相反数导学案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 有理数
1.2.3 相反数(1)
[教学目标]
1. 借助数轴,使学生了解相反数的概念
2. 会求一个有理数的相反数
3. 激发学生学习数学的兴趣.
[教学重点与难点]
重点: 理解相反数的意义
难点: 理解相反数的意义
提问
1、 数轴的三要素是什么?
2、 填空:
数轴上与原点的距离是2的点有 个,这些点表示的数是 ;与原点的距
离是5的点有 个,这些点表示的数是 。
相反数的概念:
只有符号不同的两个数,我们称它们互为相反数,零的相反数是零。
概念的理解:
(1) 互为相反数的两个数分别在原点的两旁,且到原点的距离相等。
(2) 一般地,数a 的相反数是a -,a -不一定是负数。
(3) 在一个数的前面添上“-”号,就表示这个数的相反数,如:-3是3的相反数,-a 是
a 的相反数,因此,当a 是负数时,-a 是一个正数
-(-3)是(-3)的相反数,所以-(-3)=3,于是
(4) 互为相反数的两个数之和是0
即如果x 与y 互为相反数,那么x+y=0;反之,若x+y=0, 则x 与y 互为相反数
(5) 相反数是指两个数之间的一种特殊的关系,而不是指一个种类。如:“-3是一个相反
数”这句话是不对的。
问题1 求下列各数的相反数:
(1)-5 (2)21 (3)0 (4)3
a (5)-2
b (6) a-b (7) a+2 问题2 判断:
(1)-2是相反数
(2)-3和+3都是相反数
(3)-3是3的相反数
(4)-3与+3互为相反数
(5)+3是-3的相反数
(6)一个数的相反数不可能是它本身
问题3 化简下列各数中的符号:
(1))312(-- (2)-(+5)
(3)[])7(--- (4)[]{})3(+-+-
问题4 填空:
(1)a-4的相反数是 ,3-x 的相反数是 。
(2)x 32
是 的相反数。
(3)如果-a=-9,那么-a 的相反数是 。
问题5 填空:
(1)若-(a-5)是负数,则a-5 0.
(2) 若[])(y x +--是负数,则x+y 0.
问题6 已知a 、b 在数轴上的位置如图所示。
(1) 在数轴上作出它们的相反数;
(2) 用“<”按从小到大的顺序将这四个数连接起来。
问题7 如果a-5与a 互为相反数,求a.
练习:教材15页 T3、4
小节:相反数的概念及注意事项 作业:18页第3题
1.2.3 相反数(2)
[教学目标]
1, 掌握相反数的概念,进一步理解数轴上的点与数的对应关系;
2, 通过归纳相反数在数轴上所表示的点的特征,培养归纳能力;
3.体验数形结合的思想。
[教学难点]
归纳相反数在数轴上表示的点的特征
知识重点
相反数的概念
教学过程(师生活动)
设置情境,引入课题
问题1:请将下列4个数分成两类,并说出为什么要这样分类
3, -2,-5,+2
允许学生有不同的分法,只要能说出道理,都要难予鼓励,但教师要做适当的引导,逐渐得出5和-5,+2和-2分别归类是具有
较特征的分法。 (引导学生观察与原点的距离) 思考结论:教科书第13页的思考 再换2个类似的数试一试。
归纳结论:教科书第13页的归纳
深化主题提炼定义
给出相反数的定义
问题2:你怎样理解相反数定义中的“只有符号不同”和“互为”一词的含义?零的相反数是什么?为什么?
学生思考讨论交流,教师归纳总结。
规律:一般地,数a 的相反数可以表示为-a
思考:数轴上表示相反数的两个点和原点有什么关系?
练一练:教科书第14页第一个练习
给出规律解决问题
问题3:-(+5)和-(-5)分别表示什么意思?你能化简它们吗?
学生交流。
分别表示+5和-5的相反数是-5和+5
练一练:教科书第15页T8
1,课堂小结
相反数的定义
互为相反数的数在数轴上表示的点的特征
怎样求一个数的相反数?怎样表示一个数的相反数?
本课作业
1,必做题教科书第15页习题9、10题
选做题教师自行安排
本课教育评注(课堂设计理念,实际教学效果及改进设想)