一个数C,在开区间(a,b)内至少有一点ξ使得f(ξ)=C(a<ξ<b).Ps:c是介于A、B之间的,结论中的ξ取开区间。

介值定理的推论:设函数f(x)在闭区间[a,b]上连续,则f(x)在[a,b]上有最大值M,最小值m,若m≤C≤M,则必存在ξ∈[a,b], 使得f(ξ)=C。

(闭区间上的连续函数必取得介于最大值M与最小值m之间的任何值。

此条推论运用较多)Ps:当题目中提到某个函数f(x),或者是它的几阶导函数在某个闭区间上连续,那么该函数或者其几阶导函数必可以在该闭区间上取最大值和最小值,那么就对于在最大值和最小值之间的任何一个值,必存在一个变量使得该值等于变量处函数值。

2、零点定理:设函数f(x)在闭区间[a,b]上连续,且f(a)与f(b)异号,即f(a).f(b)<0,那么在开区间内至少存在一点ξ使得f(ξ)=0.Ps:注意条件是闭区间连续,端点函数值异号,结论是开区间存在点使函数值为0.3、罗尔定理:如果函数f(x)满足:(1)、在闭区间[a,b]上连续;(2)、在开区间(a,b)内可导;(3)、在区间端点处函数值相等,即f(a)=f(b).那么在(a,b)内至少有一点ξ(<a ξ<b),使得f`(x)=0;4、 拉格朗日中值定理:如果函数f(x)满足:(1)、在闭区间[a,b]上连续;(2)、在开区间(a,b)内可导;那么在(a,b)内至少有一点ξ(<a ξ<b),使得f(b)-f(a)=f`(ξ).(b-a).5、 柯西中值定理:如果函数f(x)及g(x)满足(1)、在闭区间[a,b]上连续;(2)、在开区间(a,b)内可导;(3)、对任一x(a<x<b),g`(x)≠0,那么在(a,b)内至少存在一点ξ,使得Ps :对于罗尔定理、拉格朗日中值定理、柯西中值定理结论都是开开区间内取值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七大中值定理的理解与运用
在高等数学内容中,七大中值定理(零点定理、介值定理、三大微分中值定理、泰勒定理与积分中值定理)是学生在学习过程中认为最难的部分。

七大定理的难主要在于难理解、难应用。

在历次考试,包括研究生入学考试中,与中值有关的问题一直是考试中得分最少的题,因此如何让学生更好的理解与掌握定理,灵活有效的使用定理,一直是我在授课过程中觉得比较难把握的。

在授课和答疑过程中也曾经积累了一些想法,但是这些想法都比较零碎。

乐老师在培训过程中对中值定理证明问题中辅助函数构造的讲解,对我帮助最大。

借这次机会将我对七大定理教学过程中的体会总结如下。

第一,七大定理的归属。

零点定理与介值定理属于闭区间上连续函数的性质。

三大中值定理与泰勒定理同属于微分中值定理,并且所包含的内容递进。

积分中值定理属于积分范畴,但其实也是微分中值定理的推广。

第二,对使用每个定理的体会。

学生在看到题目时,往往会知道使用某个中值定理,因为这些问题有个很明显的特征—含有某个中值。

关键在于是对哪个函数在哪个区间上使用哪个中值定理。

1.使用零点定理问题的基本格式是“证明方程f(x)=0在a,b 之间有一个(或者只有一个)根”。

从题目中我们一目了然,应当是对函数f(x)在区间[a,b]内使用零点定理。

应当注意的是零点定理只能说明零点在某个开区间内,当要求说明根在某个闭区间或者半开半闭区间内时,需要对这些端点做例外说明。

2.介值定理问题可以化为零点定理问题,也可以直接说明,如“证明在(a,b)内存在ξ,使得f(ξ)=c”,仅需要说明函数
f(x)在[a,b]内连续,以及c位于f(x)在区间[a,b]的值域内。

3.用微分中值定理说明的问题中,有两个主要特征:含有某个函数的导数(甚至是高阶导数)、含有中值(也可能有多个中值)。

正如乐老师在培训过程中所说,应用微分中值定理主要难点在于构造适当的函数。

曾经在以往授课过程中总结了一点构造函数的方法,这次经过培训,我对构造函数的方法有了进一步的掌握,感觉乐老师讲述的方法便于记忆,更便于学生理解。

在微分中值定理证明问题时,我的体会有下面几点:(1)当问题的结论中出现一个函数的一阶导数与一个中值时,肯定是对某个函数在某个区间内使用罗尔定理或者拉格朗日中值定理;(2)当出现多个函数的一阶导数与一个中值时,使用柯西中值定理,此时找到函数是最主要的;(3)当出现高阶导数时,通常归结为两种方法,对低一阶的导函数使用三大微分中值定理、或者使用泰勒定理说明;(4)当出现多个中值点时,应当使用多次中值定理,在更多情况下,由于要求中值点不一样,需要注意区间的选择,两
次使用中值定理的区间应当不同;(5)使用微分中值定理的难点在于如何构造函数,如何选择区间。

对此我的体会是应当从需要证明的结论入手,对结论进行分析。

学生们总感觉证明题无从下手,我认为证明题其实不难,因为证明题的结论其实是对你的提示,只要从证明结论入手,逐步分析,必然会找到证明方法。

4.积分中值定理其实是微分中值定理的推广,对变上限函数使用微分中值定理或者泰勒定理就可以得到积分中值定理甚至类似于泰勒定理的形式。

因此看到有积分形式,并且带有中值的证明题时,一定是对某个变上限积分在某点处展开为泰勒展开式或者直接使用积分中值定理。

当证明结论中仅有积分与被积函数本身时,一般使用积分中值定理;当结论中有积分与被积函数的导数时,一般需要展开变上限积分为泰勒展开式。

虽然我已经是有多年教学经验的高数教师,但是总感觉在授课过程中存在一些知识点难以对学生解释。

这次培训对我帮助很大,培训内容解决了一些困难。

在今后的授课中,我将把这次学到的东西很好地用于实践。

对教师来说,让学生更好的掌握和应用知识是我们的责任。

希望这样的活动能够经常展开,一方面我们可以学到别人有价值的教学经验,另一方面这样的培训活动给了我们学员交流的平台,而这种交流才是我们应当经常进行并且保持下去的活动。

相关文档
最新文档