高一下学期期末模块模拟考试(数学)
高一下学期期末模块模拟测试(数学试卷)
高一期末模块模拟考试数学试题2013年6月22日本试卷分第I 卷和第II 卷两部分,共4页。
满分150分。
考试用时120分钟。
参考公式:用最小二乘法求线性回归直线方程 y bx a =+中的系数. 第I 卷(共60分) 注意事项:1.答第I 卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑, 如需改动,用橡 皮擦干净后,再选涂其他答案.不能答在试题卷上.一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一个选项是符合要求的,请将正确的选项涂写在答题卡上。
1、把十进制数389化成四进制数的末位是 A 、0 B 、1 C 、2 D 、32、函数2()sin f x x =是 A 、最小正周期为2π的奇函数 B 、最小正周期为2π的偶函数 C 、最小正周期为π的奇函数D 、最小正周期为π的偶函数3、设12,e e 是互相垂直的单位向量,且1223a e e =+ ,124b ke e =- ,若a b ⊥,实数k 的值为A 、6B 、-6C 、3D 、-34、将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91.现场作的9个分数的茎叶图后来有1个数据模糊,无法辨认,在图中以x 表示:8 | 7 79 | 4 0 1 0 x 9 1则7个剩余分数的方差为A 、1169B 、367C 、36D 、6775、将函数sin(2)y x ϕ=+的图像沿x 轴向左平移8π个单位后,得到一个偶函数的图像,则ϕ的一个可能取值为 A 、34π B 、4πC 、0D 、4π-6、.若1tan()44πβ-=,则tan β等于 A 、53B 、35C 、43D 、347、某客运公司为了了解客车的耗油情况,现采用系统抽样方法按1:10的比例抽取一个样本进行检测,将所有200辆客车依次编号为1,2,…,200,则其中抽取的4辆客车的编号可能是 A 、3,23,63,102 B 、31,61,87,127 C 、103,133,153,193 D 、57,68,98,1088、在下列向量组中,不能作为表示它们所在平面内所有向量的基底的是A 、1(0,1)e = ,2(1,6)e =- B.1(1,2)e =- , 2(5,1)e =-C 、1(3,5)e =-,2(6,10)e = D 、1(2,3)e =- , 213(,)24e =- 9、如果α是第二象限角,那么2α是A 、第一或第三象限角B 、第三或第四象限角C 、第一象限角D 、第二象限角10、如图,矩形ABCD 中,点E 是CD 边的中点,若在矩形ABCD 内部随即取一个点Q ,则点Q 取自△ABE 内部的概率等于 A 、14B 、13C 、12D 、2311、一枚质地均匀的硬币,如果连续抛掷1000次,那么第999次出现正面朝上的概率是 A .9991 B .10001 C .1000999D .21 12、已知函数23()sin cos 3cos 2f x x x x =+-的最大值为a ,最小值为b ,若向量(,)a b 与向量(cos ,sin )θθ垂直,则锐角θ的值为 A 、6πB 、3πC 、4πD 、8πDE C AB1221ni i i nii x y nx y b x nx a y bx==⎧-⎪⎪=⎪⎨-⎪⎪=-⎪⎩∑∑第II 卷(共90分)二、填空题:本大题共4小题,每小题4分。
2022-2023学年度第二学期期末考试卷高一数学试卷(答案版)
2022-2023学年度第二学期期末考试卷高中数学答案120α=>,25,),二、多选题15.【答案】π12【详解】如图所示:设ADN α∠=,大正方形边长为a ,则cos DN a α=,sin AN a α=,cos sin MN a a αα=-,则()()()21cos sin cos sin 2S a a a a αααα=-+⨯阴,()()()22ABCD1cos sin cos sin 528a a a a S S a αααα-+⨯==阴,2215sin cos 2sin cos sin cos 28αααααα+-+=,化为33sin248α=,则1sin22α=,由题意π0,4α⎛⎫∈ ⎪⎝⎭,则π20,2α⎛⎫∈ ⎪⎝⎭,故π26α=,解得π12α=.故答案为:π12.16.【答案】10-【详解】设28(1)716y ax a x a =++++,其图象为抛物线,对于任意一个给定的a 值其抛物线只有在开口向下的情况下才能满足0y ≥而整数解只有有限个,所以a<0,因为0为其中一个解可以求得167a ≥-,又a Z ∈,所以2a =-或1a =-,则不等式为22820x x --+≥和290x -+≥,可分别求得2552x --≤≤-和33x -≤≤,因为x 位整数,所以4,3,2,1x =----和3,2,1,0,1,2,3x =---,所以全部不等式的整数解的和为10-.故答案为:10-.17.【答案】(1)52k ≥(2)1k ≤【详解】(1)由2511x x -<+,移项可得25101x x --<+,通分并合并同类项可得601x x -<+,等价于()()610x x -+<,解得16x -<<,则{}16A x x =-<<;由A B A = ,则A B ⊆,即1621k k -≤-⎧⎨≤+⎩,解得52k ≥.(2)p 是q 的必要不充分条件等价于B A ⊆.①当B =∅时,21k k -≥+,解得13k ≤-,满足.②当B ≠∅时,原问题等价于131216k k k ⎧>-⎪⎪-≥-⎨⎪+≤⎪⎩(不同时取等号)解得113k -<≤.综上,实数k 的取值范围是1k ≤.18.【答案】(1)π()sin(2)3f x x =+,(2){}2[3,2)-f=,的奇函数,所以()00),0∞和()+上分别单调递增.0,∞。
苏教版高一数学下学期期末考试模拟试卷(二)
高一数学下学期期末考试模拟试卷(二)一、填空题(本大题共14小题,每小题5分,共70分)1.在等比数列}{n a 中,121=+a a ,943=+a a ,则=+54a a ____27±____.2.如图表示甲、乙两名篮球运动员每场得分情况的茎叶图,则甲、乙得分的中位数分别是,a b ,则a b += 57.5 .3.若执行如图所示的算法流程图,输出的结果是17,则其判断框中的横线上可以填入的最大整数为 644.某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20 种,从中抽取一个容量为20的样本进行食品安全检测.若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是 6 5. 将一枚硬币连续抛掷3次,则有且只有2次出现正面向上的概率为 386.已知等比数列的前n 项和为S n ,若S 3 :S 2=3:2,则公比q = 112-或 . 7.已知变量,x y 满足⎧⎪⎨⎪⎩224y x x y y x ≤+≥≥-,则3z x y =+的最大值是 16 .8. 有一组统计资料,数据如下(不完全依大小排列):2,4,4,5,5,6,7,8,9,11,x,已知这组数据的平均数为6,则这组数据的方差为 69.下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x (吨)与相应的生产能耗Y (则刻画y 关于x 的线性回归方程y bxa =+是 y=x+1 10.已知递增的等比数列{}n a 满足23428a a a ++=,且3242,a a a +是的等差中项,若21log n n b a +=,则数列{}n b 的前n 项和n S =(3)2n n + . 11.设关于x 的不等式ax b +>0的解集为(,)1+∞,则关于x 的不等式ax bx x +-->2560的解集为 {|11x x -<<或x>6} 12.如图,△12OA A 是等腰直角三角形,1121AO A A ==,以2OA 为直角边作等腰直角三角形△23OA A ,再以3OA 为直角边作等腰直角三角形△34OA A ,如此继续下去得等腰直角三角形 △45OA A …….则△910OA A 的面积为 128 13.在锐角△ABC 中,b =2,B =π3,sin 2sin()sin 0A A C B +--=,则△ABC 的面积为.14.对一切实数x ,不等式01||2≥++x a x 恒成立,则实数a 的取值范围是 [)+∞-,2 二、解答题:(本大题共6小题,共90分.解答应写出文字说明,证明过程或演算步骤.) 15.已知集合{}2230,A x xx x R =--≤∈,{}22240,,B x x mx m x R m R =-+-≤∈∈.(Ⅰ)若[]0,3A B =,求实数m 的值;(Ⅱ)若B C A R ⊆,求实数m 的取值范围.16. 如图所示的茎叶图是青年歌手电 甲 乙 视大奖赛中7位评委给参加最后决赛的两位选手 8 5 7 9甲、乙评定的成绩,程序框图用来编写程序统计 8 5 5 4 8 4 4 4 6 7 每位选手的成绩(各评委所给有效分数的平均值), 2 9 3试根据下面条件回答下列问题:(1)根据茎叶图,乙选手的成绩中,中位数和众数分别是多少?(2)在程序框图中,用k 表示评委人数,用a 表示选手的最后成绩(各评委所给有效分数的平均值).那么图中①②处应填什么?“S 1=S -max-min ”的含义是什么?(3)根据程序框图,甲、乙的最后成绩分别是多少?15. (1);84;84 (2) 1S 表示总分S 减去最高分和最低分17.甲打靶射击,有4发子弹,其中有一发是空弹.(1)求空弹出现在第一枪的概率;(2)求空弹出现在前三枪的概率;(3)如果把空弹换成实弹,甲前三枪在靶上留下三个两两距离分别为3,4,5的弹孔,,P Q R ,第四枪瞄准了三角形PQR 射击,第四个弹孔落在三角形PQR 内,求第四个弹孔与前三个弹孔的距离都超过1的概率(忽略弹孔大小). 15. 解:设四发子弹编号为0(空弹),1,2,3,(1)设第一枪出现“哑弹”的事件为A ,有4个基本事件,则:(2分)1()4P A =(4分)(2) 法一:前三枪出现“哑弹”的事件为B,则第四枪出现“哑弹”的事件为B ,那么()()P A P B =,(6分)13()1()1()1.44P B P B P A =-=-=-=(9分)法二:前三枪共有4个基本事件{0,1,2},{0,1,3},{0,2,3},{1,2,3},满足条件的有三个,(7分)则3().4P B =(9分)(3) RT PQR ∆的面积为6,(10分)分别以,,P Q R 为圆心、1为半径的三个扇形的面积和11442πππ=+=,(12分)设第四个弹孔与前三个弹孔的距离都超过1的事件为C,162()1612P C ππ-==-.(14分) 18. 假设某市2004年新建住房400万平方米,其中有250万平方米是中低价房.预计在今后的若干年后,该市每年新建住房面积平均比上年增长8%.另外,每年新建住房中,中底价房的面积均比上一年增加50万平方米.那么到哪一年底(1)该市历年所建中低价房的累计面积(以2004年为累计的第一年)将首次不少于4750万平方米?(2)当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%? 参考数据:41.08 1.360=,51.08 1.469=,61.08 1.587=,71.08 1.714=,81.08 1.851=19.在△ABC 中,c b a ,,分别为角A 、B 、C 的对边,58222bcb c a -=-,a =3, △ABC 的面积为6,D 为△ABC 内(不含边界)任一点,点D 到三边距离之和为d 。
云南省曲靖市民族中学2023-2024学年高一下学期期末考试数学试题(含解析)
曲靖市民族中学2026届高一下学期期末考试卷数学全卷满分150分,考试时间120分钟。
注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将条形码粘贴在答题卡上的指定位置。
2.请按题号顺序在答题卡上各题目的答题区域内作答,写在试卷、草稿纸和答题卡上的非答题区域均无效。
3.选择题用2B 铅笔在答题卡上把所选答案的标号涂黑;非选择题用黑色签字笔在答题卡上作答;字体工整,笔迹清楚。
4.考试结束后,请将试卷和答题卡一并上交。
5.本卷主要考查内容:必修第一册,必修第二册第六章~第九章。
一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合,则( )A .B .C .D .2.已知复数,则的虚部为( )A .B .7C .D .3.某高中的三个年级共有学生2000人,其中高一600人,高二600人,高三800人,该校现在要了解学生对校本课程的看法,准备从全校学生中抽取80人进行访谈,若采取按比例分配的分层抽样,且按年级来分层,则高一年级应抽取的人数是( )A .24B .26C .30D .364.若为奇函数,则的值为( )A .B .0C .1D .25.已知向量满足,则( )A .B .C .8D .406.某科技攻关青年团队共有18人,他们的年龄分布如下表所示:年龄45403632302826人数3234231下列说法正确的是()A .29是这18人年龄的一个25%分位数C .34是这18人年龄的一个中位数{}{}*215,15M x x N x x =->=∈-<<N ()R M N = ð{}0,1,2,3{}1,2,3{}0,1,2{}1,2()513i 2iz +=-z 7i7i-7-()()()2f x x x x a =+-a 1-,a b 0,2,3a b a b ⋅=== 2a b -=B .40是这18人年龄的一个80%分位数D .这18人年龄的众数是47.如图,已知正三棱柱为的中点,则与所成角的余弦值为()A .1BCD8.圭表是我国古代一种通过测量正午日影长度来推定节气的天文仪器,它包括一根水平长尺(称为“圭”)和一根直立于圭面的标杆(称为“表”).如图,利用圭表测得南京市在夏至日的早上6:00和中午的太阳高度角约为和.设表高为1米,则影差约为( )(参考数据:)A .2.747米B .5.494米C .8.241米D .10.988米二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.若复数,则( )A .B .C .复数的实部与虚部不相等D .复数在复平面内对应的点在第四象限10.已知是两条不同的直线,是三个不同的平面,则下列说法正确的是( )A .若,则B .若,则C .若,则D .若,则11.已知是定义在上的偶函数,且对任意的,有,当时,,则下列说法正确的是( )1111,,ABC A B C AB M -=11AC AM 1BC 12:00()10ABC ︒∠()80ADC ︒∠AC BD tan 70 2.747︒≈2024i 2iz =+25z =45z z +=z z ,m n ,,αβγ,m ααβ∥∥m β∥,,m n m n αβ⊥⊥⊥αβ⊥,αββγ∥∥αγ∥,,m n αβαγβγ⊥== m n⊥()f x R x ∈R ()()2f x f x -=-[]0,1x ∈()2f x x x a =+-A .B .点是函数的一个对称中心C .当时,D .函数恰有3个零点三、填空题:本题共3小题,每小题5分,共15分.12.已知,则_______.13.已知,则_______.14.在中,角的对边分别为,若且,则的取值范围为_______.四、解答题:本题共5小题,共77分.解答应写出必要的文字说明、证明过程及演算步骤.15.(本小题满分13分)如图,在正四棱锥中,.(1)求四棱锥的体积;(2)求四棱锥的表面积.16.(本小题满分15分)已知的内角的对边分别为.(1)求;(2)若,请判断是锐角,直角还是钝角三角形?17.(本小题满分15分)随着商品经济的发展,市场竞争日益激烈,消费者在选购产品时,不仅注重商品的质量,更加注重产品的售后服务,从商家收到消费者问题的反馈到问题得到圆满的解决,这个时间长度我们称为“售后处理时间”,这个“售后处理时间”无疑越短越受消费者的欢迎,现从某市使用甲和乙两种空调的消费者中分别随机抽取100个消费者,对他们的“售后处理时间”进行统计,得到频率分布直方图如下:()()202320242f f +=-()7,0-()f x []7,8x ∈()21754f x x x =++()()6log 61y f x x =-+tan2α=tan α=5,log 10a b b a b a ==ba=ABC △,,A B C ,,a b c ππ64A <<22b a ac -=1tan tan A B+P ABCD -2,3AB PA ==P ABCD -P ABCD -ABC △,,A B C ()()(),,,sin sin sin sin a b c C A c a b C B -+=-A 2,b a ==ABC △(1)试估计该市使用甲种空调的消费者的“售后处理时间”的众数、中位数及平均数(同一组中的数据用该组区间的中点值作代表);(2)如果以“售后处理时间”的平均数作为决策依据,从甲和乙两种空调中选择一款购买,你会选择哪款?18.(本小题满分17分)函数的部分图象如图所示,该图象与轴交于点,与轴交于点为最高点,的面积为.(1)求函数的解析式;(2)若对任意的,都有,求实数的取值范围.19.(本小题满分17分)如图,在直四棱柱中,底面是边长为2的菱形,,分别是线段上的动点,且.()()π3sin 0,02f x x ωϕωϕ⎛⎫=+><< ⎪⎝⎭y F ⎛ ⎝x ,,B C M MBC △3π4()f x π0,3x ⎡⎤∈⎢⎥⎣⎦()33log 3f x k +≤k 1111ABCD A B C D -ABCD 120ADC ∠=︒14,,CC M N =1,DD BD (01)DN DB λλ=<<(1)若二面角的大小为,求的长;(2)当三棱锥与平面所成角的正弦值的取值范围.1M BC C --45︒DM M ADC -CN BCM曲靖市民族中学2026届高一下学期期末考试卷·数学参考答案、提示及评分细则1. B 由题意知,所以.故选B .2.D 因为,所以,所以的虚部为.故选D .3.A 由题意,从全校2000人中抽取80人访谈,按照年级分层,则高一年级应该抽(人).故选A .4.D 由题得:由,有,可得.故选D .5.B 因为向量满足,所以,则B .6.B 对选项A :,第分位数为30,故A 错误;对选项B :,第分位数为40,故B 正确;对选项C :这18人年龄的中位数是,故C 错误;对选项D :这18人年龄的众数是32,故D 错误.故选B .7.B 如图,取的中点,取的中点,取中点,连接,所以直线与所成角就是直线与直线所成的角,由题意可知三棱柱的所有棱长都相等,可设三棱柱的棱长都为2,则,则在中,由余弦定理可得:即直线与.故选B .{}{}{}{}*2153,151,2,3,4M x x x x N x x =->=>=∈-<<=N (){}1,2,3RM N = ð()()()()()513i 513i 2i 17i 2i 2i 2i z +++===-+--+17i z =--z 7-60080242000⨯=()()220f f -+=()820a -=2a =,a b 0,2,3a b a b ⋅===222|2|(2)44360440a b a b b a b a -=-=-⋅+=-+=2a b -=1825% 4.5⨯=25%1880%14.4⨯=80%3232322+=11B C E AB F 1BB P ,EF PE AM 1BC EF EP 111ABC A B C -EF AM ==PEF △cos PEF ∠==AM 1BC8.B 在中,,在中,由正弦定理得,即,所以.故选B .9.BCD 由题意知,则,故A 错误;,故B正确;复数的实部为,虚部为,故C 正确;复数在复平面内对应的点为,在第四象限,故D 正确,故选BCD .10.BC 若,则或,故A 错误;若,则,故B 正确;若,则,故C 正确;在正方体中,平面平面,平面平面,平面平面,但,故D 错误.故选BC .11.ABD 因为,令,得,所以,解得.因为为偶函数,又,所以关于对称,所以,所以是周期为4的周期函数,所以,故A 正确;因为的周期为4,关于对称,所以是函数的一个对称中心,故B 正确;Rt ACD △1sin80AD =︒ABD △sin sin BD ADBAD ABD=∠∠sin70sin10BD AD =︒︒sin 702sin 702tan 70 5.494sin80sin10sin 20BD ︒︒===︒≈︒︒︒()()2024i 12i 2i 2i 2i 2i 2i 5z --====+++-z =2i 2i 4555z z -++=+=z 2515-z 21,55⎛⎫-⎪⎝⎭,m ααβ∥∥m β∥m β⊂,,m n m n αβ⊥⊥⊥αβ⊥,αββγ∥∥αγ∥1111ABCD A B C D -ABCD ⊥11ADD A ABCD 11A BCD BC =11ADD A 1111A BCD A D =11BC A D ∥()()2f x f x -=-1x =()10f =()21110f a =+-=2a =()f x ()()2f x f x -=-()f x ()1,0()()()()()422f x f x f x f x f x +=---=-+=-=()f x ()()()()()()2023202410102f f f f f f +=-+=+=-()f x ()f x ()1,0()7,0-()f x当时,,所以,故C 错误;作函数和的图象如图所示,由图可知,两个函数图象有3个交点,所以函数有3个零点,故D 正确.故选ABD .12. 因为,所以13.2 因为,所以,所以.14. 由余弦定理得,将代入,则,故,又由正弦定理得,且,整理得,因为,故或(舍去),得,于是,由于,则,.15.解:(1)连接,记,连接,如图所示.易得平面,又平面,所以,所以所以四棱锥的体积[]7,8x ∈[][]81,0,80,1x x -∈--∈()()()2288(8)821770f x f x f x x x x x =-=-=-+--=-+()6log 61y x =+()y f x =()()6log 61y f x x =-+tan2α=22tan2tan 11tan 22ααα===-5,log 10a b b a b a ==55log log log 12a a a b b b a a ====52,2ba a a==⎛ ⎝2222cos a c b ac B +-=22b a ac -=22cos ac c ac B =-2acos c a B -=sin sin 2sin Acos C A B -=()sin sin C A B =+()sin sin B A A -=(),0,πA B ∈B A A -=πB A A -=-2B A =211tan 11tan tan tan tan 2tan 2tan A A A A B A A -⎛⎫+=+=+ ⎪⎝⎭ππ64A <<tan A ⎫∈⎪⎭1tan tan A B ⎛∴+∈ ⎝,AC BD AC BD O = PO PO ⊥ABCD AO ⊂ABCD PO AO ⊥PO ==P ABCD -112233ABCD V S PO =⋅=⨯⨯=四边形(2)取的中点,连接,如图所示.因为平面平面,所以,所以所以四棱锥的表面积16.解:(1)由正弦定理得,则,由余弦定理得,又,所以;(2)由余弦定理得,化简后有,解出,显然,因此是直角三角形(也可用正弦定理求出的值,进而判断)17.解:(1)由使用甲种空调“售后处理时间”的频率分布直方图知,售后处理时间在,内的频率分别为,因此,使用甲种空调的消费者中“售后处理时间”的众数为55,因为,则“售后处理时间”的中位数,于是得,解得,所以所求中位数为,所求平均数为;AB E ,OE PE PO ⊥,ABCD OE ⊂ABCD PO OE ⊥PE ==P ABCD -14422242PAB ABCD S S S =+=⨯⨯⨯+⨯=+△四边形()()()c a c a b c b -+=-222b c a bc +-=2221cos 22b c a A bc +-==0πA <<π3A =2222431cos 242b c a c A bc c +-+-===2210c c -+=1c =222a cb +=ABC △sin B [)[)[)10,20,20,30,30,40[)[)[]40,50,50,60,60,700.06,0.34,0.12,0.04,0.40,0.040.060.340.40.5,0.060.340.120.520.5+=<++=>[)30,40m ∈()300.0120.50.4m -⨯=-1153m =1153150.06250.34350.12450.04550.4650.0440⨯+⨯+⨯+⨯+⨯+⨯=(2)依题意,使用乙种空调的消费者中“售后处理时间”的平均数为,所以选乙种空调进行购买.18.解:(1)由题意可知:的面积,可得,所以周期,则,由,得,于是,所以;(2)由,则,得,即.由,得,即在上恒成立,亦即,因为,所以,解得,即实数的取值范围是.19.解:(1)取中点,过点作,交于点,连接.150.04250.2350.56450.14550.04650.023540⨯+⨯+⨯+⨯+⨯+⨯=<MBC △13π324S BC =⨯=π2BC =2ππωT ==2ω=()03sin f ϕ==sin ϕ=π02ϕ<<π3ϕ=()π3sin 23f x x ⎛⎫=+⎪⎝⎭π0,3x ⎡⎤∈⎢⎥⎣⎦ππ2,π33x ⎛⎫⎡⎤+∈ ⎪⎢⎥⎝⎭⎣⎦π03sin 233x ⎛⎫≤+≤ ⎪⎝⎭()03f x ≤≤()33log 3f x k +≤()333log 3f x k -≤+≤()()333log 3f x k f x --≤≤-π0,3x ⎡⎤∈⎢⎥⎣⎦max 3min [3()]3log [3()]f x k f x --≤≤-max min [3()]3,[3()]0f x f x --=--=333log 0k -≤≤113k ≤≤k 1,13⎡⎤⎢⎥⎣⎦BC P P PQ BC ⊥11B C Q PM因为底面是边长为2的菱形,,所以为等边三角形.由直四棱柱,可得平面,平面,,所以和全等,可得.因为为中点,所以.又因为,所以为二面角的平面角,即.在平面中,,所以,则有,所以.在中,,则,解得(2)因为平面,所以,.ABCD 120ADC ∠=︒BCD △1111ABCD A B C D -1DD ⊥ABCD 1CC ⊥11,ABCD CC DD ∥90,,MDC MDB BD DC MD MD ∠=∠=︒==MDB △MDC △MB MC =P BC MP BC ⊥PQ BC ⊥MPQ ∠1M BC C --45MPQ ∠=︒11B BCC 1,PQ BC CC BC ⊥⊥1CC PQ ∥1DD PQ ∥45DMP MPQ ∠=∠=︒Rt MDP △2,BC DP BC ===tan tan45DMP ∠=︒=DM =1DD ⊥ABCD 13M ACD ACD V S DM -=⋅△11sin 2222ACD S DC DA ADC =⋅⋅⋅∠=⨯⨯=△因为三棱锥,所以,因为平面,所以.在中,,所以.设到平面的距离为,在中,,所以,所以.因为,解得.在中,由余弦定理得,所以.设与平面所成的角为.所以.令,则因为,所以,所以,所以与平面所成角的正弦值的取值范围是.M ADC-13DM ⋅=1DM =DM ⊥ABCD 1133M NBC NBC NBC V DM S S -=⋅⋅=△△BCD △()())1(01),112212BCN BCD DN DB S S λλλλλ=<<=-=-⨯⨯⨯=-△△)1M NBC V λ-=-N BCM d MBC △2MB MC BC ===112222MBC S BC ==⨯=△1233N MBC MBC V d S d -=⋅⋅=△M NBC N MBC V V --=)213d λ-=)1d λ=-CDN △2222cos60CN CD DN CD DN =+-⋅⋅︒22444CN λλ=-+CN BCM θsin 1)d CN θλ===<<()10,1m λ-=∈sin θ==01m <<11m >0sin θ<<CN BCM ⎛ ⎝。
人教版_新课标_高一下学期期末考试模块考试_数学试卷_(精选四)【含答案与评分标准】
人教版新课标 高一第二学期期末考试 模块考试数学试卷本试卷分基础检测与能力检测两部分,共4页.满分为150分。
考试用时120分钟. 注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号填写在答卷上,并用2B 铅笔填涂学号.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案标号,不能答在试题卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.第一部分 基础检测(共100分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知{}n a 为等比数列,16991=⋅a a ,则8020a a ⋅=( )A .16B .16-C .4D .4- 2.在ABC ∆中,4=a ,24=b ,︒=30A ,则B 的值为( )A.︒45B.︒135C. ︒45或︒135D. 不存在 3.已知向量)1,3(-=,)cos ,(sin x x =,其中R x ∈,函数x f ⋅=)(的最大值为( )A. 2-B.13+ C. 3 D. 24.设等差数列{}n a 的前n 项和为n S ,若39S =,636S =,则789a a a ++=( ) A .63 B .45 C .36 D .275.在ABC ∆中,a 、b 、c 分别是角A 、B 、C 的对边,若C b a cos 2=,则ABC ∆的形状是( )A .等腰三角形B .等边三角形C .直角三角形D .锐角三角形 6.已知54sin =α,παπ<<2,则2tan α的值为( ) A. 21- B. 2- C. 2 D. 217.数列)23()1(,,10,7,4,1----n n的前n 项和为n S ,则=+2011S S ( )A .16-B .30C .28D .148.tan 20tan 403tan 20tan 40++的值是( )A .33B .3C .1D .3- 9.在数列{}n a 中,11=a ,)1(11-=--n n a a n n ,则n a =( )A .n 12-B .n 11-C .n 1D .112--n10.对于非零向量,,下列运算中正确的有( )个. ①00,0===⋅b a b a 或则 ②()()c b a c b a ⋅⋅=⋅⋅= ④b a c b c a =⋅=⋅则,A .3个B .2个C .1个D .0个二、填空题:本大题共4小题,每小题5分,共20分.11.已知数列{}n a 为等差数列,且115=a ,58=a ,则=n a _____________. 11.已知21cos sin =+αα,则cos4α=________. 13.在ABC ∆中,a 、b 、c 分别是角A 、B 、C 的对边. 若bc c b a ++=222,3=a ,则ABC ∆的外接圆半径等于_____________.14.等差数列与等比数列之间是存在某种结构的类比关系的,例如从定义看,或者从通项公式看,都可以发现这种类比的原则. 按照此思想,请把下面等差数列的性质,类比到等比数列,写出相应的性质:若{}n a 为等差数列,)(,n m b a a a n m <==,则公差mn ab d --=;若}{n b 是各项均为正数..的等比数列,)(,n m b b a b n m <==,则公比=q _________________.三、解答题:本大题共3小题,共30分.解答应写出文字说明、证明过程或演算步骤. 15.(本题满分9分)设1e ,2e 是两个相互垂直....的单位..向量,且212e e a +=,12b e e λ=- (1)若a b ⊥,求λ的值;(2)当0=λ时,求,夹角的余弦值.16.(本题满分12分)已知等比数列{}n a 的前n 项和为n S ,273=S ,2636=S , (1)求等比数列{}n a 的通项公式;(2)令n n a n b 2log 616+-=,证明数列{}n b 为等差数列;(3)对(2)中的数列{}n b ,前n 项和为n T ,求使n T 最小时的n 的值.17.(本题满分9分)已知31tan -=α,),2(ππα∈. (1)化简ααα2cos 1cos 2sin 2+-,并求值.(2)若),2(ππβ∈,且1312)cos(-=+βα,求)sin(βα+及βcos 的值.第二部分 能力检测(共50分)四、填空题:本大题共2小题,每小题5分,共10分.18.若数列{}n a 满足11=a ,且nn n a a 241+=+,则通项=n a ________________.19.课本介绍过平面向量数量积运算的几何意义:⋅等于的在><,的乘积. 运用几何意义,有时能得到更巧妙的解题思路. 例如:边长为1的正六边形ABCDEF 中,点P 是正六边形内的一点(含边界),则AB AP ⋅的取值范围是_____________.五、解答题:本大题共3小题,共40分.解答应写出文字说明、证明过程或演算步骤. 20.(本题满分12分)在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,且3π=A .(1)若1=a ,面积43=∆ABC S ,求b+c 的值; (2)求)3sin(C c b a -⋅-π的值(注意,此问只能使用题干的条件,不能用(1)问的条件).21.(本题满分14分)设数列{}n b 的前n 项和为n S ,且22n n b S =-. (1)求数列{}n b 的通项公式; (2)若n n b nc ⋅=2,n T 为数列{}n c 的前n 项和. 求n T ;(3)是否存在自然数m ,使得442mT m n <<-对一切*N n ∈恒成立?若存在,求出m 的值;若不存在,说明理由.22.(本题满分14分)将一块圆心角为3π半径为a 的扇形铁片截成一块矩形,如图,有两种裁法:让矩形一边在扇形的一半径OA 上(图1)或让矩形一边与弦AB 平行(图2)(1)在图1中,设矩形一边PM 的长为x ,试把矩形PQRM 的面积表示成关于x 的函数; (2)在图2中,设∠AOM =θ,试把矩形PQRM 的面积表示成关于θ的函数; (3)已知按图1的方案截得的矩形面积最大为263a ,那么请问哪种裁法能得到最大面积的矩形?说明理由.图2图1ROOA参考答案一、选择题:本大题共10小题,每小题5分,共50分1、已知{}n a 为等比数列,16991=⋅a a ,则8020a a ⋅=( A )A .16B .16-C .4D .4- 2、在ABC ∆中,4=a ,24=b ,︒=30A ,则B 的值为( C )A.︒45B.︒135C. ︒45或︒135D. 不存在 3、已知向量)1,3(-=,)cos ,(sin x x =,其中R x ∈,函数x f ⋅=)(的最大值为( D )A. 2-B. 13+C. 3D. 24、设等差数列{}n a 的前n 项和为n S ,若39S =,636S =,则789a a a ++=( B ) A .63 B .45 C .36 D .275、在ABC ∆中,a 、b 、c 分别是角A 、B 、C 的对边,若C b a cos 2=,则ABC ∆的形状是( A )A .等腰三角形B .等边三角形C .直角三角形D .锐角三角形6、已知54sin =α,παπ<<2,则2tan α的值为( C ) A. 21- B. 2- C. 2 D. 217、数列)23()1(,,10,7,4,1----n n的前n 项和为n S ,则=+2011S S ( D ) A .16- B .30 C .28 D .14 8、tan 20tan 403tan 20tan 40++的值是( B )A .33B .3C .1D .3- 9、在数列{}n a 中,11=a ,)1(11-=--n n a a n n ,则n a =( A )A .n 12-B .n 11-C .n 1D .112--n10、对于非零向量,,下列运算中正确的有( D )个. ①00,0===⋅或则 ②()()⋅⋅=⋅⋅= ④b a c b c a =⋅=⋅则,A .3个B .2个C .1个D .0个二、填空题:本大题共4小题,每小题5分,共20分.11、已知数列{}n a 为等差数列,且115=a ,58=a ,则=n a _____________. 212+-n11、已知21cos sin =+αα,则cos4α=________. 81- 13、在ABC ∆中,a 、b 、c 分别是角A 、B 、C 的对边. 若bc c b a ++=222,3=a ,则ABC ∆的外接圆半径等于_____________. 114、等差数列与等比数列之间是存在某种结构的类比关系的,例如从定义看,或者从通项公式看,都可以发现这种类比的原则. 按照此思想,请把下面等差数列的性质,类比到等比数列,写出相应的性质:若{}n a 为等差数列,)(,n m b a a a n m <==,则公差mn ab d --=;若}{n b 是各项均为正.数.的等比数列,)(,n m b b a b n m <==,则公比=q _________________. mn ab -三、解答题:本大题共3小题,共30分.15、(本题满分9分)设1e ,2e 是两个相互垂直....的单位..向量,且212e e +=,12b e e λ=- (1)若a b ⊥,求λ的值;(2)当0=λ时,求,夹角的余弦值.解:(1) a b ⊥,0=⋅∴b a ,即0)()2(2121=-⋅+e e e e λ ……1分 化简得0)21(2222121=--+e e e e λλ ……2分又1e ,2e 是两个相互垂直的单位向量,∴12221==e e ,021=e e ……3分02=-∴λ,2λ=. ……4分 (2)当0=λ时,1b e eλ=- 22)2(21121==⋅+=⋅e e e eb a ……5分544)2(2221212212=+⋅+=+==ee e e e e ,5= ……7分55252,cos ==>=<∴ ……9分16、(本题满分12分)已知等比数列{}n a 的前n 项和为n S ,273=S ,2636=S , (1)求等比数列{}n a 的通项公式;(2)令n n a n b 2log 616+-=,证明数列{}n b 为等差数列;(3)对(2)中的数列{}n b ,前n 项和为n T ,求使n T 最小时的n 的值.解:(1)362S S ≠ ,1≠∴q ⎪⎪⎩⎪⎪⎨⎧=--=--∴2631)1(271)1(6131qq a qq a ,……2分两式子相除得 913=+q ,2=∴q ……3分 代入解得211=a ,……4分2112--=⋅=∴n n n q a a . ……5分(2)6372log 616log 616222-=+-=+-=-n n a n b n n n ……6分 763763)1(71=+--+=-+n n b b n n ,{}n b ∴为等差数列. ……8分(3)方法一:令⎩⎨⎧≥≤+001n n b b ,得⎩⎨⎧≥-≤-05670637n n , ……10分解得98≤≤n ,……11分 ∴当8=n 或9=n 时,前n 项和为n T 最小. ……12分方法二:561-=b ,n n n n b b n T n n 2119272)1197(2)(21-=-=+= ……10分 对称轴方程为5.8217==n ,……11分 ∴当8=n 或9=n 时,前n 项和为n T 最小. ……12分17、(本题满分9分)已知31tan -=α,),2(ππα∈. (1)化简ααα2cos 1cos 2sin 2+-,并求值.(2)若),2(ππβ∈,且1312)cos(-=+βα,求)sin(βα+及βcos 的值.解:(1) 6521tan cos 2cos cos sin 22cos 1cos 2sin 222-=-=-=+-αααααααα ……2分 6521tan cos 2cos cos sin 2s 222-=-=-=ααααααα ……3分 (2)),2(ππα∈ ,),2(ππβ∈,)2,(ππβα∈+∴ 又1312)cos(-=+βα,)23,(ππβα∈+∴ 135)(cos 1)sin(2-=+--=+∴βαβα ……5分 由31tan -=α,),2(ππα∈,得1010sin =α,10103cos -=α ……6分 ])cos[(cos αβαβ-+= ……7分αβααβαs i n )s i n (c o s )c o s(+++= 13010311010135)10103)(1312(=⋅---= ……9分四、选择题:本大题共2小题,每小题5分,共10分.18、若数列{}n a 满足11=a ,且nn n a a 241+=+,则通项=n a ________________.11222---=n n n a19、课本介绍过平面向量数量积运算的几何意义:b a ⋅等于a与b 在a ><b a ,cos 的乘积. 运用几何意义,有时能得到更巧妙的解题思路. 例如:边长为1的正六边形ABCDEF 中,点P 是正六边形内的一点(含边界),则⋅的取值范围是_____________.⎥⎦⎤⎢⎣⎡-23,21五、解答题:本大题共3小题,共40分.解答应写出文字说明、证明过程或演算步骤. 20、(本题满分12分)在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,且3π=A .(1)若1=a ,面积43=∆ABC S ,求b+c 的值; (2)求)3sin(C c b a -⋅-π的值(注意,此问只能使用题干的条件,不能用(1)问的条件). 解:(1)4343sin 21====∆bc A bc S ABC ,……1分 1=∴bc ……2分由余弦定理212cos 2122222-+=-+==c b bc a c b A ……4分得222=+c b ……5分42)(222=++=+bc c b c b ,2=+∴c b ……6分(2)由正弦定理知)3sin(sin sin sin )3sin(C C B A C c b a -⋅-=-⋅-ππ ……8分CC C sin )32sin()3sin(23---=ππ……10分 23)3sin()3sin(23sin 21cos 23)3sin(23=--=--=C C CC C πππ ……12分21、(本题满分14分)设数列{}n b 的前n 项和为n S ,且22n n b S =-. (1)求数列{}n b 的通项公式;(2)若n n b nc ⋅=2,n T 为数列{}n c 的前n 项和. 求n T ; (3)是否存在自然数m ,使得442mT m n <<-对一切*N n ∈恒成立?若存在,求出m的值;若不存在,说明理由.解:(1)由22n n b S =-,令1n =,则1122b S =-,又11S b =,所以123b =. ……1分 当2≥n 时,由22n n b S =-, ……2分 可得n n n n n b S S b b 2)(211-=--=---. 即113n n b b -=. ……3分 所以{}n b 是以123b =为首项,31为公比的等比数列,于是n n b 312⋅=. ……4分(2)n n n nb nc 32=⋅= ……5分∴n n n T 313133123132⋅++⋅+⋅+=1323131)1(31231131+⋅+⋅-++⋅+⋅=n n n n n T ……6分 ∴132313131313132+⋅-++++=n n n n T . ……7分1331121+-⎪⎭⎫ ⎝⎛-=n n n, ……8分从而n n n T 3143243⋅+-=.(写成nn n nT 32314343⋅-⋅-=也可) ……9分 (3)=-+n n T T 103111>+=++n n n c ,故{}n T 单调递增3111==≥∴c T T n ,又433143243<⋅+-=n n n T ,4331<≤∴n T ……11分要442m T m n <<-恒成立,则⎪⎪⎩⎪⎪⎨⎧<-≤3142443m m , ……12分 解得3103<≤m ,……13分 又*N m ∈,故3=m . ……14分22、(本题满分14分)将一块圆心角为3π半径为a 的扇形铁片截成一块矩形,如图,有两种裁法:让矩形一边在扇形的一半径OA 上(图1)或让矩形一边与弦AB 平行(图2)(1)在图1中,设矩形一边PM 的长为x ,试把矩形PQRM 的面积表示成关于x 的函数; (2)在图2中,设∠AOM =θ,试把矩形PQRM 的面积表示成关于θ的函数; (3)已知按图1的方案截得的矩形面积最大为263a ,那么请问哪种裁法能得到最大面积的矩形?说明理由. 解:(1)PM=QR=x , 在RT △QRO 中,OR=3x在RT △PMO 中,OM=22x a -∴RM=OM-OR=22xa -33x-……2分 22233x x a x RM PM S --=⋅=∴,)23,0(a x ∈ ……3分 (2)∠MRA =21×3π=6π,∠MRO =65π,在△OMR 中,由正弦定理,得:θsin RM=65sin πa ,即RM = 2a ·sin θ, ……6分又)6sin(θπ-OR =65sinπa ,∴OR = 2a ·sin(6π-θ), ……8分图2图1ROOA又正△ORQ 中,QR=OR=2a ·sin(6π-θ) ∴矩形的MPQR 的面积为S = MR·PQ = 4a 2·sin θ·sin(6π-θ) )3,0(πθ∈ ……9分(3)对于(2)中的函数)sin 23cos sin 21(4)sin 23cos 21(sin 4222θθθθθθ-=-=a a S ]23)32[sin(2)]2cos 1(432sin 41[422-+=--=πθθθa a ……11分当232ππθ=+,即12πθ=时,2max )32(a S -= ……13分2)32(a -263a <,故按图1的方案能得到最大面积的矩形. ……14分。
福建省福建师范大学附属中学2023-2024学年高一下学期7月期末考试数学试题(含答案)
福建师大附中2023-2024学年第二学期期末考试高一数学试卷时间:120分钟满分:150分试卷说明:(1)本卷共四大题,20小题,解答写在答卷的指定位置上,考试结束后,只交答卷.(2)考试过程中不得使用计算器或具有计算功能的电子设备.第Ⅰ卷(选择题,共58分)一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.设i 为虚数单位,复数满足,则复数的虚部是( )A .B .C .3iD .32.某汽车生产厂家用比例分配的分层随机抽样方法从A ,B ,C 三个城市中抽取若干汽车进行调查,各城市的汽车销售总数和抽取数量如右表所示,则样本容量为( )城市销售总数抽取数量A 420m B 28020C 700nA .60B .80C .100D .1203.某校文艺部有4名学生,其中高一、高二年级各2名,从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为( )A.B .C .D .4.设是两条不同的直线,是两个不同的平面,给出下列说法,其中正确的是( )A .若,则B .若,则C .若,则D .若,则5.如图,在三棱锥中,分别是,的中点,则异面直线所成角的余弦值为()z ()i 142i z +=+z i-1-16131223,m n ,αβ,,m n m n αβ⊥⊥∥αβ⊥,m m αβ⊥∥αβ⊥,,m n m n αβ⊥⊂⊂αβ⊥,,m n m n αβ⊥⊂⊥αβ⊥A BCD -6,4,,AB AC BD CD AD BC M N ======AD BC ,AN CMA.B .C .D .6.有一组样本数据:,其平均数为2024.由这组数据得到一组新的样本数据:,那么这两组数据一定有相同的( )A .极差B .中位数C .方差D .众数7.已知正四棱台上底面边长为1,下底面边长为2,体积为7,则正四棱台的侧棱与底面所成角的正切值为( )ABCD .8.已知三棱锥中,平面,底面是以为直角顶点的直角三角形,且,三棱锥,过点作于,过作于,则三棱锥外接球的体积为()A .BCD .二、选择题:本题共3小题,每小题6分,共18分。
2021-2022学年湖南省师范大学附属中学数学高一第二学期期末经典试题含解析
2021-2022学年高一下数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本大题共10小题,每小题5分,共50分。
在每个小题给出的四个选项中,恰有一项是符合题目要求的1.执行下图所示的程序框图,若输出的0y =,则输入的x 为( )A .0B .1C .0或1D .0或e2.已知()2,0A ,()0,2B ,从()1,0P 射出的光线经过直线AB 反射后再射到直线OB 上,最后经直线OB 反射后又回到P 点,则光线所经过的路程可以用对称性转化为一条线段,这条线段的长为( ) A .10B .3C 5D .33.在正三棱锥P ABC -中,4,AB 3PA ==PA 与底面ABC 所成角的正弦值为( ) A .14B .154C .18D .6384.已知1cos 32πα⎛⎫-=- ⎪⎝⎭,则sin 6πα⎛⎫+ ⎪⎝⎭的值等于 ( )A .3B .3C .12D .12-5.设α、β、γ为平面,为m 、n 、l 直线,则下列判断正确的是( ) A .若αβ⊥,l αβ=,m l ⊥,则m β⊥B .若m αγ=,αγ⊥,βγ⊥,则m β⊥C .若αγ⊥,βγ⊥,m α⊥,则m β⊥D .若n α⊥,n β⊥,m α⊥,则m β⊥6.已知函数e 0()ln 0x x f x x x -⎧≤=⎨>⎩,,,,则1[()]3f f 的是A .13B .1eC .eD .37.若函数cos 0()(1)10x x f x f x x π-⎧=⎨++≤⎩,>,,则4()3f -的值为( ) A .12-B .12C .32D .528.设12,0,,22α⎧⎫∈-⎨⎬⎩⎭,则使函数y x α=的定义域是R ,且为偶函数的所有α的值是( ) A .0,2B .0,-2C .12D .29.在区间[1,4]-内随机取一个实数a ,使得关于x 的方程2420x x a ++=有实数根的概率为( ) A .25B .13C .35D .2310.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为( )A .8643π+B .964(21)π+-C .8643π-D .4643π-二、填空题:本大题共6小题,每小题5分,共30分。
广东省深圳市盐田高级中学2023-2024学年高一下学期期末模拟数学试卷(含解析)
深圳市盐田高级中学2023-2024学年第二学期高一下期末考试数学模拟试卷一、单选题(每题5分,共40分)1.设全集,集合M 满足,则( )A .B .C .D .2.下列函数中,满足“”的单调递增函数是A .B .C .D .3.若古典概型的样本空间,事件,事件,相互独立,则事件可以是( )A .B .C .D .4.已知向量,则在方向上的投影向量为( )A.B .C .D .5.设是两个平面,是两条直线,且.下列四个命题:①若,则或 ②若,则③若,且,则 ④若与和所成的角相等,则其中所有真命题的编号是( )A .①③B .②④C .①②③D .①③④6.函数的图象由函数的图象向左平移个单位长度得到,则的图象与直线的交点个数为( )A .1B .2C .3D .47.设函数,,当时,曲线与恰有一个交点,则( )A .B .C .1D .28.一个五面体.已知,且两两之间距离为1.并已知.则该五面体的体积为( ){1,2,3,4,5}U ={1,3}U M =ð2M ∈3M ∈4M ∉5M∉()()()f x y f x f y +=()12f x x =()3f x x=()12x f x ⎛⎫= ⎪⎝⎭()3x f x ={}Ω1,2,3,4={}1,2A =A B B {}1,3{}1,2,3{}3,4{}2,3,4(2,a b =-= b a 14a 14a - b - bαβ、m n 、m αβ= //m n //n α//n βm n ⊥,n n αβ⊥⊥//n α//n β//m n n αβm n⊥()y f x =πcos 26y x ⎛⎫=+ ⎪⎝⎭π6()y f x =1122y x =-2()(1)1f x a x =+-()cos 2g x x ax =+(1,1)x ∈-()y f x =()y g x ==a 1-12ABC DEF -AD BE CF ∥∥123AD BE CF ===,,ABB .CD二、多选题(每题6分,共18分)9.复数,其共轭复数为,则下列叙述正确的是( )A .对应的点在复平面的第四象限B .是一个纯虚数C .D .10.下列说法正确的是( )A .若,则B .的最小值为2C .D的最小值为211.已知函数,则下列说法正确的有()A .若,则在上的最小值为0B .若,则点是函数的图象的一个对称中心C .若函数在上单调递减,则满足条件的值有3个D .若对任意实数,方程在区间内的解的个数恒大于4且小于10,则满足条件的值有11个三、填空题(每题5分,共15分)12.已知向量与的夹角为,且,.13.已知,则 .14.如图所示,由到的电路中有4个元件,分别为,,,.若,,,能正常工作的概率都是,记事件“到的电路是通路”,则 .四、解答题15.(13分)记的内角A ,B ,C 的对边分别为a ,b ,c ﹐已知.12+12-1i z =-z z z 2z z ⋅=i z z =-22ac bc >a b>b a a b +,0,b b m a b m a a m +∀>><+()2()cos cos f x nx nx nx n ++∈N 1n =()f x π[0,]22n =5π(,0)24()f x ()f x ππ[,]43n 0x 3()4f x =00π(,6x x +n a b 60 ()2,6a =-- b = ⋅= a b 2log 5,85b a ==ab =X Y A B C D A B C D 23N =X Y ()P N =ABC ()()sin sin sin sin C A B B C A -=-(1)若,求C ;(2)证明:16.(15分)如图,在四棱锥中,,,,E 为棱的中点,平面.(1)求证:平面平面;(2)若二面角的大小为,求直线与平面所成角的正弦值.17.(15分)现有甲、乙、丙三个人相互传接球,第一次从甲开始传球,甲随机地把球传给乙、丙中的一人,接球后视为完成第一次传接球;接球者进行第二次传球,随机地传给另外两人中的一人,接球后视为完成第二次传接球;依次类推,假设传接球无失误.(1)设第一次接球人为,第二次接球人为,通过次传接球后,列举出的所有可能的结果;(2)完成第三次传接球后,计算球正好在乙处的概率.18.(17分)已知函数.(1)求的最小正周期和单调递增区间;(2)若,且,求的值;(3)若函数在区间上恰有4个不同的零点,求的取值范围.2A B =2222a b c =+P ABCD -//AD BC AD DC ⊥112BC CD AD ===AD PA ⊥ABCD PAB ⊥PBD P CD A --45︒PA PBD x y2(),x y ()π4sin cos 16f x x x ⎛⎫=+- ⎪⎝⎭()f x π,02α⎛⎫∈- ⎪⎝⎭122f α⎛⎫= ⎪⎝⎭cos α()()()π2236g x f x a f x ⎛⎫=-+-+ ⎪⎝⎭π11π,612⎡⎤⎢⎥⎣⎦a19.(17分)在数学中,双曲函数是与三角函数类似的函数,最基本的双曲函数是双曲正弦函数与双曲余弦函数,其中双曲正弦函数:,双曲余弦函数:.(e 是自然对数的底数,).(1)计算的值;(2)类比两角和的余弦公式,写出两角和的双曲余弦公式:______,并加以证明;(3)若对任意,关于的方程有解,求实数的取值范围.深圳市盐田高级中学2023-2024学年第二学期高一下期末考试数学模拟试卷参考答案1.A2.D3.A【分析】根据与是否相等判断事件是否独立,得到答案.【详解】由题意得,A 选项,,,故,所以,故事件相互独立,A 正确;4.A 【详解】由,得,所以在方向上的投影向量为.5.A6.C【分析】先利用三角函数平移的性质求得,再作出与的部分大致图像,考虑特()e e sinh 2x x x --=()e e cosh 2x xx -+=e 2.71828= ()()2cosh 22cosh 1-()cosh x y +=[]0,ln 2t ∈x ()()sinh cosh t x a +=a ()P A B ⋂()()P A P B ()2142P A ==()2142P B =={}1A B ⋂=()14P A B = ()()()P A B P A P B ⋂=,A B (2,a b =-= ||4,214a a b ==⋅=-⨯+= b a 224144||a b a a a a ⋅== ()sin 2f x x =-()f x 1122y x =-殊点处与的大小关系,从而精确图像,由此得解.【详解】因为向左平移个单位所得函数为,所以,而显然过与两点,作出与的部分大致图像如下,考虑,即处与的大小关系,当时,,;当时,,;当时,,;所以由图可知,与的交点个数为.7.D 【详解】解法一:令,即,可得,令,原题意等价于当时,曲线与恰有一个交点,注意到均为偶函数,可知该交点只能在y 轴上,可得,即,解得,若,令,可得因为,则,当且仅当时,等号成立,可得,当且仅当时,等号成立,则方程有且仅有一个实根0,即曲线与恰有一个交点,()f x 1122y x =-πcos 26y x ⎛⎫=+ ⎪⎝⎭π6πππcos 2cos 2sin 2662y x x x ⎡⎤⎛⎫⎛⎫=++=+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦()sin 2f x x =-1122y x =-10,2⎛⎫- ⎪⎝⎭()1,0()f x 1122y x =-3π3π7π2,2,2222x x x =-==3π3π7π,,444x x x =-==()f x 1122y x =-3π4x =-3π3πsin 142f ⎛⎫⎛⎫-=--=- ⎪ ⎪⎝⎭⎝⎭13π1π4284312y +⎛⎫=⨯--=-<- ⎪⎝⎭3π4x =3π3πsin 142f ⎛⎫=-= ⎪⎝⎭13π13π412428y -=⨯-=<7π4x =7π7πsin 142f ⎛⎫=-= ⎪⎝⎭17π17π412428y -=⨯-=>()f x 1122y x =-3()()f x g x =2(1)1cos 2a x x ax +-=+21cos a x ax -=+()()21,cos F x ax a G x x =+-=(1,1)x ∈-()y F x =()y G x =()(),F x G x ()()00F G =11a -=2a =2a =()()F x G x =221cos 0x x +-=()1,1x ∈-220,1cos 0x x ≥-≥0x =221cos 0x x +-≥0x =221cos 0x x +-=()y F x =()y G x =所以符合题意;综上所述:.解法二:令,原题意等价于有且仅有一个零点,因为,则为偶函数,根据偶函数的对称性可知的零点只能为0,即,解得,若,则,又因为当且仅当时,等号成立,可得,当且仅当时,等号成立,即有且仅有一个零点0,所以符合题意;8.C【分析】采用补形法,补成一个棱柱,求出其直截面,再利用体积公式即可.【详解】用一个完全相同的五面体(顶点与五面体一一对应)与该五面体相嵌,使得;;重合,因为,且两两之间距离为1.,则形成的新组合体为一个三棱柱,该三棱柱的直截面(与侧棱垂直的截面)为边长为1的等边三角形,侧棱长为,.故选:C.9.BC10.AD2a =2a =()()()2()1cos ,1,1h x f x g x ax a x x =-=+--∈-()h x ()()()()221cos 1cos h x a x a x ax a x h x -=-+---=+--=()h x ()h x ()020h a =-=2a =2a =()()221cos ,1,1h x x x x =+-∈-220,1cos 0x x ≥-≥0x =()0h x ≥0x =()h x 2a =HIJ LMN -ABC DEF -,D N ,E M ,F L AD BE CF ∥∥1,2,3AD BE CF ===1322314+=+=+=212111142ABC DEF ABC HIJ V V --==⨯⨯⨯=【分析】利用不等式的性质及基本不等式,以此判断选项即可.【详解】对于A ,若,则,A 正确;对于B,或,因为不知道和的大小关系,B 错误;对于C ,若,则,而,但是与的大小不能确定,故C 错误;对于D,即取等号,11.ACD【详解】,对于A ,当时,,A 正确;对于B ,函数图象的对称中心的纵坐标应为,B 错误;对于C ,,由,,解得,因此,C 正确;对于D ,方程等价于,函数的图象和直线的交点,如图,函数的最小正周期,设,(其中),显然,由下图可知,因为在区间内的解的个数,所以区间长度应满足:22ac bc >a b >2b a a b +≥2b a a b+≤-b a 0,0a b m >>()()()()()b a m a b m m b a b b m a a m a a m a a m +-+-+-==+++()0m b a -<()a a m +02≥=sin 0x =211π1()cos cos 2cos 2sin(2)2262f x nx nx nx nx nx nx =+=++=++π[0,]2x ∈min ππ7ππ12[,)[,1],()066662x x f x +∈+∈-=()f x 12πππ2ππ2[,]62636n n nx +∈++πππ2π2262ππ3π2π362n k n k ⎧+≤+⎪⎪⎨⎪+≤+⎪⎩Z k ∈214[,2][,5]33n ∈ 1,2,5n =3()4f x =π1sin(2)64nx +=π()sin(2)6g x nx =+14y =()g x 13||T A A =1223,A A dT A A DT ==1D d =-1π0sin 46<<112,26364323d D d D <<<<<<<<00π(,6x x +[5,9]m ∈π6,由,则,化简得,所以,正整数的值有11个,故选:ACD12.1013.3【详解】由,得,所以.14.【详解】设“正常工作”,“没有正常工作,正常工作,且中至少有一个正常工作”由于“到的电路是通路”等价于“正常工作”或“没有正常工作,正常工作,且中至少有一个正常工作”,即,由于事件互斥,所以根据互斥事件的概率加法公式,可得.故答案为:15.(1);(2)证明见解析.【详解】(1)由,可得,,而,所以,即有,而,显然,所以,,而,,所以.(2)由可得,,再由正弦定理可得,,然后根据余弦定理可知,,化简得:,故原等式成立.16.(1)证明见解析【详解】(1)由平面,平面,得,连接,由且,所以四边形为平行四边形,又,所以平行四边形为正方形,所以,又由且,所以四边形为平行四边形,π(2)(4)6D T d T +<≤+πT n =πππ(2)(4)6D d n n+<≤+126246D n d +<≤+[16,26]n ∈n 85b =5log 8b =2525log 5log 83log 5log 23ab =⋅=⋅=70811N =D 2N =D A ,B C X Y D D A ,B C 12N N N =⋃()123P N =()222111611333381P N ⎛⎫⎛⎫=-⨯⨯-⨯= ⎪ ⎪⎝⎭⎝⎭12,N N ()()121670381812P N P N N =⋃=+=70815π82A B =()()sin sin sin sin C A B B C A -=-()sin sin sin sin C B B C A =-π02B <<()sin 0,1B ∈()sin sin 0C C A =->0π,0πC C A <<<-<C C A ≠-πC C A +-=2A B =πA B C ++=5π8C =()()sin sin sin sin C A B B C A -=-()()sin sin cos cos sin sin sin cos cos sin C A B A B B C A C A -=-cos cos cos cos ac B bc A bc A ab C -=-()()()()22222222222211112222a cb bc a b c a a b c +--+-=+--+-2222a b c =+PA ⊥ABCD BD ⊂ABCD PA BD ⊥BE //BC DE BC DE =BCDE ,1DE CD BC CD ⊥==BCDE BD EC ⊥//BC AE BC AE =BCEA则,所以, 又 平面,所以平面,由平面,所以平面平面;(2)由平面,平面,所以,又, 平面,所以平面,又平面,所以,故为二面角的平面角,即,在中,,作,垂足为M ,由(1)知,平面平面,平面平面,平面,所以平面,则为直线在平面上的投影,所以为直线与平面所成的角,在中,在中,与平面17.(1)答案见解析(2)【详解】(1)通过次传接球后,的结果:(乙,甲),(乙,丙),(丙,甲),(丙,乙);(2)三次传接球,接球的结果:(乙,甲,乙),(乙,甲,丙),(乙,丙,甲),(乙,丙,乙),(丙,甲,乙),(丙,甲,丙),(丙,乙,甲),(丙,乙,丙),共8种,它们是等可能的,其中球正好在乙处的结果有:(乙,甲,乙),(乙,丙,乙),(丙,甲,乙),共3种,所以第3次传接球后,球正好在乙处的概率为//AB EC BD AB ⊥,PA AB A ⋂=,PA AB ⊂PAB BD ⊥PAB BD ⊂PBD PBD ⊥PAB PA ⊥ABCD CD ⊂ABCD PA CD ⊥CD AD ⊥,PA AD A = ,PA AD ⊂PAD CD ⊥PAD PD ⊂PAD CD PD ⊥PDA ∠P CD A --45PDA ︒∠=Rt PAD △2PA AD ==AM PB ⊥PBD ⊥PAB PBD PAB PB =AM ⊂PAB AM ⊥PBD PM AP PBD APM ∠AP PBD Rt PAB 2,AB CE PA PB ====PA AB AM PB ⋅===Rt AMP sin AM APM AP ∠===AP PBD 382(),x y 3818.(1),(3)【详解】(1),所以的最小正周期.令,解得,所以的单调递增区间为.(2)由题意知,所以,又.所以,则故(3),所以,当时,.所以在上单调递减,在上单调递增,要使函数在区间上恰有4个不同的零点,令,则关于的一元二次方程有两个不相等的实数根,且两根均在内,因为,所以.解得,即的取值范围是.19.(1)(2),证明见解析πT =()πππ,π36k k k ⎡⎤-++∈⎢⎥⎣⎦Z 1,02⎛⎫- ⎪⎝⎭()π14sin cos 14cos cos 162f x x x x x x ⎫⎛⎫=+-=+-⎪ ⎪⎪⎝⎭⎭2πcos 2cos 1cos22sin 26x x x x x x ⎛⎫=+-=+=+ ⎪⎝⎭()f x 2ππ2T ==πππ2π22π,262k x k k -+≤+≤+∈Z ππππ,36k x k k -+≤≤+∈Z ()f x ()πππ,π36k k k ⎡⎤-++∈⎢⎥⎣⎦Z π12sin 262f αα⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭π1sin 64α⎛⎫+= ⎪⎝⎭π,02α⎛⎫∈- ⎪⎝⎭πππ,636α⎛⎫+∈- ⎪⎝⎭πcos 6α⎛⎫+== ⎪⎝⎭ππππππ11cos cos cos cos sin sin 66666642αααα⎛⎫⎛⎫⎛⎫=+-=+++=⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ππππ22sin 222sin 46666f x x x ⎡⎤⎛⎫⎛⎫⎛⎫-=-+=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦()22ππππ2sin 222cos 224sin 2226266x x x f x ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=+-=-+=+-=- ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦()()()()()()2π223216g x f x a f x f x a f x ⎛⎫=-+-+=+-+ ⎪⎝⎭π11π,612x ⎡⎤∈⎢⎥⎣⎦ππ2,2π62x ⎡⎤+∈⎢⎥⎣⎦()π2sin 26f x x ⎛⎫=+ ⎪⎝⎭π2π,63⎡⎤⎢⎥⎣⎦2π11π,312⎡⎤⎢⎥⎣⎦()()()π2236g x f x a f x ⎛⎫=-+-+ ⎪⎝⎭π11π,612⎡⎤⎢⎥⎣⎦()f x t =t ()2210t a t +-+=(]2,0-()202010a +-⨯+>22Δ(2)402202(2)2(2)10a a a ⎧=-->⎪-⎪-<-<⎨⎪---+>⎪⎩102a -<<a 1,02⎛⎫- ⎪⎝⎭1-()()()()cosh cosh sinh sinh x y x y +(3)【详解】(1)由已知可得,,,所以,,所以,.(2).证明如下:左边,右边.所以,左边=右边,所以,.(3)原题可转化为方程有解,即有解.令,,,因为在上单调递增,,,所以,.又,当且仅当,即时等号成立,所以,即有最大值,又当,则要使有解,应有,即,所以.【点睛】思路点睛:小问3,由已知得出有解,构造函数,,,74a ≥()22e e cosh 22-+=()1e e cosh 12-+=()21222e e e e cosh 1242--⎛⎫++==⎪⎝+ ⎭()()2cosh 22cosh 1-2222e e e e 21224--⎛⎫++=-⨯=- ⎪⎝⎭+()cosh x y +=()()()()cosh cosh sinh sinh x y x y +()()e e cosh 2x y x y x y -+++=+=()()()()cosh cosh sinh sinh x y x y =+e e e e e e e e 2222y y y x x x x y ----++--=⋅+⋅e e e e e e e e 44x y x y x y x y x y x y x y x y +--+--+--+--+++--+=+()e e 2x y x y -+++=()cosh x y +=()()()()cosh cosh sinh sinh x y x y +()()sinh cosh t a x =-e e e e 22+x t xt a ---=-()e e 2t t f t --=[]0,ln 2t ∈()e 2+e x xg x a -=-()e e 2t t f t --=[]0,ln 2()00f =()ln 2ln 2e e 3ln 224f --==()304f t ≤≤e e 12+x x -≥=e e =x x -0x =()e e 1+2xx g x a a -=-≤-()g x ()max 1g x a =-(),x g x →+∞→-∞()()f t g x =()()max max 34g x f t ≥=314a -≥74a ≥e e e e 22+x t x t a ---=-()e e 2tt f t --=[]0,ln 2t ∈,然后分别求出的值域,即可得出关系式.()e 2+e x xg x a -=-()(),f t g x。
学年高一数学(苏教版)第二学期期末考试模拟试题(含详解)
高一第二学期期末考试模拟试题(1)一、填空题:(本大题共14小题,每小题5分,共70分.)1. 经过空间任意三点作平面个数为_________▲________.2.在ABC ∆中,已知 ()()a b c a b c ab +++-=,则C ∠的大小为 ▲ . 3. 设定义在区间()π02,上的函数sin 2y x =的图象与1cos 2y x =图象的交点横坐标为α,则tan α的值为 ▲ .4. 如图,在正方体ABCD-A 1B 1C 1D 1中,异面直线A 1B 和AD 1所成角的大小 是 ▲ .5.求值:=- 15cos 2315sin 21____▲____. 6.若长方体1111ABCD A BC D -的底面正方形边长为1,1AB 与底面ABCD 成60°角,则11AC 到底面ABCD 的距离为 ▲ .⒎ 设直线n 和平面α,不管直线n 和平面α的位置关系如何,在平面α内总存在直线m ,使得它与直线n ▲ .(在“平行”、 “相交”、 “异面”、 “垂直”中选择一个填空)8.设,αβ是两个不同的平面,l 是一条直线,以下命题正确的是 ▲ . ①若αα⊂b a ,//则b a // ②若//,//l ααβ,则l β⊂ ③若,//l ααβ⊥,则l β⊥ ④若b a a //,//α则α//b 或α⊂b 9.ABC ∆中,已知cos cos a b c B c A -=-,则三角形的 形状为 ▲ . 10.已知圆内接四边形ABCD 中,2,6,4,AB BC AD CD ====则四边形ABCD 的面积为▲ .11.已知113cos ,cos(),07142πααββα=-=<<<且,则β= ▲ .12.已知0a ≥,函数21())sin 242f x a x x π=-+的最大值为252,则实数a 的值为▲ .13.已知ABC ∆中,︒=∠45B ,4=AC ,则ABC ∆面积的最大值为 ▲ . 14.设,a b 均为大于1的自然数,函数()(sin ),()cos f x a b x g x b x =+=+,若存在实数m,使得()()f m g m =,则a b += ▲ .二、解答题:(本大题共6个小题.共90.)15.(本题满分14分)在ABC ∆中,已知45A =,4cos 5B =. (1)求cosC 的值;(2)若10,BC D =为AB 的中点,求CD 的长.16.(本题满分14分)如图,在三棱柱111ABC A B C -中,已知1112,60AB AC AA BAA CAA ==∠=∠=,点D,E 分别为1,AB AC 的中点. (1) 求证:DE ∥平面11BB C C ; (2) 求证:11BB A BC ⊥平面.17.( (本题满分15分))P在ABC ∆中,已知角A,B,C 的对边分别为a,b,c,且sin sin sin a c Bb c A C-=-+. (1) 求A ;(2) 若22()cos ()sin ()f x x A x A =+--,求()f x 的单调递增区间.18.(本题满分15分)如图,三棱锥ABC P -中, ⊥PC 平面D BC AB AC PC ABC ,,2,===是PB 上一点,且⊥CD 平面PAB . (1) 求证:⊥AB 平面PCB ;(2) 求异面直线AP 与BC 所成角的大小.19.(本题满分16分)如图,点A是单位圆与x轴正半轴的交点,点34(,)55B-,AOBα∠=,2παπ<<,1=,AOPθ∠=,02πθ<<.(1)若16cos()65αθ-=-,求点P的坐标;(2)若四边形OAQP为平行四边形且面积为S,求S⋅+的最大值.20. (本题满分16分)如图,有一块边长为1(百米)的正方形区域ABCD,在点A处有一个可转动的探照灯,其照射角PAQ∠始终为45(其中点P,Q分别在边BC,CD上),设,tanPAB tθθ∠==.(1)用t表示出PQ的长度,并探求CPQ∆的周长l是否为定值;(2)问探照灯照射在正方形ABCD内部区域的面积S至少为多少(平方百米)?参考答案:Q CDP45θ1.一个或无数个2.23π 3.1515 4.3π 5.2- 6.7. 垂直 8. ③ ④ 9. 等腰或直角 10.11. 3π12.212- 13.244+ 14.4二、解答题:本大题共6个小题.共90解答应写出文字说明,证明过程或演算步骤. 15.(本题满分14分)在ABC ∆中,已知45A =,4cos 5B =. (1)求cos C 的值; (2)若10,BC D =为AB 的中点,求CD 的长. 解:(Ⅰ)4cos ,5B =且(0,180)B ∈,∴3sin 5B ==. cos cos(180)cos(135)C A B B =--=-243cos135cos sin135sin 55B B =+=-=.(Ⅱ)由(Ⅰ)可得sin C ===.由正弦定理得sin sin BC AB A C =AB=,解得14AB =.在BCD ∆中,7BD =, 22247102710375CD =+-⨯⨯⨯=, 所以CD = 16.(本题满分14分)如图,在三棱柱111ABC A B C -中,已知1112,60AB AC AA BAA CAA ==∠=∠=,点D,E 分别为1,AB AC 的中点. (1)求证:DE ∥平面11BB C C ; (2)求证:11BB A BC ⊥平面.17.(本题满足15分)在ABC ∆中,已知角A,B,C 的对边分别为a,b,c,且sin sin sin a c Bb c A C-=-+. (3) 求A.(4) 若22()cos ()sin ()f x x A x A =+--,求()f x 的单调递增区间.18.(本小题满分15分)(1) 求证:⊥AB 平面PCB ;(2) 求异面直线AP 与BC 所成角的大小.(1) ∵PC ⊥平面ABC ,⊂AB 平面ABC ,∴PC ⊥AB .∵CD ⊥平面PAB ,⊂AB 平面PAB ,∴CD ⊥AB . 又C CD PC = ,∴AB ⊥平面PCB . ……6分 (2) 过点A 作AF//BC ,且AF=BC ,连结PF ,CF .则 PAF ∠为异面直线PA 与BC 所成的角. 由(1)可得AB ⊥BC ,∴CF ⊥AF . 得PF ⊥AF .则AF=CF=2,PF=6 CF PC 22=+,在PFA Rt ∆中, tan ∠PAF=26AF PF ==3, ∴异面直线PA 与BC 所成的角为3π. 19.(本小题满分16分)如图,点A 是单位圆与x 轴正半轴的交点,点34(,)55B -,AOB α∠=,2παπ<<,||1OP =u u u r ,AOP θ∠=,02πθ<<.(1)若16cos()65αθ-=-,求点P 的坐标;(2)若四边形OAQP 为平行四边形且面积为S ,求S ⋅+的最大值.解:(1)由点34(,)55B -,AOB α∠=,可知3cos 5α=-又2παπ<<,02πθ<<,所以0αθπ<-<,于是由16cos()65αθ-=-可得63sin()65αθ-=.………………………………………4分cos cos[()]θααθ∴=--316463()565565=-⨯-+⨯=1213,sin sin[()]θααθ=--416363()()565565=⨯---⨯513=,因||1OP =u u u r ,故点P 的坐标为125(,)1313. ……………………………………………8分(2)(1,0)OA =uu r ,(cos ,sin )OP θθ=u u u r .因02πθ<<,故sin S θ=.……………10分因OAQP 为平行四边形,故(1cos ,sin )OQ OA OP θθ=+=+u u u r u u r u u u r.OQ OA S ⋅+sin 1cos θθ=++)14πθ=++(02πθ<<).…………………14分当4πθ=时,S ⋅+1+.…………………………………………16分20. (本题满分16分)如图,有一块边长为1(百米)的正方形区域ABCD,在点A 处有一个可转动的探照灯,其照射角PAQ ∠始终为45(其中点P ,Q 分别在边BC ,CD 上),设,tan PAB t θθ∠==.(3) 用t 表示出PQ 的长度,并探求CPQ ∆的周长l 是否为定值.(4) 问探照灯照射在正方形ABCD 内部区域的面积S 至多为多少(平方百米)?DP45θ。
2013-2014高一下学期期末考试数学模拟试卷三
期末考试模拟试题三一、选择题1、已知平面直角坐标系内的两个向量a =(1,2),b =(m,3m -2),且平面内的任一向量c ,都可以唯一地表示成c =λa +μb (λ,μ为实数),则m 的取值范围是( )A .(-∞,2)B .(2,+∞)C .(-∞,+∞)D .(-∞,2)∪(2,+∞) 2、如图,在圆O 中,若弦AB =3,弦AC =5,则AO →·BC →的值是( )A .-8B .-1C .1D .8 3、下列不等式正确的是 A 、sin 21<cos 31 B 、sin 21≤cos 31 C 、sin 21>cos 31 D 、sin 21≥cos 314、如图是函数y=Asin (ωx+φ)(A >0,ω>0,|φ|<2π)在同一个周期内的图象,M 、N 分别是最大值,最小值点,且OM ON ⊥,则A ⋅ω=( )ABC .76πD.6π 5、函数cos tan y x x = (22x ππ-<<)的大致图象是6、在∆ABC 所在平面内有一点P ,如果2PAPC AB PB +=-,那么∆PBC 的面积与∆ABC 的面积比为( )A .23B .13C .12D .347、取一根长度为3米的绳子,拉直后在任意位置剪断,那么剪得两段的长都不小于1米的概率是 ( )A 、21 B . 31 C . 41 D . 518、 数据x ,x 2,…,x n 平均数为6,标准差为2,则数据2x 1-6,2x 2-6,…,2x n -6的平均数与方差分A BDC别为 A. 6,16 B. 12,8 C. 6,8 D. 12,169、已知函数(),f x x x R ∈,若()1cos f x x ≥+,则x 的取值范围为( )A .|,3x k x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭ B .|22,3x k x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭C .5{|,}66x k x k k Z ππππ+≤≤+∈D .5{|22,}66x k x k k Z ππππ+≤≤+∈ 10、函数tan 42y x ππ⎛⎫=- ⎪⎝⎭的部分图象如右图所示,则()OA OB AB +⋅= ( )A .-6B .-4C .4D .6二.填空题11、如图,在四边形ABCD 中,AC 和BD 相交于点O ,设AD →=a ,AB →=b ,若AB →=2DC →,则AO →=________(用向量a 和b 表示).12、若函数x y ωsin =(0>ω)在区间[]1,0上至少有10个最大值,则ω的最小值为 . 13、关于)42sin(3)(π+=x x f 有以下命题:①若,0)()(21==x f x f 则)(21Z k k x x ∈=-π;②)(x f 图象与)42cos(3)(π-=x x g 图象相同;③)(x f 在区间]83,87[ππ--上是减函数;④)(x f 图象关于点)0,8(π-对称。
广东省深圳市2023-2024学年高一下学期期末调研考试数学试题(解析版)
2024 年深圳市普通高中高一年级调研考试数学2024. 7本试卷共 4 页, 19 小题, 淌分 150 分.考试用时 120 分钟.注意事项:1.答题前, 考生请务必用黑色字迹钢笔或签字笔将自己的姓名、准考证号填写在答题卡上.用2B 铅笔将试卷类型 (A) 填涂在答题卡相应位置上.将条形码横贴在答题卡右上角 “条形码粘贴处”.2.作答选择题时, 选出每小题答案后, 用 2B 铅笔把答题卡上对应题目选项的答案值息点涂黑: 如需改动, 用橡皮擦干净后, 再选涂其他答案, 答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答, 答案必须写在答题卡各题目指定区域内相应位置上: 如需改动, 先划掉原来的答案, 然后再写上新的答案; 不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁.考试结束后, 将试卷和答题卡一并交回.一、选择题: 本题共 8 小题, 每小题 5 分, 共 40 分. 在每小题给出的四个选项中, 只有一项是符合题目要求的.1.已知集合{}{}11,3,0,1,3A B =−=,,则 A B ∪=( )A.{}1,3B.{}1,1,3− C.{}0,1,3 D.{}1,0,1,3−【答案】D 【解析】【分析】根据并集含义即可得到答案. 【详解】根据并集含义知{}1,0,1,3A B =− ,故选:D.2.函数 ()ln 2f x x x =+− 的零点所在的区间为()A.()0,1 B.()1,2 C.()2,3 D.()3,4【答案】B 【解析】的【分析】根据零点的存在性定理进行判断区间端点处的符合即可.【详解】函数()ln 2f x x x =+−的定义域为()0,+∞, 函数()f x 在()0,+∞上单调递增,又()1ln11210f =+−=−< ,()2ln 222ln 20f =+−=>, 根据零点的存在性定理可知函数零点所在区间为()1,2. 故选:B .3. 已知幂函数()f x x α=,则“0α>”是“()f x 在()0,∞+上单调递增”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】C 【解析】【分析】根据幂函数单调性和充要条件的判定即可得到答案.【详解】当“ 0α> ”时,根据幂函数性质知()f x x α=在()0,∞+上单调递增,则充分性成立;反之,若“()f x x α=在()0,∞+上单调递增”则“0α>”,必要性也成立,故“0α>”是“()f x 在()0,∞+上单调递增”的充分必要条件, 故选:C .4. 已知向量 ()()20,12ab =,,,若 ()a b a λ+⊥,则 λ=( ) A. 1− B. 12−C. 1D. 2【答案】B 【解析】【分析】根据向量坐标化运算和向量垂直的坐标表示即可得到方程,解出即可.【详解】()()()201221,2a bλλλ+=+=+,,,因为()a b a λ+⊥ ,则()0a b a λ+⋅=,即()2210λ+=,于是 12λ=−. 故选:B.5. 设,m n 是两条不同的直线,,αβ是两个不同的平面,下列命题中为真命题的是( ) A. 若//,m n αα⊂,则//m nB. 若//,//m ααβ ,则//m βC. 若,m m n α⊥⊥,则//?n αD. 若,//m m αβ⊥,则αβ⊥【答案】D 【解析】【分析】在正方体中,通过取平面和直线,即可判断出选项A ,B ,C 的正误;对于选项D ,根据条件,利用线面平行的性质及面面垂直的判定定理,即可判断出选项D 的正误.【详解】对于选项A ,如图,在正方体中,取面ABCD 为平面α,直线11A B 为直线m , 直线BC 为直线n ,显然有//,m n αα⊂,但m 不平行n ,所以选项A 错误, 对于选项B ,如图,在正方体中,取面ABCD 为平面α,直线11A B 为直线m , 面1111D C B A 为平面β,有//,//m ααβ,但m β⊂,所以选项B 错误, 对于选项C ,取面ABCD 为平面α,直线1A A 为直线m ,直线BC 为直线n , 因为n ⊂α,显然有,m m n α⊥⊥,但n ⊂α,所以选项C 错误,对于选项D ,因为//m β,在β内任取一点P ,过直线m 与点P 确定平面γ, 则l βγ= ,由线面平行的性质知//m l ,又m α⊥,所以l α⊥,又l β⊂, 所以αβ⊥,所以选项D 正确,故选:D.6. 已知 ABC 中, 22AE AB BM MC == ,,若 AF xAC =,且 E M F ,, 三点共线, 则 x =( ) A.23B.34C.45D.56【答案】C 【解析】【分析】先应用平面向量基本定理,再根据三点共线的性质列式求参即可.【详解】因为2,BM MC =所以1233AM AB AC =+ , 2,AE AB AF x AC == ,因为,,E M F 三点共线,所以,1AM AE AF λµλµ=++=,12233AB AC AB x AC λµ+=+, 所以112,,36λλ== 524,,635x µµµ===. 故选:C.7. 已知正实数 ,a b 满足 4a b ab +=,则 a b + 的最小值为( ) A. 4 B. 9C. 10D. 20【答案】B 【解析】【分析】方程4a b ab +=两边同时除以ab 得141b a+=,利用“1代换”即可求解. 【详解】,a b 为正实数,方程4a b ab +=两边同时除以ab 得141b a+=, ()1444159a b b a bb a a b a ∴++++++ ≥ + =,当且仅当14b a =即82a b == 时等号成立, 故a b + 的最小值为9. 故选:B .8. 已知函数()()()(sin ,π,2,f x x x a f b f c f =−===−,则,,a b c 的大小关系为( ) A. a b c >> B. a c b >>C. b c a >>D. b a c >>【答案】 A的【解析】【分析】得出函数奇偶性后,利用正弦函数的单调性可得()f x 的单调性,即可得解.【详解】由R x ∈,()()()sin sin f x x x x x f x −=−−−=−+=−,故()f x 为奇函数,则(c f f =−=,π2π2<<<, 函数sin y x =在π,π2 上单调递减,故()sin f x x x =−在π,π2上单调递增,则()()2πff f <<,即a b c >>.故选:A.二、选择题: 本题共 3 小题, 每小题 6 分, 共 18 分.在每小题给出的选项中, 有多项符合题目要求.全部选对的得 6 分, 部分选对的得部分分, 有选错的得 0 分.9. 若复数z 满足i 1i z =−,下列说法正确的是() A. z 的虚部为i − B. 1i z =−+C.z =D. 2z z z ⋅=【答案】BC 【解析】. 【详解】()2i 1i 1i 1i i iz −−−===−−−,则其虚部为1−,故A 错误;||z =1i z =−+,故BC 正确;()()1i 1i 2z z ⋅=−−−+=,而()221i 2i z =−−=,则两者不等,故D 错误.故选:BC.10. 抛掷一枚质地均匀的骰子两次,记下每次朝上的点数,设事件 A = “第一次的点数不大于3 ”, B =“第二次的点数不小于4 ”, C = “两次的点数之和为3的倍数”,则下列结论正确的是( )A. 事件A 发生的概率 ()12P A = B. 事件A 与事件B 相互独立 C. 事件 C 发生的概率 ()13P C =D. 事件AB 与事件C 对立【答案】ABC 【解析】【分析】列举所有的基本事件,由古典概型公式即可求解选项A ,C ,由相互独立事件的定义即可求解选项B ,由对立事件的定义分析选项D.【详解】根据题意,连续抛掷一枚质地均匀的骰子2次,记录每次朝上的点数,则有(1,1),(1,2),(1,3),(1,4),(1,5),(1,6), (2,1),(2,2),(2,3),(2,4),(2,5),(2,6), (3,1),(3,2),(3,3),(3,4),(3,5),(3,6), (4,1),(4,2),(4,3),(4,4),(4,5),(4,6), (5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共36不同结果,即()36n Ω=,对于A ,事件A 包含的样本点有18种,故()181()()362n A P An ===Ω,故A 正确; 对于B ,事件B 包含的样本点有18种,故()181()()362n B P Bn ===Ω, 事件AB 包含的样本点有9种,故()91()()364n AB P ABn ===Ω, 因为()()()P A P B P AB =,所以事件,A B 相互独立,故B 正确;对于C ,事件C 包含的样本点有12种,故()121()()363n C P Cn ===Ω,故C 正确; 对于D ,事件C 与事件AB 有重复的样本点(1,5),(2,4),(3,6), 故事件AB 与事件C 不对立,故D 错误. 故选:ABC.11. 已知正方体 1111ABCD A B C D − 的棱长为2E ,是正方形11ABB A 的中心, F 是棱 CD (包含顶点) 上的动点, 则以下结论正确的是( )A. EFB. 不存在点F ,使EF 与 11A D 所成角等于30C. 二面角E AF B −−正切值的取值范围为1D. 当F 为CD 中点时,三棱锥F ABE −的外接球表面积为25π4【答案】ACD 【解析】【分析】对于A ,直接找出最近距离为F 为CD 中点,计算即可;对于B ,找出最大,最小的临界状态值即可解决;对于C ,找出二面角的平面角,再用锐角三角函数即可;对于D ,设出球心和半径,结合图形,构造方程,求出半径即可.【详解】对于A , EF 最小值时,F 为CD 中点.作个草图,取AB 中点M ,连接FM .此时EF A 正确.设EF 与11A D 所成的角为θ,当F 与C 重合时,()maxtan BE BC θ==, 当F CD 中点时,()min1tan 2EM FM θ==.则存在点 F,使tan θ=. 即存在点F ,使EF 与 11A D 所成角等于 30 .故B 错误.如图,过AB 中点M 作MH AF ⊥于H ,则EHM ∠为二面角E AF B −−的平面角,因此1tan EM EHM HM HM∠==∈ ,故C 正确.在设三棱锥F ABE −的外接球的球心为O ,显然FM ⊥平面ABE ,ABE 为等腰直角三角形,外心为M , 则O 可以由M 沿着MF 方向移动即可,O 一定在MF 上.F 为CD 中点时,半径OFOA R ==,于是2OM R =−. 在OMA 中有()22221R R −+=,解得54R =, 于是球O 表面积为2254ππ4S R =.故D 正确. 故选:ACD.【点睛】知识点点睛:本题考查了正方体性质,点线面的位置关系辨别,空间两点间的距离最值,异面直线夹角,二面角的问题,三棱锥的外接球问题.同时考查空间想象、逻辑推理、数形结合、转化计算能力.综合性较强,属于难题.三、填空题: 本题共 3 小题, 每小题 5 分, 共 15 分.12. 已知 1sin ,3α=则cos 2πα+=___________【答案】13−【解析】【分析】由诱导公式求解即可. 【详解】由诱导公式可得:1cos sin 23παα+=−=−, 故答案为:13−.13. 若 1,22x ∀∈,不等式 210x ax −+≤恒成立,则a 的取值范围为______________.【答案】5[,)2+∞ 【解析】【分析】分离参数得1a x x ≥+,令1()f x x x =+,求出函数在1,22上的最大值即可求解. 【详解】1,22x ∀∈,不等式 210x ax −+≤恒成立,则21x ax +≤,即1,22x∀∈,1a x x ≥+恒成立,令1()f x x x =+,由图知()f x 在1,12上单调递减,在[]1,2上单调递增, 又115()(2)2222f f ==+=,故max 5()2f x =,则52a ≥. 故答案为: 5[,)2+∞.14. 已知圆O 为ABC的外接圆,π,3A BC==,则()AO AB AC ⋅+的最大值为______________.【答案】3 【解析】【分析】先利用正弦定理求出外接圆半径,取BC 的中点D ,连接OD ,则12OD =,变形得到()22AO AB AC AO OD ⋅+=⋅+ ,当,,A O D 三点共线时,AO OD ⋅取得最大值,求出答案.【详解】设圆O 的半径为R,则22sin BC RA ==,解得1R =,因为π,3A BC ==2π3BOC ∠=,取BC 的中点D ,连接OD ,则3BOD COD π∠=∠=, 故12OD =, ()()()2AO AB AC AO OB OA OC OA AO OB OC OA ⋅+=⋅−+−=⋅+−()2222AO OB OC OA AO OD =⋅++=⋅+,当,,A O D 三点共线时,AO OD ⋅ 取得最大值,最大值为11122×=,故()22AO AB AC AO OD ⋅+=⋅+的最大值为123+=.故答案为:3四、解答题: 本题共 5 小题, 共 77 分.解答应写出文字说明、证明过程或演算步骤.15. 已知ABC 的内角,,A B C 的对边分别为,,a b c ,sin cos 0c A C =. (1)求C ;(2)若4a ABC = ,,求b 和c . 【答案】(1)2π3(2)1b =,c =【解析】【分析】(1)利用正弦定理进行边换角得到tan C =,则2π3C =; (2)根据三角形面积公式即可得b 值,再利用余弦定理即可得到c 值.【小问1详解】由正弦定理:sin sin sin a b cA B C==,那么sin sin cos 0C A A C =,由于sin 0A >,则sin 0C C +=,则tan C =(0,π)C ∈,故2π3C =. 【小问2详解】由于11sin 422ABC S ab C b ==×= ,则1b =,根据余弦定理:2222212cos 41241212c a b ab C=+−=+−×××−=,那么c =.16. 已知函数()()πsin 02f x x ωϕωϕ=+><,,函数()f x 的最小正周期为π,且π06f=(1)求函数()f x 的解析式:(2)求使()210f x −≥成立的x 的取值范围.【答案】(1)()πsin 23f x x=−(2)π7πZ 412ππ,k x k k +≤≤+∈【解析】【分析】(1)由题意利用正弦函数的周期性与零点计算即可得;(2)借助正弦函数图象性质计算即可得.【小问1详解】 由2ππT ω==,0ω>,则2=ω, 又π06f= ,即π2π,Z 6k k ϕ×+=∈,即ππ,Z 3k k ϕ=−+∈, 又π2ϕ<,则π3ϕ=−,即()πsin 23f x x=− ;【小问2详解】若()210f x −≥,即π1sin 232x −≥ , 即有ππ5π2π22π,Z 366k x k k +≤−≤+∈, 即π7πZ 412ππ,k x k k +≤≤+∈,故x 的取值范围为π7πZ 412ππ,k x k k +≤≤+∈.17. 如图, AB 是 O 直径, 2AB =,点 C 是 O 上的动点,PA ⊥ 平面 ABC ,过点 A 作AE PC ⊥,过点 E 作 EF PB ⊥,连接 AF .的(1)求证:BC AE ⊥ ;(2)求证:平面 AEF ⊥ 平面 PAB ;(3)当 C 为弧 AB 的中点时,直线 PA 与平面 PBC 所成角为 45 ,求四棱锥 A EFBC − 的体积.【答案】(1)证明见解析; (2)证明见解析;(3【解析】【分析】(1)由线线垂直证明线面垂直,再证线线垂直即可;(2)由线线垂直到线面垂直,再证明面面垂直;(3)图中有线面垂直,可以利用两个三棱锥的差,来计算所求的四棱锥的体积即可.【小问1详解】由于AB 为圆O 的直径,所以BC AC ⊥,因PA ⊥平面ABC ,BC ⊂平面ABC ,所以PA BC ⊥,又因为,PA AC A ∩=PA AC ⊂,平面PAC ,所以BC ⊥平面PAC ,又因为AE ⊂平面PAC ,所以BC AE ⊥;【小问2详解】 由(1)得,BC AE ⊥,PC AE ⊥,且,PC BC C ∩=PC BC ⊂,平面PBC , 所以⊥AE 平面PBC ,又由于PB ⊂平面PBC ,那么AE PB ⊥,又因为EF PB ⊥,AE EF E ∩=,AE EF ⊂,平面AEF ,所以PB ⊥平面AEF ,又由于PB ⊂平面PAB ,那么平面PAB ⊥平面AEF ;【小问3详解】由(2)可知:⊥AE 平面PBC ,而直线PA 与平面PBC 所成角为45°,那么45APE °∠=,且90CAP AEP °∠=∠=,所以45PCA PAE CAE °∠=∠=∠=且AC BC ==那么1,PA AC AE PE EC PB ======在PAB 中,1122AF PB PA AB ⋅⋅=⋅⋅,得AF = 为所以PF EF ====那么1111332P AEF A PEF PEF V V AE S −−==⋅⋅=××= ,1132P ABC V −=,则A EFBC V −==18. 某校高一年级开设有羽毛球训练课,期末对学生进行羽毛球五项指标(正手发高远球、定点高远球、吊球、杀球以及半场计时往返跑)考核,满分100分.参加考核的学生有40人,考核得分的频率分布直方图如图所示.(1)由频率分布直方图,求出图中t 的值,并估计考核得分的第60百分位数:(2)为了提升同学们的羽毛球技能,校方准备招聘高水平的教练.现采用分层抽样的方法(样本量按比例分配),从得分在[)70,90内的学生中抽取5人,再从中挑出两人进行试课,求两人得分分别来自[)70,80和[)80,90的概率:(3)现已知直方图中考核得分在[)70,80内的平均数为75,方差为6.25,在[)80,90内的平均数为85,方差为0.5,求得分在[)70,90内的平均数和方差.【答案】(1)0.030t =,85(2)35(3)得分在[70,90)内的平均数为81,方差为26.8.【解析】【分析】(1)首先根据频率和为1求出0.03t =,再根据百分数公式即可得到答案;(2)求出各自区间人数,列出样本空间和满足题意的情况,根据古典概型公式即可;(3)根据方差定义,证明出分层抽样的方差公式,代入计算即可.【小问1详解】由题意得:10(0.010.0150.0200.025)1t ×++++=,解得0.03t =, 设第60百分位数为x ,则0.01100.015100.02100.03(80)0.6x ×+×+×+×−=, 解得85x =,第60百分位数为85.【小问2详解】由题意知,抽出的5位同学中,得分在[70,80)的有85220×=人,设为A 、B ,在[80,90)的有125320×=人,设为a 、b 、c . 则样本空间为{(,),(,),(,),(,),(,),(,),(,),(,),(,),(,)},()10A B A a A b A c B a B b B c a b a c b c n ΩΩ=. 设事件M =“两人分别来自[70,80)和[80,90),则{(,),(,),(,),(,),(,),(,)},()6M A a A b A c B a B b B c n M =, 因此()63()()105n M P M n ===Ω, 所以两人得分分别来自[70,80)和[80,90)的概率为35. 【小问3详解】由题意知,落在区间[70,80)内的数据有40100.028××=个,落在区间[80,90)内的数据有40100.0312××=个.记在区间[70,80)的数据分别为128,,,x x x ,平均分为x ,方差为2x s ;在区间[80,90)的数据分别为为1212,,,y y y ,平均分为y ,方差为2y s ;这20个数据的平均数为z ,方差为2s . 由题意,2275,85, 6.25,0.5x yx y s s ====,且8121111,812i j i j x x y y ===∑∑,则8128751285812020x y z +×+×==. 根据方差的定义,()()()()812812222221111112020i j i j i j i j s x z y z x x x z y y y z ==== =−+−=−+−+−+− ∑∑∑∑ ()()()()88812121222221111111()2()()2()20i i j j i i i j j j x x x z x z x x y y y z x z y x ====== −+−+−−+−+−+−−∑∑∑∑∑∑由()()881212111180,120i i j j i i j y x x x x y y y y ===−=−=−=−=∑∑∑∑, 可得()()8812122222211111()()20i j i i j j s x x x z y y y z ==== =−+−+−+−∑∑∑∑ 2222188()1212()20x y s x z s y z +−++−222223()()55x y s x z s y z =+−++− 22236.25(7581)0.5(8581)26.855+−++−= 故得分在[70,90)内的平均数为81,方差为26.8.【点睛】关键点点睛:本题第三问的关键是充分利用方差定义,推导出分层抽样的方差计算公式即可. 19. 已知函数()y f x =为R 上的奇函数.当01x ≤≤时,()23f x ax x c =++(a c ,为常数),()11f =. (1)当1122x −≤≤时,求函数()2f x y =的值域: (2)若函数()y f x =的图像关于点()1,1中心对称.①设函数()()g x f x x x =−∈R ,,求证:函数()g x 为周期函数; ②若()94188f x −≤≤对任意[],x m n ∈恒成立,求n m −的最大值. 【答案】(1)1,22(2【解析】【分析】(1)代入(0)0f =,(1)1f =,得到2()23,01f x x x x =−+≤≤,再二次性质求出当1122x −≤≤时,()[1,1]f x ∈−,最后根据复合函数单调性得1,22; (2)①运算得(2)()2f x f x +−=,则可证明(2)()g x g x +=;②求出11(),,[21,21],22f x x x k k k −∈−∈−+∈Z ,然后转化为求n 最大,m 最小即可. 【小问1详解】由于函数()f x 为R 上奇函数,那么(0)0f =,且(1)1f =,则(0)0(1)31f c f a c == =++= ,则02c a = =− ,则2()23,01f x x x x =−+≤≤; 那么239()248f x x =−−+,由10,2x ∈ ,则()[0,1]f x ∈, 而函数()f x 为奇函数,那么1,02x ∈−时,()[1,0)f x ∈−, 综上所述:当1122x −≤≤时,()[1,1]f x ∈−, 由复合函数单调性可知:则()12,22f x y =∈. 【小问2详解】 ①由于()()f x f x −=−,且()(2)2f x f x −=−++, 由于()(2)2f x f x −=−++,则(2)()2f x f x +−=, 那么(2)(2)(2)()2(2)()()g x f x x f x x f x x g x +=+−+=+−+=−=,则()g x 为R 上周期为2的函数.②由(1)可知,当[0,1]x ∈时,22111()2220,222g x x x x =−+=−−+∈ ,[1,0)x ∈−时,1(),02g x ∈−, 那么[21,2),x k k k ∈−∈Z 时,1(),02f x x −∈−; [2,21],x k k k ∈+∈Z 时,1()0,2f x x −∈; 那么11(),,[21,21],22f x x x k k k −∈−∈−+∈Z ; 若n m −要最大,仅需n 最大,m 最小, 从而考虑如下临界:由于941()88f x −≤≤,令1928x +=−, 则138x =−,此时(2,1)x ∈−−; 14145,,(5,6)288x x x −==∈;当(2,1)x ∈−−时,2(0,1)x +∈,2(2)(2)(2)2(2)3(2)(2)()()g x f x x x x x g x f x x +=+−+=−+++−+==−, 那么2()254,(2,1)f x x x x =−−−∈−−,令29254,8x x x −−−=−x =;同理,(5,6)x ∈时,6(1,0)x −∈−,2(6)(6)(6)2(6)3(6)(6)()()g x f x x x x x g x f x x −−−−−+−−−−, 那么2()22160,(5,6)f x x x x =−+∈,令24122160,8x x x −+==x =舍去);从而n m ≤≥那么n m −=. 【点睛】关键点点睛:本题第二问的第二小问的关键是求出11(),,[21,21],22f x x x k k k −∈−∈−+∈Z ,再求出,m n 的临界值即可.。
同泽高级中学高一下学期期末考试数学模拟练习题
17.(本小题满分 12 分)
已知 sin cos 10 , ( , ) , tan( ) 2 ,求 tan( 2 ) 的值。
2
25
2
3
18.(本小题满分 12 分)
已知函数 y 5sin2 x 4 3 sin x cos x cos2 x, x [ , 0] ,求此函数的值域。 2
2
2
3. sin 70 sin 65 sin 20 sin 25 等于(
)
1
A
2
2
B
2
3
C
2
D 2 2
4.设 是第三象限角,并且 sin 24 ,则 tan 等于 (
)
25
2
4
A
3
B
C 3
3
4
4
D 4 3
5.Δ ABC 中, AB AC BA BC ,则Δ ABC 的形状是( )
A 直角三角形 B 钝角三角形
5
5
由 sin 5 得 cos 12
13
13
-------------------8 分
∴ sin sin[( ) ]
sin( ) cos cos( )sin 33 -------------------12 分 65
20.解:
(1) f (x) A A cos(2x 2) 22
D y tan x
11.定义新运算“a※b”为
a※b=
a, b,
ab
,例如 1※2=1,3※2=2,则函数
a b
f (x) sin x ※ cos x 的值域是 ( )
A [1, 2 ]
B [0, 2 ]
C [1,1]
D
2021-2022学年广西浦北县第二中学高一下学期期末模拟考试数学试题(解析版)
2021-2022学年广西浦北县第二中学高一下学期期末模拟考试数学试题一、单选题1.若角α的终边经过点(1,3)-,则sin α=( ) A .12-B .32-C .12D .32【答案】B【分析】由三角函数定义可直接求得结果. 【详解】角α的终边经过点(1,3)-,()2233sin 213α-∴==-+-.故选:B.2.已知向量()2,1a =-,(),4b m =,若a b ⊥,则m =( ) A .8 B .-8C .2D .-2【答案】C【分析】由向量数量积直接求解.【详解】由题意得240m -+=,解得2m =. 故选:C3.如图,过球O 的一条半径OP 的中点1O ,作垂直于该半径的平面,所得截面圆的半径为3,则球O 的体积是( )A .323π B .163π C .32π D .16π【答案】A【分析】利用勾股定理可构造方程求得球O 的半径R ,由球的体积公式可求得结果. 【详解】设球O 的半径为R ,则(22234R R -=,解得:2R =,∴球O 的体积343233V R ππ==. 故选:A.4.若i(1)1z -=,则z z +=( ) A .2- B .1- C .1 D .2【答案】D【分析】利用复数的除法可求z ,从而可求z z +.【详解】由题设有21i1i i iz -===-,故1+i z =,故()()1i 1i 2z z +=++-=,故选:D5.设,αβ是两个不同的平面,,m n 是两条不同的直线,下列命题中正确的是( ) A .若,m n m α∥∥,则n α∥ B .若,,m n m n αβ⊥⊂⊂,则αβ⊥ C .若,,m n m n αβ⊥⊥∥,则αβ∥ D .若,,m n m n αβ⊥⊥⊥,则αβ∥ 【答案】C【分析】在正方体中通过线面关系,可举出A,B,D 的反例说明不正确,由线面垂直的性质 可判断C 正确.【详解】对于A 选项,当α为面ABCD ,取n 为直线BC ,m 为直线11C B ,此时满足//,m n //m α,但不满足//n α,故A 不正确;对于B 选项,当α为面ABCD ,β为面1111D C B A 时,取m 为直线AB ,n 为直线11C B ,此时满足,,m n m n αβ⊥⊂⊂,但不满足αβ⊥,故B 不正确;对于C 选项,由//,,m n m α⊥则n α⊥,又n β⊥,由线面垂直的性质定理可得//αβ,故C 正确; 对于D 选项,当α为面ABCD ,β为面11BCC B 时,取m 为直线1BB ,n 为直线AB ,此时满足,,m n m n αβ⊥⊥⊥,但不满足//αβ,故D 不正确.故选:C .【方法点睛】判断线面关系正误时,通常可以利用正方体这个模型进行判断,很直观. 6.若212sin 21sin 2αα-=+,则tan α=( )A .1-B .13-C .1-或13-D .13【答案】B【分析】利用二倍角公式以及弦化切可得出关于tan α的等式,即可解得tan α的值. 【详解】由已知()21sin 212sin cos sin cos 0ααααα+=+=+≠,则sin cos 0αα+≠,因为()()()2222cos sin cos sin 12sin cos sin cos sin 1sin 212sin cos cos sin cos sin αααααααααααααααα-+---===++++ 1tan 21tan αα-==+,解得1tan 3α=-.故选:B.7.已知某圆锥的高为3,则该圆锥的侧面积为( )A B .C .2πD .6π【答案】A【分析】由圆锥的侧面展开图是扇形,利用扇形的面积公式直接列式计算即可得出答案.【详解】解:由题意得,该圆锥的侧面积为π. 故选:A.8.将函数cos 3y x π⎛⎫=- ⎪⎝⎭的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图像向左平移3π个单位,得到的图像对应的解析式为( ) A .1cos 2y x =B .1cos 26y x π⎛⎫=- ⎪⎝⎭ C .cos 2y x = D .cos 23y x π⎛⎫=+ ⎪⎝⎭【答案】B【分析】由三角函数的平移变换即可得出答案.【详解】函数cos 3y x π⎛⎫=- ⎪⎝⎭的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),可得1cos 23y x π⎛⎫=- ⎪⎝⎭,再将所得的图象向左平移3π个单位可得11cos cos 23326y x x πππ⎛⎫⎛⎫⎛⎫=+-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选:B.二、多选题9.设,a b 是两条不同的直线,,αβ是两个不同的平面,下列说法错误的是( ) A .若,a b a α⊥⊥,则//b α B .若//,a b αα⊂,则//a b C .若,,//a b αβαβ⊂⊂,则//a b D .若,a α⊥ //a β,则αβ⊥【答案】ABC【分析】根据空间中点线面的位置关系即可判断A,B,C 错误.【详解】当,a b a α⊥⊥,但b α⊂ 此时不能得到//b α,所以A 错. 若//,a b αα⊂,,a b 的关系可以有://a b ,或者,a b 异面关系,故B 错误. 若,,//a b αβαβ⊂⊂,,a b 的关系有:平行,异面(不垂直)或者垂直.所以C 错误. 若,a α⊥ //a β,则αβ⊥,故D 正确. 故选:ABC10.在ABC 中,角A 、B 、C 所对应的边分别为a 、b 、c ,22a b bc =+,则( ) A .22sin sin sin sin A B B C -= B .(12cos )b c A =+C .2A B =D .ABC 不可能为锐角三角形 【答案】AC【分析】由正弦定理即可判断A 选项;由余弦定理即可判断B 选项;由B 选项得(12cos )b A c +=,再结合正弦定理及三角恒等变换即可判断C 选项;取特殊值说明存在锐角三角形即可判断D 选项. 【详解】对于A ,由正弦定理可得22sin sin sin sin A B B C =+,即22sin sin sin sin A B B C -=,故A 正确;对于B ,2222222(12cos )121222b c a b c b bc c c A c c b bc bc b ⎛⎫⎛⎫+-+--+=+⋅=+⋅=≠ ⎪ ⎪⎝⎭⎝⎭,故B 错误;对于C ,由上知:2(12cos )c c A b+=,即(12cos )b A c +=,结合正弦定理可得()sin (12cos )sin sin sin()B A C A B A B π+==-+=+⎡⎤⎣⎦,整理得sin()sin A B B -=,则A B B -=或A B B π-+=,即2A B =或A π=(舍),故C 正确;对于D ,222222cos 222b c a b c b bc c b A bc bc b,取2,3a b c ===,满足22a b bc =+,此时角A 最大,且1cos 04A =>,即A 为锐角,即ABC 为锐角三角形,故D 错误.故选:AC.11.设函数()sin 22f x x x =,则下列结论错误的是( ) A .()f x 的最小正周期为πB .()f x 的图像关于直线6x π=对称C .()f x 的一个零点为6x π=-D .()f x 的最大值为31+【答案】BD【分析】先求出()2sin 23f x x π⎛⎫=+ ⎪⎝⎭.即可求出最小正周期和最大值,可以判断A 、D ;利用代入法判断选项B 、C.【详解】函数()sin 23cos 22sin 23f x x x x π⎛⎫=+=+⎪⎝⎭. ()f x 的最小正周期为π,故A 正确;∵2sin 232663f πππ⎛⎫⎛⎫=⨯+=≠± ⎪ ⎪⎝⎭⎝⎭,∴()f x 的图像不关于直线6x π=对称,故B 错误;∵2sin 20663f πππ⎛⎫⎛⎫-=-⨯+= ⎪ ⎪⎝⎭⎝⎭,∴6x π=-是()f x 的一个零点,故C 正确;函数()2sin 23f x x π⎛⎫=+ ⎪⎝⎭,∴()f x 的最大值为2,故D 错误.故答案为:BD12.如图所示,AB 是半圆O 的直径,VA 垂直于半圆O 所在的平面,点C 是圆周上不同于,A B 的任意一点,,M N 分别为VA ,VC 的中点,则下列结论正确的是( )A .MN平面ABCB .平面VAC ⊥平面VBC C .MN 与BC 所成的角为45D .OC ⊥平面VAC 【答案】AB【分析】由中位线性质,可得MN AC ∥,由线面平行的判定定理可判断 A ,由线面垂直的性质可得VA BC ⊥,据此可判断BC ⊥平面VAC ,由此知MN 与BC 所成的角为90°,且OC 不垂直平面VAC ,判断CD ,由面面垂直的判定知面VAC ⊥面VBC ,判断B 即可.【详解】由,M N 分别为VA ,VC 的中点,则MN AC ∥,又AC ⊂平面,ABC MN ⊄平面,ABC MN ∴平面ABC ,故A 正确;又由题意得BC AC ⊥,因为VA ⊥平面,ABC BC ⊂平面ABC ,所以VA BC ⊥. 因为AC VA A ⋂=,所以BC ⊥平面VAC ,所以MN 与BC 所成的角为90,故C 错误; 因为BC ⊥平面VAC ,所以OC 不垂直平面VAC (否则//OC BC ,矛盾),故D 错误; 因为BC ⊥平面VAC ,BC ⊂平面VBC ,所以平面VAC ⊥平面VBC ,故B 正确. 故选:AB三、填空题13.已知点()2,P y -是角θ终边上一点,且sin θ=y =__________.【答案】##【分析】=. 【详解】解:(2,)P y -是角θ终边上的一点, ∴P到原点的距离为r =sin θ∴=y ∴=故答案为: 14.已知非零向量a ,b 满足2a b =,且()()3a b a b +⊥-,则向量a ,b 夹角的余弦值为___________.【答案】14##0.25【分析】利用向量数量积的运算律和向量的夹角公式计算即可.【详解】由题意得()()2222232342320a b a b a a b b b a b b b a b +⋅-=-⋅-=-⋅-=-⋅=,所以212a b b ⋅=, 所以22112cos ,42ba b a b a b b⋅===⨯. 故答案为:1415.若复数1z =-(i 为虚数单位),则arg z =___________.【答案】2π3##2π3【分析】根据复数1z =-,可知其实部和虚部,即可求得答案.【详解】因为复数1z =-,其实部和虚部分别为-故幅角的正切值πarg π)2z ∈(,,则2πarg 3z =, 故答案为:2π316.已知 7sin cos 5αα-=,则sin 2α=_______. 【答案】2425-【分析】将条件等式两边平方,结合平方关系和二倍角正弦公式可求sin 2α. 【详解】因为7sin cos 5αα-=, 所以2249sin 2sin cos +cos 25αααα-=,又22sin +cos 1αα=, 所以242sin cos 25αα=-,故24sin 225α=-,故答案为:2425-.四、解答题17.已知向量()sin ,cos a αα=,,22ππα⎛⎫∈- ⎪⎝⎭,()1,3b =.(1)若a 与b 共线,求α的值; (2)若()()a b a b λλ+⊥-,求λ的值. 【答案】(1)π6α= (2)12λ=±【分析】(1)利用向量共线的坐标形式可求α的值;(2)利用向量垂直得到它们的数量积为0,从而可求两个向量模的关系,从而可求λ的值.【详解】(1)因为a 与b 共线,所以1cos αα⨯=即tan α=, 而,22ππα⎛⎫∈- ⎪⎝⎭,故π6α=.(2)因为()()a b a b λλ+⊥-,故()()0a b a b λλ+⋅-=即222a b λ=,而22sin cos 1,2a b αα=+==,故214λ=即12λ=±.18.如图,在正方体1111ABCD A B C D -中,E 为棱1DD 上的点.(1)证明:1AA 平面11BDD B ;(2)证明:平面EAC ⊥平面11BDD B . 【答案】(1)证明见详解 (2)证明见详解【分析】(1)由正方体性质和线面平行判定定理直接可证;(2)根据面面垂直判定定理将问题转化为AC ⊥平面11BDD B ,然后由正方体性质可证. 【详解】(1)由正方体性质可知,11AA BB又因为1AA ⊄平面11BDD B ,1BB ⊂平面11BDD B , 所以1AA 平面11BDD B(2)因为底面ABCD 为正方形, 所以AC BD ⊥因为1BB ⊥平面ABCD ,AC ⊂平面ABCD , 所以1BB AC ⊥因为1BB BD B ⋂=,1BB ⊂平面11BDD B ,BD ⊂平面11BDD B , 所以AC ⊥平面11BDD B 又AC ⊂平面ACE , 所以平面EAC ⊥平面11BDD B19.函数()()sin f x A x =+ωϕ(0A >,0ω>,0ϕπ<<)的图象如图所示.(1)求函数()y f x =的解析式;(2)当5,1212x ππ⎡⎤∈-⎢⎥⎣⎦时,求函数()y f x =的值域.【答案】(1)()sin 23f x x π⎛⎫=+ ⎪⎝⎭(2)1,12⎡⎤-⎢⎥⎣⎦【分析】(1)利用函数图象可求A , 周期T , 利用周期公式求ω, 由sin 203πϕ⎛⎫⨯+= ⎪⎝⎭, 结合 0ϕπ<<可求ϕ, 函数的解析式可得(2)根据x 的范围确定23x π+的范围,进而根据正弦 函数的性质求得函数的值域【详解】(1)∵由函数图象可得:1A =,周期724123T πππω⎛⎫=-= ⎪⎝⎭,解得:2ω=, 又∵点,03π⎛⎫⎪⎝⎭在函数图象上,可得:2sin 03πϕ⎛⎫+=⎪⎝⎭, ∴解得:23k πϕπ=-,Z k ∈,结合0ϕπ<<,可得3πϕ=,∴()sin 23f x x π⎛⎫=+ ⎪⎝⎭.(2)∵5,1212x ππ⎡⎤∈-⎢⎥⎣⎦,∴72,366x πππ⎡⎤+∈⎢⎥⎣⎦, ∴1sin 2,132x π⎛⎫⎡⎤+∈- ⎪⎢⎥⎝⎭⎣⎦,即函数()f x 的值域为:1,12⎡⎤-⎢⎥⎣⎦.20.ABC 中,sin 2A -sin 2B -sin 2C =sin B sin C . (1)求A ;(2)若BC =3,求ABC 周长的最大值.【答案】(1)23π;(2)3+【分析】(1)利用正弦定理角化边,配凑出cos A 的形式,进而求得A ;(2)方法一:利用余弦定理可得到()29AC AB AC AB +-⋅=,利用基本不等式可求得AC AB +的最大值,进而得到结果.【详解】(1)由正弦定理可得:222BC AC AB AC AB --=⋅, 2221cos 22AC AB BC A AC AB +-∴==-⋅,()0,A π∈,23A π∴=.(2)[方法一]【最优解】:余弦+不等式由余弦定理得:2222cos BC AC AB AC AB A =+-⋅229AC AB AC AB =++⋅=, 即()29AC AB AC AB +-⋅=.22AC AB AC AB +⎛⎫⋅≤ ⎪⎝⎭(当且仅当AC AB =时取等号), ()()()22223924AC AB AC AB AC AB AC AB AC AB +⎛⎫∴=+-⋅≥+-=+ ⎪⎝⎭,解得:AC AB +≤(当且仅当AC AB =时取等号),ABC ∴周长3L AC AB BC =++≤+ABC ∴周长的最大值为3+[方法二]:正弦化角(通性通法) 设,66ππαα=+=-B C ,则66ππα-<<,根据正弦定理可知sin sin sin a b cA B C===sin )b c B C +=+sin sin 66ππαα⎤⎛⎫⎛⎫=++- ⎪ ⎪⎥⎝⎭⎝⎭⎦α=≤0α=,即6B C π==时,等号成立.此时ABC周长的最大值为3+[方法三]:余弦与三角换元结合在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .由余弦定理得229b c bc =++,即2213924⎛⎫++= ⎪⎝⎭b c c.令13sin ,20,2b c c θπθθ⎧+=⎪⎛⎫∈⎨ ⎪⎝⎭⎪=⎩,得3sin b c θθ+=6πθ⎛⎫+≤ ⎪⎝⎭,易知当6C π=时,max ()b c +=所以ABC周长的最大值为3+【整体点评】本题考查解三角形的相关知识,涉及到正弦定理角化边的应用、余弦定理的应用、三角形周长最大值的求解问题;方法一:求解周长最大值的关键是能够在余弦定理构造的等式中,结合基本不等式构造不等关系求得最值.方法二采用正弦定理边化角,利用三角函数的范围进行求解最值,如果三角形是锐角三角形或有限制条件的,则采用此法解决.方法三巧妙利用三角换元,实现边化角,进而转化为正弦函数求最值问题.21.海洋蓝洞是地球罕见的自然地理现象,被喻为“地球留给人类保留宇宙秘密的最后遗产”,我国拥有世界上最深的海洋蓝洞.为测得如图所示的海洋蓝洞口径(图中,A B 两点间的距离),现在珊瑚群岛上取两点C 和D ,测得45m CD =,135,15,120ADB BDC DCA ACB ∠=︒∠=∠=︒∠=︒.(1)求A D 、两点的距离;(2)判断此海洋蓝洞的口径是否超过100m .【答案】(1)45m ;(2)此海洋蓝洞的口径是超过100m .【分析】(1)由边角关系得ADC △为等腰三角形,进而求得答案;(2)在BCD △中,利用正弦定理得)452m BD =,在ABD △中,由余弦定理得)455m AB =,进而判断即可.【详解】解:(1)在ACD 中,150ADC ADB BDC ∠=∠+∠=,15DCA =︒∠,15DAC ∴∠=︒,ADC ∴为等腰三角形,()45m AD CD ∴==,A 、D 两点的距离45m(2)在BCD △中,15BDC ∠=︒,135BCD ACB ACD ∠=∠+∠=,30CBD ∴∠=︒,由正弦定理可得sin sin CD BD CBD BCD=∠∠,)452m 12BD ∴==,在ABD △中,()45AD m =,)m BD =,135ADB ∠=︒,由余弦定理可得22222cos 455AB AD BD AD BD ADB =+-⋅∠=⨯,∴)m AB =又100 (m)AB =∴此海洋蓝洞的口径是超过100m .22.已知函数()2sin cos x x f x x =+x R ∈. (1)求函数()f x 的最小正周期:(2)当2,0x π⎡⎤∈⎢⎥⎣⎦时,求函数()f x 的最大值,并求出使该函数取得最大值时的自变量x 的值 【答案】(1)最小正周期为π; (2)12x π=时,()f x 取最大值为1.【分析】(1)先求出()f x 的解析式,再求()f x 的最小正周期; (2)先求出42,333x πππ⎡⎤+∈⎢⎥⎣⎦.由sin y x =在,32x ππ⎡⎤∈⎢⎥⎣⎦单调递增,在4,23x ππ⎡⎤∈⎢⎥⎣⎦上单调递减,即可判断出则当232x ππ+=时,()f x 取得最大值1,此时12x π=.【详解】(1)21()sin cos sin 2cos2)sin 223f x x x x x x x π⎛⎫==+=+ ⎪⎝⎭, ∵22T ππ==,∴()f x 的最小正周期为π, (2)∵0,2x π⎡⎤∈⎢⎥⎣⎦,∴42[0,],2,333x x ππππ⎡⎤∈+∈⎢⎥⎣⎦. 因为sin y x =在,32x ππ⎡⎤∈⎢⎥⎣⎦单调递增,在4,23x ππ⎡⎤∈⎢⎥⎣⎦上单调递减, 所以当232x ππ+=时,()f x 取得最大值1,此时12x π=. 所以,当12x π=时,()f x 取最大值为1.。
福建省福州2023-2024学年高一下学期7月期末考试 数学含答案
福州2023—2024学年第二学期期末考试高一年级数学(答案在最后)(全卷共4页,四大题,19小题;满分:150分;时间:120分钟)班级__________座号__________姓名__________注意事项:1.答题前,考生务必在试题卷、答题卡规定的地方填涂自己的准考证号、姓名.考生要认真核对答题卡上的“准考证号、姓名”与考生本人准考证号、姓名是否一致.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号,非选择题用0.5毫米黑色签字笔在答题卡上规定的范围内书写作答,请不要错位、越界答题!在试题卷上作答的答案无效.3.考试结束,考生必须将答题卡交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知样本数据10,11,9,13,10,9,12,则这组样本数据的上四分位数为()A.9B.10C.11D.122.已知复数12z i =-,则zz=()A.12B.1C.2D.43.设l ,m 是两条直线,α,β是两个平面,则()A.若//αβ,//l α,//m β,则//l mB.若//αβ,//l m ,m β⊥,则l α⊥C .若αβ⊥,//l α,//m β,则l m⊥D.若αβ⊥,//l α,//m β,则//l m4.已知向量,a b 满足||||a b == =0a b ⋅,若()()a b a b λμ+⊥+ ,则下列各式一定成立的是()A.0λμ+= B.1λμ+=- C.0λμ= D.1λμ=-5.如图,某人为测量塔高AB ,在河对岸相距s 的C ,D 处分别测得BCD α∠=,BCA ∠=β,BDC γ∠=(其中C ,D 与塔底B 在同一水平面内),则塔高AB =()A.()sin tan sin s γβαγ⋅+B.()sin sin tan s γαγβ⋅+C.()sin sin tan s αγγβ⋅+D.()sin sin sin s αγγβ⋅+6.如图,圆锥底面半径为23,母线2PA =,点B 为PA 的中点,一只蚂蚁从A 点出发,沿圆锥侧面绕行一周,到达B 点,其最短路线长度和其中下坡路段长分别为()A.277,3B.77,3C.77,3D.77,77.依次抛掷一枚质地均匀的骰子两次,1A 表示事件“第一次抛掷骰子的点数为2”,2A 表示事件“第一次抛掷骰子的点数为奇数”,3A 表示事件“两次抛掷骰子的点数之和为6”,4A 表示事件“两次抛掷骰子的点数之和为7”,则()A.3A 与4A 为对立事件B.1A 与3A 为相互独立事件C.2A 与4A 为相互独立事件D.2A 与4A 为互斥事件8.已知三棱锥P ABC -的四个顶点在球O 的球面上,PA PB PC ===BPA CPA CPB ∠=∠=∠,E ,F 分别是PA ,AB 的中点,90CEF ∠=︒,则球O 的体积为()A. B. C. D.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若a =,222sin a b c ab C +-=,cos sin a B b A c +=,则下列结论正确的是()A.tan 2C = B.π4A =C.b =D.△ABC 的面积为610.如图所示,下列频率分布直方图显示了三种不同的分布形态.图(1)形成对称形态,图(2)形成“右拖尾”形态,图(3)形成“左拖尾”形态,根据所给图作出以下判断,正确的是()A.图(1)的平均数=中位数=众数B.图(2)的平均数<众数<中位数C.图(2)的众数<中位数<平均数D.图(3)的平均数<中位数<众数11.在直四棱柱1111ABCD A B C D -中,所有棱长均2,60BAD ∠=︒,P 为1CC 的中点,点Q 在四边形11DCC D 内(包括边界)运动,下列结论中正确的是()A.当点Q 在线段1CD 上运动时,四面体1A BPQ 的体积为定值B.若AQ//平面1A BP ,则AQC.若1A BQ △的外心为M ,则11AB A M ⋅为定值2D.若1AQ =,则点Q 的轨迹长度为23π三、填空题:本题共3小题,每小题5分,共15分.12.在ABC 中,120,2,ACB AC AB ACB ∠∠===的角平分线交AB 于D ,则CD =__________.13.某同学用“随机模拟方法”计算曲线ln y x =与直线,0x e y ==所围成的曲边三角形的面积时,用计算机分别产生了10个在区间[]1,e 上的均匀随机数i x 和10个在区间[]0,1上的均匀随机数i y (*,110i N i ∈≤≤),其数据如下表的前两行.x 2.50 1.01 1.90 1.22 2.52 2.17 1.89 1.96 1.36 2.22y 0.840.250.980.150.010.600.590.880.840.10lnx0.900.010.640.200.920.770.640.670.310.80由此可得这个曲边三角形面积的一个近似值为_________.14.若正四面体ABCD 的顶点都在一个表面积为6π的球面上,过点C 且与BD 平行的平面α分别与棱,AB AD 交于点,E F ,则空间四边形BCFE 的四条边长之和的最小值为__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.成都石室中学生物基地里种植了一种观赏花卉,这种观赏花卉的高度(单位:cm )介于[]15,25之间,现对生物基地里部分该种观赏花卉的高度进行测量,所得数据统计如下图所示.(1)求a 的值;(2)若从高度在[)15,17和[)17,19中分层抽样抽取5株,再在这5株中随机抽取2株,求抽取的2株高度均在[)17,19内的概率.16.在平面四边形ABCD 中,90ABC ∠=︒,135C ∠=︒,BD =CD =.(1)求cos CBD ∠;(2)若ABD △为锐角三角形,求ABD △的面积的取值范围.17.年级教师元旦晚会时,“玲儿姐”、“关关姐”和“页楼哥”参加一项趣味问答活动.该活动共有两个问题,如果参加者两个问题都回答正确,则可得到一枝“黑玫瑰”奖品.已知在第一个问题中“玲儿姐”回答正确的概率为23,“玲儿姐”和“关关姐”两人都回答错误的概率为215,“关关姐”和“页楼哥”两人都回答正确的概率为310;在第二个问题中“玲儿姐”、“关关姐”和“页楼哥”回答正确的概率依次为324,,435.且所有的问答中回答正确与否相互之间没有任何影响.(1)在第一个问题中,分别求出“关关姐”和“页楼哥”回答正确的概率;(2)分别求出“玲儿姐”、“关关姐”和“页楼哥”获得一枝“黑玫瑰”奖品的概率,并求三人最终一共获得2枝“黑玫瑰”奖品的概率.18.如图,在直三棱柱111ABC A B C -中,M 为棱AC 的中点,AB BC =,2AC =,1AA =.(1)求证:1//B C 平面1A BM ;(2)求证:1AC ⊥平面1A BM ;(3)在棱1BB 上是否存在点N ,使得平面1AC N ⊥平面11AA C C ?如果存在,求此时1BN BB 的值;如果不存在,请说明理由.19.为了监控某种零件的一条生产线的生产过程,检验员每隔30min 从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm ).下面是检验员在一天内依次抽取的16个零件的尺寸:抽取次序12345678零件尺寸9.9510.129.969.9610.019.929.9810.04抽取次序910111213141516零件尺寸10.269.9110.1310.029.2210.0410.059.95经计算得16119.9716i i x x ===∑,0.212s ==,18.439≈,()()1618.5 2.78ii x x i =--=-∑其中ix 为抽取的第i 个零件的尺寸,1,2,...,16i =.(1)求()(),1,2,...,16i x i i =的相关系数r ,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若0.25r <,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小);(2)一天内抽检零件中,如果出现了尺寸在()3,3x s x s -+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(i )从这一天抽检的结果看,是否需对当天的生产过程进行检查?(ii )请利用已经学过的方差公式:()2211n i i s x x n ==-∑来证明方差第二公式22211n i i s x n x ==-∑.(iii )在()3,3x s x s -+之外的数据称为离群值,试剔除离群值,并利用(ii )中公式估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)附:样本()(),1,2,...,i i x y i n =的相关系数ˆniix ynxyr-=∑0.09≈.福州2023—2024学年第二学期期末考试高一年级数学(全卷共4页,四大题,19小题;满分:150分;时间:120分钟)班级__________座号__________姓名__________注意事项:1.答题前,考生务必在试题卷、答题卡规定的地方填涂自己的准考证号、姓名.考生要认真核对答题卡上的“准考证号、姓名”与考生本人准考证号、姓名是否一致.2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号,非选择题用0.5毫米黑色签字笔在答题卡上规定的范围内书写作答,请不要错位、越界答题!在试题卷上作答的答案无效.3.考试结束,考生必须将答题卡交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知样本数据10,11,9,13,10,9,12,则这组样本数据的上四分位数为()A.9B.10C.11D.12【答案】D【解析】【分析】利用百分位的定义求解即可.【详解】将样本数据按从小到大的顺序排列为:9,9,10,10,11,12,13.上四分位数即75%分位数,775% 5.25⨯=,所以该组数据的上四分位数为从小到大排列的第6个数,即12,故选:D.2.已知复数12z i=-,则zz=()A.12B.1C.2D.4【答案】B【解析】【分析】根据条件,利用共轭复数的定义及复数的运算法则,得到34i55zz=--,再利用复数模的定义,即可求出结果.【详解】因为12z i =-,所以12i 14i 434i 12i 555z z ---===--+,得到1z z=,故选:B.3.设l ,m 是两条直线,α,β是两个平面,则()A.若//αβ,//l α,//m β,则//l mB.若//αβ,//l m ,m β⊥,则l α⊥C.若αβ⊥,//l α,//m β,则l m ⊥D.若αβ⊥,//l α,//m β,则//l m 【答案】B 【解析】【分析】根据线面平行或垂直的判定及性质定理逐个判断即可.【详解】对于A ,若//αβ,//l α,//m β,则l 与m 可能平行,也可能相交,还可能异面,故A 错误;对于B ,若//l m ,m β⊥,则l β⊥,又//αβ,所以l α⊥,故B 正确;对于C ,D ,αβ⊥,//l α,//m β,则l 与m 可能平行,也可能异面或相交,故C ,D 错误;故选:B .4.已知向量,a b 满足||||a b == =0a b ⋅,若()()a b a b λμ+⊥+ ,则下列各式一定成立的是()A.0λμ+=B.1λμ+=- C.0λμ= D.1λμ=-【答案】A 【解析】【分析】由向量垂直得到数量积为0,再由向量的数量积运算化简可得λ和μ的关系.【详解】因为向量,a b 满足||||a b == ,=0a b ⋅,若()()a b a b λμ+⊥+ ,所以22()()(1)()3()0a b a b a a b b λμμλμλλμ+⋅+=++⋅+=+=,所以0λμ+=.故选:A .5.如图,某人为测量塔高AB ,在河对岸相距s 的C ,D 处分别测得BCD α∠=,BCA ∠=β,BDC γ∠=(其中C ,D 与塔底B 在同一水平面内),则塔高AB =()A.()sin tan sin s γβαγ⋅+B.()sin sin tan s γαγβ⋅+C.()sin sin tan s αγγβ⋅+D.()sin sin sin s αγγβ⋅+【答案】A 【解析】【分析】根据给定条件,在BCD △中,利用正弦定理求出BC ,再利用直角三角形边角关系求解即得.【详解】在BCD △中,由正弦定理得sin sin BC CDBDC CBD =∠∠,sin sin(π)BC s γαγ=--,则sin sin()s BC γαγ=+,在Rt ABC △中,sin sin tan tan tan sin()sin()s s AB BC ACB γγββαγαγ=∠=⋅=++.故选:A6.如图,圆锥底面半径为23,母线2PA =,点B 为PA 的中点,一只蚂蚁从A 点出发,沿圆锥侧面绕行一周,到达B 点,其最短路线长度和其中下坡路段长分别为()A.277,3B.77,3C.277,3D.277,7【答案】D 【解析】【分析】将圆锥侧面沿母线PA 剪开并展开成扇形,最短路线即为扇形中的直线段AB ,利用余弦定理即可求解,过P 作AB 的垂线,垂足为M ,由题意得到AM 为上坡路段,MB 为下坡路段,计算即可.【详解】如图,将圆锥侧面沿母线PA 剪开并展开成扇形,由题可得该扇形半径2PA =,弧长为24π2π33⨯=,故圆心角4π2π323APB ∠==,最短路线即为扇形中的直线段AB ,由余弦定理可得:222cos 7AB PA PB PA PB APB =+-⋅∠=;2227cos 27PB AB PA PBA PB BA +-∠==⋅,过P 作AB 的垂线,垂足为M ,当蚂蚁从A 点爬行到点M 过程中,它与点P 的距离越来越小,故AM 为上坡路段,当蚂蚁从点M 爬行到点B 的过程中,它与点P 的距离越来越大,故MB 为下坡路段,下坡路段长27cos 7MB PB PBA =⋅∠=,故选:D7.依次抛掷一枚质地均匀的骰子两次,1A 表示事件“第一次抛掷骰子的点数为2”,2A 表示事件“第一次抛掷骰子的点数为奇数”,3A 表示事件“两次抛掷骰子的点数之和为6”,4A 表示事件“两次抛掷骰子的点数之和为7”,则()A.3A 与4A 为对立事件B.1A 与3A 为相互独立事件C.2A 与4A 为相互独立事件D.2A 与4A 为互斥事件【答案】C 【解析】【分析】利用列举法与古典概型的概率公式求得各事件的概率,由3434,A A A A =∅≠Ω 即可判断A ;由1313()()()P A P A P A A ≠即可判断B ;由2424()()()P A P A P A A =即可判断C ,由24A A ≠∅ 即可判断D.【详解】依次抛掷两枚质地均匀的骰子,两次的结果用有序数对表示,其中第一次在前,第二次在后,样本空间Ω如下:()()()()()(){1,1,1,2,1,3,1,4,1,5,1,6,(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),()()()()()()6,1,6,2,6,3,6,4,6,5,6,6},共36个样本点.则事件1A 包括(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),共6个,11()6P A =,事件2A 包括(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),,共18个,21()2P A =,事件3A 包括(1,5),(2,4),(3,3),(4,2),(5,1),共5个,35()36P A =,事件4A 包括(1,6),(2,5),(3,4),(4,3),(5,2),(6,1),共6个,461()366P A ==.对于A ,3434,A A A A =∅≠Ω ,所以3A 与4A 不为对立事件,故A 错误;对于B ,事件13A A 包括(2,4),则131()36P A A =,又11()6P A =,35()36P A =,所以131315()()()636P A P A P A A =⨯≠,即1A 与3A 不相互独立,故B 错误;对于C ,事件24A A 包括(1,6),(3,4),(5,2),则241()12P A A =,又21()2P A =,41()6P A =,所以2424111()()()2612P A P A P A A =⨯==,即2A 与4A 相互独立,故C 正确;对于D ,事件24A A 包括(1,6),(3,4),(5,2),则24A A ≠∅ ,即2A 与4A 不为互斥事件,故D 错误.故选:C.【点睛】关键点点睛:利用列举法和古典概型的概率公式求得各事件的概率是解决本题的关键.8.已知三棱锥P ABC -的四个顶点在球O 的球面上,PA PB PC ===BPA CPA CPB ∠=∠=∠,E ,F 分别是PA ,AB 的中点,90CEF ∠=︒,则球O 的体积为()A. B. C. D.【答案】D 【解析】【分析】先证得PB ⊥平面PAC ,再求得2AB BC AC ===,从而得-P ABC 为正方体一部分,进而知正方体的体对角线即为球直径,从而得解.【详解】PA PB PC == ,BPA CPA CPB ∠=∠=∠,所以AB BC AC ==,故ABC 为等边三角形,P ABC ∴-为正三棱锥,取AC 的中点O ,连接,PO BO ,则,AC BO AC PO ⊥⊥,又,,BO PO O BO PO =⊂ 面PBO ,所以AC ⊥面PBO ,又BP ⊂面PBO ,所以AC PB ⊥,又E ,F 分别为PA 、AB 中点,//EF PB ∴,EF AC ∴⊥,又EF CE ⊥,,CE AC C EF =∴⊥ 平面PAC ,∴PB ⊥平面PAC ,又,PA PC ⊂面PAC ,所以,PA PB PC PB ⊥⊥,PA PB PC === ,2AB BC AC ∴===,在APC △中由勾股定理得PA PC ⊥,P ABC ∴-为正方体一部分,2R ==2R =,344π338V R ∴=π=⨯=,故选:D .【点睛】思路点睛:补体法解决外接球问题,可通过线面垂直定理,得到三棱两两互相垂直关系,快速得到侧棱长,进而补体成正方体解决.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若a =,222sin a b c ab C +-=,cos sin a B b A c +=,则下列结论正确的是()A.tan 2C = B.π4A =C.b =D.△ABC 的面积为6【答案】ABD 【解析】【分析】A 选项,由余弦定理得sin cos 2CC =,求出sin tan 2cos C C C==;B 选项,由正弦定理和sin sin cos cos sin C A B A B =+化简得到sin cos A A =,求出π4A =;C 选项,在A 选项基础上求出sin 5C =,cos 5C =,从而得到sin 10B =,由正弦定理得到b =D 选项,由三角形面积公式求出答案.【详解】A 选项,由余弦定理得222sin sin cos 222a b c ab C CC ab ab +-===,故sin tan 2cos CC C==,A 正确;B 选项,cos sin a B b A c +=,由正弦定理得sin cos sin sin sin A B B A C +=,因为()sin sin sin cos cos sin C A B A B A B =+=+,所以sin cos sin sin sin cos cos sin A B B A A B A B +=+,即sin sin cos sin B A A B =,因为()0,πB ∈,所以sin 0B ≠,故sin cos A A =,又()0,πA ∈,故π4A =,B 正确;C 选项,由A 选项可知,sin cos 2C C =,又22sin cos 1C C +=,故25sin 14C =,因为()0,πC ∈,所以sin 0C >,解得sin 5C =,故5si cos n 2C C ==,()sin sin sin cos cos sin 252510=+=+=⨯+⨯=B AC A C A C ,由正弦定理得sin sin a bA B=12=b =C 错误;D 选项,△ABC的面积为11sin 6225ab C ==.故选:ABD10.如图所示,下列频率分布直方图显示了三种不同的分布形态.图(1)形成对称形态,图(2)形成“右拖尾”形态,图(3)形成“左拖尾”形态,根据所给图作出以下判断,正确的是()A.图(1)的平均数=中位数=众数B.图(2)的平均数<众数<中位数C.图(2)的众数<中位数<平均数D.图(3)的平均数<中位数<众数【答案】ACD 【解析】【详解】根据平均数,中位数,众数的概念结合图形分析判断.【分析】图(1)的分布直方图是对称的,所以平均数=中位数=众数,故A 正确;图(2)众数最小,右拖尾平均数大于中位数,故B 错误,C 正确;图(3)左拖尾众数最大,平均数小于中位数,故D 正确.故选:ACD.11.在直四棱柱1111ABCD A B C D -中,所有棱长均2,60BAD ∠=︒,P 为1CC 的中点,点Q 在四边形11DCC D 内(包括边界)运动,下列结论中正确的是()A.当点Q 在线段1CD 上运动时,四面体1A BPQ 的体积为定值B.若AQ//平面1A BP ,则AQ 5C.若1A BQ △的外心为M ,则11A B A M ⋅为定值2D.若17AQ =,则点Q 的轨迹长度为23π【答案】ABD 【解析】【分析】由题易证得1//D C 面1A BP ,所以直线1CD 到平面1A BP 的距离相等,又1A BP 的面积为定值,可判断A ;取1,DD DC 的中点分别为,M N ,连接,,AM MN AN ,由面面平行的判定定理可得平面1//A BP 面AMN ,因为AQ ⊂面AMN ,所以AQ//平面1A BP ,当AQ MN ⊥时,AQ 有最小值可判断B ;由三角形外心的性质和向量数量积的性质可判断C ;在111,DD D C 上取点32,A A ,使得13123=1D A D A =,,易知点Q 的轨迹为圆弧23A A 可判断D.【详解】对于A ,因为11//A B D C ,又因为1A B ⊂面1A BP ,1D C ⊄面1A BP ,所以1//D C 面1A BP ,所以直线1CD 到平面1A BP 的距离相等,又1A BP 的面积为定值,故A 正确;对于B ,取1,DD DC 的中点分别为,M N ,连接,,AM MN AN ,则易证明://AM PC ,AM ⊄面1A BP ,PC ⊄面1A BP ,所以//AM 面1A BP ,又因为1//A B MN ,,MN ⊄面1A BP ,1A B ⊄面1A BP ,所以//MN 面1A BP ,MN AM M ⋂=,所以平面1//A BP 面AMN ,AQ ⊂面AMN ,所以AQ//平面1A BP当AQ MN ⊥时,AQ 有最小值,则易求出5,2,AM MN ==2212cos1204122172AN AD DN AD DN ⎛⎫=+-⋅︒=+-⨯⨯⨯-= ⎪⎝⎭,Q M 重合,所以则AQ 的最小值为5AM =,故B 正确;对于C ,若1A BQ △的外心为M ,,过M 作1MH A B ⊥于点H ,2212+2=22A B 则21111==42A B A M A B ⋅ .故C 错误;对于D ,过1A 作111A O C D ⊥于点O ,易知1A O ⊥平面11C D D ,111cos 13OD A D π==在111,DD D C 上取点32,A A ,使得13123=1D A D A =,,则13127A A A A ==,32732OA OA ==-=所以若17AQ =,则Q 在以O 为圆心,2为半径的圆弧23A A 上运动,又因为1131,3,D O D A ==所以323A OA π∠=,则圆弧23A A 等于23π,故D 正确.故选:ABD.三、填空题:本题共3小题,每小题5分,共15分.12.在ABC 中,120,2,7,ACB AC AB ACB ∠∠=== 的角平分线交AB 于D ,则CD =__________.【答案】23【解析】【分析】在ABC 中,由余弦定理可得:1BC =,由正弦定理可得21sin 7B =,根据角平分线的性质可得:2723DA BD ==,在BCD △中,由正弦定理可得:sin sin CD BD B DCB =∠即可求解.【详解】因为在ABC 中,120,2,7ACB AC AB ∠===由余弦定理可得:2222cos AB AC BC AB BC ACB =+-⋅⋅∠,解得1BC =由正弦定理可得:sin sin AC AB B ACB =∠,即27sin 3B =,解得:21sin 7B =,因为ACB ∠的角平分线交AB 于D ,所以60BCD ︒∠=,由角平分线性质可得:BD BCDA AC=,所以2723DA BD ==,在BCD △中,由正弦定理可得:sin sin CD BDB DCB =∠7321372=23CD =故答案为:2313.某同学用“随机模拟方法”计算曲线ln y x =与直线,0x e y ==所围成的曲边三角形的面积时,用计算机分别产生了10个在区间[]1,e 上的均匀随机数i x 和10个在区间[]0,1上的均匀随机数i y (*,110i N i ∈≤≤),其数据如下表的前两行.x 2.50 1.01 1.90 1.22 2.52 2.17 1.89 1.96 1.36 2.22y 0.840.250.980.150.010.600.590.880.840.10lnx0.900.010.640.200.920.770.640.670.310.80由此可得这个曲边三角形面积的一个近似值为_________.【答案】()315e -【解析】【分析】先根据题意以及题中数据,可得:向矩形区域101x ey ≤≤⎧⎨≤≤⎩内随机抛掷10个点,有6个点在曲边三角形内,由此即可估计出曲边三角形的面积.【详解】由题意以及表中数据可得,向矩形区域101x ey ≤≤⎧⎨≤≤⎩内随机抛掷10个点,有6个点在曲边三角形内,所以其频率为63105=,因为矩形区域面积为()111e e -⨯=-,所以这个曲边三角形面积的一个近似值为()315e -.故答案为()315e -【点睛】本题主要考查几何概型,以及定积分在求面积中的应用,属于常考题型.14.若正四面体ABCD 的顶点都在一个表面积为6π的球面上,过点C 且与BD 平行的平面α分别与棱,AB AD 交于点,E F ,则空间四边形BCFE 的四条边长之和的最小值为__________.【答案】4+4【解析】【分析】根据条件求出正四面体ABCD 的棱长为2,设(01)AF AD λλ=<<,利用几何关系得到空间四边形BCFE 的四条边长之和4L =+,即可求出结果.【详解】如图,将正四面体放置到正方体中,易知正四面体外接球即正方体的外接球,设正四面体ABCD ,所以正方体的边长为a ,易知正方体的外接球直径为体对角线DH 的长,又DH =,所以正四面体的半径22DH R ==,依题有224π3π6πR a ==,得到a =,即正四面体ABCD 的棱长为2,因为//BD 面CEF ,面ABD ⋂面CEF EF =,BD ⊂面ABD ,所以//EF BD ,设(01)AF AD λλ=<<因为2AB AD BD ===,则2AF AE λ==,22BE DF λ==-,在EAF △中,因为π3EAF ∠=,所以2EF λ=,在FDC △中,π3FDC ∠=,2DC =,则FC =,所以空间四边形BCFE 的四条边长之和2222442L λλ=+-++++,又01λ<<,当12λ=时,min 4L =+,故答案为:4+.【点睛】关键点点晴:本题的关键在于设出(01)AF AD λλ=<<后,利用几何关系得出FC =2EF λ=,22BE λ=-,从而得出空间四边形BCFE 的四条边长之和4L =+,转化成求L 的最小值来解决问题.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.成都石室中学生物基地里种植了一种观赏花卉,这种观赏花卉的高度(单位:cm )介于[]15,25之间,现对生物基地里部分该种观赏花卉的高度进行测量,所得数据统计如下图所示.(1)求a 的值;(2)若从高度在[)15,17和[)17,19中分层抽样抽取5株,再在这5株中随机抽取2株,求抽取的2株高度均在[)17,19内的概率.【答案】(1)0.125;(2)310【解析】【分析】(1)由频率分布直方图各小矩形的面积和等于1,可求得a 的值;(2)再由[)15,17和[)17,19的频率比0.120.153=,确定这5株分别在[)15,17和[)17,19的株数,最后由古典概型的计算公式求得结果即可.【小问1详解】依题意可得()0.050.0750.150.121a ++++⨯=,解得0.125a =;【小问2详解】由(1)可得高度在[)15,17的频率为:20.0500.1⨯=;高度在[)17,19的频率为:20.0750.15⨯=;且0.120.153=,所以分层抽取的5株中,高度在[)15,17和[)17,19的株数分别为2和3,因此记高度在[)15,17植株为,m n ,记高度在[)17,19植株为,,A B C ,则所有选取的结果为(m ,n )、(m ,A )、(m ,B )、(m ,C )、(n ,A )、(n ,B )、(n ,C )、(A ,B )、(A ,C )、(B ,C )共10种情况,令抽取的2株高度均在[)15,17内为事件M ,事件M 的所有情况为(A ,B )、(A ,C )、(B ,C )共3种情况,由古典概型的计算公式得:()310P M =.16.在平面四边形ABCD 中,90ABC ∠=︒,135C ∠=︒,BD =CD =.(1)求cos CBD ∠;(2)若ABD △为锐角三角形,求ABD △的面积的取值范围.【答案】(1(2)()1,5【解析】【分析】(1)在BCD △中,由正弦定理可得sin CBD ∠,从而求得cos CBD ∠.(2)解法一:由(1)求得sin ADB ∠sin cos 55A A =∠+∠,AB 21tan A =+∠,从而ABD S = 21tan A +∠,再利用ππ22ABD A -∠<∠<,即可求得ABD △面积的取值范围;解法二:作1A D AB ⊥于1A ,作2A D BD ⊥于D ,交BA 于2A ,求得1A D ,1A B ,2A D ,分别求出1A BD S ,2A BD S ,利用12A BD ABD A BD S S S <<△△△即可求得范围.【小问1详解】在BCD △中,由正弦定理可得sin sin BD CDBCD CBD ∠∠=,所以22sin 5CBD ∠==,又π0,4CBD ⎛⎫∠∈ ⎪⎝⎭,所以cos 5CBD ∠==.【小问2详解】解法一:由(1)可知,πsin sin cos 25ABD CBD CBD ⎛⎫∠=-∠=∠= ⎪⎝⎭,因为ABD ∠为锐角,所以5cos 5ABD ∠=,所以()sin sin ADB A ABD ∠=∠+∠sin cos cos sin A ABD A ABD =∠∠+∠∠sin cos 55A A =∠+∠,在ABD △中,由正弦定理得sin sin AB BDADB A=∠∠,所以sin 2cos sin sin ADB A AAB A A∠∠+∠==∠∠21tan A =+∠,1sin 2ABD S AB BD ABD=⋅⋅∠122112tan 5tan A A⎛⎫=⨯+⨯=+ ⎪∠∠⎝⎭,因为()πADB ABD A ∠=-∠+∠,且ABD △为锐角三角形,所以()π0π2π02ABD A A ⎧<-∠+∠<⎪⎪⎨⎪<∠<⎪⎩,所以ππ22ABD A -∠<∠<,所以πtan tan 2A ABD ⎛⎫∠>-∠⎪⎝⎭πsin cos 12πsin 2cos 2ABD ABD ABD ABD ⎛⎫-∠ ⎪∠⎝⎭===∠⎛⎫-∠ ⎪⎝⎭,所以102tan A<<∠,所以2115tan A<+<∠,即15ABD S <<△,所以ABD △的面积的取值范围为()1,5.解法二:由(1)可知,sin sin cos 25πABD CBD CBD ∠∠∠⎛⎫=-== ⎪⎝⎭,因为ABD ∠为锐角,所以5cos 5ABD ∠=,tan 2ABD ∠=,如图,作1A D AB ⊥于1A ,作2A D BD ⊥于D ,交BA 于2A ,所以15sin 525A D BD ABD ∠=⋅==,15cos 515A B BD ABD ∠=⋅==,所以112112A BD S =⨯⨯=△,又2tan 5225A D BD ABD ∠=⋅==,所以215552A BD S =⨯=△.由图可知,仅当A 在线段12A A 上(不含端点)时,ABD △为锐角三角形,所以12A BD ABD A BD S S S <<△△△,即15ABD S <<△.所以ABD △面积的取值范围为()1,5.17.年级教师元旦晚会时,“玲儿姐”、“关关姐”和“页楼哥”参加一项趣味问答活动.该活动共有两个问题,如果参加者两个问题都回答正确,则可得到一枝“黑玫瑰”奖品.已知在第一个问题中“玲儿姐”回答正确的概率为23,“玲儿姐”和“关关姐”两人都回答错误的概率为215,“关关姐”和“页楼哥”两人都回答正确的概率为310;在第二个问题中“玲儿姐”、“关关姐”和“页楼哥”回答正确的概率依次为324,,435.且所有的问答中回答正确与否相互之间没有任何影响.(1)在第一个问题中,分别求出“关关姐”和“页楼哥”回答正确的概率;(2)分别求出“玲儿姐”、“关关姐”和“页楼哥”获得一枝“黑玫瑰”奖品的概率,并求三人最终一共获得2枝“黑玫瑰”奖品的概率.【答案】(1)“关关姐”和“页楼哥”回答正确的概率分别为31;52;(2)“玲儿姐”、“关关姐”和“页楼哥”获得一枝“黑玫瑰”奖品的概率分别为122,,;255三人最终一共获得2枝“黑玫瑰”奖品的概率825【解析】【分析】(1)根据独立事件的乘法公式分别求解即可;(2)综合应用独立事件的乘法公式和互斥事件的概率加法公式分别求解即可.【小问1详解】记=i A “玲儿姐回答正确第i 个问题”,i B =“关关姐回答正确第i 个问题”,i C =“页楼哥回答正确第i 个问题”,1,2i =.根据题意得111111122()()()(1())(1())(1)(1())315P A B P A P B P A P B P B ==--=--=,所以13()5P B =;1111133()()()()510P B C P B P C P C ===,所以11()2P C =;故在第一个问题中,“关关姐”和“页楼哥”回答正确的概率分别为35和12.【小问2详解】由题意知222324(),(),()435P A P B P C ===,“玲儿姐”获得一枝“黑玫瑰”奖品的概率为11212231()()()342P P A A P A P A ====;“关关姐”获得一枝“黑玫瑰”奖品的概率为21212322()()()535P P B B P B P B ====;“页楼哥”获得一枝“黑玫瑰”奖品的概率为31212142()()()255P P C C P C P C ===⨯=;三人最终一共获得2枝“黑玫瑰”奖品的概率为123123123(1)(1)(1)P P P P P P P PP P =-+-+-122132123825525525525=⨯⨯+⨯⨯+⨯=.所以“玲儿姐”、“关关姐”和“页楼哥”获得一枝“黑玫瑰”奖品的概率分别为122255,,;三人最终一共获得2枝“黑玫瑰”奖品的概率为825.18.如图,在直三棱柱111ABC A B C -中,M 为棱AC 的中点,AB BC =,2AC =,1AA =.(1)求证:1//B C 平面1A BM ;(2)求证:1AC ⊥平面1A BM ;(3)在棱1BB 上是否存在点N ,使得平面1AC N ⊥平面11AA C C ?如果存在,求此时1BNBB 的值;如果不存在,请说明理由.【答案】(1)证明见解析;(2)证明见解析;(3)存在,112BN BB =.【解析】【分析】(1)连接1AB 与1A B ,两线交于点O ,连接OM ,利用三角形中位线性质得到1//OM B C ,再利用线面平行的判定即可证.(2)应用线面垂直的性质、判定可得BM ⊥平面11ACC A ,从而得到1BM AC ⊥,根据11AC C A MA∠=∠和111190AC C C AC A MA C AC ∠+∠=∠+∠=得到11A M AC ⊥,再利用线面垂直的判定即可证.(3)当点N 为1BB 的中点,设1AC 的中点为D ,连接DM ,DN ,易证四边形BNDM 为平行四边形,从而得到//BM DN ,进而有DN ⊥平面11ACC A ,再利用面面垂直的判定即可证.【小问1详解】连接1AB 与1A B ,两线交于点O ,连接OM,在1B AC △中M ,O 分别为AC ,1AB 的中点,所以1//OM B C ,又OM ⊂平面1A BM ,1B C ⊄平面1A BM ,所以1//B C 平面1A BM .【小问2详解】因为1AA ⊥底面ABC ,BM ⊂平面ABC ,所以1AA BM ⊥.又M 为棱AC 的中点,AB BC =,所以BM AC ⊥.因为1AA AC A = ,1AA ,AC ⊂平面11ACC A ,所以BM ⊥平面11ACC A ,1AC ⊂平面11ACC A ,所以1BM AC ⊥.因为2AC =,所以1AM =.又1AA =,在1Rt ACC V 和1Rt A AM中,11tan tan AC C A MA ∠=∠=,所以11AC C A MA ∠=∠,即111190AC C C AC A MA C AC ∠+∠=∠+∠=,所以11A M AC ⊥,又1BM A M M = ,BM ,1A M ⊂平面1A BM ,所以1AC ⊥平面1A BM .【小问3详解】当点N 为1BB 的中点,即112BN BB =时,平面1AC N ⊥平面11AA C C .证明如下:设1AC 的中点为D ,连接DM ,DN,因为D ,M 分别为1AC ,AC 的中点,所以1//DM CC 且112DM CC =,又N 为1BB 的中点,所以//DM BN 且DM BN =,所以四边形BNDM 为平行四边形,故//BM DN ,由(2)知:BM ⊥平面11ACC A ,所以DN⊥平面11ACC A ,又DN ⊂平面1AC N ,所以平面1AC N ⊥平面11ACC A .19.为了监控某种零件的一条生产线的生产过程,检验员每隔30min 从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm ).下面是检验员在一天内依次抽取的16个零件的尺寸:抽取次序12345678零件尺寸9.9510.129.969.9610.019.929.9810.04抽取次序910111213141516零件尺寸10.269.9110.1310.029.2210.0410.059.95经计算得16119.9716i i x x ===∑,0.212s ==,18.439≈,()()1618.5 2.78ii x x i =--=-∑其中ix 为抽取的第i 个零件的尺寸,1,2,...,16i =.(1)求()(),1,2,...,16i x i i =的相关系数r ,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若0.25r <,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小);(2)一天内抽检零件中,如果出现了尺寸在()3,3x s x s -+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(i )从这一天抽检的结果看,是否需对当天的生产过程进行检查?(ii )请利用已经学过的方差公式:()2211n i i s x x n ==-∑来证明方差第二公式22211n i i s x n x ==-∑.(iii )在()3,3x s x s -+之外的数据称为离群值,试剔除离群值,并利用(ii )中公式估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)附:样本()(),1,2,...,i i x y i n =的相关系数ˆniix ynxyr-=∑0.09≈.【答案】(1)0.178-;可以认为零件的尺寸不随生产过程的进行而系统地变大或变小(2)(i )从这一天抽检的结果看,需对当天的生产过程进行检查;(ii )证明见解析;(iii )均值10.02;标准差0.09【解析】【分析】(1)根据数据和公式即可计算r 的值,根据0.25r <的规则进行判断即可;(2)(i )计算()3,3x s x s -+的值,根据13个零件的尺寸与区间的关系进行判断;(ii )根据已学公式进行变形即可证明;(iii )代入公式计算即可.【小问1详解】由题可得()()16118.5 2.78n i iii i x y nxy x x i ==-=--=-∑∑,40.848s===,18.439=≈所以 2.780.180.84818.439ˆniix ynxyr--=≈-⨯∑,则0.180.25r =<,所以可以认为零件的尺寸不随生产过程的进行而系统地变大或变小【小问2详解】(i )由题可得39.9730.2129.334x s -=-⨯=,39.9730.21210.606x s +=+⨯=,因为第13个零件的尺寸为9.22,9.229.334<,所以从这一天抽检的结果看,需对当天的生产过程进行检查;。
2023-2024学年四川省成都市成华区高一下学期7月期末考试数学试题(含答案)
2023-2024学年四川省成都市成华区高一下学期7月期末考试数学试题一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.若z =(2−ai)(1+2i)为纯虚数,则实数a =( )A. −2B. 2C. −1D. 12.已知向量a =(2,−1),b =(k,2),且(a +b )//a ,则实数k 等于( )A. −4B. 4C. 0D. −323.已知m ,n 是两条不同直线,α,β,γ是三个不同平面,则下列命题中正确的是( )A. 若m//α,n//α,则m//n B. 若α⊥β,γ⊥β,则α⊥γC. 若m ⊥α,n ⊥α,则m//nD. 若m//α,m//β,则α//β4.如图,在正方体ABCD−A 1B 1C 1D 1中,点M ,N 分别为线段AC 和线段A 1B 的中点,求直线MN 与平面A 1B 1BA 所成角为是( )A. 60∘B. 45∘C. 30∘D. 75∘5.已知cos 2α=23,则cos(π4−α)cos(π4+α)的值为( )A. 13B. 23C.23 D.2 296.设a ,b 为单位向量,a 在b 方向上的投影向量为−12b ,则|a−b |=( )A. 1B. 2C.2D.37.筒车亦称“水转筒车”,一种以水流作动力,取水灌田的工具,如图是某公园的筒车,假设在水流稳定的情况下,筒车上的每一个盛水筒都做逆时针方向匀速圆周运动.现有一半径为2米的筒车,在匀速转动过程中,筒车上一盛水筒M 距离水面的高度H(单位:米,记水筒M 在水面上方时高度为正值,在水面下方时高度为负值)与转动时间t(单位:秒)满足函数关系式H =2sin(π30t +φ)+54,φ∈(0,π2),且t =0时,盛水筒M 位于水面上方2.25米处,当筒车转动到第80秒时,盛水筒M 距离水面的高度为( )米.A. 3.25B. 2.25C. 1.25D. 0.258.已知角α,β满足cos α=13,cos (α+β)cos β=14,则cos (α+2β)的值为( )A. 112B. 18C. 16D. 14二、多选题:本题共3小题,共15分。
高一数学下学期期末考试题(必修二)与答案
高一数学下学期期末考试题(必修二)一、单选题(本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图是某烘焙店家烘焙蛋糕时所用的圆台状模具,它的高为8cm ,下底部直径为12cm ,上面开口圆的直径为20cm ,现用此模具烘焙一个跟模具完全一样的儿童蛋糕,若蛋糕膨胀成型后的体积会变为原来液态状态下体积的2倍(模具不发生变化),若用直径为14cm 的圆柱形容量器取液态原料(不考虑损耗),则圆柱中需要注入液态原料的高度为()(单位:cm )A .163B .323C .16D .322.甲、乙、丙三人参加“社会主义核心价值观”演讲比赛,若甲、乙、丙三人能荣获一等奖的概率分别为123,,234且三人是否获得一等奖相互独立,则这三人中至少有两人获得一等奖的概率为()A .14B .724C .1124D .17243.已知复数2π2πcos isin 20232023z =+,则()()()22022111z z z ---= ()A .2022B .2023C .2022-D .2023-4.在t ABC R 中,90,2,4∠=== A AB AC ,D 为BC 的中点,点P 在ABC 斜边BC 的中线AD 上,则PB PC⋅ 的取值范围为()A .[]5,0-B .[]3,0-C .[]0,3D .[]0,55.已三棱锥-P ABC 中,ABC 是以角A 为直角的直角三角形,12,,AB AC PB PC PA O ====为ABC的外接圆的圆心,1cos PAO ∠,那么三棱锥-P ABC 外接球的半径为()A B C D 6.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,cos )cos .c A a C =-若12A π=,点D 在边AB 上,1AD BC ==,则BCD △的外接圆的面积是()A .2π3B .4π3+C .6π3D .8π37.某小区为了调查本小区业主对物业服务满意度的真实情况,对本小区业主进行了调查,调查中问了两个问题1:你的手机尾号是不是奇数?问题2:你是否满意物业的服务?调查者设计了一个随机化装置,其中装有大小、形状和质量完全相同的白球和红球,每个被调查者随机从装置中摸到红球和白球的可能性相同,其中摸到白球的业主回答第一个问题,摸到红球的业主回答第二个问题,回答“是”的人往一个盒子中放一个小石子,回答“否”的人什么都不要做,由于问题的答案只有“是”和“否”,而且回答的是哪个问题别人并不知道,因此被调查者可以毫无顾虑地给出符合实际情况的答案.已知某小区80名业主参加了问卷,且有48名业主回答了“是”,由此估计本小区对物业满意服务的百分比大约为()A .10%B .20%C .35%D .70%8.如图一,矩形ABCD 中,2,BC AB AM BD =⊥交对角线BD 于点O ,交BC 于点M ,现将ABD △沿BD 翻折至A BD ' 的位置,如图二,点N 为棱A D '的中点,则下列判断一定成立的是()A .BD CN ⊥B .A O '⊥平面BCDC .//CN 平面A OM 'D .平面A OM '⊥平面BCD二、多选题(本题共3小题,每小题6分,共18分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一第二学期数学模拟试题
第Ⅰ卷(选择题共60分)
一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一个选项是符合要求的。
1、从2004名学生中选取50名组成观光团,若采用下面的方法选取:先用简单随机抽样从2004名人中剔除4人,剩下的2000人再按系统抽样的方法进行,则每人入选的概率A、不全相等B、均不相等C、都相等且为{ EMBED Equation.KSEE3 \*
MERGEFORMAT |
25
1002
D、都相等且为
2、200辆汽车经过某一雷达地区,时速频率分布直方图
如右图所示,则时速超过60km/h的汽车数量为
A、65辆
B、76辆
C、88辆
D、95辆
3、在长为10cm的线段AB上任取一点P,并以线段AP
为边作正方形,这个正方形的面积介于25与49之间的
概率为
A、B、C、 D 、
4、已知非空集合A、B满足,给出以下四个命题
若任取,则是必然事件若任取,则是不可能事件
若任取,则是随机事件若任取,则是必然事件
其中正确的个数是
A、1
B、2
C、3
D、4
5、某高校研究小组对本地区2006年至2008年快餐公司发展情况进行了调查,制定了该地区快餐公司个数情况的条形图和快餐公司盒饭年销量的平均数情况条形图(如图),根据图中提供的信息可以得出这三年中该地区每年平均销售盒饭
A、82万盒
B、83万盒
C、84万盒
D、85
万盒
6、某校有学生4500人,其中高三1500人。
为了解学生的身体素质情况,采用按年级分层抽样的方法,从该校学生中抽取一个300人的样本,则样本中高三学生的人数为
A、50
B、100
C、150
D、20
7、甲、乙、丙三位同学上课后独立完成5道自我检测题,甲及格的概率为,乙及格概率为,丙及格概率为,则三人中至少有一个人及格的概率为
A、B、C、 D 、
8、如图:矩形长为6,宽为4,在矩形内随机地撒300
颗黄豆,数得落在椭圆外的黄豆数为96颗,从此实验数
据为依据可以估计椭圆的面积约为
A、7.68
B、16.32
C、17.32
D、8.68
9、已知样本容量为30,在样本频率直方图1中,各小长方形的高的比从左到右依次为2:4:3:1,则第2组的频率和频数分别为
A、0.4,12
B、0.6,16
C、0.4,16
D、0.6,12
10、方程有实根的概率
A、B、C、 D 、
11、连掷两次骰子得到点数分别为m和n,记向量与向量的夹角为,则的概率是
A、B、C、 D 、
12、为了解某中学生遵守《中华人民共和国交通安全法》的情况,调查部门在该校进行了如下的随机调查,向被调查者提出两个问题:(1)你的学号是奇数吗?(2)在过路口时你是否闯过红灯?要求被调查者背对着调查人员抛掷一枚硬币,如果出现正面,就回答第一个问题,否则就回答第二个问题。
被调查者不必告诉调查人员自己回答的是哪一个问题,只需回答“是”或“不是”,因为只有调查者本人知道回答了哪一个问题,所以都如实作出回答。
结果被调查的800人(学号从1至800)中有240人回答了“是”。
由此可以估计这800人中闯过红灯的人数是
A、40人
B、80人
C、160人
D、200人
第卷(共90分)
二、填空题:本大题共4小题,每小题
4分。
共16分。
13、统计某校1000名学生的数学会考成绩,得到样
本频率分布直方图如右图所示,规定不低于60分为
及格,不低于80分为优秀,则及格的人数是;
优秀率是。
14、下图的矩形,长为5,宽为
2
,在矩形内
随机地撒300颗黄豆,数的落在阴影部分的黄豆为138颗,则我们可以估计出阴影部分的面积为。
15、某工厂生成A、B、C三种不同型号的产品,产品数量之比依次是2:3:4,现用分层抽样方法抽出一个容量为n的样本,样本中A种型号产品有16件,那么此样本的容量
n= .
16、A是圆上固定的一定点,在圆上其他位置任取一点B,连接A 、B两点,它是一条弦,它的长度大于等于半径长度的概率为。
三、解答题:本大题共6个小题,共74分。
解答应写出文字说明、证明过程或演算步骤。
17、已知函数
(1)求的最大值,并求出此时的值;
(2)写出的单调递增区间。
18、设函数
(1)求的最小正周期T
(2)求的单调递增区间。
19、设向量,,,,其中。
(1)求的取值范围;
(2)若函数,比较与的大小。
20、某中学高二、一班男同学45名,女同学15名,老师按照分层抽样的方法组建了一个4人的课外兴趣小组,
(1)求某同学被抽到的概率集课外兴趣小组中男、女同学的人数;
(2)经过一个月的学习、讨论,这个兴趣小组决定选出2名同学做某项实验,方法是先从小组里选出1名同学做实验,该同学做完后,再从小组内剩下的同学中选一名同学做实验,求选出的两名同学中恰有一名女同学的概率。
21、设函数,其中向量,,
(1)求函数的最小正周期和在上的单调递增区间;
(2)当时,的最大值为4,求m的值。
22、已知函数在
一个周期内的部分函数图象如图所示.
(1)函数()x
f的解析式;
(2)函数()x
f的单调递增区间;
(3)函数()x
f在区间[]1,0上的最大值和最小值。
4
x
y
2
-
2
3
1
3
o。