中考专题复习-坐标找规律
中考总复习数学02- 第二部分 专题二 规律性问题
3
4
专题二 规律性问题—点坐标变换规律 类型三 点坐标变换规律
题型讲解
返回类型清单
点坐标变换型的题目主要考查了点的坐标规律,这类题目一般是点的坐 标在平面直角坐标系中递推变化或周期性变化.通过观察和归纳,从所给 的数据和图形中寻求规律是解答本类问题的关键.
例题 3
5
6
专题二 规律性问题—点坐标变换规律
返回类型清单
(2)若第n个图案共有基础图形2 023个,则n的值是多少? 解:当1+3n=2 023时, 解得n=674, ∴n的值为674.
例题 2
3
4
专题二 规律性问题—图形规律
返回类型清单
4.某矩形人行道由相同的灰色正方形地砖与相同的白色等腰直角三 角形地砖排列而成,图1表示此人行道的地砖排列方式,其中正方形 地砖为连续排列. 当正方形地砖只有1块时,等腰直角三角形地砖有6块(如图2 ); 当正方形地砖有2块时,等腰直角三角形地砖有8块(如图3 ),以此 类推.
排列,探究图形所反映的规律;另外一种是图形的变换规律,即根据一组
相关图案的变化,从中归纳图形的变换所反映的规律.在中考中以图形为
载体的数字规律最为常见.
例题 2
3
4
专题二 规律性问题—图形规律
返回类型清单
方法点拨 数形规律题的解题关键是通过观察图形发现数量关系,并用代数式归纳 出规律,再进行验证,进而解决问题;图形变换规律题的解题关键是抓住 图形的变化特征,找出规律,进而解决问题.
例题 1
1
2
专题二 规律性问题—竖式规律 例题1
返回类型清单
( 2022·河北模拟)观察 1×49=49,2×48=96,3×47=141,…,23×27=621,24×26=624,25×25= 625,26×24=624,27×23=621,…,47×3=141,28×2=96,49×1=49.
初中数学中考复习考点知识与题型专题讲解05 平面直角坐标系
初中数学中考复习考点知识与题型专题讲解专题05 平面直角坐标系【知识要点】考点知识一平面直角坐标系的基础有序数对概念:有顺序的两个数a与b组成的数对,叫做有序数对,记作(a ,b)。
【注意】a、b的先后顺序对位置的影响。
平面直角坐标系的概念:在平面内画两条互相垂直并且原点重合的数轴,这样就建立了平面直角坐标系。
两轴的定义:水平的数轴叫做x轴或横轴,通常取向右为正方向;竖直的数轴叫做y轴或纵轴,通常取向上方向为正方向。
平面直角坐标系原点:两坐标轴交点为其原点。
坐标平面:坐标系所在的平面叫坐标平面。
象限的概念:x轴和y轴把平面直角坐标系分成四部分,每个部分称为象限。
按逆时针顺序依次叫第一象限、第二象限、第三象限、第四象限。
【注意】坐标轴上的点不属于任何象限。
点的坐标:对于坐标轴内任意一点A,过点A分别向x轴、y轴作垂线,垂足在x轴、y轴上的对应的数a、b分别叫做点A的横坐标和纵坐标,有序数对A(a,b)叫做点A的坐标,记作A(a,b)。
考点知识二 点的坐标的有关性质(考点) 性质一 各象限内点的坐标的符号特征性质二 坐标轴上的点的坐标特征 1.x 轴上的点,纵坐标等于0; 2.y 轴上的点,横坐标等于0; 3.原点位置的点,横、纵坐标都为0. 性质三 象限角的平分线上的点的坐标1.若点P (n m ,)在第一、三象限的角平分线上,则n m =,即横、纵坐标相等; 2.若点P (n m ,)在第二、四象限的角平分线上,则n m -=,即横、纵坐标互为相反数;在第一、三象限的角平分线上 在第二、四象限的角平分线上 性质四 与坐标轴平行的直线上的点的坐标特征 1.在与x 轴平行的直线上, 所有点的纵坐标相等;X点A 、B 的纵坐标都等于m ;2.在与y 轴平行的直线上,所有点的横坐标相等;点C 、D 的横坐标都等于n ;性质五 点到坐标轴距离在平面直角坐标系中,已知点P ),(b a ,则 1.点P 到x 轴的距离为b ; 2.点P 到y 轴的距离为a ;3.点P 到原点O 的距离为PO = 22b a性质六 平面直角坐标系内平移变化P (b a ,)abxy OXYABmXYCDn性质七 对称点的坐标1. 点P ),(n m 关于x 轴的对称点为),(1n m P -, 即横坐标不变,纵坐标互为相反数;2. 点P ),(n m 关于y 轴的对称点为),(2n m P -, 即纵坐标不变,横坐标互为相反数;3.点P ),(n m 关于原点的对称点为),(3n m P --,即横、纵坐标都互为相反数;小结: XP X-X【考点题型】考点题型一 用有序数对表示位置【解题思路】要确定位置坐标,需根据题目信息、明确行和列的实际意义是解答本题的关键.典例1.(2021·湖北宜昌市中考真题)小李、小王、小张、小谢原有位置如图(横为排、竖为列),小李在第2排第4列,小王在第3排第3列,小张在第4排第2列,小谢在第5排第4列.撤走第一排,仍按照原有确定位置的方法确定新的位置,下列说法正确的是( ).A .小李现在位置为第1排第2列B .小张现在位置为第3排第2列C .小王现在位置为第2排第2列D .小谢现在位置为第4排第2列限(x,0)(0,y )(0,0)纵坐标相同横坐标不同横坐标相同纵坐标不同 x >0 y >0 x <0 y >0 x <0 y <0 x >0 y <0 (m,m) (m,-m )变式1-1.(2018·广西柳州市中考模拟)初三(1)班的座位表如图所示,如果如图所示建立平面直角坐标系,并且“过道也占一个位置”,例如小王所对应的坐标为(3,2),小芳的为(5,1),小明的为(10,2),那么小李所对应的坐标是()A.(6,3)B.(6,4)C.(7,4)D.(8,4)变式1-2.(2017·北京门头沟区一模)小军邀请小亮去他家做客,以下是他俩的对话:小军:“你在公交总站下车后,往正前方直走400米,然后右转直走300米就到我家了”小亮:“我是按照你说的走的,可是走到了邮局,不是你家…”小军:“你走到邮局,是因为你下公交车后朝向东方走的,应该朝向北方走才能到我家…”根据两人的对话记录,从邮局出发走到小军家应( )A.先向北直走700米,再向西走100米B.先向北直走100米,再向西走700米C.先向北直走300米,再向西走400米D.先向北直走400米,再向西走300米考点题型二求点的坐标典例2.(2021·天津中考真题)如图,四边形OBCD是正方形,O,D两点的坐标分别是()0,6,点C在第一象限,则点C的坐标是()0,0,()A .()6,3B .()3,6C .()0,6D .()6,6变式2-1.(2021·山东滨州市·中考真题)在平面直角坐标系的第四象限内有一点M ,到x 轴的距离为4,到y 轴的距离为5,则点M 的坐标为() A .()4,5-B .(5,4)-C .(4,5)-D .(5,4)-变式2-2.(2021·湖北襄阳市模拟)如图,四边形ABCD 为菱形,点A 的坐标为()4,0,点C 的坐标为()4,4,点D 在y 轴上,则点B 的坐标为()A .(4,2)B .(2,8)C .(8,4)D .(8,2)变式2-3.(2021·广东二模)已知点2,24()P m m +-在x 轴上,则点Р的坐标是() A .()4,0B .()0,8C .()4,0-D .()0,8-变式2-4.(2021·广西一模)点M (3,1)关于y 轴的对称点的坐标为( ) A .(﹣3,1)B .(3,﹣1)C .(﹣3.﹣1)D .(1,3) 考点题型三 点的坐标的规律探索【解题思路】考查坐标的规律探索,解题的关键是根据题意找到坐标的变化规律. 典例3.(2021·山东中考真题)如图,在单位为1的方格纸上,△A 1A 2A 3,△A 3A 4A 5,△A 5A 6A 7,…,都是斜边在x 轴上,斜边长分别为2,4,6,…的等腰直角三角形,若△A 1A 2A 3的顶点坐标分别为A 1(2,0),A 2(1,1),A 3(0,0),则依图中所示规律,A 2021的坐标为()A .(﹣1008,0)B .(﹣1006,0)C .(2,﹣504)D .(1,505)变式3-1.(2021·山东菏泽市·中考真题)在平面直角坐标系中,一个智能机器人接到的指令是:从原点O 出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点1A ,第二次移动到点2A ……第n 次移动到点n A ,则点2019A 的坐标是( )A .()1010,0B .()1010,1C .()1009,0D .()1009,1变式3-2.(2021·辽宁阜新市·中考真题)如图,在平面直角坐标系中,将△ABO 沿x 轴向右滚动到△AB 1C 1的位置,再到△A 1B 1C 2的位置……依次进行下去,若已知点A(4,0),B(0,3),则点C 100的坐标为( )A .121200,5⎛⎫ ⎪⎝⎭B .()600,0C .12600,5⎛⎫ ⎪⎝⎭D .()1200,0考点题型四 判断点的象限【解题思路】各象限内点的坐标的符号特征需记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).典例4.(2021·湖南株洲市·中考真题)在平面直角坐标系中,点(,2)A a 在第二象限内,则a 的取值可以..是( ) A .1B .32-C .43D .4或-4变式4-1.(2021·江苏扬州市中考真题)在平面直角坐标系中,点()22,3P x +-所在的象限是()A .第一象限B .第二象限C .第三象限D .第四象限变式4-2.(2021·湖北黄冈市·中考真题)在平面直角坐标系中,若点(,)A a b -在第三象限,则点(,)B ab b -所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限变式4-4.(2021·湖南邵阳市·中考真题)已知0,0a b ab +>>,则在如图所示的平面直角坐标系中,小手盖住的点的坐标可能是()A .(),a bB .(),a b -C .(),a b --D .(),a b - 考点题型五 点坐标的有关性质1.坐标轴上的点的坐标特征1.(2017·四川中考模拟)如果点P(a -4,a)在y 轴上,则点P 的坐标是( ) A .(4,0)B .(0,4)C .(-4,0)D .(0,-4)2.(2018·广西柳州十二中中考模拟)点P (m +3,m +1)在x 轴上,则点P 坐标为( ) A .(0,﹣4)B .(4,0)C .(0,﹣2)D .(2,0)3.(2021·甘肃中考真题)已知点(224)P m m ,﹣在x 轴上,则点P 的坐标是( ) A .(40),B .(04),C .40)(-,D .(0,4)- 4.(2021·甘肃中考模拟)已知点P (m+2,2m ﹣4)在x 轴上,则点P 的坐标是( ) A .(4,0)B .(0,4)C .(﹣4,0)D .(0,﹣4)5.(2021·广东华南师大附中中考模拟)如果点P (m +3,m +1)在平面直角坐标系的x 轴上,则m =( )A .﹣1B .﹣3C .﹣2D .0 2.象限角的平分线上的点的坐标1. 已知点A (-3+a ,2a+9)在第二象限角平分线上,则a=_________2.(2018·广西中考模拟)若点N 在第一、三象限的角平分线上,且点N 到y 轴的距离为2,则点N 的坐标是( )A .(2,2)B .(-2,-2)C .(2,2)或(-2,-2)D .(-2,2)或(2,-2) 3.与坐标轴平行的直线上的点的坐标特征1.(2021·广西中考模拟)已知点A (a ﹣2,2a +7),点B 的坐标为(1,5),直线AB ∥y 轴,则a 的值是( ) A .1B .3C .﹣1D .52.(2018·天津中考模拟)如果直线AB 平行于y 轴,则点A ,B 的坐标之间的关系是( )A .横坐标相等B .纵坐标相等C .横坐标的绝对值相等D .纵坐标的绝对值相等3.(2021·广东华南师大附中中考模拟)已知点A (5,﹣2)与点B (x ,y )在同一条平行于x 轴的直线上,且B 到y 轴的距离等于4,那么点B 是坐标是( )A .(4,﹣2)或(﹣4,﹣2)B .(4,2)或(﹣4,2)C .(4,﹣2)或(﹣5,﹣2)D .(4,﹣2)或(﹣1,﹣2)4.(2021·江苏中考模拟)若线段AB ∥x 轴且AB =3,点A 的坐标为(2,1),则点B 的坐标为( )A .(5,1)B .(﹣1,1)C .(5,1)或(﹣1,1)D .(2,4)或(2,﹣2)5.(2018·江苏中考模拟)已知点M (﹣1,3),N (﹣3,3),则直线MN 与x 轴、y 轴的位置关系分别为( )A .相交,相交B .平行,平行C .垂直,平行D .平行,垂直4.点到坐标轴距离1.(2018·天津中考模拟)已知平面内不同的两点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,则a 的值为( )A .﹣3B .﹣5C .1或﹣3D .1或﹣52.(2018·江苏中考真题)在平面直角坐标系的第二象限内有一点M ,点M 到x 轴的距离为3,到y 轴的距离为4,则点M 的坐标是( )A .(3,4)-B .(4,3)-C .(4,3)-D .()3,4-3.(2017·北京中考模拟)点P 是第二象限的点且到x 轴的距离为3、到y 轴的距离为4,则点P 的坐标是( )A.(﹣3,4)B.(3,﹣4)C.(﹣4,3)D.(4,﹣3)4.(2012·江苏中考模拟)在平面直角坐标系中,点P(-3,4)到x轴的距离为( ) A.3B.-3C.4D.-45.平面直角坐标系内平移变化1.(2021·山东中考真题)在平面直角坐标系中,将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,则点A′的坐标是()A.(﹣1,1)B.(﹣1,﹣2)C.(﹣1,2)D.(1,2)2.(2021·北京中考模拟)在平面直角坐标系中,已知线段AB的两个端点分别是A(4,-1),B(1,1)将线段AB平移后得到线段A′B′,若点A′的坐标为(-2,2),则点B′的坐标为() A.(-5,4) B.(4,3) C.(-1,-2) D.(-2,-1)3.(2015·广西中考真题)在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(-3,2)重合,则点A的坐标是()A.(2,5)B.(-8,5)C.(-8,-1)D.(2,-1)4.(2016·四川中考真题)已知△ABC顶点坐标分别是A(0,6),B(﹣3,﹣3),C(1,0),将△ABC平移后顶点A的对应点A1的坐标是(4,10),则点B的对应点B1的坐标为()A.(7,1)B.B(1,7)C.(1,1)D.(2,1)5.(2018·武汉市东西湖区教育局中考模拟)在坐标系中,将点P( -2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P’的坐标()A.(2,4)B.(1,5)C.(1,-3)D.(-5,5)6.对称点的坐标1.(2021·广东中考模拟)在平面直角坐标系中.点P(1,﹣2)关于x轴的对称点的坐标是( )A .(1,2)B .(﹣1,﹣2)C .(﹣1,2)D .(﹣2,1)2.(2021·山东中考模拟)已知点P (a +1,2a ﹣3)关于x 轴的对称点在第二象限,则a 的取值范围是( )A .﹣1<a <B .﹣<a <1C .a <﹣1D .a >3.(2014·广西中考真题)已知点A (a ,2013)与点B (2014,b )关于x 轴对称,则a+b 的值为( )A .﹣1B .1C .2D .34.(2018·广西中考模拟)已知点P(a +l ,2a -3)关于x 轴的对称点在第一象限,则a 的取值范围是( )A .a 1<-B .31a 2-<<C .3a 12-<<D .3a 2> 5.(2021·辽宁中考模拟)已知点P (m ﹣1,4)与点Q (2,n ﹣2)关于x 轴对称,则m n 的值为( )A .9B .﹣9C .﹣19D .196.(2018·四川中考模拟)平面直角坐标系中,与点(2,﹣3)关于原点中心对称的点是( )A .(﹣3,2)B .(3,﹣2)C .(﹣2,3)D .(2,3)。
中考找规律
1.在平面内直角坐标系中,正方形A1B1C1D1、D 1E1E2B2、A2B2C2D2、D2E3E4B3…按如图所示的方式放置,其中点B1在y轴上,点C1、E1、E2、C 2、E3、E4、C3…在x轴上,已知正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…则正方形A2017B2017C2017D2017的边长是2.如图,正方形ABCD的四个顶点在坐标轴上,A点坐标为(3,0),假设有甲、乙两个物体分别由点A同时出发,沿正方形ABCD的边作环绕运动,物体甲按逆时针方向匀速运动,物体乙按顺时针方向匀速运动,如果甲物体12秒钟可环绕一周回到A点,乙物体24秒钟可环绕一周回到A点,则两个物体运动后的第2017次相遇地点的坐标是3.如图,点A(0,1),点B(﹣,0),作OA1⊥AB,垂足为A1,以OA1为边作Rt△A 1OB1,使∠A1OB1=90°,∠B1=30°,作OA2⊥A 1B1,垂足为A2,再以OA2为边作Rt△A2OB2,使∠A2OB2=90°,∠B2=30°,…,以同样的作法可得到Rt△An OBn,则当n=2017时,点A 2017的纵坐标为4.如图,点O(0,0),A(0,1)是正方形的两个顶点,以对角线OA1为边作正方形OAA1B 再以正方形OA1A2B1的对角线OA2作正方形OA2A3B2,…,依此规律,则点A8的坐标是5.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2016次运动后,动点P的坐标是6.如图,正方形ABCD的边长为1,电子蚂蚁P从点A分别以1个单位/秒的速度顺时针绕正方形运动,电子蚂蚁Q从点A以3个单位/秒的速度逆时针绕正方形运动,则第2017次相遇在()A .点 A B.点B C.点C D.点D 7.如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角.当点P第17次碰到矩形的边时,点P的坐标为8.如图,点O(0,0),A(0,1)是正方形OAA1B的两个顶点,以OA1对角线为边作正方形OA1A2B1,再以正方形的对角线OA2作正方形OA1A2B1,…,依此规律,则点A8的坐标是9.在平面直角坐标系中,把△ABC先沿x轴翻折,再向右平移3个单位得到△A1B1C1现把这两步操作规定为一种变换.如图,已知等边三角形ABC的顶点B、C的坐标分别是(1,1)、(3,1),把三角形经过连续5次这种变换得到三角形△A5B5C5,则点A的对应点A5的坐标是10.如图所示,在平面直角坐标系中,已知点A (1,2),B (﹣2,2),C (﹣2,﹣2),D(1,﹣2),把一根长为2017个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A→D→C→B→A…的顺序紧绕在四边形ABCD的边上,则细线的另一端所在位置的点的坐标是11.如图,在平面直角坐标系xOy中,点P (1,0).点P第1次向上跳动1个单位至点P1(1,1),紧接着第2次向左跳动2个单位至点P2(﹣1,1),第3次向上跳动1个单位至点P3,第4次向右跳动3个单位至点P4,第5次又向上跳动1个单位至点P5,第6次向左跳动4个单位至点P6,….照此规律,点P第100次跳动至点P100的坐标是12.在平面直角坐标系xOy中,对于点P(x,y ),我们把点P′(﹣y+1,x+1)叫做点P 伴随点,已知点A 1的伴随点为A 2,点A 2的伴随点为A 3,点A 3的伴随点为A 4,…,这样依次得到点A 1,A 2,A 3,…,A n ,….若点A 1的坐标为(3,1),则点A 2017的坐标为13.下列依次给出的点的坐标(0,3),(1,1),(2,﹣1),(3,﹣3),…,依此规律,则第2017个点的坐标为 13.如图,点A 1的坐标为(1,0),A 2在y 轴的正半轴上,且∠A 1A 2O=30°,过点A 2作A 2A 3⊥A 1A 2,垂足为A 2,交x 轴于点A 3;过点A 3作A 3A 4⊥A 2A 3,垂足为A 3,交y 轴于点A 4;过点A 4作A 4A 5⊥A 3A 4,垂足为A 4,交x 轴于点A 5;过点A 5作A 5A 6⊥A 4A 5,垂足为A 5,交y 轴于点A 6;…按此规律进行下去,则点A 2017的横坐标是14.如图,在平面直角坐标系中,从点P 1(﹣1,0),P 2(﹣1,﹣1),P 3(1,﹣1),P 4(1,1),P 5(﹣2,1),P 6(﹣2,﹣2),…依次扩展下去,则P 2017的坐标为15.如图,矩形BCDE 的各边分别平行于x 轴与y 轴,物体甲和物体乙由点A (2,0)同时出发,沿矩形BCDE 的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2018次相遇地点的坐标是16.对有序数对(x ,y )的一次操作变换记为P 1(x ,y ),定义其变换法则如下:P 1(x ,y )=(x+y ,x ﹣y ),且规定P m (x ,y )=P 1(P m﹣1(x ﹣y ))(n 为大于1的整数).如P 1(1,2)=(3,﹣1),P 2(1,2)=P 1(P 1(1,2))=P 1(3,﹣1)=(2,4),P 3(1,2)=P 1(P 2(1,2))=P 1(2,4)=(6,﹣2).则P 2010(1,﹣1)的坐标为17.一只跳蚤在第一象限及x 轴、y 轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动,即(0,0)→(0,1)→(1,1)→(1,0)…,且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是18.如图,矩形ABCD 的两边BC 、CD 分别在x 轴、y 轴上,点C 与原点重合,点A (﹣1,2),将矩形ABCD 沿x 轴向右翻滚,经过一次翻滚点A 对应点记为A 1,经过第二次翻滚点A 对应点记为A 2…依此类推,经过5次翻滚后点A 对应点A 5的坐标为19.在平面直角坐标系中,对于平面内任一点(x ,y ),规定以下两种变换:(1)f (x ,y )=(x ,﹣y ),如f (2,3)=(2,﹣3);(2)g (x ,y )=(x ﹣2,y+1),如g (2﹣2,3+1)=(0,4);依此变换规律,若f[g (a ,b )]=(2,1),则( )A .a=4,b=﹣2B .a=2,b=﹣1C .a=0,b=﹣2D .a=0,b=020.如图,在平面直角坐标系中,一动点从原点O 出发,沿着箭头所示方向,每次移动1个单位,依次得到点P 1(0,1),P 2(1,1),P 3(1,0),P 4(1,﹣1),P 5(2,﹣1),P 6(2,0),…,则点P 2017的坐标是21.如图,在平面直角坐标系中,边长为1的正方形OA 1B 1C 的对角线A 1C 和OB 1交于点M 1,以M 1A 1为对角线作第二个正方形A 2A 1B 2M 1,对角线A 1M 1和A 2B 2交于点M 2;以M 2A 1为对角线作第三个正方形A 3A 1B 3M 2,对角线A 1M 2和A 3B 3交于点M 3;…依此类推,第n 个正方形对角线交点M n 的坐标为22.如图,一个实心点从原点出发,沿下列路径(0,0)→(0,1)→(1,0)→(1,1)→(1,2)→…每次运动一个点,则运动到第2017次时实心点所在位置的横坐标为23.如图,一个机器人从点O 出发,向正西方向走2m 到达点A 1;再向正北方向走4m 到达点A 2,再向正东方向走6m 到达点A 3,再向正南方向走8m 到达点A 4,再向正东方向走10m 到达点A 5,…按如此规律走下去,当机器人走到点A 2017时,点A 2017的坐标为24.已知点E (x 0,y 0),F (x 2,y 2),点M (x 1,y 1)是线段EF 的中点,则x 1=,y 1=.在平面直角坐标系中有三个点A(1,﹣1),B (﹣1,﹣1),C (0,1),点P (0,2)关于A 的对称点为P 1(即P ,A ,P 1三点共线,且PA=P 1A ),P 1关于B 的对称点为P 2,P 2关于C 的对称点为P 3,按此规律继续以A ,B ,C 为对称点重复前面的操作,依次得到P 4,P 5,P 6,…,则点P 2015的坐标是25.在一单位为1的方格纸上,有一列点A 1,A 2,A 3,…,A n ,…,(其中n 为正整数)均为网格上的格点,按如图所示规律排列,点A 1(2,0),A 2(1,﹣1),A 3(0,0),A 4(2,2),…,则A 2017的坐标为26.如图,点A (1,0)第一次跳动至点A 1(﹣1,1),第二次跳动至点A 2(2,1),第三次跳动至点A 3(﹣2,2),第四次跳动至点A 4(3,2),…,依此规律跳动下去,点A 第102次跳动至点A 102的坐标是27.如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序为(1,0)、(2,0)、(2,1)、(1,1)、(1,2)、(2,2)、…根据这个规律,第2016个点的坐标为28.如图,在坐标系中放置一菱形OABC ,已知∠ABC=60°,点B 在y 轴上,OA=1.将菱形OABC 沿x 轴的正方向无滑动翻转,每次翻转60°,连续翻转2015次,点B 的落点依次为B 1,B 2,B 3,…,则B 2015的坐标为29.如图,在直角坐标系中,以原点O 为圆心的同心圆的半径由内向外依次1,2,3,4,…,同心圆与直线y=x 和y=﹣x 分别交于A 1,A 2,A 3,A 4,…,则点A 2015的坐标是30.如图,在平面直角坐标系xOy 中,点A (1,0),B (2,0),正六边形ABCDEF 沿x 轴正方向无滑动滚动,保持上述运动过程,经过的正六边形的顶点是()A.C或E B.B或DC.A或C D.B或F31.如图,在直角坐标系中,已知点A(﹣3,0)、B(0,4),对△OAB连续作旋转变换,依次得到△1、△2、△3、△4、…,△16的直角顶点的坐标为32.如图:有正三角形的一边平行于x轴,一顶点在y轴上.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A1、A2、A 3、A4…表示,其中A1A2与x轴、底边A1A2与A 4A5、A4A5与A7A8、…均相距一个单位,则顶点A91的坐标是33.如图,将边长为1的正方形OAPB沿x轴正方向连续翻转8次,点P依次落在点P、P 2、P3、P4、…Px的位置,则点P9的横坐标是34.在直角坐标系中点A1的坐标为(1,0),过点A1作x轴的垂线交直线y=2x于A2,过点A2作直线y=2x的垂线交x轴于A3,过点A3作x轴的垂线交直线y=2x于A4…,依此规律,则A10的坐标为35.一质点P从距原点1个单位的M点处向原点方向跳动,第一次跳动到OM的中点M3处,第二次从M3跳到OM3的中点M2处,第三次从点M2跳到OM2的中点M1处,如此不断跳动下去,则第n次跳动后,该质点到原点O的距离为36.如图,电子跳蚤游戏盘为△ABC,AB=8,AC=9,BC=10,如果电子跳蚤开始时在BC边上的P点,BP=4.第一步跳蚤跳到AC边上P1点,且CP1=CP;第二步跳蚤从P1跳到AB边上P2点,且AP2=AP1;第三步跳蚤从P2跳回到BC边上P3点,且BP3=BP2;…跳蚤按上述规则跳下去,第n次落点为Pn(n为正整数),则点B与P2012之间的距离为图2图1O E 2D 2E 1D 1OE 11A AD 3图3E 3E 2OD 2D 1E 1CBA OF 3A 3E 3F 2D 2E 21C 3B 3C 2B 22F 1D 3C 1B 11M 1M 2M 3A 3A 2xyA 1OlOxy A 2A 1B 137.下面是一个按某种规律排列的数阵: 根据数阵排列的规律,第n (n 是整数,且n >3)行从左向右数第n -2个数是______________. 38.如图,正六边形A 1B 1C 1D 1E 1F 1的边长为2,正六边形A 2B 2C 2D 2E 2F 2的外接圆与正六边形A 1B 1C 1D 1E 1F 1的各边相切,正六边形A 3B 3C 3D 3E 3F 3的外接圆与正六边形A 2B 2C 2D 2E 2F 2的各边相切,……,按这样的规律进行下去,A 10B 10C 10D 10E 10F 10的边长为39.设△ABC 的面积为1,如图1将边BC ,AC 分别2等分,BE 1,AD 1相交于点O ,△AOB 的面积记为S 1;如图2将边BC ,AC 分别3等分,BE 1,AD 1相交于点O ,△AOB 的面积记为S 2;……,依此类推,则S n 可表示为__________(用含n 的代数式表示,其中n 为正整数).40.如图,抛物线y =x 2在第一象限内经过的整数点(横坐标、纵坐标都为整数的点)依次为A 1,A 2,A 3,…,A n .将抛物线y =x 2沿直线l :y =x 向上平移,得一系列抛物线,且满足下列条件:①抛物线的顶点M 1,M 2,M 3,…,M n 都在直线l :y =x 上;②抛物线依次经过点A 1,A 2,A 3,…,A n .则顶点M 2 014的坐标为(________,________)l :1y x =--,双曲线1y x =,在l 上取一点A 1,过A 1作x 轴的垂线交双曲线于点B 1,过B 1作y 轴的垂线交l 于点A 2;请继续操作并探究:过A 2作x 轴的垂线交双曲线于点B 2,过B 2作y 轴的垂线交l 于点A 3;…;这样依次得到l 上的点A 1,A 2,A 3,…,A n .记点A n 的横坐标为a n ,若a 1=2,则a 2=____,a 2 013=_____;若要将上述操作无限次地进行下去,则a 1不能取的值是_____42.如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O 1,O 2,O 3,…组成一条平滑的曲线,点P 从原点O 出发,沿这条曲线向右运Pxy OO 3O 2O 1xyCBO动,速度为每秒π2个单位长度,则第2 015秒时,点P 的坐标是43.如图,已知△OBC 是直角三角形,边OB 在x 轴正半轴上,∠OBC =90°,且OB =1,BC =3.将△OBC 绕原点O 逆时针旋转60°,再将其各边扩大为原来的m 倍,使OB 1=OC ,得到△OB 1C 1;将△OB 1C 1绕原点O 逆时针旋转60°,再将其各边扩大为原来的m 倍,使OB 2=OC 1,得到△OB 2C 2;……;如此继续下去,得到△OB 2 014C 2 014,则点C 2 014的坐标是______.44.如图,在平面直角坐标系xOy 中,点A 1,A 2,A 3,…和B 1,B 2,B 3,…分别在直线y=kx+b 和x 轴上,△OA 1B 1,△B 1A 2B 2,△B 2A 3B 3,…都是等腰直角三角形,如果A 1(1,1),A 2(,),那么点A 3的纵坐标是 ,点A n 的纵坐标是 .45.如图,在平面直角坐标系中,∠AOB=30°,点A 坐标为(2,0),过A 作AA 1⊥OB ,垂足为点A 1;过点A 1作A 1A 2⊥x 轴,垂足为点A 2;再过点A 2作A 2A 3⊥OB ,垂足为点A 3;则A 2A 3= ;再过点A 3作A 3A 4⊥x 轴,垂足为点A 4…;这样一直作下去,则A 2017的纵坐标为 .46.如图,AB ⊥y 轴,垂足为B ,将△ABO 绕点A 逆时针旋转到△AB 1O 1的位置,使点B 的对应点B 1落在直线y=﹣x 上,再将△AB 1O 1绕点B 1逆时针旋转到△A 1B 1O 2的位置,使点O 1的对应点O 2落在直线y=﹣x 上,依次进行下去…若点B 的坐标是(0,1),则点O 12的纵坐标为 .47.如图,已知A 1,A 2,A 3,…A n 是x 轴上的点,且OA 1=A 1A 2=A 2A 3=…=A n ﹣1A n =1,分别过点A 1,A 2,A 3,…A n 作x 轴的垂线交反比例函数y=(x >0)的图象于点B 1,B 2,B 3,…B n ,过点B 2作B 2P 1⊥A 1B 1于点P 1,过点B 3作B 3P 2⊥A 2B 2于点P 2…,记△B 1P 1B 2的面积为S 1,△B 2P 2B 3的面积为S 2…,△B n P n B n+1的面积为S n ,则S 1+S 2+S 3+…+S n = .。
平面直角坐标系找规律100题
以下是关于在平面直角坐标系中寻找规律的100道题目:1. 绘制点(1, 1), (2, 4), (3, 9), (4, 16), ... 并继续这个规律。
2. 连接点(-1, 0), (0, 1), (1, 0), (0, -1), (-1, 0) 形成一个图形。
这个图形是什么?3. 找到缺失的坐标:(2, 5), (4, 10), (6, ?)。
4. 绘制点(0, 0), (1, 1), (2, 4), (3, 9), ... 并继续这个规律。
5. 连接点(1, 1), (2, 2), (3, 3), (4, 4), ... 形成一条直线。
这条直线的斜率是多少?6. 找到缺失的坐标:(3, 6), (5, ?), (7, 14)。
7. 绘制点(-1, 0), (-2, 0), (-3, 0), (-4, 0), ... 并继续这个规律。
8. 连接点(0, 1), (1, 0), (0, -1), (-1, 0), (0, 1) 形成一个图形。
这个图形是什么?9. 找到缺失的坐标:(2, 4), (4, ?), (6, 12)。
10. 绘制点(1, 1), (2, 4), (3, 9), (4, 16), ... 并找出这个规律的方程。
11. 连接点(1, 2), (2, 4), (3, 6), (4, 8), ... 形成一条直线。
这条直线的斜率是多少?12. 找到缺失的坐标:(2, 5), (4, ?), (6, 11)。
13. 绘制点(-1, -1), (0, 0), (1, 1), (2, 2), ... 并继续这个规律。
14. 连接点(-1, 1), (-2, 2), (-3, 3), (-4, 4), ... 形成一条直线。
这条直线的斜率是多少?15. 找到缺失的坐标:(3, 6), (5, ?), (7, 13)。
16. 绘制点(0, 0), (1, 1), (2, 4), (3, 9), ... 并找出这个规律的方程。
坐标规律知识点总结
坐标规律知识点总结一、直角坐标系直角坐标系是平面几何中最常用的坐标系,它是由两条互相垂直的坐标轴组成的。
一般来说,我们约定横轴为 x 轴,竖轴为 y 轴,它们的交点作为原点 O,两者的单位长度分别为1。
我们以原点为中心,向右为 x 轴正方向,向上为 y 轴正方向,建立直角坐标系。
在直角坐标系中,任意一点 P 的坐标可用有序偶数 (x, y) 表示。
其中,x 为横坐标,y 为纵坐标。
对于直角坐标系,有以下一些重要知识点:1. 点的对称性:关于 x 轴、y 轴和原点的对称性,可以用来求解坐标对称点的坐标。
2. 距离公式:在直角坐标系中,两点之间的距离公式为d = √((x₂-x₁)² + (y₂-y₁)²)。
3. 中点坐标:在直角坐标系中,可以根据两点的坐标求出其中点坐标,即((x₁+x₂)/2,(y₁+y₂)/2)。
4. 直线方程:在直角坐标系中,通过两点的坐标,可以确定一条直线的方程,通常以 y = kx + b 或 Ax + By + C = 0 的形式表示。
二、极坐标系极坐标系是另一种常用的坐标系,它是由极轴和极角组成的。
极轴通常是 x 轴,极角通常用θ 表示,它是与极轴的顺时针夹角。
在极坐标系中,任意一点 P 的坐标由有序偶数(r, θ) 表示。
其中,r 为极径,表示点 P 到极点 O 的距离,θ 为极角,表示点 P 在极坐标系中的方向。
对于极坐标系,也有一些重要的知识点:1. 坐标变换:极坐标系和直角坐标系是可以相互转换的,需要用到的公式为x = r*cos(θ) 和y = r*sin(θ)。
2. 极坐标系中的直线方程:在极坐标系中,直线的方程通常以r = f(θ) 的形式表示,其中f(θ) 为一个函数。
3. 极坐标系中的距离公式:两点间的距离公式为d = √(r₁² + r₂² - 2*r₁*r₂*cos(θ₂-θ₁))。
三、空间直角坐标系空间直角坐标系是直角坐标系的延伸,它是由三条相互垂直的坐标轴组成的。
中考数学复习专题——找规律(含答案)
中考数学试复习专题——找规律1、如图所示,观察小圆圈的摆放规律,第一个图中有5个小圆圈,第二个图中有8个小圆圈,第100个图中有__________个小圆圈.(1) (2) (3)2、 找规律.下列图中有大小不同的菱形,第1幅图中有1个菱形,第2幅图中有3个菱形,第3幅图中有5个菱形,则第4幅图中有 个菱形,第n 幅图中有 个菱形.3、用同样大小的黑色棋子按下图所示的方式摆图形,按照这样的规律摆下去,则第n 个图形需棋子 枚(用含n 的代数式表示).4、观察表一,寻找规律.表二、表三、表四分别是从表一中截取的一部分,其中a 、b 、c 的值分别为______________.5、如图①是一块瓷砖的图案,用这种瓷砖来铺设地面.如果铺成一个22⨯的正方形图案(如图②),其中完整的圆共有5个,如果铺成一个33⨯的正方形图案(如图③),其中完整的圆共有13个,如果铺成一个44⨯的正方形图案(如图④),其中完整的圆共有25个.若这样铺成一个1010⨯的正方形图案, 则其中完整的圆共有 个.1 2 3n … … 第1个图 2个图 3个图 …6、 如下图,用同样大小的黑、白两种颜色的棋子摆设如下图所示的正方形图案,则第n 个图案需要用白色棋子 枚(用含有n 的代数式表示,并写成最简形式).○ ○ ○ ○ ○ ○ ○ ○ ○○ ○ ○ ○ ● ● ○ ○ ● ● ● ○○ ● ○ ○ ● ● ○ ○ ● ● ● ○○ ○ ○ ○ ○ ○ ○ ○ ● ● ● ○○ ○ ○ ○ ○7、用火柴棒按下图中的方式搭图形,按照这种方式搭下去,搭第334个图形需 根火柴棒。
8、将正整数按如图5所示的规律排列下去,若有序实数对(n ,m )表示第n 排,从左到右第m 个数,如(4,2)表示实数9,则表示实数17的有序实数对是 .9、如图 2 ,用n 表示等边三角形边上的小圆圈,f(n)表示这个三角形中小圆圈的总数,那么f(n)和n 的关系是10、观察图4的三角形数阵,则第50行的最后一个数是 ( )1-2 3-4 5 -67 -8 9 -10。
专题 坐标系中的找规律-讲义
坐标系中找规律主讲教师:傲德我们一起回顾1、动点找规律2、图形运动找规律重难点易错点解析动点找规律题一:如图,在平面直角坐标系中,一动点从原点O出发,按向上、向右、向下、向右的方向不断地移动,每移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A4n+1(n为自然数)的坐标为.(用n表示)图形运动找规律题二:如图,将边长为1的正方形OAPB沿x轴正方向连续翻转48次,点P依次落在点P1,P2,P3,P4,…,P48的位置,则P48的坐标是.金题精讲题一:一个质点在第一象限及x轴、y轴上运动,在第一秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动,即(0,0)→(0,1)→(1,1)→(1,0)→…,且每秒移动一个单位,那么第35秒时质点所在位置的坐标是.题二:如图,在平面直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA2B2变换成△OA3B3…已知:A(1,3),A1(2,3),A2(4,3),A3(8,3);B(2,0),B1(4,0),B2(8,0),B3(16,0).观察每次变换前后的三角形有何变化,按照变换规律,第n次变换后得到的三角形A n的坐标是,B n的坐标是.题三:如图,在平面直角坐标系中,已知点A(-3,0)、B(0,4),且AB=5,对△OAB连续作旋转变换,依次得到△1、△2、△3、△4…,则△2014的直角顶点的坐标为.题四:如图,矩形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙由点A(2,0)同时出发,沿矩形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2014次相遇地点的坐标是()A.(2,0)B.(-1,1)C.(-2,1)D.(-1,-1)思维拓展题一:如图,动点P从(0,3)出发,沿所示方向运动,每当碰到长方形的边时反弹,反弹时角度均为45°,当点P第2015次碰到长方形的边时,点P的坐标为()A.(1,4)B.(5,0)C.(6,4)D.(8,3)学习提醒重点:动点找规律——分析横、纵坐标与运动次数n的关系图形运动找规律——先分析图形整体位置,再看所研究点的位置坐标系中找规律讲义参考答案重难点易错点解析题一:(2n, 1)点拨:动点找规律,分析横、纵坐标与运动次数n的关系题二:(47, 1)点拨:图形运动找规律:先分析图形整体位置,再看所研究点的位置金题精讲题一:(5, 0) 题二:(2n, 3),(2n+1, 0)题三:(8052, 0) 题四:B思维拓展题一:A。
初三坐标知识点总结
初三坐标知识点总结1. 坐标系的概念坐标系是一个平面上的一种度量系统,它是以水平和垂直的两条直线为标准的度量系统。
根据这个度量系统,我们可以确定平面上任意一点的位置。
2. 直角坐标系直角坐标系是我国常见的坐标系,由横坐标和纵坐标组成。
横坐标通常用字母x表示,纵坐标通常用字母y表示。
横坐标和纵坐标的交叉点称为原点,它的坐标表示为(0,0)。
在直角坐标系中,我们可以用有序数对(x, y)来表示平面上的任意一点。
3. 坐标系的四象限直角坐标系将整个平面划分为四个象限:第一象限 (+, +),第二象限 (-, +),第三象限 (-, -),第四象限 (+, -)。
根据象限,我们可以判断出点所在的位置。
4. 点的坐标点的坐标是指平面上任意一个点在坐标系中的位置。
用有序数对(x, y)表示。
其中x为横坐标,y为纵坐标。
点的坐标能够准确的表示一个点在坐标系中的位置。
5. 线段的长度在坐标系中,两点之间的距离称为线段的长度。
可以通过两点坐标以及勾股定理来计算线段的长度。
勾股定理表示为:a² + b² = c²,其中a,b分别为两点纵坐标的差值和横坐标的差值,c即为线段长度。
6. 斜率的概念在直角坐标系中,两点之间的连线被称为直线。
直线的斜率是指其倾斜程度的度量。
根据两点坐标可以计算出直线的斜率。
斜率的计算公式为(y₂ - y₁)/(x₂ - x₁)。
斜率为正表示直线向上倾斜,斜率为负表示直线向下倾斜。
7. 点与直线之间的关系在坐标系中,点和直线之间存在一定的关系,可以通过直线的方程和点的坐标来判断点与直线的位置关系。
当点的坐标满足直线的方程时,这个点在直线上;当点的坐标不满足直线的方程时,这个点在直线的一侧。
8. 长度的计算在坐标系中,我们可以通过两点坐标来计算线段的长度。
根据两点坐标的纵坐标和横坐标的差值,并用勾股定理来计算线段的长度。
9. 点到直线的距离点到直线的距离是指平面上一个点到某一直线的距离。
点坐标规律探究(解析版)
专题25 点坐标规律探究1.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第一次从原点O 运动到点()11,1P ,第二次运动到点()22,0P ,第三次运动到()33,2P -,…,按这样的运动规律,第2022次运动后,动点2022P 的坐标是( )A .()2022,1B .()2022,2C .()2022,2-D .()2022,0 【答案】D【分析】观察图象,结合动点P 第一次从原点O 运动到点P 1(1,1),第二次运动到点P 2(2,0),第三次运动到P 3(3,﹣2),第四次运动到P 4(4,0),第五运动到P 5(5,2),第六次运动到P 6(6,0),…,结合运动后的点的坐标特点,分别得出点P 运动的纵坐标的规律,再根据循环规律可得答案.【详解】解:观察图象,结合动点P 第一次从原点O 运动到点P 1(1,1),第二次运动到点P 2(2,0),第三次运动到P 3(3,﹣2),第四次运动到P 4(4,0),第五运动到P 5(5,2),第六次运动到P 6(6,0),…,结合运动后的点的坐标特点,可知由图象可得纵坐标每6次运动组成一个循环:1,0,﹣2,0,2,0;∵2022÷6=337,∵经过第2022次运动后,动点P 的纵坐标是0,故选:D .【点睛】本题考查了规律型点的坐标,数形结合并从图象中发现循环规律是解题的关键. 2.如图,在平面直角坐标系上有点()1,0A ,点A 第一次跳至点1(1,1)A -,第二次向右跳动3个单位至点()22,1A ,第三次跳至点()32,2A -,第四次向右跳动5个单位至点()43,2A ,…依此规律跳动下去,点A 第100次跳至点100A 的坐标是( )A .()51,51-B .()51,50C .()50,49D .()50,49- 【答案】B【分析】根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,然后写出即可.【详解】解:观察发现,第2次跳动至点的坐标是(2,1),第4次跳动至点的坐标是(3,2),第6次跳动至点的坐标是(4,3),第8次跳动至点的坐标是(5,4),… 第2n 次跳动至点的坐标是(n +1,n ),故第100次跳动至点的坐标是(51,50).故选:B .【点睛】本题考查了坐标与图形的性质,以及图形的变化问题,结合图形得到偶数次跳动的点的横坐标与纵坐标的变化情况是解题的关键.3.如图,在一单位长度为1cm 的方格纸上,依如所示的规律,设定点1A 、2A 、3A 、4A 、5A 、6A 、7A 、n A ,连接点O 、1A 、2A 组成三角形,记为1∆,连接O 、2A 、3A 组成三角形,记为2∆,连O 、n A 、1n A +组成三角形,记为n ∆(n 为正整数),请你推断,当n 为50时,n ∆的面积=( )2cmA .1275B .2500C .1225D .1250 【答案】A【分析】根据图形计算发现:第一个三角形的面积是11212⨯⨯=,第二个三角形的面积是12332⨯⨯=,第三个图形的面积是13462⨯⨯=,即第n 个图形的面积是1(1)2n n +,即可求得,△n 的面积. 【详解】由题意可得规律:第n 个图形的面积是1(1)2n n +, 所以当n 为50时,n 的面积()150********=⨯⨯+=. 故选:A . 【点睛】此题主要考查了点的坐标变化规律,通过计算前面几个具体图形的面积发现规律是解题关键.4.在平面直角坐标系中,若干个等腰直角三角形按如图所示的规律摆放.点P 从原点O 出发,沿着“1234O A A A A →→→→…”的路线运动(每秒一条直角边),已知1A 坐标为()()()231,12,0,,1,3A A ()44,0A ···,设第n 秒运动到点(n P n 为正整数),则点2020P 的坐标是)( )A .()2020,0B .()2019,1C .()1010,0D .()2020,1-【答案】A【分析】通过观察可知,纵坐标每6个进行循环,先求出前面6个点的坐标,从中得出规律,再按规律写出结果便可.【详解】解:由题意知,A 1(1,1),A 2(2,0),A 3(3,1),A 4(4,0),A 5(5,-1),A 6(6,0),A 7(7,1),…由上可知,每个点的横坐标等于序号,纵坐标每6个点依次为:1,0,1,0,-1,0这样循环, ∵A 2020(2020,0),故选:A .【点睛】本题是一个规律题,根据题意求出点的坐标,从中找出规律来,这是解题的关键所在.5.如图,将点A 0(-2,1)作如下变换:作A 0关于x 轴对称点,再往右平移1个单位得到点A 1,作A 1关于x 轴对称点,再往右平移2个单位得到点A 2,…,作A n -1关于x 轴对称点,再往右平移n 个单位得到点A n (n 为正整数),则点A 64的坐标为( )A .(2078,-1)B .(2014 ,-1)C .(2078 ,1)D .(2014 ,1)【答案】C【分析】观察不难发现,角码为奇数时点的纵坐标为-1,为偶数时点的纵坐标为1,然后再根据向右平移的规律列式求出点的横坐标即可.【详解】解:由题意得: ()()()()()123451,1,1,1,4,1,8,1,13,1A A A A A ----……由此可得角码为奇数时点的纵坐标为-1,为偶数时点的纵坐标为1,故64A 的纵坐标为1,则点64A 的横坐标为()16464212345 (64220782)+⨯-+++++++=-+=,所以()642078,1A . 故选C .【点睛】本题主要考查平面直角坐标系点的坐标规律,关键是根据题目所给的方式得到点的坐标规律,然后求解即可.6.如图,在平面直角坐标系中,()1,1A ,()1,1B -,()1,2C --,()1,2D -,把一条长为2019个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A 处,并按A B C D A →→→→⋯的规律绕在四边形ABCD 的边上,则细线另一端所在位置的点的坐标是( )A .()1,0-B .()1,2-C .()1,0D .()0,2- 【答案】C【分析】根据点的坐标求出四边形ABCD 的周长,然后求出另一端是绕第几圈后的第几个单位长度,从而确定答案.【详解】∵A (1,1),B (﹣1,1),C (﹣1,﹣2),D (1,﹣2),∵AB =1﹣(﹣1)=2,BC =1﹣(﹣2)=3,CD =1﹣(﹣1)=2,DA =1﹣(﹣2)=3,∵绕四边形ABCD 一周的细线长度为2+3+2+3=10,2019÷10=201…9,∵细线另一端在绕四边形第201圈的第9个单位长度的位置点的坐标为(1,0).故选C .【点睛】本题利用点的坐标考查了数字变化规律,根据点的坐标求出四边形ABCD 一周的长度,从而确定2019个单位长度的细线的另一端落在第几圈第几个单位长度的位置是解题的关键.7.在直角坐标系中,我们把横、纵坐标都是整数的点叫做整点.且规定,正方形的内部不包含边界上的点.观察如图所示的中心在原点、一边平行于x 轴的正方形:边长为1的正方形内部有1个整点,边长为2的正方形内部有1个整点,边长为3的正方形内部有9个整点,…则边长为8的正方形内部的整点的个数为( )A.64B.49C.36D.25【答案】B【详解】试题解析:设边长为8的正方形内部的整点的坐标为(x,y),x,y都为整数.则-4<x<4,-4<y<4,故x只可取-3,-2,-1,0,1,2,3共7个,y只可取-3,-2,-1,0,1,2,3共7个,它们共可组成点(x,y)的数目为7×7=49(个).故选B.考点:规律型:点的坐标.8.如图,在一单位为1的方格纸上,∵A1A2A3,∵A3A4A5,∵A5A6A7……,都是斜边在x轴上,斜边长分别为2,4,6,……的等腰直角三角形,若A1A2A3的顶点坐标分别为A1(2,0),A2(1,﹣1),A3(0,0),则依图中所示规律,A2020的坐标为()A.(1010,0)B.(1012,0)C.(2,1012)D.(2,1010)【答案】D【分析】根据脚码确定出脚码为偶数时的点的坐标,得到规律:当脚码是2、6、10…时,横坐标为1,纵坐标为脚码的一半的相反数,当脚码是4、8、12.…时,横坐标是2,纵坐标为脚码的一半,然后确定出第2020个点的坐标即可.【详解】解:观察点的坐标变化发现:当脚码为偶数时的点的坐标,得到规律:当脚码是2、6、10…时,横坐标为1,纵坐标为脚码的一半的相反数,当脚码是4、8、12.…时,横坐标是2,纵坐标为脚码的一半,因为2020能被4整除,所以横坐标为2,纵坐标为1010,故选:D .【点睛】本题考查点坐标的变化规律,根据所要求的点坐标确定类似点的变化规律是解题关键. 9.如图,网格中的每个小正方形的边长都是1,1A 、2A 、3A 、…都在格点上,123A A A ∆、345A A A ∆、567A A A ∆、…都是斜边在x 轴上,且斜边长分别为2、4、6、…的等腰直角三角形.若123A A A ∆的三个顶点坐标为()12,0A 、()21,1A -、()30,0A ,则依图中规律,20A 的坐标为( )A .()2,10B .()1,9-C .()10,0D .()10,0-【答案】A【分析】根据相邻的两个三角形有一个公共点列出与三角形的个数与顶点的个数的关系式,然后求出A 20所在的三角形,并求出斜边长,然后根据第奇数个三角形关于直线x=1对称,第偶数个三角形关于直线x=2对称,根据等腰直角三角形的性质即可得出答案.【详解】设到第n个三角形时共有y个顶点,∵第一个三角形有3个顶点,到第二个三角形有5个顶点,到第三个三角形有7个顶点,……∵到第n个三角形的顶点个数y=2n+1,当2n+1=20时,n=9……1,∵A20是第10个三角形的直角顶点,∵第10个三角形为A19A20A21,且A19A21为斜边,∵斜边长分别为2、4、6、……,∵第10个三角形的斜边长为10×2=20,即A19A21=20,由图可知:第奇数个三角形关于直线x=1对称,第偶数个三角形关于直线x=2对称,∵A1A20为∵A19A20A21斜边中线,∵A1A20=10,∵A20的坐标为(2,10)故选A.【点睛】本题是对点的坐标变化规律的考查,根据顶点个数与三角形的关系判断出A20所在的三角形是解题的关键.10.一只跳蚤在第一象限及x轴、y轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1) →(1,1) →(1,0)→…],且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是()A.(4,O)B.(5,0)C.(0,5)D.(5,5)【答案】B【分析】由题目中所给的质点运动的特点找出规律,即可解答.【详解】跳蚤运动的速度是每秒运动一个单位长度,(0,0)→(0,1)→(1,1)→(1,0)用的秒数分别是1秒,2秒,3秒,到(2,0)用4秒,到(2,2)用6秒,到(0,2)用8秒,到(0,3)用9秒,到(3,3)用12秒,到(4,0)用16秒,依次类推,到(5,0)用35秒.故第35秒时跳蚤所在位置的坐标是(5,0).故选B .【点睛】本题主要考查点的坐标问题,解决本题的关键是正确读懂题意,能够正确确定点运动的顺序,确定运动的距离,从而可以得到到达每个点所用的时间.11.如图,点O (0,0),A (0,1)是正方形1OAA B 的两个顶点,以1OA 对角线为边作正方形121OA A B ,再以正方形的对角线2OA 作正方形121OA A B ,…,依此规律,则点8A 的坐标是( )A .(-8,0)B .(0,8)C .(0,2)D .(0,16) 【答案】D 【分析】根据题意和图形可看出每经过一次变化,都顺时针旋转45°,边长都乘以2,可求出从A 到A 3变化后的坐标,再求出A 1、A 2、A 3、A 4、A 5,继而得出A 8坐标即可.【详解】解:根据题意和图形可看出每经过一次变化,都顺时针旋转45°,边长都乘2, ∵从A 到3A 经过了3次变化,∵45°×3=135°,1×()32=22, ∵点3A 所在的正方形的边长为22,点3A 位置在第四象限,∵点3A 的坐标是(2,-2),可得出:1A 点坐标为(1,1),2A 点坐标为(0,2),3A 点坐标为(2,-2),4A 点坐标为(0,-4),5A 点坐标为(-4,-4),6A (-8,0),A 7(-8,8),8A (0,16),故选D.【点睛】本题考查了规律题,点的坐标,观察出每一次的变化特征是解答本题的关键. 12.如图,在平面直角坐标系中,点1A 在x 轴的正半轴上,1B 在第一象限,且△11OA B 是等边三角形.在射线1OB 上取点2B ,3B ,⋯,分别以12B B ,23B B ,⋯为边作等边三角形△122B A B ,△233B A B ,⋯使得1A ,2A ,3A ,⋯在同一直线上,该直线交y 轴于点C .若11OA =,130OAC ∠=︒,则点9B 的横坐标是( )A .2552B .5112C .256D .5132【答案】B【分析】首先证明OA 1∵B 1A 2,∵B 1A 1A 2=90°,求出B 1A 2=2A 1B 1=2,然后同理可得B 2A 3,B 3A 4的长,根据等边三角形边长的规律,即可求出B 9的横坐标.【详解】解:∵∵OA 1B 1是等边三角形,OA 1=1,∵B 1的横坐标为12,OA 1=OB 1=A 1B 1=1,∵OA 1B 1=60°,∵△B 1B 2A 2是等边三角形,∵∵B 2B 1A 2=60°,∵OA 1∵B 1A 2,∵A 2B 1A 1=60°,∵∵OA 1C =30°,∵∵B 1A 2A 1=30°,∵∵B 1A 1A 2=90°,∵B 1A 2=2A 1B 1=2,同理:B 2A 3=2A 2B 2=4,B 3A 4=2A 3B 3=8,…,∵B 1的横坐标为12,B 2的横坐标为12+1=32,B 3的横坐标为12+1+2=72,B 4的横坐标为12+1+2+4=152, ...,∵点B 9的横坐标是12+1+2+4+8+16+32+64+128=5112. 故选:B .【点睛】本题考查了点的坐标规律,等边三角形的性质,解题的关键是根据等边三角形的性质得到等边三角形边长的规律.13.已知平面直角坐标系内有一点()1,1A -,把点A 向上平移5个单位得到点B ,点C 和点B 关于y 轴对称,点D 和点A 关于y 轴对称,有一小虫从点A 出发,沿着A B C D A B C D →→→→→→→⋅⋅⋅⋅⋅⋅的路径爬行,那么当小虫的爬行路程为2021时,它在第________象限. 【答案】一.【分析】根据题意可知点B 的坐标,根据“平面直角坐标系中,关于y 轴对称的两个点的纵坐标不变,横坐标互为相反数”可得点C 和点D 的坐标,由此,可计算出AB 、BC 、CD 、DA 的长,从而得到小虫爬行一周的长度,然后即可得出当小虫的爬行路程为2021时,小虫到达的位置,从而可确定它在第几象限.【详解】解:∵把点A 向上平移5个单位得到点B ,()1,1A -, ∵点B 的坐标为(1,4),∵点C 和点B 关于y 轴对称,点D 和点A 关于y 轴对称, ∵点C 的坐标为(-1,4),点D 的坐标为(-1,-1), ∵AB =()()2211415-+--=⎡⎤⎣⎦, BC =()()2211442--+-=, CD =()()2211145---+--=⎡⎤⎣⎦, DA =()()2211112--+---=⎡⎤⎡⎤⎣⎦⎣⎦, ∵AB +BC +CD +DA =5+2+5+2=14,∵有一小虫从点A 出发,沿着A B C D A B C D →→→→→→→⋅⋅⋅⋅⋅⋅的路径爬行, ∵小虫爬行一周的路程为14,∵2021=14×144+5,∵当小虫的爬行路程为2021时,小虫爬行完144周,然后从点A 出发,爬行5个单位长度刚好到达点B ,而点B 的坐标(1,4)在第一象限,∵当小虫的爬行路程为2021时,它在第一象限. 故答案为一.【点睛】本题考查了点所在的象限,平移,点坐标规律特征,两点间的距离公式等知识点.熟记各个知识点是解题的关键.14.如图,在平面直角坐标系中,将ABO 沿x 轴向右滚动到11AB C △的位置,再到112A B C 的位置…依次进行下去,若已知点()()3,0,0,4A B ,则点49A 的坐标为_________.【答案】(300,3)【分析】根据点A (3,0),B (0,4)得AB =5,再根据旋转的过程寻找规律即可求解. 【详解】解:∵∵AOB =90°, 点A (3,0),B (0,4), 根据勾股定理,得AB =5, 根据旋转可知:∵OA +AB 1+B 1C 2=3+5+4=12, 所以点B 2 (12,4),A 1 (12,3); 继续旋转得,B 4 (2×12,4),A 3 (24,3); B 6 (3×12,4),A 5 (36,3) …发现规律:B 50 (25×12,4),A 49 (300,3). 所以点A 49 的坐标为(300,3). 故答案为:(300,3).【点睛】本题考查了规律型:点的坐标,解决本题的关键是灵活运用旋转的知识.15.如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序按图中“→”方向排列,如()1,0,()2,0,()2,1,()1,1,1,2,()2,2根据这个规律,第2020个点的坐标为______.【答案】()45,5【分析】根据题意,得到点的总个数等于x 轴上右下角的点的横坐标的平方,由于22025=45,所以第2020个点在第45个矩形右下角顶点,向上5个单位处. 【详解】根据图形,以最外边的矩形边长上的点为准, 点的总个数等于x 轴上右下角的点的横坐标的平方, 例如:右下角的点的横坐标为1,共有1个,211= 右下角的点的横坐标为2时,共有2个,242=, 右下角的点的横坐标为3时,共有3个,293=, 右下角的点的横坐标为4时,共有16个,2164=, 右下角的点的横坐标为n 时,共有2n 个,2452025=,45是奇数,∴第2025个点是()45,0,第2020个点是()45,5, 故答案为:()45,5.【点睛】本题考查了规律的归纳总结,重点是先归纳总结规律,然后在根据规律求点位的规律. 16.如图,在平面直角坐标系中,()()()()1,1,1,1,1,2,1,2A B C D ----,把一条长为2021个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A 处, 并按 A B C D A ----⋯的规律绕在四边形ABCD 的边上,则细线另一端所在位置的点的坐标是 ____.【答案】()0,1【分析】先根据点的坐标求出四边形ABCD 的周长,然后求出另一端是绕第几圈后的第几个单位长度,从而确定答案.【详解】解:∵A (1,1),B (﹣1,1),C (﹣1,﹣2),D (1,﹣2),∴AB =1﹣(﹣1)=2,BC =1﹣(﹣2)=3,CD =1﹣(﹣1)=2,DA =1﹣(﹣2)=3, ∴绕四边形ABCD 一周的细线长度为2+3+2+3=10, 2021÷10=202…1,∴细线另一端在绕四边形第203圈的第1个单位长度的位置, 即细线另一端所在位置的点的坐标是(0,1). 故答案为:(0,1).【点睛】本题考查了点的坐标规律探求,根据点的坐标求出四边形ABCD 一周的长度,从而确定2021个单位长度的细线的另一端落在第几圈第几个单位长度的位置是解题的关键.17.在直角坐标系中,已知(3,0)A -、(0,4)B ,对ABO 连续作如图翻转变换,依次得到三角形1、2、3……则2018的直角顶点的坐标是___________.【答案】(807115,125)【分析】由(3,0)A -、(0,4)B ,得AB=5,过O′作O′D∵x 轴于点D ,根据面积法,得O′D=125,由勾股定理得,B′D=165,由ABO 连续作如图翻转变换,三次一个循环,进而可得2018的直角顶点的坐标.【详解】∵(3,0)A -、(0,4)B , ∵OA=3,OB=4,AB=22345+=, 过O′作O′D∵x 轴于点D , ∵O′D=341255⨯=,B′D=2212164()55-=, ∵对ABO 连续作如图翻转变换,三次一个循环,2018÷3=672…2, ∵2018的直角顶点的横坐标为:12×672+4+165=807115,纵坐标为:125,∵2018的直角顶点的坐标是:(807115,125).故答案是:(807115,125).【点睛】本题主要考查几何图形与点的坐标,掌握直角三角形的勾股定理和面积法求斜边上的高,是解题的关键..在平面直角坐标系中,横坐标,纵坐标都为整数的点称为整点边上的整点的个数,请你猜测由里向外第11个正方形(实线)四条边上的整点一共有_____个.【答案】44【分析】可以发现第n 个正方形的整点数有4n 个点,故第11个有44个整数点. 【详解】由图象可知,第1个正方形四条边上整点数为4, 第2个正方形四条边上整点数为8, 第3个正方形四条边上整点数为12,则第n个正方形四条边上整点数为4n.n=时,第11个正方形四条边上整点数为44.当11故答案为44.【点睛】此题考查点的坐标规律、正方形各边相等的性质,解决本题的关键是观察分析,得到规律,这是中考的常见题型.19.如图,平面直角坐标系xOy内,动点P按图中箭头所示方向依次运动,第1次从点(0,1)运动到-,第3次运动到点(3,0),⋯按这样的运动规律,动点P第2021次点(1,0),第二次运动到点(2,2)运动到的点的坐标是________.【答案】(2021,0)【分析】根据图形分析点P的运动规律:第n次运动到的点的横坐标为n,纵坐标每四次为一个循环,即可得到答案.-,第3次运动到点(3,0),⋯,【详解】解:∵第1次运动到点(1,0),第二次运动到点(2,2)∵第n次运动到的点的横坐标为n,纵坐标每四次为一个循环,每个循环向右移动4个单位÷=,∵202145051∵动点P第2021次运动到的点的坐标是(2021,0),故答案为:(2021,0).【点睛】此题考查了图形坐标的规律,正确理解图形得到点P的运动规律并应用是解题的关键.20.在平面直角坐标系xOy中,对于点P(x,y)我们把P(﹣y+1,x+1)叫做点P的伴随点,已知A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,这样依次得到A1,A2,A3,…An,若点A1的坐标为(3,1),则点A2021的坐标为_________.【答案】(3,1)【分析】根据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2021A的坐标即可.除以4,根据商和余数的情况确定点2021A的坐标为(3,1),【详解】解:12(0,4)A ∴,3(3,1)A -,4(0,2)A -,5(3,1)A ,⋯⋯,依此类推,每4个点为一个循环组依次循环,202145051÷=⋯⋯,∴点2021A 的坐标与1A 的坐标相同,为(3,1).故答案是:(3,1).【点睛】本题考查点的坐标规律,读懂题目信息,理解“伴随点”的定义,解题的关键是求出每4个点为一个循环组依次循环.21.如图,点(0,0),(0,1)O A 是正方形1O AA B 的两个顶点,以1OA 对角线为边作正方形121OA A B ,再以正方形的对角线2OA 为边作正方形121OA A B ,…,依此规律,则点1000A 的坐标是_________.【答案】(0,2500)【分析】根据正方形的性质找出点A 1、A 2、A 3、A 4、A 5、A 6、A 7、A 8、A 9、A 10、…的坐标,根据坐标的变化可找出变化规律“A 8n (0,24n )(n 为自然数)”,依此规律即可求出点A 1000的坐标. 【详解】解:∵A 1(1,1),A 2(2,0),A 3(2,-2),A 4(0,-4),A 5(-4,-4),A 6(-8,0),A 7(-8,8),A 8(0,16),A 9(16,16),A 10(32,0),…, ∵A 8n (0,24n )(n 为自然数). ∵1000=125×8,∵点A 1000的坐标为(0,2500). 故答案为:(0,2500).【点睛】本题考查了规律型:点的坐标,根据点的坐标的变化找出变化规律“A 8n (0,24n )(n 为自然数)”是解题的关键.22.如下图,在平面直角坐标系中,第一次将OAB 变换成11OA B ,第二次将11OA B 变换成22OA B △,第三次将22OA B △变换成33OA B ,…,将OAB 进行n 次变换,得到n n OA B △,观察每次变换中三角形顶点坐标有何变化,找出规律,推测2020A 的坐标是__________.【答案】()20202,3【分析】根据图形写出点A 系列的坐标与点B 系列的坐标,根据具体数值找到规律即可. 【详解】∵(1,3)A ,1(2,3)A ,2(4,3)A ,3(8,3)A ,4(16,3)A ,(2,0)B ,1(4,0)B ,2(8,0)B ,3(16,0)B , ∵1n A +的横坐标与n B 的横坐标相同,纵坐标为3,点n B 的横坐标为12n +,纵坐标为0,∵n A 的坐标是()2,3n,∵()202020202,3A .【点睛】依次观察各点的横纵坐标,得到规律是解决本题的关键.23.如图,在平面直角坐标系中,等腰直角三角形OAA 1的直角边OA 在x 轴上,点A 1在第一象限,且OA =1,以点A 1为直角顶点,0A 1为一直角边作等腰直角三角形OA 1A 2,再以点A 2为直角顶点,OA 2为直角边作等腰直角三角形OA 2A 3…依此规律,则点A 2019的坐标是_____.【答案】(﹣21009,21009)【分析】利用等腰直角三角形的性质可得出部分点A n 的坐标,根据点的坐标的变化可得出变化规律“点A 8n+3的坐标为(﹣24n+1,24n+1)(n 为自然数)”,结合2019=252×8+3即可得出点A 2019的坐标.【详解】解:由等腰直角三角形的性质,可知:A 1(1,1),A 2(0,2),A 3(﹣2,2),A 4(0,﹣4),A 5(﹣4,﹣4),A 6(0,﹣8),A 7(8,﹣8),A 8(16,0),A 9(16,16),A 10(0,32),A 11(﹣32,32),…,∵点A 8n+3的坐标为(﹣24n+1,24n+1)(n 为自然数).∵2019=252×8+3,∵点A 2019的坐标为(﹣24×252+1,24×252+1),即(﹣21009,21009), 故答案为(﹣21009,21009).【点睛】本题考查了等腰直角三角形以及规律型:点的坐标,根据点的坐标的变化找出变化规律“点A 8n+3的坐标为(﹣24n+1,24n+1)(n 为自然数)”是解题的关键.24.如图,在平面直角坐标系中,一动点从原点O 出发,按向上,向右,向下,向右的方向不断地移动,每移动一个单位,得到点()1A 0,1,()2A 1,1,()3A 1,0,()4A 2,0,⋯那么点2018A 的坐标为______.【答案】(1009,1)【分析】任选一个除原点外的点找出它的坐标,往后每隔4取一个点找出它的坐标,这样以4为周期得到相应位置的点的坐标规律,找出比2018小且最接近2018的这个位置的点的坐标即可求解. 【详解】解:根据题意得:A 1(0,1),A 5(2,1),A 9(4,1),A 13(6,1),…… 所以A 4n +1(2n ,1).因为2017=4×504+1=2×1008+1,所以A 2017(1008,1), 则A 2018(1009,1). 故答案为A 2018(1009,1).【点睛】本题主要考查了点的坐标规律,探索规律的步骤:①从具体的题目出发,用列表或列举的方式,把各数量或图形的变化特点展现出来;②认真观察图表或图形,通过合理联想,大胆猜想,总结归纳,得出数字或图形间的变化规律,形成结论;(4)由此及彼验证结论的正误.。
中考专题复习-坐标找规律
初中数学找规律(5)--坐标类一、选择题1、如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A1,A2,A3,A4,…表示,则顶点A55的坐标是()A、(13,13)B、(﹣13,﹣13)C、(14,14)D、(﹣14,﹣14)第2题第1题2、一个质点在第一象限及x轴、y轴上运动,在第一秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动,且每秒移动一个单位,那么第2008秒时质点所在位置的坐标是()【列举找规律】A、(16,16)B、(44,44)C、(44,16)D、(16,44)第n圈0 1 2 3 ……n每圈移动次数 1 3 5 7 2n+1中点所在轴y X Y X总的运动次数为S=1+3+5+7+……+2n+1=(n+1)2,452=2025,n+1=45,n=44,终点落在y 轴上,后退17到2008步。
3、在平面直角坐标系中,对于平面内任一点(a,b),若规定以下三种变换:(1)、f(a,b)=(﹣a,b).如:f(1,3)=(﹣1,3);(2)、g(a,b)=(b,a).如:g(1,3)=(3,1);(3)、h(a,b)=(﹣a,﹣b).如:h(1,3)=(﹣1,﹣3).按照以上变换有:f(g(2,﹣3))=f(﹣3,2)=(3,2),那么f(h(5,﹣3))等于()A、(﹣5,﹣3)B、(5,3)C、(5,﹣3)D、(﹣5,3)4、在直角坐标系中,一只电子青蛙每次向上或向下或向左或向右跳动一格,现知这只青蛙位于(2,﹣3),则经两次跳动后,它不可能跳到的位置是()A、(3,﹣2)B、(4,﹣3)C、(4,﹣2)D、(1,﹣2)5、如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0)(4,0)根据这个规律探索可得,第100个点的坐标为 (14,8) .6、如图,已知A l (1,0),A 2(1,1),A 3(﹣1,1),A 4(﹣1,﹣1),A 5(2,﹣1),….则点A 2007的坐标为 .【除A1外,四步一循环,一定要和圈数建立函数关系列举A 4n (-n,-n)A 4n-1(-n,n) A 4n-2(n,n),A 4n-3(n,-n+1)】7、已知甲运动方式为:先竖直向上运动1个单位长度后,再水平向右运动2个单位长度;乙运动方式为:先竖直向下运动2个单位长度后,再水平向左运动3个单位长度.在平面直角坐标系内,现有一动点P 第1次从原点O 出发按甲方式运动到点P 1,第2次从点P 1出发按乙方式运动到点P 2,第3次从点P 2出发再按甲方式运动到点P 3,第4次从点P 3出发再按乙方式运动到点P 4,….依此运动规律,则经过第11次运动后,动点P 所在位置P 11的坐标是 .第100次运动后P 100点的坐标是 第2013点的坐标P 2013【提示:两次合起来结果如何 (x,y) →(x+2,y+1)→(x+2-3,y+1-2) →(x-1,y-1)】8、一个质点在第一象限及x 轴、y 轴上运动,在第一秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动,即(0,0)→(0,1)→(1,1)→(1,0)→…,且每秒移动一个单位,那么第35秒时质点所在位置的坐标是 (5,0) . 9、如图,在平面直角坐标系上有个点P (1,0),点P 第1次向上跳动1个单位至点P 1(1,1),紧接着第2次向左跳动2个单位至点P 2(﹣1,1),第3次向上跳动1个单位,第4次向右跳动3个单位,第5次又向上跳动1个单位,第6次向左跳动4个单位,…,依此规律跳动下去,点P 第100次跳动至点P 100的坐标是 .点P 第2009次跳动至点P 2009的坐标是 (503,1003) . 【跳动四次一变化】P0(1,0) P1(1,1) P2(-1,1) P3(-1,2) P4(2,2) P5(2,3) P6(-2,3) P7(-2,4) P8(3,4) P9(3,5) P10(-3,5) P11(-3,6) P12(4,6) …… ………………P4n-3(n,2n-3)P4n-2(-n,2n-10P4n-1(-n ,2n ) P4n(n+1,2n)第8题 第5题第6题10、如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(0,0)→(1,0)→(1,1)→(2,2)→(2,1)→(2,0)…根据这个规律探索可得,第100个点的坐标是___(13,8)______.11、如图,已知A1(1,0),A2(1,﹣1),A3(﹣1,﹣1),A4(﹣1,1),A5(2,1),…,则点A2010的坐标是(503,-503) .【易错】第11题第12题12、电子跳蚤游戏盘为△ABC(如图),AB=8,AC=9,BC=10,如果电子跳蚤开始时在BC边上P0点,BP0=4,第一步跳蚤跳到AC边上P1点,且CP1=CP0;第二步跳蚤从P1跳到AB边上P2点,且AP2=AP1;第三步跳蚤从P2跳回到BC边上P3点,且BP3=BP2;…跳蚤按上述规定跳下去,第2008次落点为P2008,则点P2008与A点之间的距离为4.13、以0为原点,正东,正北方向为x轴,y轴正方向建立平面直角坐标系,一个机器人从原点O点出发,向正东方向走3米到达A1点,再向正北方向走6米到达A2,再向正西方向走9米到达A3,再向正南方向走12米到达A4,再向正东方向走15米到达A5,按此规律走下去,当机器人走到A6时,A6的坐标是.A1(3,0) A2 (3,6) A3 (-6, 6) A4 (-6,-6) A5 (9,-6)A6 (9,12) A7 (-12,12) A8 (-12,-12) A9 (15,-12)……………………A4n-2 (6n-3,6n)A4n-1 (-6n,6n) A4n (-6n,-6n) A4n+1(6n+3,-6n) 14、观察下列有规律的点的坐标:依此规律,A11的坐标为,A12的坐标为.【析:观察图中数据,分下标为奇数和偶数两种情况分析解答.解答:解:观察点的坐标可以得到以下规律:点的横坐标的值就等于对应的点下标的数值;纵坐标,当下标是奇数时是正数,后一偶数项的纵坐标依次比前一偶数项的纵坐标多3,故A11的坐标为(11,16),当下标是偶数时纵坐标是负数,后一偶数项的纵坐标依次为前一偶数项的纵坐标的、、…,故A12的坐标为(12,﹣).故答案分别为:(11,16)、(12,﹣).】15、设坐标平面内有一个质点从原点出发,沿x轴跳动,每次向正方向或负方向跳动1个单位,经过5次跳动质点落在点(3,0)(允许重复过此点)处,则质点不同的运动方案共有种.【注意列举】16、已知,如图:在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A、C的坐标分别为A(10,0)、C(0,4),点D是OA的中点,点P在BC边上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为.第16题第17题17.(2013•湛江)如图,所有正三角形的一边平行于x轴,一顶点在y轴上.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A1、A2、A3、A4…表示,其中A1A2与x轴、底边A1A2与A4A5、A4A5与A7A8、…均相距一个单位,则顶点A3的坐标是_________,A92的坐标是_________.18在平面直角坐标系中,一动点从原点0出发,按向上,向右,向下,向右的方向不断移动,每次移动一个单位长度,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),……那么点A(4n﹢1)(n 为自然数)的坐标为什么?19、(2012•泰安)如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)…根据这个规律,第2012个点的横坐标为第18题【解:根据图形,以最外边的正方形边长上的点为准,点的总个数等于x轴上右下角的点的横坐标的平方,例如:右下角的点的横坐标为1,共有1个,1=12,右下角的点的横坐标为2时,共有4个,4=22,右下角的点的横坐标为3时,共有9个,9=32,右下角的点的横坐标为4时,共有16个,16=42,…右下角的点的横坐标为n时,共有n2个,∵452=2025,45是奇数,】练习1(综合题)如图,在平面直角坐标系中,点A的坐标为(1,1),点B的坐标为(11,1),若点C到直线AB的距离为4,且△ABC是直角三角形,则满足条件的点第19题C有若干个.(1)请在坐标系中把所有这样的点C都找出来,画上实心点,这些点用C1,C2,…表示;(2)写出这些点C1,C2,…对应的坐标.【问题解决的大致步骤已经知道,只是想问一下,根据A、B两点的坐标特点,直线AB∥x 轴,则到直线AB的距离为4的点在平行于直线AB的直线上且距离为4,有两条直线,根据直角三角形斜边上的中线等于斜边的一半,以AB的中点为圆心,半径5画弧与两直线的交点即为直角三角形的第三个顶点,这样的作法的理论依据是什么。
中考找规律专题复习
2、找到题目中的改变量,并认真观察改变量的变化规律3、观察与猜想结合找到变量与不变量之间的关系二、平面图形中的规律图形变化也是经常出现的,它的变化规律以代数规律为基础。
作这种数学规律的题目,都会涉及到一个或者几个变化的量。
所谓找规律,多数情况下,是指变量的变化规律。
所以,抓住了变量,就等于抓住了解决问题的关键。
例1用同样规格的黑白两种颜色的正方形瓷砖按下图方式铺地板,第n个图形中需要黑色瓷砖多少块?(用含n 的代数式表示).分析:这一题的关键是求第n 个图形中需要几块黑色瓷砖?在这三个图形中,前边4块黑瓷砖不变,变化的是后面的黑瓷砖。
它们的数量分别是,第一个图形中多出0×3块黑瓷砖,第二个图形中多出1×3块黑瓷砖,第三个图形中多出2×3块黑瓷砖,依次类推,第n个图形中多出(n-1)×3块黑瓷砖。
所以,第n个图形中一共有4+3(n-1)块黑瓷砖,也即(3n+1)块。
有些题目包含着事物的循环规律,找到了事物的循环规律,其他问题就可以迎刃而解。
例4“观察下列球的排列规律(其中●是实心球,○是空心球):●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●……从第1个球起到第2004个球止,共有实心球多少个?”分析:这些球,从左到右,按照固定的顺序排列,每隔10个球循环一次,循环节是●○○●●○○○○○。
每个循环节里有3个实心球。
我们只要知道 2004包含有多少个循环节,就容易计算出实心球的个数。
因为2004÷10 =200(余4)。
所以,2004个球里有200个循环节,还余4个球。
200个循环节里有200×3=600个实心球,剩下的4个球里有2个实心球。
所以,一共有602个实心球。
例5 平面内的一条直线可以将平面分成两个部分,两条直线最多可以将平面分成四个部分,三条直线最多可以将平面分成七个部分…根据以上这些直线划分平面最初的具体的情况总结规律,探究十条直线最多可以将平面分成多少个部分。
2023中考一轮复习:选填压轴之找规律(学生版)
04选填压轴之找规律目录中考考点解读 (1)重点知识重拾 (1)知识点1、关于x轴、y轴或原点对称的点的坐标的特征 (1)知识点2、点的平移 (1)知识点3、两点间的距离 (1)知识点4、旋转 (2)选填常考题型整理 (2)选填小题狂做 (5)中考考点解读规律探究型问题在中考数学中一般以选择题或者填空题中的压轴题形式出现,出题难度一般在中上等。
主要命题方式有数式规律、图形变化规律、点的坐标规律等。
虽然规律探索问题却并不是每个城市的必考题,个别省市经常出。
又因为各省市模拟考或者月考中出现几率较大且难度也较大,所以掌握其基本的考试题型及解题技巧还是非常有必要的。
重点知识重拾知识点1、关于x轴、y轴或原点对称的点的坐标的特征点P(a,b)与关于x轴对称点的坐标为(a,-b)点P(a,b)与关于y轴对称点的坐标为(-a,b)点P(a,b)与关于原点对称点的坐标为(-a,-b)口诀:关于谁对称,谁不变,另一个变号,关于原点对称都变号知识点2、点的平移点P(a,b)沿x轴向右(或向左)平移m个单位后对应点的坐标是a±m,b;点P(a,b)沿y轴向上(或向下)平移n个单位后对应点的坐标是a,b±n.口诀:横坐标右加左减,纵坐标上加下减.知识点3、两点间的距离在x轴或平行于x轴的直线上的两点P1(x1,y),P2(x2,y)间的距离为x1−x2在y轴或平行于y轴的直线上的两点P1(x,y1),P2(x,y2)间的距离为y−y2任意两点P1(x1,y1),P2(x2,y2),则线段P1P22,2任意两点P(x,y),P(x,y),则线段P知识点4、旋转1.旋转的三要素:旋转角度,旋转中心和旋转方向。
2.旋转的性质:旋转前后对应的图形全等,对应的旋转角度相等。
3.中心对称:特别的,如果旋转角度为180︒,那么旋转前后两个图形成中心对称。
注意:两个图形成中心对称和中心对称图形要区别清楚,两个图形成中心对称指的是两个图形,中心对称图形指的是一个图形,比如说平行四边形是一个中心对称图形。
平面直角坐标系找规律技巧(一)
平面直角坐标系找规律技巧(一)平面直角坐标系找规律技巧介绍平面直角坐标系是数学中常用的工具,可以帮助我们描述平面上的各种图形和现象。
在解决问题时,我们经常需要找出规律来简化计算或推导过程。
本文将介绍一些在平面直角坐标系中找规律的常用技巧。
技巧一:观察坐标轴上的点•观察点在坐标轴上的位置,可以帮助我们找出两个量之间的关系。
例如,如果一个点的横坐标和纵坐标相等,则它在坐标系中呈现出对称的特点。
•另外,当点的横坐标或纵坐标为0时,它们通常代表特殊的情况。
我们可以通过观察这些点来找到一些特殊的规律。
技巧二:观察图形的对称性•当图形呈现出对称的形态时,我们可以利用对称性来简化问题。
例如,如果一个图形在横轴或纵轴上对称,则它的性质可能也在对称轴上相同。
•另外,如果一个图形在原点对称,则它的性质通常也在原点附近具有一些特殊的规律。
技巧三:利用直角三角形的性质•平面直角坐标系中的直角三角形具有一些特殊的性质,我们可以利用这些性质来找规律。
例如,两条边分别与横轴和纵轴平行的直角三角形可能呈现出相似的形状。
•此外,直角三角形中的角度关系也可以帮助我们找到一些规律。
例如,当两条线段之间的夹角为90度时,它们可能具有一些特殊的性质。
技巧四:利用平移和旋转的性质•在平面直角坐标系中,我们可以通过平移和旋转来改变图形的位置和方向。
利用平移和旋转的性质,我们可以找到一些规律。
例如,当一个图形经过平移后仍具有相似的性质时,我们可以猜测这个性质与平移无关。
•此外,有时候我们可以通过适当的旋转来简化问题。
例如,当一个图形经过旋转后具有一些特殊的性质时,我们可以利用这个性质找规律。
技巧五:利用数学工具辅助分析•平面直角坐标系中的问题通常涉及到数学知识,例如代数和几何。
我们可以利用这些数学工具来辅助分析,找到问题的规律。
例如,利用代数中的方程和函数可以帮助我们推导出一些特殊的关系式。
•此外,几何中的一些定理和性质也可以用来分析图形和推导规律。
中考找规律专题复习
2、找到题目中的改变量,并认真观察改变量的变化规律3、观察与猜想结合找到变量与不变量之间的关系二、平面图形中的规律图形变化也是经常出现的,它的变化规律以代数规律为基础。
作这种数学规律的题目,都会涉及到一个或者几个变化的量。
所谓找规律,多数情况下,是指变量的变化规律。
所以,抓住了变量,就等于抓住了解决问题的关键。
例1用同样规格的黑白两种颜色的正方形瓷砖按下图方式铺地板,第n个图形中需要黑色瓷砖多少块?(用含n 的代数式表示).分析:这一题的关键是求第n 个图形中需要几块黑色瓷砖?在这三个图形中,前边4块黑瓷砖不变,变化的是后面的黑瓷砖。
它们的数量分别是,第一个图形中多出0×3块黑瓷砖,第二个图形中多出1×3块黑瓷砖,第三个图形中多出2×3块黑瓷砖,依次类推,第n个图形中多出(n-1)×3块黑瓷砖。
所以,第n个图形中一共有4+3(n-1)块黑瓷砖,也即(3n+1)块。
有些题目包含着事物的循环规律,找到了事物的循环规律,其他问题就可以迎刃而解。
例4“观察下列球的排列规律(其中●是实心球,○是空心球):●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●……从第1个球起到第2004个球止,共有实心球多少个?”分析:这些球,从左到右,按照固定的顺序排列,每隔10个球循环一次,循环节是●○○●●○○○○○。
每个循环节里有3个实心球。
我们只要知道 2004包含有多少个循环节,就容易计算出实心球的个数。
因为2004÷10 =200(余4)。
所以,2004个球里有200个循环节,还余4个球。
200个循环节里有200×3=600个实心球,剩下的4个球里有2个实心球。
所以,一共有602个实心球。
例5 平面内的一条直线可以将平面分成两个部分,两条直线最多可以将平面分成四个部分,三条直线最多可以将平面分成七个部分…根据以上这些直线划分平面最初的具体的情况总结规律,探究十条直线最多可以将平面分成多少个部分。
(完整版)整理好的平面直角坐标系找规律解析
平面直角坐标系找规律题型解析1、如图,正方形ABCD 的顶点分别为A(1,1) B(1,-1) C(-1,-1) D(-1,1),y 轴上有一点P(0,2)。
作点P 关于点A 的对称点p1,作p1关于点B 的对称点p2,作点p2关于点C 的对称点p3,作p3关于点D 的对称点p4,作点p4关于点A 的对称点p5,作p5关于点B 的对称点p6┅,按如此操作下去,则点p2011的坐标是多少?解法1:对称点P1、P2、P3、P4每4个点,图形为一个循环周期。
设每个周期均由点P1,P2,P3,P4组成。
第1周期点的坐标为:P1(2,0),P2(0,-2),P3(-2,0),P4(0,2)第2周期点的坐标为:P1(2,0),P2(0,-2),P3(-2,0),P4(0,2)第3周期点的坐标为:P1(2,0),P2(0,-2),P3(-2,0),P4(0,2)第n 周期点的坐标为:P1(2,0),P2(0,-2),P3(-2,0),P4(0,2)2011÷4=502…3,所以点P2011的坐标与P3坐标相同,为(-2,0)解法2:根据题意,P1(2,0) P2(0,-2) P3(-2,0) P4(0,2)。
根据p1-pn 每四个一循环的规律,可以得出:P4n (0,2),P4n+1(2,0),P4n+2(0,-2),P4n+3(-2,0)。
2011÷4=502…3,所以点P2011的坐标与P3坐标相同,为(-2,0)总结:此题是循环问题,关键是找出每几个一循环,及循环的起始点。
此题是每四个点一循环,起始点是p 点。
2、在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位.其行走路线如下图所示.(1)填写下列各点的坐标:A4( , ),A8( , ),A10( , ),A12( );(2)写出点A4n 的坐标(n 是正整数);(3)按此移动规律,若点Am 在x 轴上,请用含n 的代数式表示m (n 是正整数)(4)指出蚂蚁从点A2011到点A2012的移动方向.(5)指出蚂蚁从点A100到点A101的移动方向.(6)指出A106,A201的的坐标及方向。
备战中考数学二轮专题归纳提升真题平面直角坐标系规律探究问题(解析版)
专题01 平面直角坐标系规律探究问题【知识点梳理】1、关于x 轴、y 轴或原点对称的点的坐标的特征点P (a ,b )与关于x 轴对称点的坐标为 (a ,-b ) 点P (a ,b )与关于y 轴对称点的坐标为 (-a ,b ) 点P (a ,b )与关于原点对称点的坐标为 (-a ,-b ) 口诀:关于谁对称,谁不变,另一个变号,关于原点对称都变号 2、点的平移点P (a ,b )沿x 轴向右(或向左)平移m 个单位后对应点的坐标是(a ±m,b ); 点P (a ,b )沿y 轴向上(或向下)平移n 个单位后对应点的坐标是(a,b ±n ). 口诀:横坐标右加左减,纵坐标上加下减.3、两点间的距离:在x 轴或平行于x 轴的直线上的两点P 1 (x 1,y ),P 2 (x 2,y )间的距离为|x 1−x 2| 在y 轴或平行于y 轴的直线上的两点P 1 (x ,y 1),P 2 (x ,y 2)间的距离为|y 1−y 2| 任意两点P 1 (x 1,y 1),P 2 (x 2,y 2),则线段P 1P 2的中点坐标为(x 1+x 22,y 1+y 22)任意两点P 1 (x 1,y 1),P 2 (x 2,y 2),则线段P 1P 2=√(x 1−x 2)2+(y 1−y 2)2【典例分析】【例1y)经过某种变换后得到点P ′(−y +1,x +2),我们把点P ′(−y +1,x +2)叫做点P(x,y)的终结点.已知点P 1的终结点为P 2,点P 2的终结点为P 3,点P 3的终结点为P 4,这样依次得到P 1、P 2、P 3、P 4、…、nP 、…,若点p 1的坐标为(2,0),则点P 2022的坐标为_____。
【答案】(1,4).解析:解:P 1 坐标为(2,0),则P 2坐标为(1,4),P 3坐标为(-3,3),P 4坐标为(-2,-1),P 5坐标为(2,0),∴P n 的坐标为(2,0),(1,4),(-3,3),(-2,-1)循环, ∵2022=4×505+2, ∴P 2022 坐标与P 2点重合, 故答案为(1,4).【练1】在平面直角坐标系xOy 中,对于点P (x ,y ),我们把点P′(y -1,-x+1)叫做点P 的伴随点.已知点A 1的伴随点为A 2,点A 2的伴随点为A 3,点A 3的伴随点为A 4,…,这样依次得到点A 1,A 2,A 3,…,A n ,….若点A 1的坐标为(3,2),则A 2023的坐标为________【答案】(-3,0)解析:解:∵A1(3,2),A2(1,-2),A3(-3,0),A4(-1,4),A5(3,2),…,∴点A n的坐标4个一循环.∵2023=505×4+3,∴点A2023的坐标与点A2的坐标相同.∴A2023的坐标为(-3,0),故答案为:(-3,0).【练2】某同学在平面直角坐标系内设计了一个动点运动的编程.若一个动点从点A1(1,3)出发,沿A2(3,5)→A3(7,9)→…运动,则点A2022的坐标为()A.(22021﹣1,22021+1)B.(22022﹣1,22022+1)C.(22022﹣2,22022+2)D.(22021﹣2021,22021+2021)【答案】B【解析】解:∵一个动点从点A1(1,3)出发,沿A2(3,5)→A3(7,9)→…运动,∴A n(2n﹣1,2n+1),∴A2022的坐标为:(22022﹣1,22022+1),故选:B.【练3】对点(x,y)的一次操作变换记为P1(x,y),定义其变换法则如下:P1(x,y)=(x+y,x﹣y);且规定P n(x,y)=P1(P n﹣1(x,y))(n为大于1的整数).如P1(1,2)=(3,﹣1),P2(1,2)=P1(P1(1,2))=P1(3,﹣1)=(2,4),P3(1,2)=P1(P2(1,2))=P1(2,4)=(6,﹣2).则P2022(1,﹣1)=.【答案】(21011,21011)【解析】解:由题意可得:P1(1,﹣1)=(0,2),P2(1,﹣1)=(2,﹣2)P3(1,﹣1)=(0,4),P4(1,﹣1)=(4,﹣4)P5(1,﹣1)=(0,8),P6(1,﹣1)=(8,﹣8)…当n为奇数时,P n(1,﹣1)=(0,),当n为偶数时,P n(1,﹣1)=(2n2,2n2),∴P2022(1,﹣1)应该等于(21011,21011).故答案是:(21011,21011).【例2】如图,在平面直角坐标系中,A1(1,2),A2(2,0),A3(3,﹣2),A4(4,0)…根据这个规律,探究可得点A2022的坐标是()A.(2022,0)B.(2022,2)C.(2021,﹣2)D.(2022,﹣2)【答案】A【解析】解:观察图形可知,点A1(1,2),A2(2,0),A3(3,﹣2),A4(4,0)…的横坐标依次是1、2、3、4、…、n,纵坐标依次是2、0、﹣2、0、2、0、﹣2、…,四个一循环,2022÷4=505…2,故点A2022坐标是(2022,0).故选:A.【练1】如图,动点P1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),……,按这样的运动规律,经过第2022次运动后,动点P的坐标是()A.(2021,0)B.(2020,1)C.(2022,0)D.(2022,1)【答案】C【解析】分析图象可以发现,点P的运动每4次位置循环一次.每循环一次向右移动四个单位,∴2022=4×505+2.当第505循环结束时,点P位置在(2020,0),在此基础之上运动两次到(2022,0).故选C.【练2】如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第一次从原点O运动到点P1(1,1),第二次运动到点P2(2,0),第三次运动到P3(3,﹣2),…,按这样的运动规律,第2022次运动后,动点P2022的坐标是()A.(2022,1)B.(2022,2)C.(2022,﹣2)D.(2022,0)【答案】D【解析】解:观察图象,动点P第一次从原点O运动到点P1(1,1),第二次运动到点P2(2,0),第三次运动到P3(3,﹣2),第四次运动到P4(4,0),第五运动到P5(5,2),第六次运动到P6(6,0),…,结合运动后的点的坐标特点,可知由图象可得纵坐标每6次运动组成一个循环:1,0,﹣2,0,2,0;∵2022÷6=337,∴经过第2022次运动后,动点P的纵坐标是0,故选:D.【练3】如图,平面直角坐标系中,一个点从原点O出发,按向右→向上→向右→向下的顺序依次不断移动,每次移动1个单位,其移动路线如图所示,第1次移到点A1,第二次移到点A2,第三次移到点A3,…,第n次移到点A n,则点A2022的坐标是_____________.【答案】(1011,1).【解析】观察图象可知,点A的纵坐标每4个点循环一次,∵2022=505×4+2,∴点A2022的纵坐标与点A2的纵坐标相同,∵A2(1,1),A6(3,1),A10(5,1)……,∴点A2022的坐标是(1011,1).【例3】如图,在平面直角坐标系上有个点A(-1,O),点A第1次向上跳动一个单位至点A1(-1,1),紧接着第2次向右跳动2个单位至点A2(1,1),第3次向上跳动1个单位,第4次向左跳动3个单位,第5次又向上跳动1个单位,第6次向右跳动4个单位,…,依次规律跳动下去,点A第2022次跳动至点A2022的坐标是( )A.(-505, 1011)B.(505, 1010)C.(-506, 1010)D.(506, 1011)【答案】D【解析】解:设第n次跳动至点A n,观察,发现:A(-1,0),A1(-1,1),A2(1,1),A3(1,2),A4(-2,2),A5(-2,3),A6(2,3),A7(2,4),A8(-3,4),A9(-3,5),…,∴A4n(-n-1,2n),A4n+1(-n-1,2n+1),A4n+2(n+1,2n+1),A4n+3(n+1,2n+2)(n为自然数).∵2022=505×4+2,∴A2022(505+1,505×2+1),即(506,1011).故选:D.【练1】如图所示,在平面直角坐标系上有个点P(1,0),点P第1次向上跳动1个单位至点P1(1,1),紧接着第2次向左跳动2个单位至点P2(−1,1),第3次向上跳动1个单位,第4次向右跳动3个单位,第5次又向上跳动1个单位,第6次向左跳动4个单位……依此规律跳动下去,点P第99次跳动至点P99的坐标是_____【答案】(-25,50)【解析】解:由题中规律可得出如下结论:设点Px的横坐标的绝对值是n,则在y轴右侧的点的下标分别是4(n-1)和4n-3,在y轴左侧的点的下标是:4n-2和4n-1;判断P199的坐标,就是看99=4(n-1)和99=4n-3和99=4n-2和99=4n-1这四个式子中哪一个有负整数解,从而判断出点的横坐标.由上可得:点P第99次跳动至点P99的坐标是(-25,50)故答案为:(-25,50).【练2】如图,在平面直角坐标系上有点A0(1,0),点A0第一次跳动至点A1(−1,1),第二次点A1跳动至点A2(2,1),第三次点A跳动至点A3(−2,2),第四次点A3跳动至点A4(3,2),……依2此规律跳动下去,则点A2021与点A2022之间的距离是()A.2023B.2022C.2021D.2020【答案】A【解析】观察发现,第2次跳动至点的坐标是(2,1),第4次跳动至点的坐标是(3,2),第6次跳动至点的坐标是(4,3),第8次跳动至点的坐标是(5,4),…第2n次跳动至点的坐标是(n+1,n),则第2022次跳动至A2022点的坐标是(1012,1011),第2021次跳动至点A2021的坐标是(﹣1011,1011).∵点A2021与点A2022的纵坐标相等,∴点A2021与点A2022之间的距离=1012﹣(﹣1011)=2023.故选:A.【练3】在平面直角坐标系内原点O(0,0)第一次跳动到点A1(0,1),第二次从点A1跳动到点A2(1,2),第三次从点A2跳动到点A3(﹣1,3),第四次从点A3跳动到点A4(﹣1,4),…,按此规律下去,则点A2021的坐标是()A.(673,2021)B.(674,2021)C.(﹣673,2021)D.(﹣674,2021)【答案】B【解析】解:因为A1(0,1),A2(1,2),A3(﹣1,3),A4(﹣1,4),A5(2,5),A6(﹣2,6),A7(﹣2,7),A8(3,8),…A3n﹣1(n,3n﹣1),A3n(﹣n,3n),A3n+1(﹣n,3n+1)(n为正整数),∵3×674﹣1=2021,∴n=674,所以A2021(674,2021),故选:B.【例4】如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1)(1,1),(1,2),(2,2)……根据这个规律,第2022个点的坐标为________【答案】(45,6)【解析】解:观察图形,可知:第1个点的坐标为(1,0),第4个点的坐标为(1,1),第9个点的坐标为(3,0),第16个点的坐标为(1,3),…,∴第(2n-1)2个点的坐标为(2n-1,0)(n为正整数).∵2025=452,∴第2025个点的坐标为(45,0).又∵2025-3=2022,∴第2022个点在第2025个点的上方3个单位长度处,∴第2022个点的坐标为(45,3).故答案为:(45,3).【练1】如图,一个蒲公英种子从平面直角坐标系的原点O出发,向正东走3米到达点A1,再向正北方向走6米到达点A2,再向正西方向走9米到达点A3,再向正南方向走12米到达点A4,再向正东方向走15米到达点A5,以此规律走下去,当种子到达点A10时,它在坐标系中坐标为()A.(﹣12,﹣12)B.(15,18)C.(15,﹣12)D.(﹣15,18)【答案】B【解析】解:根据题意可知:O A1=3,A1A2=6,A2A3=9,A3A4=12,A4A5=15,A5A6=18,A9A10=30,∴A1点坐标为(3,0),A2点坐标为(3,6),A3点坐标为(﹣6,6),A4点坐标为(﹣6,﹣6),A5点坐标为(9,﹣6),A6点坐标为(9,12),以此类推,A9点坐标为(15,﹣12),所以A10点横坐标为15,纵坐标为﹣12+30=18,∴A10点坐标为(15,18),故选:B.【练2】如图,一个点在第一象限及x轴、y轴上移动,在第一秒钟,它从原点移动到点(1,0),然后按照图中箭头所示方向移动,即(0,0)→(1,0)→(1,1)→(0,1)→(0,2)→…,且每秒移动一个单位,那么第2022秒时,点所在位置的坐标是( )A .(2,44)B .(41,44)C .(44,41)D .(44,2)【答案】【解析】解:观察可发现,点到(0,2)用4=22秒,到(3,0)用9=32秒,到(0,4)用16=42秒,则可知当点离开x 轴时的横坐标为时间的平方,当点离开y 轴时的纵坐标为时间的平方, 此时时间为奇数的点在x 轴上,时间为偶数的点在y 轴上, ∵2022=452﹣3=2025﹣3,∴第2025秒时,动点在(45,0),故第2022秒时,动点在(45,0)向左一个单位,再向上2个单位, 即(44,2)的位置. 故选:D .【练3】如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,1),(3,0),(3,−1)…根据这个规律探索可得,第99个点的坐标为( )A.(14,−1)B.(14,0)C.(14,1)D.(14,2)【答案】C【解析】解:在横坐标上,第一列有一个点,第二列有2个点…第n 个有n 个点, 并且奇数列点数对称而偶数列点数y 轴上方比下方多一个, 所以奇数列的坐标为(n,n−12),(n,n−12−1),…,(n,1−n 2);偶数列的坐标为(n,n2),(n,n2−1),…,(n,1−n2), ∵1+2+3+4+……+13=91∴第99个点位于第14列自上而下第7行.−6),即(14,1).代入上式得(14,142故选C.【例5】如图,在平面直角坐标系中,将边长为3,4,5的直角△ABO沿x轴向右滚动到△AB1C1的位置,再到△A1B1C2的位置…依次进行下去,发现A(3,0),A1(12,3),A2(15,0)…那么点A2022的坐标为.【答案】(12135,0)【解析】解:∵∠AOB=90°,点A(3,0),B(0,4),根据勾股定理得AB=5,根据旋转可知:OA+AB1+B1C2=3+5+4=12,所以点A1(12,3),A2(15,0);继续旋转得A3(24,3),A4(27,0);…发现规律:A2n﹣1(12n,3),A2n(12n+3,0),∵2022=2n,∴n=1011,∴点A2022的坐标为(12135,0),故答案为:(12135,0).【练1】如图,动点P从(0,3)出发沿所示方向运动,每当碰到长方形的边时反弹,反弹时反射角等于入射角,当点P第2022次碰到长方形的边时点P的坐标为.【答案】(0,3【解答过程】解:如图所示:经过6次反弹后动点回到出发点(0,3),∵2022÷6=337∴当点P第2022次碰到矩形的边时与P点起点位置重合,∴点P的坐标为(0,3).故答案为:(0,3).【练2】如图,将边长为2的等边三角形沿x轴正方向连续翻折2019次,依次得到点P1,P2,P3,...,P2022,则点P2022的坐标是()A.(2022,2)B.(2022,√3)C.(4043,2)D.(4043, √3)【答案】D【解析】解:由题意可知P1是1P的横坐标是3,P3的横坐标是5,P4的横坐标是7…依此类推下去,P n的横坐标是2n-1,∴P2022的横坐标是2×2022-1=4043纵坐标都是√3,故选:D.连续作旋转变换,依【练3】如图,在直角坐标系中,已知点A(−3,0),B(0,4),对OAB次得到Δ1,Δ2,Δ3,Δ4,…,则∆2022的直角顶点的坐标为______.【答案】(8088,0)【解析】解:∵点A(-3,0)、B(0,4),∴AB=√32+42=5由图可知,每三个三角形为一个循环组依次循环,一个循环组前进的长度为:4+5+3=12,∵2022÷3=674,∴∆2022的直角顶点是第674个循环组的最后一个三角形的直角顶点;∵674×12=8088,∴∆2022的直角顶点的坐标为(8088,0).故答案为(8088,0).【例6】如图,在平面直角坐标系中,边长为1的正方形OA1B1C1的两边在坐标轴上,以它的对角线OB1为边作正方形OB1B2C2,再以正方形OB1B2C2的对角线OB2为边作正方形OB2B3C3,以此类推……则正方形OB2021B2022C2022的顶点B2022的坐标是_____.【答案】(0,-22011)【解析】解:∵正方形OA1B1C1的边长为1,∴OB1=√2∴OB2=2∴B2(0,2),同理可知B3(-2,2),B4(-4,0),B5(-4,-4),B6(0,-8),B7(8,-8),B9(16,16),B10(0,32).由规律可以发现,每经过8次作图后,点的坐标符号与第一次坐标的符号相同,每次正方形的边长变为原来的√2倍,∵2022÷8=252⋯⋯6,∴B8n+6(0,-24n+3),∴B2022(0,-22011).故答案为:(0,-22011).【练1】如图,在平面直角坐标系中,等腰直角三角形OAA1的直角边OA在x轴上,点A1在第一象限,且OA=1,以点A1为直角顶点,0A1为一直角边作等腰直角三角形OA1A2,再以点A2为直角顶点,OA2为直角边作等腰直角三角形OA2A3…依此规律,则点A2022的坐标是_____.【答案】(0,-22011)【解析】解:由等腰直角三角形的性质,可知:A 1(1,1),A 2(0,2),A 3(﹣2,2),A 4(0,﹣4),A 5(﹣4,﹣4),A 6(0,﹣8),A 7(8,﹣8),A 8(16,0),A 9(16,16),A 10(0,32),A 11(﹣32,32),…,∵2022=252×8+6∴点A 8n+6的坐标为(0,24n+3)(n 为自然数).∴点A 2022的坐标为(0,24×252+3),即(0,-22011),故答案为:(0,-22011).【练2】在平面直角坐标系中,正方形ABCD 的位置如图所示,点A 的坐标为(1,0),点D 的坐标为(0,2).长CB 交x 轴于点A 1,作正方形A 1B 1C 1C ;延长C 1B 1交x 轴于点2A ,作正方形A 2B 2C 2C 1……按这样的规律进行下去,第2022个正方形的面积为_____.【答案】5×(32)4042.【解析】解:∵点A 的坐标为(1,0),点D 的坐标为(0,2)∴正方形ABCD 的边长为√5,设其面积为S 1=5,依此类推,接下来的面积依次为S 2,S 3,S 4⋯⋯第2022个正方形的面积为S 2022,又∵三角形相似,∴ OA OD =A 1B AB =A 2B 1A 1B 1=⋯=12. ∴ S 2=5×94,S 3=5×(94)2…… ∴S 2022=5×(94)2022−1=5×(94)2021=5×(32)4042.【练3】如图,在平面直角坐标系xOy中,B1(0,1),B2(0,3),B3(0,6),B4(0,10),…,以B1B2为对角线作第一个正方形A1B1C1B2,以B2B3为对角线作第二个正方形A2B2C2B3,以B3B4为对角线作第三个正方形A3B3C3B4,…,如果所作正方形的对角线B n B n+1都在y 轴上,且B n B n+1的长度依次增加1个单位长度,顶点A n都在第一象限内(n≥1,且n为整数),那么A1的纵坐标为;用n的代数式表示A n的纵坐标:.【答案】2;【解析】解:作A1D⊥y轴于点D,则B1D=B1B2÷2=(3﹣1)÷2=1,∴A1的纵坐标=B1D+B1O=1+12,同理可得A2的纵坐标=OB2+(B2B3)÷2=3+(6﹣3)÷2 4.5,∴A n的纵坐标为,故答案为2,.。
中考数学专题复习找规律问题之周期型模型
中考数学专题复习找规律问题之周期型模型学校:___________姓名:___________班级:___________考号:___________评卷人得分一、单选题1.如图,一个机器人从坐标原点O点出发,向正东方向走3米到达A1点,再向正北方向走6米到达A2点,再向正西方向走9米到达A3点,再向正南方向走12米到达A4点,再向正东方向走15米到达A5点,…….按此规律走下去,当机器人走到A7点时,它的位置可表示为()(单位长度为1米)A.(-21,18)B.(9,12)C.(-12,12)D.(-21,12)2.如图所示,直线3333y x=+与y轴相交于点D,点A1在直线3333y x=+上,点B1在x轴,且∆OA1B1是等边三角形,记作第一个等边三角形;然后过B1作B1A2∥OA1与直线3333y x=+相交于点A2,点B2在x轴上,再以B1A2为边作等边三角形A2B2B1,记作第二个等边三角形;同样过B2作B2A3∥OA1与直线3333y x=+相交于点A3,点B3在x轴上,再以B2A3为边作等边三角形A3B3B2,记作第三个等边三角形;∥依此类推,则第n个等边三角形的顶点A纵坐标为()A.1n-B.2n-C.1n-3⨯D.2n-3⨯3.下表中的数字是按一定规律填写的,则a b+的值是()1235813a34⋯⋯2358132134b⋯⋯A.55B.66C.76D.1104.如图,下列图形都是由几个黑色和白色的正方形按一定规律组成,图∥中有2个黑色正方形,图∥中有5个黑色正方形,图∥中有8个黑色正方形,图∥中有11个黑色正方形,…,依此规律,图n中黑色正方形的个数是()A.2n B.3n C.21n-D.31n-5.在下面各正方形中的四个数之间都有相同的规律,根据此规律,m的值是()A.128B.120C.112D.1026.下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第∥个图形中一共有4个小圆圈,第∥个图形中一共有10个小圆圈,第∥个图形中一共有19个小圆圈,…,按此规律排列,则第∥个图形中小圆圈的个数为()A.31B.46C.64D.857.观察下列三行数:第一行:2、4、6、8、10、12……第二行:3、5、7、9、11、13……第三行:1、4、9、16、25、36……设x、y、z分别为第一、第二、第三行的第100个数,则22x y z-+的值为()A.9999B.10001C.20199D.200018.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第一次从原点O运动到点1(1,1)P,第二次运动到点2(2,0)P,第三次运动到3(3,2)P-,⋯,按这样的运动规律,第2021次运动后,动点2021P的纵坐标是()A.1B.2C.2-D.0评卷人得分二、填空题9.根据表中数字的规律,则代数式()x y x--的值是__.2468512177237228x y10.一列数1a,2a,3a,…,na满足11a=-,2111aa=-,3211aa=-,…,111nnaa-=-,则2a=__________;1232020a a a a++++=__________,1232020a a a a⨯⨯⨯⨯=__________.11.如图,1条直线将平面分成两个部分,2条直线最多可以将平面分成4个部分,3条直线最多可以将平面分成7个部分,4条直线最多可以将平面分成11个部分.现有n 条直线最多可以将平面分成2017个部分,则n的值为______.12.如图,在平面直角坐标系中,等腰直角三角形1OAA的直角边OA在x轴上,点1A 在第一象限,且1OA=,以点1A为直角顶点,1OA为一直角边作等腰直角三角形12OA A,再以点2A为直角顶点,2OA为直角边作等腰直角三角形23OA A⋯依此规律,则点2021A的坐标是__.13.如图,在平面直角坐标系中,等腰直角三角形OA1A2的直角边OA1在y轴的正半轴上,且OA1=A1A2=1,以OA2为直角边作第二个等腰直角三角形OA2A3,以OA3为直角边作第三个等限直角三角OA3A4,…,依此规律,得到等腰直角三角形OA2020A2021,则点A2021的坐标为_____________.14.用棱长相同的小正方体摆成如图所示的几何体,第1层有1个正方体,第2层有3个正方体,第3层有6个正方体,按图中摆放的方法类推,第20层有_________个正方体15.如图,“海春书局”把WIFI密码做成了数学题.小红在海春书局看书时,思索了一会儿,输入密码,顺利地连接到了“海春书局”的网络,那么她输入的密码是__________.16.观察下面一列单项式:2345,2,4,8,16,x x x x x---⋅⋅⋅,根据你发现的规律写出第100个单项式_______.17.定义一种新运算:“⊗”观察下列各式:232339⊗=⨯+=()313318⊗-=⨯-=4443416⊗=⨯+= ()5353312⊗-=⨯-=,则a b⊗=______(用含a、b的代数式表示)18.如图,直线l为3y x=,过点1(1,0)A作11A B x⊥轴,与直线l交于点1B,以原点O 为圆心,1OB长为半径画圆弧交x轴于点2A;再作22A B x⊥轴,交直线l于点2B,以原点O为圆心,2OB长为半径画圆弧交x轴于点3A;⋯⋯,按此作法进行下去,则点nA 的坐标为__.19.观察一列数:12,34-,56,78-,⋯,按此规律,这一列数的第2022个数为__.20.将黑色圆点按如图所示的规律进行排列:图中黑色圆点的个数依次为:1,3,6,10,……,将其中所有能被3整除的数按从小到大的顺序重新排列成一组新数据,则新数据中的第10个数为______,第55个数为______.21.如图,矩形OABC 在平面直角坐标系中,点B 的坐标是(﹣2,1),过点A 作1AB OB ∥,交x 轴于B 1,过点B 1作A 1B 1∥x 轴交直线AC 于A 1,过点A 1作直线121A B AB ∥,交x 轴于B 2,过点B 2作A 2B 2∥x 轴交直线AC 于A 2,……,则A 2021的坐标是 __________________.22.法国著名数学家笛卡尔在蜘蛛戒网的启示下创建了数对与直角坐标系.如图,一只蜘蛛先以O 为起点结六条线OA ,OB ,OC ,OD ,OE ,OF 后,再从线OA 上某点开始按逆时针方向,依次在OA ,OB ,OC ,OD ,OE ,OF ,OA ,OB ,OC ,OD ,…,上结网,若将各线上的结点依次记为1,2,3,4,5,6,7,8,…,那么,第2021个结点在线________上.23.在庆祝建党“100周年”的活动中,某同学用围棋棋子按照某种规律摆成如图所示的“100”字样、如图∥有11个棋子,图∥有16个棋子,按这种规律,则第20个“100”字样的棋子个数是_____.24.一组数1,3,5,7,9,…,用含有n的式子表示这组数中的第n个数:_____.25.已知21=2,22=4,23=8,24=16,25=32,26=64……则22020﹣22019的个位数字是____.26.观察一列有规律的单项式:x,3x2,5x3,7x4,9x5…,它的第n个单项式是______.27.如图,是由一些小圆点组成的图形,第1个图形是由7个小圆点组成,第2个图形是由13个小圆点组成,第3个图形是由19个小圆点组成,…,按照这样的规律,由181个小圆点组成的是第_____个图形.评卷人得分三、解答题28.规律探究:15×15=1×2×100+25=225;25×25=2×3×100+25=625;35×35=3×4×100+25=1225;(1)第4行为;(2)用含n的式子表示规律并证明.29.若干个有规律的数,排列如下:试探究:(1)第2012个数在第几行?这个数是多少?(每行的数都是从左往右数)(2)写出第n行第k个数的代数式;(用含n,k的式子表示)(3)求第2012个数所在行的所有数之和S.30.将连续的奇数1,3,5,7,9,……排成如图所示的数表.(1)写出数表所表示的规律;(至少写出4个)(2)若将方框上下左右移动,可框住另外的9个数.若9个数之和等于297,求方框里中间数是多少?参考答案:1.C 【解析】 【分析】根据题意知:13OA =,1232A A =⨯ ,2333A A =⨯,可得规律:13n n A A n -=,根据规律可以得到A 7的横坐标和纵坐标. 【详解】解:根据题意,得13OA =,1232A A =⨯ ,2333A A =⨯,可得规律:13n n A A n -=,当机器人走到A 7点时,其横坐标为3-9+15-21=-12;纵坐标为6-12+18=12, 故点A7坐标为(-12,12) 故选择:C . 【点睛】本题考查点的坐标变化,根据题意确定横坐标和纵坐标的变化规律是解决问题的关键. 2.D 【解析】 【分析】可设直线与x 轴相交于C 点.通过求交点C 、D 的坐标可求∥DCO =30°.根据题意得△COA 1、△CB 1A 2、△CB 2A 3…都是等腰三角形,且腰长变化有规律.在正三角形中求高即可得解. 【详解】解:设直线与x 轴相交于C 点.令x =0,则y =33;令y =0,则x =-1. ∥OC =1,OD =33.∥tan∥DCO =33OD OC =, ∥∥DCO =30°. ∥∥OA 1B 1是正三角形, ∥∥A 1OB 1=60°. ∥∥CA 1O =∥A 1CO =30°, ∥OA 1=OC =1.∥第一个正三角形的高=1×sin60°=32; 同理可得:第二个正三角形的边长=1+1=2,高=2×sin60°=3; 第三个正三角形的边长=1+1+2=4,高=4×sin60°=23; 第四个正三角形的边长=1+1+2+4=8,高=8×sin60°=43; …第n 个正三角形的边长=2n -1,高=2n -2×3. ∥第n 个正三角形顶点An 的纵坐标是2n -2×3. 故选:D . 【点睛】本题是一次函数综合题型,主要考查了等腰三角形的性质,一次函数图象上点的坐标特征. 3.C 【解析】 【分析】根据表格可以得到每行数字的排列规律,然后算出a 、b 的值,最后代入求出a +b 的值,即可判断选项. 【详解】观察可得:第一行从第三个数开始,每个数都等于前面两个数的和,第二行的规律与第一行相同.∥81321a =+=,213455b =+= ∥215576a b +=+= 故选C . 【点睛】此题为数字型规律探索问题,解题关键是发现数字的变化规律.4.D【解析】【分析】观察图中黑色正方形的个数,1n =对应的个数为231=-;2n =对应的个数为561231=-=⨯-;3n =对应的个数为891331=-=⨯-;4n =对应的个数为11121341=-=⨯-;进而可推导出一般性规律.【详解】解:图∥中有231131=-=⨯-个黑色正方形;图∥中有561231=-=⨯-个黑色正方形;图∥中有891331=-=⨯-个黑色正方形;图∥中有11121341=-=⨯-个黑色正方形;依此规律,图n 中有31n -个黑色正方形故选D .【点睛】本题考查了图形规律的探究.解题的关键在于推导规律.5.A【解析】【分析】观察四个正方形,可得到规律,每个正方形中左上角的数为连续的偶数,右上角的数比左上角的数大3,左下角的数是右上角的数的相反数,右下角的数=右上角的数与左下角的数的绝对值的乘积+左上角的数-1,依此计算即可求解.【详解】解:观察四个正方形,可得到规律:每个正方形中左上角的数为从0开始的连续的偶数,右上角的数比左上角的数大3,左下角的数是右上角的数的相反数,右下角的数=右上角的数与左下角的数的绝对值的乘积+左上角的数-1,∥m =11×11-+8-1=128,故选:A .【点睛】本题考查了数字的变化规律,能够根据所给表格,发现数字之间的规律是解题的关键. 6.C【解析】【分析】先分别观察给出的四个图形中,小圆圈的个数,找到规律:第n 个图形小圆圈个数为:(1)(2)2n n +++n 2,即可求解本题. 【详解】解:通过观察,得到小圆圈的个数分别是:第∥图形小圆圈个数为:(12)22+⨯+12=4, 第∥个图形小圆圈个数为:(13)32+⨯+22=10, 第∥个图形小圆圈个数为:(14)42+⨯+32=19, 第∥个图形小圆圈个数为:(15)52+⨯+42=31, …, 所以第n 个图形小圆圈个数为:(1)(2)2n n +++n 2, 第∥个图形小圆圈个数为(61)(62)2+++62=64; 故选:C .【点睛】 本题考查的是图形与规律,从图形中读取我们需要的数据,并进行规律的探寻是解题的关键.7.C【解析】【分析】总结第∥,第∥,第∥行的变化规律,分别求出x ,y ,z 的值即可计算.【详解】解:观察第∥行:2、4、6、8、10、12、…∥第100个数为100×2=200,即x =200,观察第∥行:3、5、7、9、11、13、…∥第100个数为100×2+1=201,观察第∥行:1、4、9、16、25、36、…∥第100个数是1002=10000,即x =200、y =201、z =10000,∥2x ﹣y +2z =20199,故选:C .【点睛】本题主要考查的是数字的变化规律,总结归纳出变化规律是解题的关键.8.B【解析】【分析】观察图象,结合第一次从原点O 运动到点1(1,1)P ,第二次运动到点2(2,0)P ,第三次运动到3(3,2)P -,⋯,运动后的点的坐标特点,分别得出点P 运动的横坐标和纵坐标的规律,再根据循环规律可得答案.【详解】解:观察图象,结合第一次从原点O 运动到点1(1,1)P ,第二次运动到点2(2,0)P ,第三次运动到3(3,2)P -,⋯,运动后的点的坐标特点,由图象可得纵坐标每6运动组成一个循环:1(1,1)P ,2(2,0)P ,3(3,2)P -,4(4,0)P ,()55,2P ,()66,0P ⋯202163365÷=⋯,∴经过第2021次运动后,动点P 的坐标与5P 坐标相同,为(5,2),故经过第2021次运动后,动点P 的纵坐标是2.故选:B .【点睛】本题考查了规律型点的坐标,数形结合并从图象中发现循环规律是解题的关键. 9.-398【解析】【分析】根据图中的规律可得8(1)x y +=,求出x 与y 可得答案.【详解】解:2521=+,12522=⨯+;21741=+,721744=⨯+;23761=+,2283766=⨯+;28165x ∴=+=,6588528y =⨯+=,()65(52865)398x y x --=--=-.故答案为:398-.【点睛】考查了规律型:数字的变化类,关键是由图形得到第二行左边的数比第一行数的平方大1,第二行右边的数=第二行左边的数×第一行的数+第一行的数.10. 12 201721 【解析】【分析】根据题意,可以求出前几项的值,从而发现这列数的变化特点,从而可以求得所求式子的值.【详解】解:由题意可得,当11a =-时,2111111(1)2a a ===---, 321121112a a ===--,43111112a a ===---, …∥2020÷3=673…1,∥123202012017(12)673(1)22a a a a ++++=-++⨯+-=, 67312320201[(1)2](1)12a a a a ⨯⨯⨯⨯=-⨯⨯⨯-=. 故答案为:12,20172, 1. 【点睛】 本题考查了数字的变化类,明确题意,发现数字的变化特点是解题的关键.11.63【解析】【分析】n 条直线最多可将平面分成()11123112S n n n =+++⋯+=++,依此可得等量关系:n 条直线最多可将平面分成2017个部分,列出方程求解即可.【详解】解:依题意有:()11120172n n ++=, 整理得,240320n n +-=,所以()()64630n n +-=,解得164(n =-不合题意舍去),263n =.答:n 的值为63,故答案为:63.【点睛】本题考查了规律型:图形的变化类,解一元二次方程,得到分成的最多平面数的规律是解决本题的难点.12.()101010102,2--【解析】【分析】首先根据图形的变化得出OAn 的变化规律,判断出点A 2021的所在象限,再求出其坐标即可.【详解】解:由已知,点A 每次旋转转动45°,则转动一周需转动360845︒=︒(次), 而22111=2OA =+, ()()()222222=2=2OA =+, ()322322=22=2OA =+,…,()=2nn OA (n 为正整数), 即每次转动点A 到原点的距离变为转动前的2倍,202125285=⨯+,∴点2021A 的在第三象限的角平分线上,∥20212021(2)OA =,设点A 2021(x ,x ),其中x <0,∥()22021222x x ⎡⎤+=⎢⎥⎣⎦, ∥2202122x =,∥220202x =,∥10102x =-,∥点A 2021的坐标是()101010102,2--【点睛】本题是平面直角坐标系下的规律探究题,除了研究动点变化的相关数据规律,还应该注意各个象限内点的坐标符号.13.(0,﹣21010)【解析】【分析】根据题意,利用等腰直角三角形的性质,勾股定理,坐标系中点与象限的关系,确定一部分点的坐标,从坐标中寻找规律,再按规律计算即可.【详解】解:∥等腰直角三角形OA 1A 2的直角边OA 1在y 轴的正半轴上,且OA 1=A 1A 2=1, ∥A 1(0,1),A 2(1,1);根据勾股定理得:OA 2=2211=2+,∥OA 3=2OA 2=2,∥A 3(2,0),A 4(2,﹣2),根据勾股定理得:OA 4=2222=22+,∥OA 5=2OA 4=4,∥A 5(0,﹣4),∥A 6(﹣4,﹣4),根据勾股定理得:OA 6=2OA 5=42,∥OA 7=2OA 6=8,∥A 7(﹣8,0),A 8(﹣8,﹣8),根据勾股定理得:OA 8=2OA 7=82,∥OA 9=2OA 8=16,∥A 9(0,16),∥坐标的循环节为8,∥2021÷8=252…5,∥A 2021的坐标与A 5(0,﹣4)的规律相同,∥﹣4=﹣22=5122--,∥A 2021的纵坐标为2021122--=﹣21010,∥A 2021的坐标为(0,﹣21010),故答案为:(0,﹣21010).【点睛】本题考查了坐标系中坐标的变化规律,等腰直角三角形的性质,勾股定理,坐标的特点熟练掌握等腰直角三角形的性质,勾股定理灵活运用一般与特殊的思想,构造幂运算是解题的关键.14.210【解析】【分析】根据层数与正方体个数推导一般规律,第n 层有()1231n n +++⋅⋅⋅+-+个正方体,代值计算求解即可.【详解】解:第1层有1个正方体;第2层有123+=个正方体;第3层有12+36+=个正方体;依次类推,可知第n 层有()1231n n +++⋅⋅⋅+-+=(1)2n n +个正方体; ∥第20层有123192200(2021201)+++⋅⋅⋅++=⨯+=个正方体 故答案为:210.【点睛】本题考查了图形下的数字类规律的探究.解题的关键在于总结一般规律.15.167288【解析】【分析】根据前面三个等式,寻找规律解决问题.【详解】解:由三个等式,得到规律: 635⊕⊗=301545,可知:6×5 3×5 (6+3)×5,276⊕⊗=124254,可知:2×6 7×6 (2+7)×6,834⊕⊗=321244,可知:8×4 3×4 (8+3)×4,∥298⊕⊗=2×8 9×8 (2+9)×8=167288.故答案为:167288.【点睛】本题考查数字的变化规律,能够根据所给的式子,探索出数字之间的联系是解题的关键. 16.991002x【解析】【分析】根据符号的规律:n 为奇数时,单项式为负号,n 为偶数时,单项式为正号;系数的绝对值的规律:第n 个对应的单项式的系数的绝对值是2n −1;指数的规律:第n 个对应的单项式的x 指数是n ,据此解答即可.解:根据题干单项式,可知:n为奇数时,单项式为负号,n为偶数时,符号为正号,所以第100个单项式为正号;系数的绝对值的规律:第n个对应的单项式的系数的绝对值是2n−1,所以第100个单项式对应的系数的绝对值是299;指数的规律:第n个对应的单项式的x指数是n,所以第100个单项式对应的x指数是100,故第100个单项式是299x100.故答案为:299x100.【点睛】本题考查了单项式表示规律,确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.分别找出单项式的系数和次数的规律也是解决此类问题的关键.17.3a+b【解析】【分析】根据所给算式总结规律解答即可.【详解】⊗=⨯+=,解:∥232339()⊗-=⨯-=,313318⊗=⨯+=,4443416()⊗-=⨯-=,5353312∥a b⊗=3a+b,故答案为:3a+b.【点睛】本题考查了规律型-数字的变化类,通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.n-18.1(2,0)【解析】依据直线l 为3y x =,点1(1,0)A ,11A B x ⊥轴,可得2(2,0)A ,同理可得,3(4,0)A ,4(8,0)A ,…,依据此规律可得点n A 的坐标为()12,0n -.【详解】解:直线l 为3y x =,点1(1,0)A ,11A B x ⊥轴,∴当1x =时,3y =,即1(1,3)B ,11tan 3A OB ∴∠=,1160AOB ∴∠=︒,1130A B O ∠=︒,1122OB OA ∴==,以原点O 为圆心,1OB 长为半径画圆弧交x 轴于点2A ,2(2,0)A ∴,同理可得,3(4,0)A ,4(8,0)A ,⋯,∴点n A 的坐标为1(2,0)n -,故答案为:1(2,0)n -.【点睛】本题主要考查了一次函数图象上点的坐标特征,以及点的坐标的规律性,解题时注意:直线上任意一点的坐标都满足函数关系式()0y kx b k =+≠,在找规律时,A 点的横坐标的指数与A 所处的位数容易搞错,应注意.19.40434044- 【解析】【分析】根据前几个数的变化规律得到第n 个数为121(1)()2n n n+--,据此即可解答. 【详解】解:观察一列数:12,34-,56,78-,⋯,可得变化规律为:第n 个数为121(1)()2n n n+--, ∥第2022个数是40434044-, 故答案为:40434044-. 【点睛】 本题考查数字类规律探究,仔细观察,找到数字变化规律是解答的关键.20. 120 3486【解析】【分析】首先得到前n 个图形中每个图形中的黑色圆点的个数,得到第n 个图形中的黑色圆点的个数为(1)2n n +,再判断其中能被3整除的数,得到每3个数中,都有2个能被3整除,再计算出第10和55个能被3整除的数所在组为原数列中的个数,代入计算即可.【详解】第∥个图形中的黑色圆点的个数为:1,第∥个图形中的黑色圆点的个数为:2(21)32⨯+=, 第∥个图形中的黑色圆点的个数为:3(31)62⨯+=, 第∥个图形中的黑色圆点的个数为:4(41)102⨯+=, ……第n 个图形中的黑色圆点的个数为(1)2n n ⨯+, ∥这列数为1,3,6,10,15,21,28,36,45,55,66,78,91,...,∥其中每3个数中,都有2个能被3整除,10÷2=5(组),∥第10个能被3整除的数为原数列中的个数为5×3=15(个),∥15(151)2⨯+=120, ∥55÷2=27(组)……1,∥第55个能被3整除的数为原数列中的个数为27×3+2=83(个)∥83(831)2⨯+=3486, 故答案为:120,3486【点睛】此题考查了图形类的规律变化,通过归纳与总结,得到其中的规律是解题关键. 21.(22020﹣2,22021)【解析】【分析】根据平行四边形的性质及判定可得四边形AB 1OB 是平行四边形,从而推出B 1O =CO =AB =2,再根据直线之间的垂直和平行关系以及相似三角形的判定定理得到∥AOC ∥∥A 1B 1C ,∥AOB 1∥∥A 1B 1B 2,∥A 1B 1C ∥∥A 2B 2C ,利用相似三角形的性质解得A 1B 1=2,B 1B 2=4,A 2B 2=4,再根据点的坐标特征寻找出规律,最后运用即可解答.【详解】解:∥四边形OABC 是矩形∥AB =CO ,且AB CO ∥,又∥1AB OB ∥,∥四边形AB 1OB 是平行四边形,∥B 1O =AB ,∥点B 的坐标是(﹣2,1),∥B 1O =CO =AB =2,∥A 1B 1∥x 轴,∥11A B AO ∥,∥∥AOC ∥∥A 1B 1C ,∥111AO CO A B CB =,即11124A B =,解得A 1B 1=2, ∥点A 1坐标为(22﹣2,2),又∥11A B AO ∥,∥∥AOB 1∥∥A 1B 1B 2,∥11211OB AO B B A B ==12, ∥B 1B 2=4,∥A 2B 2∥x 轴,∥2211A B A B ∥,∥∥A 1B 1C ∥∥A 2B 2C ,∥111222A B CB A B CB =48, ∥A 2B 2=4,∥点A 2(23﹣2,22),以此类推...,A 2021的坐标为(22020﹣2,22021),故答案为:(22020﹣2,22021).【点睛】本题主要考查了矩形的性质、平行四边形的性质与判定、相似三角形的判定与性质以及坐标规律等知识点,根据坐标特征、总结坐标规律成为解答本题的关键.22.OE【解析】【分析】根据点在射线上的排布顺序发现规律“射线上的数字以6为周期循环”,依此规律即可得出结论.【详解】解:根据数的排布发现:1在OA 上,2在OB 上,3在OC 上,4在OD 上,5在OE 上,6在OF 上,7在OA 上,…,射线上的数字以6为周期循环,∥2021÷6=336……5,∥2021与5在同一条射线上,即2021在射线OE 上.故答案为:OE .【点睛】本题考查了规律型中的数字的变化类,解题的关键是找出规律“射线上的数字以6为周期循环”.本题属于基础题,难度不大,解决该题型题目时,根据射线上数字的排布找出规律是关键.23.106【解析】找出规律:“1”的规律是:最先3个棋子,以后每次加1,第20个“100”中的“1”有:3+19=22(个)棋子;“0”的规律是:最先4个棋子,以后每次加2个,第20个“100”中的“0”有:4+19×2=42(个)棋子,从而可求得总的棋子数.【详解】由题意得:(3+19)+2×(4+19×2)=106(个)故答案为:106【点睛】本题考查了图形的规律,找出规律是本题的关键.24.21n -##-1+2n【解析】【分析】根据题意得:第1个数为1,第2个数为3221=⨯-,第3个数为5231=⨯-,第4个数为7241=⨯-,第5个数为9251=⨯-,……,由此发现规律,即可求解.【详解】解:根据题意得:第1个数为1,第2个数为3221=⨯-,第3个数为5231=⨯-,第4个数为7241=⨯-,第5个数为9251=⨯-,……,由此发现,第n 个数为21n -.故答案为:21n -【点睛】本题主要考查了数字类规律题,明确题意,准确得到规律是解题的关键.25.8【解析】【分析】通过观察可知每运算四次个位数循环一次,由此可知22020﹣22019的个位数与23的尾数相同.解:∵21=2,22=4,23=8,24=16,25=32,26=64,∴每运算四次个位数循环一次,∵22020﹣22019=22019(2﹣1)=22019,∵2019÷4=504…3,∴22020﹣22019的个位数与23的尾数相同,∴22020﹣22019的个位数字是8,故答案为:8.【点睛】本题考查数字的变化规律,能够通过所给数对个位数的特点,确定个位数的循环规律是解题的关键.26.()21nn x - 【解析】【分析】根据单项式的系数与次数的变化,探索个数与系数、次数的关系的一般性规律即可.【详解】 解:第1个单项式x 中,系数为1,次数为1;第2个单项式23x 中,系数为3,341221=-=⨯-,次数为2;第3个单项式35x 中,系数为5,561321=-=⨯-,次数为3;第4个单项式47x 中,系数为7,781421=-=⨯-,次数为4;第5个单项式59x 中,系数为9,9101521=-=⨯-,次数为5;依次类推,可知第n 个单项式的系数为21n -,次数为n ,单项式为()21nn x - 故答案为:()21nn x -. 【点睛】本题考查了单项式,数字规律的探究.解题的关键在于总结一般性规律.27.30【解析】【分析】首先分析题意,找到规律,并进行推导得出答案.解:观察分析可得:第1个图形有7个小圆点,7=6+1,第2个图形有13个小圆点,13=6×2+1,第3个图形有19个小圆点,19=6×3+1,…,第n个图形小圆点的个数为6n+1,所以6n+1=181,解得:n=30.故答案为:30【点睛】本题主要考查了图形类规律题,明确题意,准确得到规律是解题的关键.28.(1)45×45=4×5×100+25=2025(2)(10n+5)2=100n(n+1)+25,证明见解析【解析】【分析】(1)从给出的数据分析得,这些得出的结果最后两位都为25,百位以上2=1×2,6=2×3,12=3×4,…,依此类推得出规律:百位为n×(n+1).(2)直接利用已知数据变化规律进而得出符合题意的公式.(1)解:根据数据可分析出规律,个位数位5的整数的平方运算结果的最后2位一定是25,百位以上结果则为n×(n+1),∥第4个算式应为45×45=4×5×100+25=2025.(2)规律:(10n+5)2=100n(n+1)+25,证明:∥左边=100n2+100n+25,右边=100n2+100n+25,∥左边=右边,∥(10n+5)2=100n(n+1)+25.【点睛】本题考查规律型中的数字变化问题,本题的规律为个位数位5的整数的平方运算结果的最后2位一定是25,百位以上结果则为n×(n+1),难度一般.29.(1)第63行,这个数为358;(2)(﹣1)n+13k﹣1;(3)63312-.【解析】【分析】每一行的数的个数和行数都是相同的,奇数行的数字都是3n﹣1,偶数行的数字都是(﹣3)n﹣1,统一为(﹣1)n+13n﹣1;(1)设第2012个数在第n行,则1+2+3+…+n=(1)2n n+,估算得出答案即可;(2)有以上分析直接写出即可;(3)写出第2012个数所在行的所有数,进一步求和即可.(1)解:∥每一行的数的个数和行数都是相同的,奇数行的数字都是3n﹣1,偶数行的数字都是(﹣3)n﹣1,设行数为n,数字个数为k,k=1+2+3+…+n=(1)2n n+,当n=62时,62+2⨯(621)=1953;当n=63时,63+2⨯(631)=2016;∥62+2⨯(621)=1953<2012<63+2⨯(631)=2016,所以第2012个数在第63行,从左往右数第2012﹣1953=59个,这个数为358;(2)解:由以上分析可直接写出为(﹣1)n+13k﹣1;(3)解:∥S=1+3+32+ (362)∥3S=3+32+…+362+363∥由∥﹣∥得2S=363﹣1∥S =1+3+32+…+362=63312- . 【点睛】此题考查数字的变化规律,找出数字之间的联系,得出规律,解决问题.30.(1)见解析(2)方框里中间数是33【解析】【分析】(1)观察所给的数表即可得;(2)设方框里中间数为x ,则另外8个数为2x -,2x +,10x -,10x +,12x -,12x +,8x -,8x +,由题意得,221010121288297x x x x x x x x x -+-+-+++-+++-+++= 进行计算即可得.(1)解:规律有:∥第一列个位数都是1,∥每行只有5个奇数,∥每行相邻两个数的和是2的倍数,∥每列相邻的两个数相差10.(2)解:设方框里中间数为x ,则另外8个数为2x -,2x +,10x -,10x +,12x -,12x +,8x -,8x +,由题意得,221010121288297x x x x x x x x x -+-+-+++-+++-+++=9297x =,33x =,则方框里中间数是33.【点睛】本题考查了数字规律,一元一次方程,解题的关键是理解题意,掌握一元一次方程的应用.。
2020年中考数学找规律专题复习试题(带答案和解释)
中考数学专题复习:找规律1.下图是某月的日历表,在此日历表上可以用一个矩形圈出3×3个位置相邻的9个数(如6,7,8,l 3,14,l 5,20,21,22).若圈出的9个数中,最大数与最小数的积为192,则这9个数的和为【 】.A .32B .126C .135D .144【答案】D 。
【考点】分类归纳(数字的变化类),一元二次方程的应用。
【分析】由日历表可知,圈出的9个数中,最大数与最小数的差总为16,又已知最大数与最小数的积为192,所以设最大数为x ,则最小数为x -16。
∴x (x -16)=192,解得x =24或x =-8(负数舍去)。
∴最大数为24,最小数为8。
∴圈出的9个数为8,9,10,15,16,17,22,23,24。
和为144。
故选D 。
2.某单位要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排10场比赛,则参加比赛的球队应有【 】A .7队B .6队C .5队D .4队【答案】C 。
【考点】分类归纳(数字的变化类),一元二次方程的应用。
【分析】设邀请x 个球队参加比赛,那么第一个球队和其他球队打(x -1)场球,第二个球队和其他球队 打(x -2)场,以此类推可以知道共打(1+2+3+…+x -1)= x(x 1)2-场球,根据计划安排10场比赛即可 列出方程:x(x 1)102-=, ∴x 2-x -20=0,解得x =5或x =-4(不合题意,舍去)。
故选C 。
3.观察下列一组数:32,54,76,98,1110,…… ,它们是按一定规律排列的,那么这一组数的第k 个数是 ▲ . 【答案】2k2k+1。
【考点】分类归纳(数字的变化类)。
【分析】根据已知得出数字分母与分子的变化规律:分子是连续的偶数,分母是连续的奇数,∴第k个数分子是2k,分母是2k+1。
∴这一组数的第k个数是2k2k+1。
4. 填在下列各图形中的三个数之间都有相同的规律,根据此规律,a的值是▲ .【答案】900。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学找规律(5)--坐标类一、选择题1、如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A1,A2,A3,A4,…表示,则顶点A55的坐标是()A、(13,13)B、(﹣13,﹣13)C、(14,14)D、(﹣14,﹣14)第2题第1题2、一个质点在第一象限及x轴、y轴上运动,在第一秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动,且每秒移动一个单位,那么第2008秒时质点所在位置的坐标是()【列举找规律】A、(16,16)B、(44,44)C、(44,16)D、(16,44)第n圈0 1 2 3 ……n每圈移动次数 1 3 5 7 2n+1中点所在轴y X Y X总的运动次数为S=1+3+5+7+……+2n+1=(n+1)2,452=2025,n+1=45,n=44,终点落在y 轴上,后退17到2008步。
3、在平面直角坐标系中,对于平面内任一点(a,b),若规定以下三种变换:(1)、f(a,b)=(﹣a,b).如:f(1,3)=(﹣1,3);(2)、g(a,b)=(b,a).如:g(1,3)=(3,1);(3)、h(a,b)=(﹣a,﹣b).如:h(1,3)=(﹣1,﹣3).按照以上变换有:f(g(2,﹣3))=f(﹣3,2)=(3,2),那么f(h(5,﹣3))等于()A、(﹣5,﹣3)B、(5,3)C、(5,﹣3)D、(﹣5,3)4、在直角坐标系中,一只电子青蛙每次向上或向下或向左或向右跳动一格,现知这只青蛙位于(2,﹣3),则经两次跳动后,它不可能跳到的位置是()A、(3,﹣2)B、(4,﹣3)C、(4,﹣2)D、(1,﹣2)5、如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0)(4,0)根据这个规律探索可得,第100个点的坐标为 (14,8) .6、如图,已知A l (1,0),A 2(1,1),A 3(﹣1,1),A 4(﹣1,﹣1),A 5(2,﹣1),….则点A 2007的坐标为 .【除A1外,四步一循环,一定要和圈数建立函数关系列举A 4n (-n,-n)A 4n-1(-n,n) A 4n-2(n,n),A 4n-3(n,-n+1)】7、已知甲运动方式为:先竖直向上运动1个单位长度后,再水平向右运动2个单位长度;乙运动方式为:先竖直向下运动2个单位长度后,再水平向左运动3个单位长度.在平面直角坐标系内,现有一动点P 第1次从原点O 出发按甲方式运动到点P 1,第2次从点P 1出发按乙方式运动到点P 2,第3次从点P 2出发再按甲方式运动到点P 3,第4次从点P 3出发再按乙方式运动到点P 4,….依此运动规律,则经过第11次运动后,动点P 所在位置P 11的坐标是 .第100次运动后P 100点的坐标是 第2013点的坐标P 2013【提示:两次合起来结果如何 (x,y) →(x+2,y+1)→(x+2-3,y+1-2) →(x-1,y-1)】8、一个质点在第一象限及x 轴、y 轴上运动,在第一秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动,即(0,0)→(0,1)→(1,1)→(1,0)→…,且每秒移动一个单位,那么第35秒时质点所在位置的坐标是 (5,0) . 9、如图,在平面直角坐标系上有个点P (1,0),点P 第1次向上跳动1个单位至点P 1(1,1),紧接着第2次向左跳动2个单位至点P 2(﹣1,1),第3次向上跳动1个单位,第4次向右跳动3个单位,第5次又向上跳动1个单位,第6次向左跳动4个单位,…,依此规律跳动下去,点P 第100次跳动至点P 100的坐标是 .点P 第2009次跳动至点P 2009的坐标是 (503,1003) . 【跳动四次一变化】P0(1,0) P1(1,1) P2(-1,1) P3(-1,2) P4(2,2) P5(2,3) P6(-2,3) P7(-2,4) P8(3,4) P9(3,5) P10(-3,5) P11(-3,6) P12(4,6) …… ………………P4n-3(n,2n-3)P4n-2(-n,2n-10P4n-1(-n ,2n ) P4n(n+1,2n)第8题 第5题第6题10、如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(0,0)→(1,0)→(1,1)→(2,2)→(2,1)→(2,0)…根据这个规律探索可得,第100个点的坐标是___(13,8)______.11、如图,已知A1(1,0),A2(1,﹣1),A3(﹣1,﹣1),A4(﹣1,1),A5(2,1),…,则点A2010的坐标是(503,-503) .【易错】第11题第12题12、电子跳蚤游戏盘为△ABC(如图),AB=8,AC=9,BC=10,如果电子跳蚤开始时在BC边上P0点,BP0=4,第一步跳蚤跳到AC边上P1点,且CP1=CP0;第二步跳蚤从P1跳到AB边上P2点,且AP2=AP1;第三步跳蚤从P2跳回到BC边上P3点,且BP3=BP2;…跳蚤按上述规定跳下去,第2008次落点为P2008,则点P2008与A点之间的距离为4.13、以0为原点,正东,正北方向为x轴,y轴正方向建立平面直角坐标系,一个机器人从原点O点出发,向正东方向走3米到达A1点,再向正北方向走6米到达A2,再向正西方向走9米到达A3,再向正南方向走12米到达A4,再向正东方向走15米到达A5,按此规律走下去,当机器人走到A6时,A6的坐标是.A1(3,0) A2 (3,6) A3 (-6, 6) A4 (-6,-6) A5 (9,-6)A6 (9,12) A7 (-12,12) A8 (-12,-12) A9 (15,-12)……………………A4n-2 (6n-3,6n)A4n-1 (-6n,6n) A4n (-6n,-6n) A4n+1(6n+3,-6n) 14、观察下列有规律的点的坐标:依此规律,A11的坐标为,A12的坐标为.【析:观察图中数据,分下标为奇数和偶数两种情况分析解答.解答:解:观察点的坐标可以得到以下规律:点的横坐标的值就等于对应的点下标的数值;纵坐标,当下标是奇数时是正数,后一偶数项的纵坐标依次比前一偶数项的纵坐标多3,故A11的坐标为(11,16),当下标是偶数时纵坐标是负数,后一偶数项的纵坐标依次为前一偶数项的纵坐标的、、…,故A12的坐标为(12,﹣).故答案分别为:(11,16)、(12,﹣).】15、设坐标平面内有一个质点从原点出发,沿x轴跳动,每次向正方向或负方向跳动1个单位,经过5次跳动质点落在点(3,0)(允许重复过此点)处,则质点不同的运动方案共有种.【注意列举】16、已知,如图:在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A、C的坐标分别为A(10,0)、C(0,4),点D是OA的中点,点P在BC边上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为.第16题第17题17.(2013•湛江)如图,所有正三角形的一边平行于x轴,一顶点在y轴上.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A1、A2、A3、A4…表示,其中A1A2与x轴、底边A1A2与A4A5、A4A5与A7A8、…均相距一个单位,则顶点A3的坐标是_________,A92的坐标是_________.18在平面直角坐标系中,一动点从原点0出发,按向上,向右,向下,向右的方向不断移动,每次移动一个单位长度,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),……那么点A(4n﹢1)(n 为自然数)的坐标为什么?19、(2012•泰安)如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)…根据这个规律,第2012个点的横坐标为第18题【解:根据图形,以最外边的正方形边长上的点为准,点的总个数等于x轴上右下角的点的横坐标的平方,例如:右下角的点的横坐标为1,共有1个,1=12,右下角的点的横坐标为2时,共有4个,4=22,右下角的点的横坐标为3时,共有9个,9=32,右下角的点的横坐标为4时,共有16个,16=42,…右下角的点的横坐标为n时,共有n2个,∵452=2025,45是奇数,】练习1(综合题)如图,在平面直角坐标系中,点A的坐标为(1,1),点B的坐标为(11,1),若点C到直线AB的距离为4,且△ABC是直角三角形,则满足条件的点第19题C有若干个.(1)请在坐标系中把所有这样的点C都找出来,画上实心点,这些点用C1,C2,…表示;(2)写出这些点C1,C2,…对应的坐标.【问题解决的大致步骤已经知道,只是想问一下,根据A、B两点的坐标特点,直线AB∥x 轴,则到直线AB的距离为4的点在平行于直线AB的直线上且距离为4,有两条直线,根据直角三角形斜边上的中线等于斜边的一半,以AB的中点为圆心,半径5画弧与两直线的交点即为直角三角形的第三个顶点,这样的作法的理论依据是什么。
若AB是直角边,则满足条件的有4个点(1,5),(1,-3),(11,5)(11,-3)若AB是斜边,设C(x,5),过C作AB边上的高,由射影定理,得,42=(x-1)(11-x)若AB是斜边,设C(x,5),过C作AB边上的高CE,由△ACE∽△CBE,得,AE/CE=CE/BE,即CE2=AE*BE解得x1=3,x2=9所以有(3,5),(9,5)根据对称性,得另外两点(3,-3)(9,-3)所以共有8个点符合要求】2、如图,有一系列有规律的点,它们分别是以O为顶点,边长为正整数的正方形的顶点,A1(0,1)、A2(1,1)、A3(1,0)、A4(2,0)、A5(2,2)、A6(0,2)、A7(0,3)、A 8(3,3)…,依此规律,点A20的坐标为()• A. (7,0) B. (0,7) C. (7,7) D. (8,8)。