小学六年级数学比与比例练习题讲解学习
六年级数学下册典型例题系列之第四单元比例的应用部分(解析版)(苏教版)
2021-2022学年六年级数学下册典型例题系列之第四单元比例的应用部分(解析版)编者的话:《2021-2022学年六年级数学下册典型例题系列》是基于教材知识点和常年考点考题总结与编辑而成的,该系列主要包含典型例题和专项练习两大部分。
典型例题部分是按照单元顺序进行编辑,主要分为计算和应用两大部分,其优点在于考题典型,考点丰富,变式多样。
专项练习部分是从常考题和期末真题中选取对应练习,其优点在于选题经典,题型多样,题量适中。
本专题是第四单元比例的应用部分。
本部分内容主要考察比例的应用,包括比例的一般应用题和图形的放大与缩小等内容,内容和题型较少,更多有关比例应用题的内容请参考编者《第六单元正比例和反比例的应用部分基础篇》与《第六单元正比例和反比例的应用部分提高篇》,一共划分为四个考点,建议作为本章重点进行讲解,欢迎使用。
【考点一】根据对应边的比,列方程解决问题。
【方法点拨】该类题型主要考察图形的放大与缩小,要以对应边的比为等量建立方程求解。
【典型例题】将下图左边的三角形按比例缩小后得到右边的三角形,求未知数x。
解析:解:3.2∶1.6=4.8∶x3.2x=1.6×4.8x=7.68÷3.2x=2.4【对应练习1】下图中小平行四边形按比放大后得到大平行四边形,求大平行四边形的高。
(单位:分米)解析:解:设大平行四边形的高为x分米。
3.2∶1.2=12.8∶x3.2x=1.2×12.83.2x=15.36x=15.36÷3.2x=4.8答:大平行四边形的高是4.8分米。
【对应练习2】把左边的长方形按比例放大后得到右边的图形,右边长方形的宽是多少?(单位:厘米)解析:解:设右边长方形的宽是x厘米。
20∶12=50∶x20x=12×5020x=600x=30答:边长方形的宽是30厘米。
【对应练习3】将下图的三角形一定的比缩小后得到右边的三角形,求未知数x的值。
小升初比和比例应用题专题练习(应用题)人教版六年级下册数学
人教版小升初比和比例应用题专题练习学校:___________姓名:___________班级:___________考号:___________一、解答题1.希望小学六年级学生中,男生与女生的人数比为7∶5,又转来15名男生,这时男生与女生的人数比为3∶2。
希望小学六年级现在有多少名学生?2.下面是三名同学某次足球练习情况。
姓名射门/次射中/次张晓156李欣105王浩1810(1)张晓的射中次数与射门次数的比是(),比值是()。
(2)李欣的射中次数与射门次数的比是(),比值是()。
(3)王浩的射中次数与射门次数的比是(),比值是()。
(4)马上举行全省小学生足球赛,各个小学推荐一名优秀的足球选手。
如果你是体育老师,你会推荐谁去?为什么?3.甲、乙、丙三人参加长跑比赛,甲和乙速度比是3:4,乙和丙速度的比是2∶5,求甲、乙、两三人速度的比.4.五(1)班男、女生人数比是12:11,又转来4名女生后,全班共有50人,求现在男、女生的人数比?5.某工厂有三个车间,第一车间人数与总数的比是1∶4,第二车间人数是第三车间的78。
第一车间比第三车间少21人,这个工厂一共有多少人?6.园林绿化队要栽一批树苗,第一天栽了总数的15%,第二天栽了76棵,这时剩下的与已栽的棵数的比是3:5.这批树苗一共有多少棵?7.新学期,六(一)班购置图书50本,要分给班上的男生和女生,男生人数和女生人数的比是1∶4,男生和女生各能分到多少本书?8.老师给班里买了90本儿童读物,按4∶5分别借给一组和二组。
这两个组各借书多少本?(用两种方法解答)9.一台播种机第一次工作3时,播种17100m2;第二次工作4时,播种22800m2,分别写出每次播种的面积和工作时间的比,你认为它们能组成比例吗?为什么?10.两个外项的积加上两个内项的积结果是120,其中一个内项是最小的质数,一个外项是最小的合数,请你写出所有符合条件的比例。
11.五一假期,郑磊和爸爸妈妈自驾去外地看外婆。
西师版小学数学六年级上册第四单元 比和按比例分配 5 按比例分配的方法解决实际问题
根据:长:宽:高=4∶3∶2 求出:长方体的长、宽、高
再求出:长方体的表面积
解答: 长方体长、宽、高的和:72÷4=18(厘米)
长方体的表面积: (8×6+8×4+6×4)×2=104×2
=208(平方厘米) 答:长方体的表面积是208立方厘米。
下面的解答正确吗?
六(1)班美术小组与文艺小组的人数比是5∶8,文艺 小组的人数是16,两个小组一共有多少人?
解答: 一班:
二班:
三班:
答:三个班各应分得图书168本、180本、176本。
课堂小结
这节课你们都学会了哪些知识?
1.把一个数量按照已知的比分成三部分,应先求出 三个部分量各占总量的几分之几,然后用乘法分别
求出每个部分的数量。
2.借助线段图理解按比例分配问题。
课后作业
1.从教材课后习题中选取; P25.从练课习时一练第中1选、取2、。6题;
总份数:2+3+6=11
按比例分配
列式解答:
40(吨) 60(吨) 120(吨)
答:需要水泥40吨,沙子60吨,石子120吨。
课堂练习
一个长方体的棱长和是72厘米,长、宽、高的比是 4∶3∶2,长方体的表面积是多少?
解题思路: 由:长方体的棱长和为72厘米 可得:长+宽+高=72÷4=18(厘米)
(3)农业专业户计划在承包的28公顷地里种植水稻和 玉米,种植的面积比是4∶1。水稻种了(22.4)公顷, 玉米种了(5.6)公顷。
探究新知
要配制220吨混凝土(水泥、沙子、石子的比 如下),需要水泥、沙子、石子各多少吨?
例2
水泥、沙子、 石子的比是 2∶3∶6
理解题意:
水泥、沙子、 石子的比是: 2∶3∶6
六年级数学下册《用比例解决问题》练习题及答案解析
六年级数学下册《用比例解决问题》练习题及答案解析学校:___________姓名:___________班级:_____________一、选择题1.一条2厘米的线段,选用下面比例尺()画出的平面图最大。
A.1∶200B.1∶5000C.1∶1D.2∶12.老师买了同样数目的田格本、横线本和练习本。
他发给每个同学1个田格本、3个横线本和5个练习本。
这时横线本还剩24个,那么田格本和练习本共剩了()个。
A.48B.50C.54D.563.把一个圆柱削成一个最大的圆锥,削去的体积是48立方分米,圆柱的体积是()立方分米。
A.144B.24C.724.一幅地图的比例尺是1∶1000000,下列说法不正确的是()。
A.这是一个数值比例尺B.说明要把实际距离缩小为11000000后,再画在图纸上C.图上距离相当于实际距离的1 1000000D.图上1厘米相当于实际1000000米5.下列各数中,()不能与2、8、10组成比例。
A.58B.85C.52D.406.甲乙两个容积相同的瓶子分别装满盐水,已知甲瓶中盐、水的比是2∶3,乙瓶中盐、水的比是3∶5,现在把甲、乙两瓶水混合在一起,则混合盐水中,盐与盐水的比是()。
A.519B.521C.524D.31807.一个水池有甲乙两个水管。
单独开甲管,2小时可以把空池注满;单独开乙管,3小时可以把空池注满。
如果同时打开甲乙两管,()小时可以把空池注满。
A.1B.15C.115D.58.希望小学合唱队共有队员108人,则()一定不是男队员和女队员人数的比。
A.5∶4B.7∶5C.8∶7D.19∶17 9.表示x和y成正比例关系的式子是().A.x+y=9B.y=1.5x C.=0D.xy+1=510.学校把560棵树的种植任务,按照六年级三个班的人数分配给各班。
一班有47人,二班有45人,三班有48人。
二班应种树()。
A.192棵B.188棵C.180棵11.在一幅地图上,用20厘米的线段表示50千米的实际距离,那么这幅地图的比例尺是()。
北师大版小学数学六年级上册《比的应用》知识点讲解总结练习解析
比的应用知识精讲1.按比分配在生产和生活中,常常需要把一个数量按照一定的比来进行分配。
这种分配方法通常叫按比分配。
2.比的应用比的应用主要是指按比分配。
3.平均分平均分是按比1∶1来分配,是按比分配的特例。
名师点睛1.按比分配的标准形式是:已知总量(即各分量的和)和分量的比,求各分量。
例:140个橘子,按3∶2分给大、小两个班,每个班各分多少个?这里140个是总量(大、小两个班所分橘子的总数),3∶2是分量之比(大班分到橘子的个数与小班分到橘子的个数之比),要求两个班各分多少个就是要求各分量。
标准解法有两种:解法一:3+2=5。
140÷5=28(个)。
——求出每份的个数(此解法的关键)大班:28×3=84(个);——注明分量名称,不易出错小班:28×2=56(个)或140-84=56(个)。
解法二:3+2=5。
大班:140×35= 84(个)。
——明确各分量占总量的几分之几(此解法的关键)小班:140×25= 56(个)或140-84 = 56(个)。
解题思想主要有两个:一是求出每份的个数;二是找到各分量占总量的几分之几。
2.按比分配应用问题的标准形式可以演变出以下几种形式。
①已知分量和的倍数与分量比,求各分量。
只要将分量和的倍数÷倍数,得到分量和,就转化为标准形式了。
例:长方形的周长÷2 =长+宽;长方体的棱长和÷4 =长+宽+高。
②已知分量的平均数与分量比,求各分量。
先由分量的平均数算出分量和,然后转化为按比分配的标准形式。
③已知分量差与分量比,求各分量。
根据分量比,先用减法算出分量份数的差,再用分量差÷分量的份数差,得到一份的数量,各分量就好求了。
④已知一个分量和分量比,求另一分量。
此时用:已知分量÷对应份数,求出一份的数量,后面就好求了。
3.多个分量的按比分配,方法与两个分量的按比分配相同。
【典型例题系列】六年级数学下册典型例题系列之第二单元比例的计算部分(解析版)北师大版
六年级数学下册典型例题系列之第二单元比例的计算部分(解析版)编者的话:《六年级数学下册典型例题系列》是基于教材知识点和常年考点考题总结与编辑而成的,该系列主要包含典型例题和专项练习两大部分。
典型例题部分是按照单元顺序进行编辑,主要分为计算和应用两大部分,其优点在于考题典型,考点丰富,变式多样。
专项练习部分是从常考题和期末真题中选取对应练习,其优点在于选题经典,题型多样,题量适中。
本专题是第二单元比例的计算部分。
本部分内容考察比例及解比例,主要为与比例有关的计算题型,考点和题型稍多,建议作为本章重点内容进行讲解,一共划分为十二个考点,欢迎使用。
【考点一】比例的意义及判断。
【方法点拨】 1.比例的意义:(1)表示两个比相等的式子叫做比例。
(2)根据比例的意义可以判断两个比能否组成比例。
2.比例的各部分名称:(1)组成比例的四个数,叫做比例的项。
(2)在比例中,两端的两项叫做比例的外项,中间的两项叫做比例的内项。
3.比例的三种常见形式: (1)比例式: 例如:80:2=200:5 (2)分数式: 例如:5200280(3)乘积式: 例如:80×5=200×2 【典型例题】能与14∶15组成比例的是( )。
A .4∶5 B .5∶4C .15∶14D .6∶10解析:B 【对应练习1】下面能与3∶8组成比例的是( )。
A .8∶3 B .15∶40C .0.2∶0.6解析:B 【对应练习2】下面( )组中的四个数可以组成比例。
A.4.5,3,12和1.5 B.2,3,4和5C.1.6,6.4,2和5 D.12,13,14和16解析:D【对应练习3】下面各比中,与11:75能组成比例的是()。
A.5∶7 B.11:57C.7∶5 D.0.7∶0.5解析:A【考点二】已知比值,求比例。
【方法点拨】此类题型,组成比例的两个比,前一个比不知后项,后一个比不知前项,就用比的前项除以比值,即可求出前一个比的后项,用比的后项乘比值,即可求出后一个比的前项,最后再写出比例。
小学数学六年级《比和比例问题(二)》练习题
比和比例问题(二)【例题选讲】例1.甲、乙、丙三人买了7个面包平分吃了,甲付了4个面包的钱,乙付了3个面包的钱,事后丙拿出1.33元还给甲、乙,甲、乙各应收回多少钱?例2.甲、乙两个长方形,它们的周长相等,甲的长与宽的比是3:2,乙的长与宽的比是7:5,求甲与乙的面积之比。
例3.甲、乙两个仓库存货物吨数比为4:3。
如果由甲库中取出8吨到乙库中,则甲、乙两个仓库存货吨数比为4:5,求两个仓库货物总吨数。
例4.有一个布袋中装有3个黑球和2个红球,其中黑球红球中各有1个次品,小芳闭着眼睛从袋中摸出两个球,摸出两个球是正品的可能性是几分之几?例5.甲、乙两人分别从A、B两地同时出发,相向而行,出发时他们的速度比是3:2,他们第一次相遇后,甲的速度提高了20%,乙的速度提高了30%,这样,当甲到达乙地时,乙离A地还有14千米,那么,A、B两地之间的距离是多少千米?【课内练习】1.一个长方体,长与宽的比为2:1,宽与高的比为3:2,求长与高的比?2.两袋大米共重440千克,甲袋米吃了31,乙袋米吃去21,这时甲袋米与乙袋米重量之比为8:5,问原来甲、乙两袋米各重多少千克?3.某工厂女工占工人总数的85,后来又调来30名女工,这时女工人数是男工人数的2倍,现在厂里共有多少名工人?4.甲、乙两同学的分数比是5:4,如果甲少得22.5分,乙多得22.5分,则他们的分数比是5:7,甲、乙原来各得多少分?5.三批货物共值152万元,第一、二、三批货物的重量之比是2:4:3,单位重量的价格之比为6:5:2。
这三批货物各值多少万元?6.有一个长方体,长和宽的比是2:1,宽与高的比是3:2,已知这个长方体的全部棱长之和220厘米,求这个长方体的体积。
7.一个长方形,长与宽的比是14:5,如是长减少13厘米,宽增加13厘米,则面积增加182平方厘米,求原长方形的面积。
8.有两个圆,它们的面积之差是209平方厘米,已知大圆周长是小圆周长的911倍,小圆的面积是多少平方厘米?9.六年级240人,喜欢语文与不喜欢语文人数比是5:3,喜欢数学与不喜欢数学人数比是7:5,两门都不喜欢的最多有多少人?10.甲、乙两人同时骑自行车从东西两镇相向而行,甲和乙的速度比为3:4,已知甲行了全程的31,离相遇点还有20千米,相遇时甲比乙少行多千米?【例题选讲】例1.甲、乙、丙三人买了7个面包平分吃了,甲付了4个面包的钱,乙付了3个面包的钱,事后丙拿出1.33元还给甲、乙,甲、乙各应收回多少钱? 甲95分 乙38分例2.甲、乙两个长方形,它们的周长相等,甲的长与宽的比是3:2,乙的长与宽的比是7:5,求甲与乙的面积之比。
小学六年级比的应用应用题题型解析
小学六年级比的应用应用题题型解析在小学数学的学习中,比的应用是一个重要的知识点。
尤其是在六年级,我们经常会遇到与比相关的应用题。
本文将对这些题型进行解析,希望能帮助同学们更好地理解和掌握比的应用。
一、定义和概念我们需要理解什么是比。
比是指两个量之间的关系,通常用冒号或斜线表示。
例如,A与B的比是3:2,或者A是B的1.5倍。
二、常见的题型解析1、比例分配问题比例分配问题是比的应用中最常见的一种题型。
例如,有10个苹果,分给A、B、C三个人,要求他们之间的分配比例是2:3:5。
我们需要找出每个人应该得到多少个苹果。
解决这种问题的方法是先找出各个部分占总量的比例,然后按照比例分配。
以这个例子为例,A、B、C三人分别得到的苹果数为:10×(2/(2+3+5))、10×(3/(2+3+5))、10×(5/(2+3+5))。
2、倍数问题倍数问题是比的应用中另一种常见的题型。
例如,A的年龄是B的1.5倍,B的年龄是C的2倍,求A、B、C的年龄关系。
解决这种问题的方法是通过设未知数来找出数量关系。
以这个例子为例,我们可以设A的年龄为x,那么B的年龄就是1.5x,C的年龄就是1.5x/2=0.75x。
这样就可以清楚地看出他们之间的年龄关系。
3、比率问题比率问题是比的应用中另一种常见的题型。
例如,在生产过程中,某产品的合格率是90%,求合格品与不合格品的数量比。
解决这种问题的方法是利用数量关系来计算。
以这个例子为例,假设总产量为100件,那么合格品数量为90件,不合格品数量为10件。
所以合格品与不合格品的数量比为9:1。
三、解题思路和步骤在解决比的应用问题时,我们通常需要遵循以下步骤:1、读懂题目:首先需要认真阅读题目,理解题目中给出的信息和要求。
2、确定关系:根据题目中给出的比例或倍数关系,确定各个量之间的关系。
3、设未知数:如果需要,可以设未知数来帮助解决问题。
4、建立方程:根据题目中的数量关系建立方程。
六年级数学上册典型例题系列之第四单元比的应用题提高部分(解析版)
六年级数学上册典型例题系列之第四单元比的应用题提高部分(解析版)编者的话:本专题是第四单元《比》的应用题“提高部分”,该部分内容是在《比的应用题基础部分》的基础上进行总结和编辑的,建议在使用本专题前先讲解使用“基础部分”内容。
本专题主要分为按比例分配和寻找不变量两大类型题,考题多以应用题型为主,共分为十四个考点,全部是考试试卷出现过的类型考题,题目难度稍大,其中以和比问题考察最多,易错点较多,可着重进行讲解,欢迎使用。
【考点一】按比例分配:较简单的和比问题。
【方法点拨】先求出每份数,即和÷份数和=每份数,再分别求出各部分数量是多少。
【典型例题】学校新购买了一批桌椅。
一套桌椅的价钱是90元,其中椅子的价钱和桌子的价钱的比是7:11,桌子和椅子的价钱分别是多少元?解析:椅子:90×1177+=35(元) 桌子:90×11711+=55(元) 答:略。
【对应练习1】甲、乙两个数的和是300,甲、乙两数的比是5:7,甲乙两数分别是多少? 解析:甲:300×755+=125 乙:300×757+=175【对应练习2】一种糖水,糖和水按照1:150配制的,要配制这样的糖水15100克,需要水多少克?解析:水:15100×1501150+=15000(克) 答:略。
【对应练习3】中国农历中的“夏至”是一年中白昼最长,黑夜最短的一天.这一天,北京的白昼时间与黑时间的比是5:3.白天和黑夜分别是多少小时?解析:白天:24×355+=15(小时) 黑夜:24×353+=9(小时) 答:略。
【对应练习4】若一个三角形三个内角度数的比是1:1:4,则这个三角形是一个什么三角形?180×4114++=120(度) 答:略。
【考点二】按比例分配:稍复杂的和比问题。
【方法点拨】和比问题,前提条件是已知和与比,因此,题目中没有和或比的时候,要先求出和与比。
六年级下学期数学小升初比和比例专项练习及一套参考答案精品带答案
六年级下学期数学小升初比和比例专项练习一.选择题(共20题,共40分)1.把一个面积是72cm2的长方形按1∶2缩小,缩小后的长方形的面积是()。
A.18cm2B.36cm2C.72cm2D.144cm22.下面的说法中,正确的有()句。
①一个正方体的棱长扩大2倍,它的表面积扩大4倍,体积扩大8倍②把4:5的前项和后项同时增加5倍,比值不变③甲数的相当于乙数的,乙数与甲数的比值是④一根1米长的绳子,用去50%,还剩50%米⑤A=2×3×5,B=2×3×7,A和B的最小公倍数是210⑥时间一定,速度和路程成反比例关系A.2B.3C.4D.53.如果5a=3b,那么a和b的关系是()。
A.成正比例B.成反比例C.不成比例D.没有关系4.比例尺一定,实际距离扩大到原来的5倍,则图上距离()。
A.缩小到原来的B.扩大到原来的5倍 C.不变5.用地砖铺一间教室,地砖的块数和()成反比例。
A.每块地砖的边长B.每块地砖的面积C.每块地砖的周长6.把一个正方形接2:1的比例放大后,得到的图形与原来的图形相比较,()。
A.面积扩大到原来的2倍B.周长扩大到原来的2倍C.面积扩大到原来的D.周长缩小到原来的7.把1块饼平均分成若干份,每块饼的大小和份数()。
A.成正比例B.成反比例C.不成比例8.把一块三角形的地画在比例尺是1:500的图纸上,量得图上三角形的底是12厘米,高8厘米,这块地实际面积是()。
A.480平方米B.240平方米C.1200平方米9.下面选项,()是比值。
A.篮球比赛记分牌上显示21:16B.比例尺C.圆周率 D.a:b10.下列各题中,哪两种量不成比例()。
A.长方形的面积一定,长和宽B.征订《小学生周报》,征订的数量和总价C.收入一定,支出和结余11.下列各种关系中,成反比例关系的是()。
A.某人年龄一定,他的身高与体重。
B.平行四边形的面积一定,它的底和高。
六年级数学上册《比和比的应用》专项练习带答案,学习必备
六年级数学上册《比和比的应用》专项练习带答案一、用心填一填。
1.六年级一班男生和女生人数的比是2:3 ,则男生占全班人数的(25),女生占全班人数的(35)2.甲、乙两数的和是26 ,甲、乙两数的比是5:8 ,则甲数是(10),乙数是(16)3.男生人数和全班人数的比是5:11。
①男生人数和女生人数的比是(5:6);②男生人数是女生人数的(56);③女生人数是男生人数的(65)4.一个直角三角形两个锐角度数的比是3:2 ,这两个锐角分别是(54°)和(36°)5.(3):(4)=0.75=(18)+24=(34)6.把4:5的前项乘5,要使比值不变,后项应(乘5)。
7.比的前项和后项(乘)或(除以)一个相同的数(0除外)比值不变,这叫做比的基本性质。
二、判断题1.比的前项和后项都乘以2,比值不变。
( √ )2.化简12∶6的比值是2∶1。
( × )3.除法运算可以写成比的形式。
( √ )4.某次足球比赛,甲、乙两队的得分比是4∶2,这个比可以化简成2∶1。
( √ )三、应用题1.红红要调制2200 克巧克力奶,巧克力和奶的质量比是2:9,需要巧克力和奶各多少克?2200 ×2/11=400(克)2200 ×9/11=1800(克)2.一个足球的表面是由黑色五边形和白色五边形皮围成的. 黑色皮和白色皮的块数的比是3:5 ,白色皮有20 块,黑色皮有多少块?20 ÷ 5 × 3=12(块)3.小丽调制了两杯蜂蜜水,第一杯蜂蜜和水的体积比是1:8 ,第二杯蜂蜜和水的体积比是3:25.①第一杯蜂蜜水的体积是450毫升,那么蜂蜜和水各多少毫升?450 ×1/9=50(毫升)450 ×8/9=400(毫升)②按第二杯比配制,如果加入蜂蜜27毫升,那么需要水多少毫升?27÷3 × 25=225(毫升)③按第二杯的比配制,用500毫升水能配制这种蜂蜜水多少毫升?500 ÷ 25/28=560(毫升)4.一块菜地长是35米,宽是8米,农夫打算以3:5的比例种植西红柿和南瓜,那么西红柿和南瓜分别占地多少平方米?35x8=280(平方米)西红柿:280x 3=105(平方米)3+5南瓜:280x 5=175(平方米)3+55. 已知今年小红和爷爷的年龄之比是2:7,小华比爷爷小50岁,求今年小华和爷爷的年龄之和是多少?50÷(7-2)×(7+2)=90(岁)6.六(2)班有男生30人,女姓18人。
小学六年级下册小升初数学专题复习 比的性质 求比值和化简比及比的应用 知识归纳 典例精析 拔高训练
小学六年级小升初数学专题复习(8)——比的性质、求比值和化简比及比的应用¤¤知知识识归归纳纳总总结结一、比的性质比的前项和后项同时乘或除以相同的数(0除外),比值不变.这叫做比的基本性质.例1:一个比的前项扩大4倍,要使比值不变,后项应()A、缩小4倍B、扩大4倍C、不变分析:根据比的基本性质,比的前项和比的后项同时乘或除以相同的数(0除外),比值不变,由此做出选择.解:一个比的前项扩大4倍,要使比值不变,后项也应扩大4倍.故选:B.点评:此题考查比的基本性质的运用,熟记性质,灵活运用.例2:甲:乙=3:4,乙:丙=3:2甲、乙、丙三数的关系是()A、甲>乙>丙B、丙>乙>甲C、乙>甲>丙D、甲=乙=丙分析:根据比的基本性质,写出甲乙丙连比,即可知答案.解:甲:乙=3:4=9:12乙:丙=3:2=12:8甲:乙:丙=9:12:8故选:C.点评:此题主要考查比的基本性质.二、求比值和化简比1.求两个数的比值,就是用比的前项除以比的后项,它的结果是一个数值,这个数值可以是整数,也可以是小数或分数.2.求比值和化简比的方法:把两个数的比化成最简单的整数比.(1)整数比化简方法:把比的前项和后项同时除以它们的最大公因数.(2)分数比化简方法:把比的前项和后项同时乘它们的分母的最小公倍数,变成整数比,再进行化简;利用求比值的方法也可化简分数比,但结果必须写成比的形式.(3)小数比化简方法:先把比的前项和后项的小数点同时向右移动相同位数,完成整数比,再进行化简.例1:甲数除以乙数的商是3.2,乙数与甲数的最简整数比是()A、16:5B、5:16C、3:2D、2:3分析:根据甲数除以乙数的商是3.2,可以认为乙数是1份的数,甲数是3.2份的数,进一步写出比并化简比.解:乙数:甲数=1:3.2=10:32=5:16.故选:B.点评:解决此题关键是根据题意先写出比,再进一步化简比.三、比的应用1.按比例分配问题的解题方法:(1)把比看作分得的份数,用先求出每一份的方法来解答.解题步骤:a.求出总份数;b.求出每一份是多少;c.求出各部分相应的具体数量.(2)转化成份数乘法来解答.解题步骤:a.先根据比求出总份数;b.再求出各部分量占总量的几分之几;c.求出各部分的数量.2.按比例分配问题常用解题方法的应用:(1)已知一个数量的各部分的比和其中某一部分的量,求另外几个部分量;(2)已知两个量或几个量的比和其中两个量的差,求总量.例1:一个三角形与一个平行四边形的面积和底部都相等,这个三角形与平行四边形高的比是()A、2:1B、1:2C、1:1D、3:1分析:根据三角形和平行四边形的面积公式可得:三角形的高=面积×2÷底;平行四边形的高=面积÷底,由此即可进行比较,解答问题.解:三角形的高=面积×2÷底,平行四边形的高=面积÷底,当三角形和平行四边形的面积和底分别相等时,三角形的高是平行四边形的高的2倍.所以这个三角形与平行四边形高的比是2:1.故选:A.点评:考查了平行四边形的面积和三角形的面积公式,解题的关键是知道底相等、面积也相等的三角形和平行四边形中三角形的高是平行四边形的高的2倍.例2:甲、乙两人各走一段路,他们的速度比是3:4,路程比是8:3,那么他们所需时间比是()A、2:1B、32:9C、1:2D、4:3分析:根据题意,把乙的速度看作1,那么甲的速度就为;把甲的路程看作1,那么乙的路程就为;根据时间=路程÷速度,可得甲用的时间为1÷=,乙用的时间为÷1=;进而写出甲和乙所需的时间比,再把比化成最简比即可.解:把乙的速度看作1,那么甲的速度就为,把甲的路程看做1,那么乙的路程就为,甲用的时间为:1÷=,乙用的时间为:÷1=,甲乙用的时间比::=(×24):(×24)=32:9;答:甲乙所需的时间比是32:9.故选:B.点评:关键是把速度和路程设出来,然后根据时间=路程÷速度,先求得各自用的时间,再写出所用的时间比并化简比.¤¤拔拔高高训训练练备备考考一.选择题(共6小题)1.一个比的比值是12,比的前项扩大到原来的4倍,要使比值不变,则比的后项应()A.扩大到原来的12倍B.缩小到原来的C.扩大到原来的4倍D.保持不变2.已知a:b=5:4,b:c=3:2,那么a:c=()A.15:8 B.5:2 C.25:12 D.4:33.两个数的比值是1.2,如果比的前项扩大2倍,后项缩小两倍,比值是()A.1.2 B.2.4 C.4.8 D.9.64.甲数的与乙数的相等(甲、乙≠0),甲数与乙数的比是()A.4:5 B.7:6 C.24:35 D.35:245.从下图中可以得到,书费和本数的最简整数比是()。
第五课 六年级比和比例奥数.
第五课比与比例一、知识总结1、比: k ba b a b a ==÷=:;比的性质:(0::≠=c bc ac b a 2、比例式: d c b a ::= (外项、内项比例性质:bc ad d c b a =⇔= 比例改写: a b c d a c b d d b c a d c b a ::::::::=⇔=⇔=⇔=(比例性质的应用3、比例中项: ac b c b b a =⇔=2::4、比例方程:含有未知项的比例叫做比例方程。
5、正比例、反比例①正比例:若两个量之间的比值固定不变,则这两个量成正比例。
若k b a =:(k 一定),则a 、b 成正比例②反比例:若两个量的乘积固定不变,则这两个量成反比例。
若k ab =(k 一定),则a 、b 成反比例。
6、比例的应用:①图形缩放:将图形按照给定比放大或缩小,对应边长、高之比等于给定比。
面积比等于给定比的平方。
②比例尺:比例尺=图上距离÷实际距离;图上距离=实际距离×比例尺;实际距离=图上距离÷比例尺。
缩小,比例尺<1;放大,比例尺>1③比例应用题:整理题中的数量组成比例,求出比例中的未知项。
二、巩固练习比的计算1、化成最简整数比:211:1. 2:57= 2、求比值:602cm :602dm =3、解比例 8:x =3224、若整数x 能与2、6、15这三个数组成比例,求x 的值。
5、若5:2:=b a 且ac b =2,则c b :=6、已知y x 32=,①求:y x : ②求yx y x +-22的值③若x 比y 大4,求x 和y 的值比例的应用7、比例尺通常写成前项是()的比。
除数值比例尺之外,还有()比例尺。
8、学校操场长800米,宽500米,如果画在比例尺是1:1000的图纸上,长应画()厘米,宽应画()厘米,图形面积是实际面积的()。
9、一张设计图的比例尺是20:1,在图纸上量得一个零件长40厘米,这个零件实际长()。
人教版小学数学六年级下册第4单元 比例的应用同步练习(含解析)
人教版小学数学六年级下册第4单元 4.3比例的应用同步练习一、单选题1.一个底为4cm,高为6cm的三角形,按1:2缩小后得到的三角形面积为()cm²。
A.3B.6C.9D.122.一个鞋柜的高度是1.1米,画在图纸上的高是5.5厘米,这幅图纸的比例尺是()。
A.1:5B.5:1C.1:20D.1:503.大楼高60m,大楼模型高与实际高度比是1:400,大楼模型高()。
A.15cm B.24cm C.12cm4.把一个长是5厘米,宽是2厘米的长方形按4:1放大后长方形的长和宽分别是()厘米。
A.20厘米;4厘米B.20厘米;8厘米C.10厘米;8厘米5.配制一种药水,药粉和水重量的比是1∶500,现在要配制这种药水1002千克,需要药粉和水各()千克.(用比例方法解答)A.药粉3千克,水1500千克.B.药粉4千克,水1800千克.C.药粉2千克,水1000千克.D.药粉5千克,水1600千克.6.淘气和笑笑同时从A、B两地相向而行.到达对方出发点后立即返回在离B地60千米处相遇?淘气和笑笑速度比是2∶3,则A、B两地相距()千米.A.200B.300C.400D.450二、判断题7.图形放大或缩小后,它的大小和形状都随着变化。
()8.图上距离一定小于实际距离。
()9.把一个三角形按2:1放大后,其中30°角就变成60°角。
()10.比例尺1∶60000表示图上1厘米代表实际距离60千米。
()11.比例尺大的,实际距离也大。
()三、填空题12.我国东西长约5000千米,在比例尺的地图上量得的长度是厘米;在这幅地图上量得南北长11厘米,我国南北的实际距离大约是千米。
13.在比例尺为1︰2000的地图上,6厘米的线段代表实际距离米,180米在图上要画厘米。
14.上海与北京的实际距离约为1500千米,在一幅地图上量得图上距离为5分米,这幅地图的比例尺是。
如果画在另一幅比例尺是1:2000000的地图上,应该画cm长。
小学六年级上册数学《比》知识点+相关练习
第四单元《比》知识点比:两个数相除也叫两个数的比1、比式中,比号(∶)前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值。
连比如:3:4:5读作:3比4比52、比表示的是两个数的关系,可以用分数表示,写成分数的形式,读作几比几。
例:12∶20= =12÷20= =0.6 12∶20读作:12比20区分比和比值:比值是一个数,通常用分数表示,也可以是整数、小数。
比是一个式子,表示两个数的关系,可以写成比,也可以写成分数的形式。
3、比的基本性质:比的前项和后项同时乘以或除以相同的数(0除外),比值不变。
4、化简比:化简之后结果还是一个比,不是一个数。
(1)、用比的前项和后项同时除以它们的最大公约数。
(2)、两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。
也可以求出比值再写成比的形式。
(3)、两个小数的比,向右移动小数点的位置,也是先化成整数比。
5、求比值:把比号写成除号再计算,结果是一个数(或分数),相当于商,不是比。
6、比和除法、分数的区别:除法:被除数除号(÷)除数(不能为0)商不变性质除法是一种运算分数:分子分数线(—)分母(不能为0)分数的基本性质分数是一个数比:前项比号(∶)后项(不能为0)比的基本性质比表示两个数的关系商不变性质:被除数和除数同时乘或除以相同的数(0除外),商不变。
分数的基本性质:分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
分数除法和比的应用1、已知单位“1”的量用乘法。
2、未知单位“1”的量用除法。
3、分数应用题基本数量关系(把分数看成比)(1)甲是乙的几分之几?甲=乙×几分之几 乙=甲÷几分之几 几分之几=甲÷乙(2)甲比乙多(少)几分之几?4、按比例分配:把一个量按一定的比分配的方法叫做按比例分配。
5、画线段图:(1)找出单位“1”的量,先画出单位“1”,标出已知和未知。
小学数学六年级上册比例应用练习题提高题含分析答案
小学数学六年级上册-比例应用练习题(进步题含分析答案)例1:袋子里红球与白球的个数比是19:13。
放入若干只红球后,红球与白球数量之比是5:3,放入若干只白球后,红球与白球数量之比是13:11。
已知放入的白球比红球多80只。
那么原来袋子中有白球多少只?分析与解答(1)原来红球与白球的个数比是19:13,参加红球后,红球与白球数量之比是5:3,白球数量不变,所以红球与白球的个数比是57:39参加红球后,红球与白球数量之比是65:39,也就是说参加的红球是65-57=8份.(2)放入若干只白球后,红球与白球数量之比是13:11。
红球不变,将上面的比转化为红球与白球数量之比是65:55。
白球增加了55-39=16份.(3)已知放入的白球比红球多80只。
所以1份是80/(16-8)=10只.(4)原来有白球10*39=390只.例2:张家与李家本月收入钱数之比是8:5,本月开支的钱数之比是8:3,月底张家节余240元,李家节余510元,本月张家和李家分别收入多少元?解:设张家的开支为8X,李家的开支为3X.他们的收入分别为 8X+240,3X+510 所以(8X+240)/(3X+510)=8:524X+4080=40X+120016X=2880X=180张家的收入是8X+240=8*180+240=1680(元)李家的收入是3X+510=3*180+510=1050(元)例3:甲、乙两堆棋子中都有白子和黑子。
甲堆中白子与黑子的比是2:1,乙堆中白子与黑子的比是4:7。
假如从乙堆拿出3粒黑子放入甲堆,则甲堆中白子与黑子的比是7:4;假如把两堆棋子合在一起,白子与黑子数一样多。
问:原来甲乙两队各有多少棋子?解:甲堆中白子与黑子的比是2:1,假如从乙堆拿出3粒黑子放入甲堆,则甲堆中白子与黑子的比是7:4。
甲堆中白子数量不变,所以,甲堆中原来的白子与黑子的比是14:7,增加3粒黑子后,白子与黑子的比是14:8。
六年级上册数学比例的应用题基础和提高题讲解和练习题打印版
六年级上册数学比例的应用题基础和提高题讲解和练习题打印版一、把各个物品的在比例中的数值看成是各个物品的份数:
例1、苹果的个数与梨的个数比是3:11。
(1)苹果的个数是梨的个数的()/()。
(2)梨的个数是苹果的个数的()/()。
(3)梨的个数是苹果的个数的()倍。
苹果的份数是 3 ,梨的份数是11,所以
苹果的个数是梨的个数的(3/11)
梨的个数是苹果的个数的(11/3)
梨的个数是苹果的个数的(11/3 )倍
练习:
1.小猫的只数是小狗只数的7/8。
(1)小猫的只数与小狗只数的比是()。
(2)小猫的只数与小猫和小狗只数之和的比是()。
2.丽丽看一本书,看完的页数与未看的页数的比是7:5。
(1)看完的页数占未看页数的()。
(2)未看页数占看完页数的()
(3)看完的页数占全书页数的()。
(4)未看的页数占全书页数的()
二、己知数量和和比例:比例数字之和就是份数和;物品在比例中的数字,就是该种物品的份数,
数量和÷份数和= 一份的数量
一份的数量× 一种物品的份数=这种物品的数量
例2、要配置一种糖水,水、糖共54克,水和糖的比是7:2,水、糖各是多少克?
份数和:2+7=9
一份的数量:54÷9= 6(克)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学六年级数学比与比例练习题班级_________ 姓名__________
一、填空题:
1、( )÷24=24 :( ) =( ) % 4÷5=():()=
2、用2、
3、
4、6写出两个不同的比例式:( ) ( )。
3、在一个比例中,两个外项的积是5,其中一个内项是2.5,则另一个内项是( )。
4、小林跑1000米用了2分24秒,他跑的路程和所需时间的比是()∶().
5、在A×B=C中,当B一定时,A和C 成( )比例,当C一定时,A和B成( )比例.
6、如果5a=4b,那么a∶b=()∶()。
7、一种精密零件长5毫米,把它画在比例尺是12:1的零件图上长应画()厘米。
8、在一幅中国地图上量得甲地到乙地的距离是4厘米,而甲地到乙地的实际距离是180千米。
这幅地图的比例尺是()。
9、在比例尺是1:2000000的地图上,量得两地距离是38厘米,这两地的实际距离是( )千米
10、完成一项工作,甲单独每小时完成1/4,乙独做每小时完成1/6。
甲乙两人单独完成这项工作所需要的时间比是():()。
11、甲乙两数的比是5:3,乙数是60,甲数是( )。
12、糖水的重量一定,糖的重量和水的重量成( )比例.
13. 甲乙两个互相咬合的齿轮,它们的齿数比是7:3,甲乙齿轮的转数比是( ).
14、两个正方形的边长比是4∶1,它们的面积比是()∶()
15、某车间女工人数与男工人数的比是5:8,那么女工比男工少()%,男工比女工多()%,男工与车间总人数的比是():()。
16、如果x/6=5/y,那么x 和y 成()比例。
二、判断题:
1、工作总量一定,工作效率和工作时间成反比例。
( )
2、两根同样长的钢筋,其中一根锯成3段用了12分钟,另一根要锯成6段,需要24分钟。
()
3、比例的两个内项互为倒数,那么它的两个外项也互为倒数。
( )
4、4厘米: 4千米的比值是1/100000。
()
5、把一个比的前项和后项都扩大2倍得到一个新的比,这两个比能组成比例。
()
6、X和Y表示两种变化的相关联的量,同时5X—7Y=0,X和Y不成比例。
( )
7、如果3a=5b,那么a:b=5:3。
( )
8、分数的大小一定,它的分子和分母成正比例。
( )
9、在一定的距离内,车轮周长和它转动的圈数成反比例。
( )
10、两种相关联的量,不成正比例,就成反比例。
( )。
11、某校男生比女生多1/25,那么男生人数占全校人数的26/51。
()
12、一本书,已看页数越多,未看页数越少,因此,已看页数和未看页数成反比例。
()13、在比例里,两个外项互为倒数,其中一个内项是8/3,另一个内项是3/8。
()
三、选择题:
1、一条路的长度一定,已经修好的部分和剩下的部分()。
A成正比例B.成反比例C.不成比例
2、《小学生数学报》单价一定,订阅份数与总价()
A、成正比例
B、成反比例
C、不成比例
3、比例尺表示()
A、图上距离是实际距离的。
B、实际距离是图上距离的800000倍。
C、实际距离与图上距离的比为1 :800000
4、在比例尺是1 :8的图纸上,甲、乙两个圆的直径比是2 :3,那么甲、乙两个圆的实际的直径比是——()
A、1 :8 B 、4 :9 C、2 :3
5、表示x和y成正比例的关系式是( )。
A、x+y=k (一定)
B、x/y= k
C、xy = k (一定)
6、一项工程,单独做甲队要10天,乙队要8天,甲乙两队工效比是( )。
A、10:8
B、5:4
C、8:10
D、4:5
8、总是相等的两个量()。
A、成正比例
B、成反比例
C、不成比例
9、每台电视机的价格一定,购买电视机的台数和钱数成()A、正比例B、反比例C、不成比例
四、计算。
1、求比值28:40 2.1:0.84 1/2:5/6 5/4:3.5
2、化简比
104/156 1:0.25 1/30:1/5 4.8:8/3
2、解比例:
3:x=9:15 45:x =18:26 x/4=0.75/1.25
五、应用题: (1—4题用比例知识解答)1.一个长方体,它的棱长和是480厘米,长、宽、高的比是4:3:1,这个长方体的体积是多少?
2.同学们做广播操,每行站20人,正好站18行。
如果每行站24人,可以站多少行?(用比例解)
3.一种农药,用药液和水按1:1500配制而成,现有3千克药液,能配制这种农药多少千克?
4、一间房子要用方砖铺地,用边长3分米的方砖,需要96块。
如果改用边长是2分米的方砖要多少块?
5、AB两地公路长440千米,一辆汽车从A地开往B地,3小时行了132千米,照此计算,从A地到B地一共需要行多少小时?(用比例解)
6、一项工程12个工人可以在15天完成。
如果要求他们10天完成,需要几个工人来做?
7、一项工程,A、B两人合作需要6天完成,已知A、B两人的工作效率比是1:3,A、B 两人独立完成这项工程各需要多少天?
8、甲乙两列火车从相距450千米的两地同时相向开出,经过5小时相遇。
已知甲乙两列火车的速度比是4 :5,两列火车每小时各行多少千米?。