图论建模

合集下载

图论模型的构建

图论模型的构建
为此,我们必须寻找解决问题的更好途径。
【方形柱体堆砌问题分析】
对符合要求的方形柱体来讲,交换任意两个正 方体的上下位置,得到的方形柱体仍是符合要求的, 即它的4个侧面都有4种颜色。它的每一对对面由4 个正方体各一个对面组成,因此问题的要素是4个正 方体各3个对面的颜色的构成,于是从每个对面的着 色考虑。用字母b,g,r,y分别表示蓝、绿、红、黄4种 颜色,并作为图的4个 顶点,4个正方体的各三个对 面依各对面的颜色连以边,并分别标以e1、e2、e3、 e4,比如第一个正方体有一对面着蓝、黄两色,则 从顶点b到y引一条边标以e1,另两对面为红对红、红 对绿,故联结r,e和r,g,均标以 e1。同样地根据第二、 三、四正方体的各对面着色分别连以边并分别标以 e2 、e3、e4。则得图G,如图1—3所示。
si<si+p
(0≤i≤n-p)
si+q<si
(0≤i≤n-q)
【奇怪的数列分析】
下面,我们把每个si抽象成一个点,则根据上述两个不 等式可以建立一个有向图,图中共有n+1个顶点,分别 为s0,s1,……,sn。若si>sj(0≤i,j≤n),则从si往sj 引出一条有向边。例如对于n=6,p=5,q=3的情况, 我们可以建立图4
begin
if i+p<=n then begin
g[i+p,i]=1;
d[i]=d[i]+1;
end;
if i+q<=n then begin
g[i,i+q]=1;
d[i+q]=d[i+q]+1;
end;
end;
【奇怪的数列分析】
显然,按照上面的定义,如果建立的图可以拓扑排序,其 顶点的拓扑序列可以对应满足条件的整数数列;反之,不 存在这样的整数数列。 算法框架为:

图论建模(结合案例分析)

图论建模(结合案例分析)

e4 v1v4 , e5 v3v4 , e6 v3v4 .
(见图 2)
图. 称边 e (vi , v j ) 为有向边或弧,称 e (vi , v j )是从vi 连接 v j 的弧 ,称 vi 为e的尾,称 v j 为e的头. 若图G中的边均为无序偶对 vi v j ,称G为无向图.称 边 e viv j 为无向边,称e连接 vi 和 v j ,顶点 vi 和 v j 称 为e的端点. 既有无向边又有有向边的图称为混合图.
2004A:奥运会临时超市网点的设计问题 • 题型:属于社会事业问题,主要包括观众的出行、用餐 和购物的规律,各商区人流分布规律,以及各商区的大小 超市的设计数量等问题。 • 特点:海量数据、数据冗余、结构复杂,即时性、综 合性、实用性和开放性强。 • 方法:主题方法数据的处理、统计分析、数据挖掘、 数学规划等。 • 结果:不唯一,对结果没有明确要求。
图的作用
图是一种表示工具,改变问题的描述方式,往往是创造性的 启发式解决问题的手段.一种描述方式就好比我们站在一个位 置和角度观察目标,有的东西被遮挡住了,但如果换一个位置和 角度,原来隐藏着的东西就可能被发现.采用一种新的描述方式, 可能会产生新思想.图论中的图提供了一种直观,清晰表达已知 信息的方式.它有时就像小学数学应用题中的线段图一样,能使 我们用语言描述时未显示的或不易观察到的特征、关系,直观 地呈现在我们面前,帮助我们分析和思考问题,激发我们的灵感.
v 来表示;
用 G (V (G ), E (G )) 表示图,简记 G (V , E ). 也用 vi v j 来表示边 (vi , v j ).
例设 G (V (G ), E (G )) , 其中:V (G) {v1, v2 , v3 , v4},

图论建模

图论建模

(7,1,0)
(4,1,3)
(4,4,0)
实际上我们用的是穷举法,这个问题只有这两个解。其中第一 个步骤最少,是最好的解。 解题过程中借用了图论的工具,即用“点”表示状态,“边”表 示 状态间的转移关系。点和边的附加信息称为赋权 赋权,这样的图称 赋权 为赋权图 赋权图,有点权图、边权图的概念。 赋权图 例2.证明:任何六个人中,必有三人互相认识或三人互相不认识。 分析: 这里提到的认识是互相认识,类似于双方握过手。 证明“怎样或怎样”的命题,方法是否定一个证明另一个成立。 我们用点表示人,6个人分别用ABCDEF表示。两个人互相认识 就在两点之间连一个实线边,互相不认识就用虚线连。于是所 有的两点之间都有连线,不是实线就是虚线。图论中把任何两 点间都有连线的图称为完全图 完全图。 完全图 问题转化为在描述任意6个人的关系的图里如果没有实线三角形 就一定有虚线三角形。
节点号i 起始地址 弧编 号 终点 起点 权 1 2 3 4
1 2 3 4 5 6 1 1 3 6 8 9
2 3 4 2 3 3 1 1 4 8 9 0 5 3 5 6 6 7 8
反向
4 4 5
正向
5 2 4 7 6 3
1 2 3 4 5 6 7 8 4 1 2 5 7 8 3 6
应3)9,(2,4)6,(3,2)4,(4,3)0,(4,5)3, (5,3)6,(5,4)7就是关联阵的列的标号,括号外为边权。 对于图与网络中的边权,可以在关联矩阵下面增加一行来存 储,多个权就增加多个行。
3.弧表表示法
将图以弧表的形式存储,也就是每个弧对应一个列,从上到下 分别是起点、终点和权。各列间从前到后按照起点、终点的字 典序排列。这种结构存储效率比较高。
• • • • •

数学建模-图论模型

数学建模-图论模型

思路分析
• 每学期任课老师都有一定工作量的要求往往可能要上不止一门课 程。
• 每位同学需要在学期内完成若干门课程的学习。 • 某些对上课设施有特殊要求的课程,也不可以安排在同一时间。 • 为了方便开展一些全校性的活动,有些时段不安排课程。 • 受到教室数量的限制,在同一时段无法安排太多的课程。
模型建立
• 以每个课程为顶点,任何两个顶点之间连一条边当且仅当两门课 程的任课老师为同一人,或有学生同时选了这两门课或上课教室 冲突。
• 那么一个合理的课程安排就是将图中的点进行分化,使得每一个 部分里的点为一个独立集。
• 通过极小覆盖找出图中的极 大独立集,然后删去该极大 独立集,在剩下的图中找出 极大独立集,直到剩下的图 为一个独立集。
匈牙利算法
• 饱和点:M是图G的一个匹配,若G中顶点v是M中某条边的端 点,则称M饱和v,否则称v是M的非饱和点。
• 可扩路:一条连接两个非饱和点x和y的由M外的边和M的边交错 组成的路称为M的(x,y)可扩路。
• 算法基本步骤:
Kuhn-Munkres算法
1.2 图的独立集应用
• 问题描述:各大学学期临近结束时,需要根据老师任课 计划和学生选课情况,再结合教室资源情况安排下一学 期的课程及上课时间和地点。下表所示是某大学电信学 院的大三各专业部分课程情况。该学院每届学生按专业 分班,统一选课。另外,学院只有一间普通机房和一间 高级机房。那么应该如何合理地排这些课程呢?
则称其是双连通或强连通的。对于不是双连通的图,都可以分解成 若干个极大的双连通分支,且任意两分支之间的边是同向的。
举例:
• 右图所示竞赛图不是双连通的

为一条有向
的D哈密尔A顿路B。 C E

数学建模-图论模型及算法

数学建模-图论模型及算法
问题一:如何在组数一定(3组)的情况下,使走遍乡村的总路线最短 且三组的路程尽可能均衡。
问题二:若巡视人员要在乡停留T=2小时,村停留t=1小时,汽车时 速V=35公里/小时,那么至少分几组能在24小时内走完?并找出最佳巡 视路线。
乡镇、村的公路网示意图
问题分析
根据53组数据我们得到它的邻接矩阵,利用Kruskal算法用Matlab编 程处理后得到加权网络图的最小生成树。
例1 最短路问题(SPP-shortest path problem)
一名货车司机奉命在最短的时间内将一车货物从甲地运 往乙地。从甲地到乙地的公路网纵横交错,因此有多种行车 路线,这名司机应选择哪条线路呢?假设货车的运行速度是 恒定的,那么这一问题相当于需要找到一条从甲地到乙地的 最短路。
例2 公路连接问题
最小生成树的Kruskal算法: function [T c]=krusf(d,flag) if nargin==1
n=size(d,2); m=sum(sum(d~=0))/2; b=zeros(3,m); k=1; for i=1:n
for j=(i+1):n if d(i,j)~=0 b(1,k)=i;b(2,k)=j; b(3,k)=d(i,j); k=k+1; end
求最小生成树问题有很广泛的实际应用. 例如, 把n个乡镇 用高压电缆连接起来建立一个电网, 使所用的电缆长度之和最 短, 即费用最小, 就是一个求最小生成树问题.
最小生成树算法—Kruskal算法
• 思想:将图中所有边按权值从大到小排列,依次选所剩最 小的边加入边集T,只要不和前面加入的边构成回路,直到 T中有n-1条边,则T是最小生成树。
A
0 1 1
0 0 0

数学建模——图论篇

数学建模——图论篇

软件学院
图论原理 一. 图的概念 一个图 G=<V(G),E(G)>, 其中结点集V(G):是G的结 点的非空集合.(V(G)≠Φ),简记成V;边集E(G):是 G的边的集合. 有时简记成E. 结点: 用 表示, 旁边标上该结点的名称. 边:有向边:带箭头的弧线.从u到v的边表示成(u,v) 无向边:不带箭头的弧线.u和v间的边表示成(u,v)
v3
软件学院
图论原理
回路:如果一条路的起点和终点是一个结点,则称此路 是一个回路. 如果一条路中所有边都不同,则称此路为迹或简单通路. 如果一条回路中所有边都不同,则称此回路为闭迹或简 单回路. 如果一条路中所有结点都不同,则称此路为基本通路. 如果一条回路中所有结点都不同,则称此路为基本回路. 一条基本通路一定是简单通路,但是一条简单通路不 一定是基本通路

图论原理
图的同构 设G=<V,E>和G’=<V’,E’>是图,如果存在双射f:VV’ 且任何 vi,vj∈V,若边(vi,vj)∈E,当且仅当 边(f(vi),f(vj))∈E’, (则称G与G’同构,记作G≌G’. (同构图要保持边的“关联”关系) 例如:右边所示的两个图: a b 1 4 G=<V,E> G’=<V’,E’> c d 3 2 构造映射f:VV’ a 1 b 2 c 3 d 4 a 1 b 2 c 3 d 4
软件学院
图论原理
2.汉密尔顿图的判定: 到目前为止并没有判定H图的充分必要条件. 定理1 (充分条件):G是完全图,则G是H图.

K2

K3

K4


K5
定理2(充分条件)设G是有n(n>2)个结点的简单图,若对G中每 对结点度数之和大于等于n,则G有一条H路(H回路)。

数学建模中的图论方法

数学建模中的图论方法

数学建模中的图论方法一、前言我们知道,数学建模比赛中有问题A和问题B。

一般而言,问题A是连续系统中的问题,问题B是失散系统中的问题。

因为我们在大学数学教育内容中,连续系统方面的知识的比率较大,而离散数学比率较小。

所以好多人有这样的感觉,A题下手快,而B题不好下手。

其他,在有限元素的失散系统中,相应的数学模型又可以区分为两类,一类是存在有效算法的所谓P类问题,即多项式时间内可以解决的问题。

但是这种问题在MCM中特别少见,事实上,由于比赛是开卷的,参照有关文件,使用现成的算法解决一个P类问题,不可以显示参赛者的建模及解决实诘问题能力之大小;还有一类所谓的NP问题,这种问题每一个都还没有成立有效的算法,或许真的就不行能有有效算法来解决。

命题经常以这种NPC问题为数学背景,找一个详细的实质模型来考验参赛者。

这样增添了成立数学模型的难度。

但是这也其实不是说没法求解。

一般来说,因为问题是详细的实例,我们可以找到特其他解法,或许可以给出一个近似解。

图论作为失散数学的一个重要分支,在工程技术、自然科学和经济管理中的好多方面都能供给有力的数学模型来解决实诘问题,所以吸引了好多研究人员去研究图论中的方法和算法。

应当说,我们对图论中的经典例子或多或少仍是有一些认识的,比方,哥尼斯堡七桥问题、中国邮递员问题、四色定理等等。

图论方法已经成为数学模型中的重要方法。

好多灾题因为归纳为图论问题被奇妙地解决。

并且,从历年的数学建模比赛看,出现图论模型的频次极大,比方:AMCM90B-扫雪问题;AMCM91B-找寻最优Steiner树;AMCM92B-紧迫修复系统的研制(最小生成树)AMCM94B-计算机传输数据的最小时间(边染色问题)CMCM93B-足球队排名(特点向量法)CMCM94B-锁具装箱问题(最大独立极点集、最小覆盖等用来证明最优性)CMCM98B-灾情巡视路线(最优回路)等等。

这里面都直接或是间接用到图论方面的知识。

数学建模方法之图论模型

数学建模方法之图论模型
2) 在有向图中,从顶点v引出的边的数目称为顶点 v的出度,记为d+(v),从顶点v引入的边的数目称为 v的入度,记为d -(v). 称d(v)= d+(v)+d -(v)为顶点v的 度或次数.
定理 d (v) 2.
vV
推论 任何图中奇点 的个数为偶数. d (v1) 4
d (u3) 1
d (u3) 2
一个顶点记为 ui1,置 Si1 Si {ui1}.
3) 若 i 1,则停Hale Waihona Puke ;若 i 1,则用 i+1 代
替i,并转2).
S0 {u0},l(u j ) , j 1,2,...,7.
u1 S0 l(u1) min{,0 1}
Dijkstra算法: 求G中从顶点u0到其余顶点的最短路.
G[{v1,v2,v3}] G[{e3,e4,e5,e6}]
3) 若 V V,且 V ,以 V 为顶点集,以两端点 均在V 中的边的全体为边集的图 G 的子图,称 为G的由V 导出的子图,记为 G[V ] .
4) 若E E,且 E ,以 E为边集,以 E 的端点 集为顶点集的图 G 的子图,称为 G 的由E 导出的
第二讲 图论模型
1. 问题引入与分析
2. 图论的基本概念
3. 最短路问题及算法
4. 最小生成树及算法

5. 旅行售货员问题

6. 模型建立与求解 下
1. 问题引入与分析
1) 98年全国大学生数学建模竞赛B题“最佳灾 情巡视路线”中的前两个问题是这样的:
今年(1998年)夏天某县遭受水灾. 为考察灾情、 组织自救,县领导决定,带领有关部门负责人到 全县各乡(镇)、村巡视. 巡视路线指从县政府 所在地出发,走遍各乡(镇)、村,又回到县政 府所在地的路线.

5、图论模型的建立

5、图论模型的建立
图论建模
信息学竞赛解题的一个重要步骤是数学建模, 如几何模型、代数模型、运筹学模型等。图论模型 的构造(图论建模)也是数学建模的一个分支。 在建立一个问题的模型之前,首先要对研究对 象进行全面的调查,将原型理想化、简单化(对于 竞赛而言,这一步大部分已经由命题者完成);然 后对原型进行初步的分析,分清其中的各个要素及 求解目标,理出它们之间的联系;然后用恰当的模 型来描述这些要素及联系。
图论建模
[问题分析] 1、问题的数据规模只有200,所以很容易想到用搜索, 由于要输出最优解(要求的是最快的次数),所以是宽搜。 2、对于A楼而言,实际上对它最多只能做2个操作, 上到A+X层或下到A-X层,当然前提是存在A+X或A-X层。显 然,如果把每一层楼看做一个顶点,如果A楼可以到B楼, 则从顶点A引一条到顶点B的边。对于样例,如下图:
下面,我们把每个si抽象成一个点,则根据上述两个不等式可以建立一个 有 向 图, 图中 共 有n+1个顶 点 ,分 别为 s0 ,s1 ,……,sn 。若 si>sj(0≤i, j≤n),则从si往sj引出一条有向边。例如对于n=6,p=5,q=3的情况,我们可 以建立下图。
常州市第一中学 林厚从
图论建模
图论模型和其它模型在研究方法上有着很大的 不同,例如可以运用典型的图论算法来对图论模型 进行求解,或是根据图论的基本理论来分析图论模 型的性质,这些特殊的算法和理论都是其它模型所 不具备的,而且在其它模型中,能用类似于图这种 直观的结构来描述的也很少。
常州市第一中学 林厚从
是指对一些客观事物进行抽象、化简, 并利用图来描述事物特征及其内在联系的过程。建 立图论模型的目的和建立其它数学模型一样,都是 为了简化问题,突出要点,以便更深入地研究问题 的本质;它的求解目标可以是最优化问题,也可以 是存在性或构造性问题;并且和几何模型、运筹学 模型一样,在建立图论模型的过程中,也需要用到 集合、映射、函数等基本的数学概念和工具。

图论建模方法

图论建模方法
• 定理10. 8设T是(n.m)非平凡图.则下列命题等价: • (1) T是树; (2)T无圈.m=n-1; • (3) T连通.m=n-1;(4)T无圈.任加一边有唯一圈; • (5)T连通.任去一边不连通;(6) T的任二顶点恰有一条路连通. • 由定理10. 8可直接导出下面的结果: • (1)树是边数最少的连通图; (2)连通图的极大无圈生成子图是生成树; • (3)连通图的极小连通生成子图是生成树. • 由此可见.在n个城市之间.修建n-1条直通高速公路足以形成连通的
• 称图G与图H同构.记为G= H.如果存在V (G)与V(H)的一一对应.同时存 在E(G)与E(H)的一一对应.且保持顶点与边的关联关系不变.例如.在图 10. 3中·图G与图H同构.同构的图可看成同一个图.只是顶点与边的标 号可能不同而已.
• 定义10. 3在无向图中.与顶点v关联的边的数目(环算两次)称为v的度. 记为dG (v).简记为d (v).对有向图.顶点v少的出关联边数称为出度.记 为dG' (v)或d' (v).人关联边数称为入度.记dG (v)或d(v).显然
• 我们可用定义或图形表示一个图.但注意到图的关联关系和邻接关系. 还可以用矩阵来表示一个图.从而更有利于计算机处理.
• 定义10. 5设G是(n.m)图·则以矩阵A = (aij) nx m表G的关联矩阵.其 中
• 以H=(hij )nx n表T邻接矩阵.其中hij为以顶点vi和vj为端点的边数(i,j =1.2...…n).
• 有n个顶点m条边的图称为(n,m)图.(n,0)图叫零图.特别地.(0,0)图叫空 图.(1 ,0)图叫平凡图.没有环与平行边的图称为简单图.任意两顶点都相 邻的简单图称为完全图.有n个顶点的完全图记为Kn.若V(G)能分解为 V1与V2,使得

数学建模方法详解

数学建模方法详解

数学建模方法详解数学建模是指利用数学方法来研究和分析实际问题,并通过构建数学模型来描述和解决这些问题的过程。

数学建模具有很高的理论性和广泛的应用性,可以应用于科学、工程、经济等众多领域。

下面详细介绍几种常用的数学建模方法。

一、优化建模方法优化建模方法是指在给定的约束条件下,寻求其中一种目标函数的最优解。

该方法常用于生产、运输、资源分配等问题的优化调度。

优化建模的一般步骤包括确定决策变量、建立目标函数和约束条件、制定求解算法以及分析和验证最优解。

二、动力系统建模方法动力系统建模方法是指将实际问题转化为一组微分方程或差分方程,研究系统在时间上的演化规律。

该方法可以用于描述和预测物理、生物、经济等多个领域的系统行为。

动力系统建模的关键在于建立正确的微分方程或差分方程,并选择合适的求解方法。

三、决策分析建模方法决策分析建模方法是指将决策问题转化为数学模型,并采用数学方法进行决策分析和评估。

该方法常用于风险管理、投资决策、供应链管理等领域。

决策分析建模的关键在于准确描述决策者的目标和偏好,并选择合适的决策规则进行决策分析。

四、统计建模方法统计建模方法是指利用统计学理论和方法来描述和分析实际问题。

该方法多用于数据分析、预测和模式识别等领域。

统计建模的过程包括收集数据、建立概率模型、估计模型参数以及进行模型检验和应用。

五、图论建模方法图论建模方法是指利用图论的理论和方法来描述和分析网络结构和关联关系。

该方法常用于社交网络分析、路径规划、电力网络优化等领域。

图论建模的关键在于构建网络模型,并选择适当的图算法进行分析和优化。

六、随机模型建模方法随机模型建模方法是指利用随机过程和概率论的理论和方法来描述和分析随机现象。

该方法常用于金融风险管理、信号处理、系统可靠性评估等领域。

随机模型建模的关键在于建立正确的随机过程模型,并进行概率分布和随机变量的分析。

七、模拟建模方法模拟建模方法是指利用计算机仿真技术来模拟和分析实际问题。

数学建模图论讲

数学建模图论讲
如果任两顶点间最多有一条边,且每条边的两个端点皆 不重合的图,则称为简单图。
第2页1 /共86页
2024年8月3日
数学建模-图论
一、图的基本概念
如果图的二顶点间有边相连,则称此顶点相邻,每一对顶点
都相邻的图称为完全图,否则称为非完全图,完全图记为 K V 。
若V (G) X Y, X Y , X Y 0 ,且 X 中 无相邻的顶点对,Y 中亦然,则称图 G 为二分图.
第1行 1 A1i 第i行 1
11,A1i 2
2 2
22,A1i3
4 4
4 4
其中i=2,3,4,5,显然y1=1+(4+4+4+4-1) 4=61. 同理,计算y2时应考虑槽高只有2,21,23,24,25,
26时的情形,类似计算可得 y2=1+(4+4+4+4-1)×5=76.
于是,s=61×2+76×4=426,x=6306426=5880.
计算y1可分别考虑槽高只有1,12,13,14,15的 情形.若只有1,这样的锁具效只有1个, 若只有1和i(i=2,3,4,5),这样的锁具数=G中以1和i为 顶点,长度为3的道路数,此数可通过A的子矩阵A1i计 算得到.
第18页/共86页
数学建模-图论
二、图的矩阵表示(应用实例解法分析)
事实上,因为
间最短的路线。定义T*T=(t(2)ij),
3
4
t(2)ij=min{min1<=k<=5{tik+tkj},tij}, t(2)ij表示 从站点i到站点j的至多换乘一次的最短时间。
5
第22页/共86页
数学建模-图论
二、图的矩阵表示(应用实例及解法分析)

数学建模-图论篇

数学建模-图论篇

data
firstarc
nextvex
边结点表中的结点的表示:
data:结点的数据场,保存结点的 数据值。
firstarc:结点的指针场,给出自该 结点出发的的第一条边的 边结点的地址。
nextvex:结点的指针场,给出该结 点的下一结点的地址。
info:边结点的数据场,保存边的 权值等。
adjvex:边结点的指针场,给出本
2C 3D
20 30 ∧
data firstin firstout
tailvex headvex hlink tlink
0
1
02

31∧
2
3
∧∧
3 2 ∧∧
图的存储结构
4、邻接多重表
•结点表中的结点的表示

data
firstedge
data:结点的数据域,保存结点的 数据值。
firstedge: 结点的指针域,给出自该
A
B
E
表示成右图矩阵
C
D
011 00 100 11 1000 1 0100 1 0111 0
图的存储结构
1、邻接矩阵和加权邻接矩阵(labeled adjacency matrix)(续)
•有向图的加权邻接矩阵
设有向图具有 n 个结点,则用 n 行 n 列的矩阵 A 表示该有向图;
并且 A[i,j] = a , 如果i 至 j 有一条有向边且它的权值为a。A[i,j] =无穷,如果 i 至 j 没有一条有向边。
邻接表
十字链表
邻接多重表
1、邻接矩阵和加权邻接矩阵(labeled adjacency matrix) •无权值的有向图的邻接矩阵
设有向图具有 n 个结点,则用 n 行 n 列的布尔矩阵 A 表示该有向图;

“数学建模”讲座:图论方法及其建模

“数学建模”讲座:图论方法及其建模

《数学建模》讲座:数学建模中的图论方法图论是离散数学的重要组成部分,它对于自然科学、工程技术、经济管理和社会现象等诸多问题,能够提供有力的数学模型加以解决,特别在国内外大学生数学建模竞赛当中,有不少问题可以应用图论模型解决。

我们在此有针对性地把图论的骨干概念和结论以及相关的有效算法做一简要介绍,愿听者增强图论建模的意识和能力。

MCM中与图论有关的题目:1.90-B 扫雪问题(二邮递员中国邮路问题)求欧拉回路的Fleury算法2.91-B 通讯网络的最小生成树寻找最优Steiner树3.92-B 应急电力修复系统最小生成树算法4.94-B 计算机网络的最小接通时间中国大学生数学建模竞赛试题:1. 94-A 逢山开路利用求最短路的Dijkstra算法94-B 锁具装箱DFS算法2. 98-B 灾情巡视路线多邮递员中国邮路问题3. 99-B 钻井布局4. 00-B 钢管订购和运输§1 图论的基础知识图论中的“图”并不是通常意义下的几何图形或物体的形状图,而是以一种抽象的形式来表达一些确定的事物及其关系的一个数学系统。

在历史上,图论的创立开始于对著名的nigsbergK 七桥问题的研究。

oK 是18世纪欧洲的一个城市,位于Pregel河畔,河中有两个岛屿A和onigsbergD,人们架设了七座桥把河岸和两个小岛连接起来。

当时城中的居民热衷于讨论这样一个问题:要从任何一块陆地出发,能否通过每座桥一次且不重复,最后返回出发地(图1)?瑞士数学家欧拉于1736年解决了这个问题,他发表了图论的第一篇论文(!),证明了七桥问题是无解的。

同时他提出并解决了更为一般的问题,从而奠定了图论的基础。

BC AD图1一.图的基本概念图G 是由非空结点集{}n v v v V ,,,21 =以及边集{}m e e e E ,,,21 =所组成,记作()E V G ,=。

它的结点数称为阶。

根据边有无方向,图分为有向图和无向图。

数学建模之图论模型讲解

数学建模之图论模型讲解

过河问题:摆渡人Ferryman,狼wolf,羊sheep,卷 心菜cabbage过河问题 . 如何摆渡使得它们不能互 相伤害.
考试安排问题:学校期末考试安排n门课的考 试时间时,不能把同一位学生选修的两门课安排在 同一时间考试,问学校考试最少要进行多长时间?
信道分配问题:发射台所用频率从小到大编号 为1,2, …称为信道。用同一信道的两个台站相距得 少于一个常数d,问各台至少需同时使用几个不同 的信道?
A—R,A—C,A—T,
R—P,P—S,S—T,
T—B,B—D,D—C,
A
R—S,R—B,P—D,
S—C,S—D.
T
每种药品作为一个顶 点,不能放在一起的 S 连边。相邻顶点用不 同颜色着色。
R P
这一问题就是图论中的顶点着色问题。
至少需用3个房间:A,S,B/D,T,R/C,P
B C
D
例3 最短路问题(SPP-shortest path problem) 一名司机奉命在最短的时间内将一车货物从甲
问题变成了:能否从这个图上任一顶点出发,
经过每条边一次且仅一次而回到出发顶点。
--Euler-回路(圈)问题。
A
A
B
D
B
D
C
C
例2 药品存储问题
▪ 有8种化学药品A、B、C、D、P、R、S和T要放 进贮藏室保管,出于安全原因,下列各组药品不能 贮在同一室内:A—R,A—C,A—T,R—P, P—S,S—T,T—B,B—D,D—C,R—S, R—B,P—D,S—C,S—D,试为这8种药品设 计一个使用房间数最少的贮藏方案。
G[{v1,v2,v3}] G[{e3,e4,e5,e6}]
3) 若 V V,且 V ,以 V 为顶点集,以两端点 均在V 中的边的全体为边集的图 G 的子图,称 为G的由V 导出的子图,记为 G[V ] .

浅谈图论模型的建立与应用

浅谈图论模型的建立与应用
至于S[23],我们可以用二分法枚举,逐步缩小范围,用迭代法判断是否存在 负权回路(判定可行性),最终求得S[23]的最小值。时间复杂度为 O(243*log2N)。
例题2 出纳员的雇佣(ACM Tehran 2000)
小结
本题用到了差分约束系统的理论,在竞赛中,这样的系统并不多见, 但是却可以巧妙的解决一些难题。这类题目的模型都不明显,需要一定的思 考和转化。做这类题目,关键是要把题目中的约束条件表示为不等式,再把 不等式转化为图的最短路或最长路模型。
例题3 贪婪之岛(ZOJ)
问题描述
有N(N≤100000)张卡片,每张卡片有三种能力,每种 能力的能力值分别为Ai,Bi,Ci。每张卡片可以使用其中 一种能力,且每张卡片只能使用一次。现在需要A张卡片 使用第一种能力,B张卡片使用第二种能力,C张卡片使用 第三种能力(A+B+C≤100)。请计算使用哪些卡片,以及 使用卡片的哪项能力,可以使相应的能力值之和最大。
例题2 出纳员的雇佣(ACM Tehran 2000)
分析
0≤S[i]-S[i-1]≤Wi S[i]-S[i-8]≥Ri
(0≤i≤23) (8≤i≤23)
S[23]+S[i]-S[i+16]≥Ri (0≤i≤7)
退一步考虑:如果S[23]已经确定了,那么上面的不等式组可以完全转化为一 个有向图,顶点0到顶点i的最短路,就是S[i]的解。而当图中存在负权回路时, 不等式组无解。
放在空地上。在同一行或同一列
的两个机器人,若它们之间没有
墙,则它们可以互相攻击。问给
定的棋盘,最多可以放置多少个
Empty
机器人,使它们不能互相攻击。
Grass
Wall

图论数学建模实验报告

图论数学建模实验报告

图论数学建模实验报告1. 引言图论作为一门数学分支学科,研究由节点和边构成的图结构,被广泛应用于物理、计算机科学、社交网络等领域。

本实验旨在利用图论的基本概念和算法,对一个特定问题进行建模与求解。

2. 实验目的通过图论数学建模实验,我们希望能够掌握以下几个方面的能力:1. 理解图论的基本概念,如图、节点、边等;2. 熟悉图的表示方法,如邻接矩阵、邻接表等;3. 掌握常见的图算法,如最短路径算法、最小生成树算法等;4. 能够将实际问题抽象为图论问题,并利用图论算法进行求解。

3. 实验内容3.1 问题描述我们将研究一个城市的交通网络,并希望找到最佳的交通路径。

给定城市的道路和交通流量数据,我们需要确定最短路径、最大流量等指标,以便优化交通网络。

3.2 数据处理与图建模首先,我们需要将所给的数据进行处理,提取出城市的地理结构和交通流量信息。

根据道路的起点和终点,我们可以将城市的地理结构抽象为一个有向无环图(DAG)。

每个交通路线可以表示为一个有向边,边的权重代表着该路线的长度或交通流量。

3.3 最短路径算法为了确定最佳交通路径,我们需要使用最短路径算法来找到两个节点之间的最短路径。

在本实验中,我们选择使用Dijkstra算法来计算最短路径。

该算法基于贪心策略,从起点节点开始,逐步选择距离最短的节点,并更新路径和距离。

3.4 最大流量算法另外,我们还需要确定最大的交通流量。

为了实现这一目标,我们使用Ford-Fulkerson算法来计算最大流量。

该算法通过不断寻找增广路径,逐渐增加流量直到不能再增加。

3.5 结果分析与优化根据最短路径算法和最大流量算法的结果,我们可以分析交通网络的拓扑结构和瓶颈位置。

进一步,我们可以提出优化策略,如增加道路容量、改变交通流量分配等,以改善交通网络的性能。

4. 结论通过本次图论数学建模实验,我们深入学习了图论的基本概念和常用算法,掌握了将实际问题抽象为图论问题的方法。

通过分析城市交通网络的最短路径和最大流量,我们可以为优化交通网络提供科学的依据和指导。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Reference: Bearman, Moody and Stovel, 2004 image by Mark Newman
Reference: Adamic and Adar, 2004
Protein interaction network
Reference: Jeong et al, Nature Review | Genetics
5. 链与圈
给定一个图G=(V,E),G中的一个点、边交错
序列(vi1,ei1,vi2,ei2,…,vik-1,eik-1,vik),如果
满足eit=[vit,vit+1](t=1,2,…,k-1),则称为一条联
接vi1和vik的链,记为=(vi1,vi2,…,vik)。
链(vi1,vi2,…,vik)中,若vi1=vik ,称之为一 个圈,记为C= (vi1,vi2,…,vik-1, vi1 ) 。
Power transmission grid of Western US
The Internet
The Internet as mapped by The Opte Project
More Applications

Hypertexts

网页包含到其他网页的超链接。整个Web是一个图. 搜 索引擎需要图处理算法。 职位招聘,如何有效将职位与应聘者匹配? 工程项目的任务安排,如何满足限制条件,并在最短时 间内完成? 大型软件系统,函数(模块)之间调用关系。编译器分 析调用关系图确定如何最好分配资源才能使程序更有效 率。
例:有甲、乙、丙、丁、戊五个球队,各队之间比赛
情况如表:
甲 甲 乙 丙 丁 戊 × 负 胜 负 负 乙 胜 × 负 丙 负 胜 × 负 胜 × 胜 负 × 丁 胜 戊 胜
点:球队; 连线:两个球队之间比赛过,如甲胜乙,用 v1 v2表示。
v5 v1 v2
v3
v4
图的定义
定义1:一个图,是由非空集合V(G)={vi} 和V(G)中 元素的有序对(或无序对)的集合E(G)={ek}
i
vVe
vV0
必为偶数。即在一个图中奇点的个数必为偶数。
4. 节点度与悬挂点、孤立点
图G中以点v为端点的边的数目,称为v在G中的度, 记为d(v)。
v1
e1 v2 e2 e3 v3
v4
e4 e5
d(v1)=2 d(v2)=3 d(v3)=4 d(v4)=1
度为1 的点为悬挂点,悬挂点的关联边称为悬挂边, 度为零的点称为孤立点。
初等链:链中点都不同。(边能否相同?)
简单链:链中边都不同。(点能否相同?)
v1 e3
e1 v3 e4
e2 v5
v7 e6 e7
e5
v2
e8
v4 e9
v6
v8
简单链:1=(v2,v1,v3,v6,v4,v3,v5) 初等链:2=(v2,v1,v3,v5) 简单圈:C1=(v1,v2,v4,v3,v5,v6,v3 ,v1 ) 初等圈:C2=(v1,v2,v4,v6,v5,v3 ,v1 ) 有向图中,不考虑弧的方向,有类似链(圈)的定义。 当链(圈)上弧的方向一致时,称为路(回路)。
的两倍, 即
vV
3. 奇点与偶点
d(v) 2m
次为奇数的点称为奇点,否则称为偶点。
定理2 任一图中奇点的个数为偶数。
证明:设v0和v e分别是G中的奇点和偶点的集合, 由定理1,有
vV0
d(v ) d(v) d(v) 2m
i vVe vV

vV
d(v) 是偶数, d(v) 也是偶数,故 d(v )

Matching


Schedules


Program structure

Graph Applications
Graph Problems and Algorithms
哈密頓(Hamilton) 周遊世界问題
正十二面体有二十个顶点 表示世界上20个城市 各经每个城市一次 最后返回原地
投影至平面
tree A connected graph G Spanning trees of G
图术语回顾
点:研究对象(陆地、路口、国家、球队);
点间连线:对象之间的特定关系(陆地间有桥、路口 之间道路、两国边界、两球队比赛及结果)。
对称关系:桥、道路、边界; 用不带箭头的连线表示,称为边。 非对称关系:甲队胜乙队,用带箭头的连线表示, 称为弧。 图:点及边(或弧)组成。
二分图(偶图) Bipartite graphs

A graph that can be decomposed into two partite sets but not fewer is bipartite It is a complete bipartite if its vertices can be divided into two non-empty groups, A and B. Each vertex in A is connected to B, and viceversa
Planar:
=
NOT Planar:
平面图实例

8个顶点(V=8) 12条边 (E=12) 6个面 (F=6) 8-12+6=2
更多平面图实例
树 Trees

树(tree):连通无简单回路无向图


若有n个顶点,則有n-1条边 任两点之间仅有一条路径

生成树 (spanning tree):包括图中所有的顶点,并 且是一棵树
所组成的二元组(V(G),E(G))所构成。
记为 简记 其中 G= ( V(G), E(G) ) G= (V,E) V= {vi} 称为点集,vi为点 。
E={ek}称为边集, ek为边(或弧)。
当V,E为有限集时,称G为有限图。 否则,称G为无限图。
无向图:由点及边构成 ,边[vi,vj]
有向图:由点及弧构成,弧( vi,vj)
一些特殊图类
1. 平凡图 3. 连通图 给定图G=(V,E),任何两点间至少有一条链,则 称G是连通图,否则为不连通图。 若G是不连通的,它的每个连通部分称为G的连通分 图。 节点数n=1,边数m=0的图。
2. 零图 边数m=0的图。
4.树
无圈连通图。
5. 完备图 无向图的完备图:任何两点之间有一条边; 有向图的完备图:任何两点u与v之间有两条有向边 (u,v)及(v,u)。 基本图:把有向图的每条边除去方向得到的无向图。 6.二分图
v3
e5
2. 相邻与关联 若边e=[u,v]∈E,称u,v是e的端点,也称u,v是 相邻的。称e是点u(及点v)的关联边。
若两条边有一个公共的端点,则称这两条边相邻接。
vi
e
vj
点与点 相邻
边与边相邻接
vi,vj相邻 e 与vi,vj关联
vi
e1
vk e2
vj
点与边关联
定理1 图G=(V,E)中,所有点的次之和为边数
一直往前走 碰壁就回头換条路找 沿途要记录下走过的路线
老鼠走迷宮深度优先搜索
Some graph-processing problems
Path. Is there a path between s to t? Shortest path. What is the shortest path between s and t? Longest path. What is the longest simple path between s and t? Cycle. Is there a cycle in the graph? Euler tour. Is there a cycle that uses each edge exactly once? Hamilton tour. Is there a cycle that uses each vertex exactly once? Connectivity. Is there a way to connect all of the vertices? MST. What is the best way to connect Байду номын сангаасll of the vertices? Biconnectivity. Is there a vertex whose removal disconnects the graph? Planarity. Can you draw the graph in the plane with no crossing edges? First challenge: Which of these problems is easy? difficult? intractable?
若V(G)=X ∪ Y,X ∩ Y= Ф,X 、Y中的任两顶点不 相邻,则G称为二分图,记为(S,X,Y)。
7.完全二分图 若V(G)=(S,X,Y),如果任意μ∈X、ν∈Y,都有[μ, ν]∈E,则称G是完全的二分图。 8.正则图 如果G中每个点的次数都相同,则G叫做正则图。 9.网络 若对图G=(V,E)中每条边[vi,vj]赋予一个数 wij,则称wij为边[vi,vj]的权,并称图G为网络(或赋 权图)。 网络:无向网络、有向网络。
图G中点集V的顶点个数,记为p (G) ; 边数记为q(G), 简记 p,q。
二、图论中常用术语
1. 简单图与多重图 某条边两个端点相同,称这条边为环。 若两点之间有多于一条的边,称这些边为多重边。
v1 e1 e2
v4 e4
无环、无多重边的 图称为简单图。 多重图:无环、但 允许有多重边。
v2
e3
相关文档
最新文档