水力学复习资料汇总
水力学复习材料
名词解释(′′153×5=)1、压缩系数β是:液体相对压缩值VdV 与液体压强增量dp 的比值,即dpV dV /-=β。
2、黏滞性:液体具有运动状态下抵抗剪切变形的能力。
3、绝对压强:以设想的不存在任何气体的绝对真空状态作为计算零点的压强。
(已考过)4、相对压强:以当地的大气压作为计算零点的压强。
5、迹线:某一液体质点在运动过程中,不同时刻所流经的空间点所连成的线。
(已考过)流线:某一瞬时,在流场中画出这样一条光滑曲线,这条曲线上任意一点在该瞬时的速度矢量在该点处与曲线相切,这条曲线称为该瞬时的一条流。
6、过水断面:与元流或总流的流线相垂直的横断面。
7、恒定流:流场中的任何空间点上的所有运动要素都不随时间而变化的流动。
沿程水头损失:在流动过程中,要克服沿程摩擦阻力就需要做功,单位质量液体由于沿程阻力做功引起的机械能损失。
8、局部水头损失:在急变流段上所产生的流动阻力称为局部阻力,相应的水头损失称为局部水头损失。
9、水力最优断面:当渠道的i 、n 及过水断面面积w 一定时,使渠道所通过的流量最大的断面形状。
10、渠道底坡i :为采用渠底的高差Z ∆与相应渠长L 的比值,即θsin =∆=LZ i 。
11、棱柱形明渠:为了使水流平顺以及施工方便,一般明渠横断面的形状和尺寸筑成沿程不变的。
12、允许流速:对渠身不会产生冲刷,也不会使水中悬浮的泥沙在渠道中发生淤积的断面平均流速。
13、壅水曲线:渐变流的水深可能沿流程增大而形成壅水,其水面线称为壅水曲线。
14、降水曲线:水深沿流程逐渐减小而形成降水,其水面线称为降水曲线。
15、水跃:明渠水流从急流转变到缓流时,水面突然升高的一种局部水力现象。
16、降水曲线:水深沿流程逐渐减小而形成降水,其水面线称为降水曲线。
17、水跃:明渠水流从急流转变到缓流时,水面突然升高的一种局部水力现象。
18、水跌:明渠缓流向急流过渡时,水面急剧下降的局部水力现象。
水力学知识点总结
水力学知识点总结1. 水的基本性质水是自然界中非常重要的物质,它具有一系列独特的物理、化学性质。
如水的密度、粘度、表面张力等重要性质对水力学研究有着重要的影响。
2. 水动力学水动力学是研究流体的运动规律及其与物体之间的相互作用的科学。
水动力学是水力学的基础,分为静水力学和流体力学。
静水力学研究静止的流体,而流体力学则研究流体的运动。
3. 流体静力学流体静力学是研究静止流体中的压力、浮力和力的平衡问题。
在水力学中,流体静力学主要用于水库、坝体等结构的压力分析。
4. 流体动力学流体动力学是研究流体运动及其产生的压力、阻力以及对物体的作用力。
在水力学中,流体动力学主要应用于河流、渠道等流体动力学性质的研究。
5. 流态力学流体力学是研究流体运动状态与性质的学问。
在水力学中,流态力学主要应用于分析水流的速度、流量、流向、涡流情况等。
6. 水流的稳定性水流的稳定性是水力学中的重要概念,它指的是水体流动时所产生的稳定的流态特性,包括流态的平稳性、安定性和可操作性等。
7. 水力工程水利工程是利用水资源进行灌溉、供水、发电等利用的工程。
水利工程设计要考虑水力学的各种知识,如水流的稳定性、水利工程的结构和设备等方面。
8. 水道工程水道工程是为了改善河流、渠道等水道的通航、排涝等目的的工程项目。
在水道工程设计中,水力学知识对水流速度、水位变化、水力坡等方面有着重要影响。
9. 水电站在水力学中,水电站是一个重要的应用领域。
水力功率的计算、水轮机的设计、水库的水位控制等都需要水力学知识。
10. 河流水文学河流水文学是研究河流的水文特性、水位变化规律、涨落情况等方面的科学。
水文学是水力学中应用最广泛的一个分支,水利工程、水资源评价等方面都需要水文学的知识。
11. 液压机械液压机械是以流体静力学和流体动力学的理论为基础,利用液体作为传动介质的机械装置。
水力学的理论基础对液压机械的设计、制造和使用都有着重要的影响。
12. 水资源评价水力学的知识还被应用于水资源评价领域,通过水文学、水文模型等方法来评价水资源的分布、利用、保护等问题。
水力学复习资料汇总
第零章绪论0.1水力学的任务与研究对象(了解)水力学的任务是研究液体(只要是水)的平衡和机械运动的规律及其实际应用. 水力学研究的基本规律有两大主要组成部分:一是关于液体平衡的规律.它研究液体处于静止或相对平衡状态时,作用于液体上各种力之间的关系,这一部分称为水静力学;二是关于液体运动的规律,它研究液体在运动状态时,作用于液体上的力与运动要素之间的关系,以及液体的运动特性与能量转换等,这部分称为水动力学.0.2液体的粘滞性(理想液体与实际液体最大的差别)粘滞性当液体处于运动状态时,若液体质点之间发生相对运动,则质点间会产生内摩擦力来阻碍其相对运动,液体的这种性质就称为粘滞性,产生的内摩擦力叫做粘滞力.0.3牛顿内摩擦定律当液体做层流运动时,相邻液层之间在单位面积上作用的内摩擦力(或粘滞力)的大小与速度梯度成正比,同时和液体的性质有关.即.0.4牛顿内摩擦定律的另一种表述(了解)P70.5运动粘度系数它是动力黏度系数与液体密度的比值,是表征液体粘滞性大小的物理量.其值是随温度的变化而变化的,即温度越高,其值越小(液体的流动性是随温度的升高而增强的)0.6牛顿内摩擦定律只适用于牛顿流体(符合牛顿内摩擦定律的液体,其特点是温度不变,动力黏度系数就不变P8图0.3)0.7体积压缩率液体体积的相对缩小值与压强的增大值之比.(水的压缩性很小,一般不考虑)0.8表面张力表面张力是指液体自由表面上液体分子由于两侧引力不平衡,使其受到及其微小的拉力(表面张力仅存在于液体表面,液体内部不存在,其值表示为自由面单位长度受到拉力的大小,并且随液体种类和温度的变化而变化,怎样变化)0.9毛细现象在水力学实验中,经常使用盛有水或水银细玻璃管做测压计,由于表面张力的影响使玻璃管中液面和与之向连通容器中的液面不在同一水平面上.这就是物理学中所讲的毛细现象.0.10由实验得知,管的内经越小,毛细管升高值越大,所以实验用的测压管内径不宜太小.P10图0.4,0,50.11连续介质在水力学中,把液体当作连续介质看待,即假设液体是一种连续充满其所占据空间毫无空隙的连续体.(水力学所研究的液体运动是连续介质的连续流动,但实际上,从微观角度来看,液体分子与分子之间是存在空隙的,但水力学研究的是液体的宏观运动,故将液体看作连续接介质)0.12把液体看作连续介质的意义如果我们把液体看作连续介质,则液流中的一切物理量都可以视为空间坐标和时间坐标的连续函数,这样,在研究液体的运动规律时,就可以运用连续函数的分析方法.0.13理想液体所谓理想液体,就是把液体看作绝对不可压缩,不能膨胀,没有粘滞性,没有表面张力的连续介质.0.14表面力和质量力表面力表面力是作用于液体的表面,并于受作用的的表面面积成比例的力.质量力质量力是指通过所研究液体的每一部分质量而作用与液体的,其大小和液体的质量成比例的力(质量力又称体积力)课后习题0.2第一章水静力学1.1液体在平衡状态下.没有内摩擦力的存在,因此理想液体和实际液体都是一样的,故在静水中没有区分的必要.1.2静水压力静止(或处于平衡状态)的液体作用在与之接触的表面上的水压力称为静水压力,常以表示.1.3静水压强取微小面积,令作用在上的静水压力为,则面上单位面积上所受的平均静水压力为称为面上的平均静水压强,当无限趋近与一点时,比值的极限值定义为该点的静水压强.1.4静水压强的两个重要特性⑴静水压强的方向与受压面垂直并指向受压面(若不垂直,则必存在一个与液面平行的分力,这样必会破坏液体的平衡状态;静水压强若不指向受压面而是背向受压面,则必会受到拉力,同样不能保持平衡状态)⑵作用在同一点上的静水压强相等(推导过程:在平衡液体内分割出一块无限小的四面体,倾斜面的方向任意选取,为简单起见,建立如图所示的坐标系,让四面体的三个棱边与坐标轴平行,并让轴与重力方向平行,各棱边长为,四面体四个表面上受有周围液体的静水压力,因四个作用面的方向各不相同,如果能够证明微小四面体无限缩小至一点时,四个作用面上的静水压强都相等即可.令为作用在面上的静水压力, 令为作用在面上的静水压力, 令为作用在面上的静水压力, 令为作用在面上的静水压力.又假定作用在四面体上单位质量力在三个坐标方向的投影为,则总质量力在三个坐标方向的投影分别为…因为液体处于平衡状态,由力的平衡条件得:+若…以分别表示四面体四个面的面积,则…将上式都除以,并且有化简可得,上式中分别表示面上的平均静水压强, ,如果微小四面体无限缩小至一点时,均趋近于0,对上式取极限有,同理可证,故作用在同一点上的静水压强相等)1.5等压面在平衡液体中可以找到这样一些点,他们具有相同的静水压力,这些点连成的面称为等压面(对于静止的液体其等压面是水平面,对于处于相对平衡的液体,其等压面与自由液面平行,例如称有液体的圆柱形容器绕桶轴做等角速度旋转,其等压面就是抛物面)1.6等压面的两个性质⑴在平衡液体中等压面即为等势面.⑵等压面与质量力正交.1.7绝对压强和相对压强绝对压强以设想没有大气存在的绝对真空状态作为零点计量的压强,称为绝对压强.相对压强把当地大气压作为零点剂量的压强,称为相对压强.1.8P29图1.11中各字母表示的含义1.9真空及真空度真空当液体中某点的绝对压强小于当地大气压强,即相对压强为负值时,就称该点存在真空.真空度真空度是指该点绝对压强小于当地大气压强的数值.(例题1.4 1.5 .16) 1.10压强的液柱表示法1.11水头与单位势能1.12液体的平衡微分方程式(欧拉平衡微分方程式)的推导过程P20,以及重力作用下静水压强的基本公式的推导过程P24.1.13压强的测量(各种压差计的计算)计算中找等压面须注意:①若为连续液体,高度相等的面即为等压面.②若为不连续液体(如液体被阀门隔开或者一个水平面穿过了不同介质,则高度相等的面不是等压面③两种液体的接触面是等压面.1.14作用于矩形平面上的静水总压力,为压强分布图面积.(压力中心的位置:当压强为三角形分布时, 压力中心离底部距离为当压强分布为梯形分布时,压力中心离底部距离为)1.15作用于曲面上的静水总压力分为水平方向和竖直方向计算,水平方向方法同作用于矩形平面上的静水总压力(将曲面投影在方向的图形即为矩形,则=为形心点处的压强),竖直方向需画出压力体(压力体包括六个面:曲面本身,自由液面或者其延长面,曲面四个边延长至自由液面的四个面.这里注意自由液面必须是只受到大气压强作用的液面),则,其中为压力体的体积.1.16几种质量力同时作用下的液体平衡1.17作用于物体上的静水总压力,潜体与浮力的平衡及其稳定性第二章液体运动的流束理论2.1描述液体运动的两种方法(拉格朗日法和欧拉法)P632.2流线和迹线迹线某一液体质点在运动过程中,不同时刻所流经的空间点所连成的线称为迹线,即迹线就是液体质点运动时所走过的轨迹线流线它是某一瞬时在流场中绘出的一条曲线,在该曲线上所有点的速度向量都与该曲线相切,所以流线表示除了瞬间的流动方向.流线的基本特性P672.3恒定流与非恒定流恒定流如果在流场中所有的运动要素都不随时间而改变,这种水流称为恒定流(也就是说,在恒定流的情况下,任一空间点上,无论哪个液体质点通过,其运动要素都是不变的.运动要素仅仅是空间坐标的函数,而与时间无关)非恒定流如果在流场中所有的运动要素都是随时间而改变的这种水流称为非恒定流.注:本章只研究恒定流.2.4流管在水流中任意取一微分面积,通过该面积周界上的每一给点,均可以作一根直线,这样就构成了一个封闭的管状曲面,称为流管.2.5微小流束充满以流管为边界的一束液流称为微小流束(按照流线不能相交的特性,微小流束内的液体不会穿过流管的管壁向外流动,流管外的液体也不会穿过流管的管壁向流束内流动,当水流为恒定流时,微小流束的形状和位置不会随时间而改变,在非恒定流中,微小流束的形状和位置将随时间而改变.微小流束的很横断面积是很小的,一般在其横断面上各点的流速或动水压强可看作是相等的)2.6总流任何一个实际水流都具有一定规模的边界,这种有一定大小尺寸的实际水流称为总流(总流可以看作由无限多个微小流束所组成)2.7过水断面与微小流束或总流的流线成正交的横断面称为过水断面.2.8流量2.9均匀流与非均匀流均匀流当水流的流线为相互平行的直线时,该水流称为均匀流(直径不变的管道中的水流就是均匀流的典型例子)非均匀流若水流的流线不是相互平行的直线时,该水流称为非均匀流.如果流线虽然相互平行但不是直线(如管径不变的弯管中的水流)或者流线虽直线但不相互平行(如管径沿程缓慢均匀扩散或收缩的渐变管中的水流)都属于非均匀流.2.10均匀流的特性⑴均匀流的过水断面为平面,且过水断面的形状和尺寸沿程不变⑵均匀流中,同一流线上不同点的流速相等⑶均匀流过水断面上的动水压强分布规律与静水压分布规律相同2.11均匀流过水断面上的动水压强分布规律与静水压分布规律相同的推导过程2.12渐变流和急变流渐变流当水流的流线虽然不是相互平行的直线,但几乎近于平行直线称为渐变流急变流若水流的流线之间夹角很大或者流线的曲率半径很小,这话水流称为急变流.2.13恒定总流连续性方程的推导P712.14理想液体恒定流微小流束能量方程的推导P722.15实际液体恒定总流的能量方程的推导P782.15恒定总流动量方程的推导P94第三章液流形态及水头损失3.1沿程水头损失和局部水头损失沿程水头损失在固体边界平直且无障碍物的水道中,单位重量的液体自一断面流至另一断面所损失的机械能叫做沿程水头损失,常用表示.局部水头损失当固体边界发生改变或液体遇到障碍物时,由于边界或障碍物的作用使液体质点相对运动加强,内摩擦增加,产生较大的能量损失,这种发生在局部范围之内的能量损失叫做局部水头损失,常用表示.(就液体内部的物理作用来说,水头损失不论其产生的外因如何,都是因为液体内部质点之间有相对运动,因粘滞性的作用产生切应力的结果)当固体边界发生改变或液体遇到障碍物时,为什么会产生局部水头损失(了解)P1203.2影响水头损失的液流边界条件3.2.1横向条件(过水段面积,湿周和水力半径)湿周液流过水断面与固体边界接触的周界线叫做湿周,常用表示.(当过水段面积相等时,周长不一定相等,水与固体边界的接触要长些,故湿周对水损会产生影响,同样,当湿周相等时, 过水段面积不一定相等,通过同样大小的流量水损也不一定相等,故用水力半径来表征过水断面的水力特征)水力半径过水段面积与湿周的比值称为水力半径,即 .3.2.2纵向条件P1233.3均匀流时无局部水头损失,非均匀渐变流时局部水头损失可以忽略不计,非均匀急变流时两种水头损失均有(知道).3.4均匀流沿程水头损失与切应力的关系,以及半径为r处的(圆管中)切应力计算公式的推导P1323.5计算均匀流沿程水头损失的基本公式——达西公式对圆管来说,水力半径 ,故达西公式也可以写做达西公式的推导过程应该不会考3.6层流和紊流层流当留速较小时,各流层的液体质点是有条不紊的运动,互不混杂,这种形态的流动叫层流.紊流当流速较大时,各流层的液体质点形成涡体,在流动过程中,相互混杂,这种形态的流动叫紊流.3.7雷诺试验雷诺试验数据图形(两点三段.两点即上临界流速—水流从层流刚刚进入到紊流状态的速度和下临界流速—水流从紊流刚刚进入到层流状态的速度.三段即层流,过渡区,紊流所对应的曲线段.)P1293.8根据雷诺实验的结果,层流时雷诺试验图形为一条直线,即沿程水损v呈线性的一次方关系,但是由达西公式知与v是平方关系,试解释其原因.P1323.9雷诺数的物理意义(为什么雷诺数可以判别液流形态)P1313.10为什么采用下临界雷诺数而不采用上临界雷诺数来判断水流的型态这是因为经大量试验证明,圆管中下临界雷诺数是一个比较稳定的数值,其值一般维持在2000左右,但上临界雷诺数是一个不稳定数值(一般在12000-2000),在个别情况下也有高达40000-50000.这要看液体的平静程度和来流有扰动而定,凡雷诺数大于下临界雷诺数的,即使液流原为层流,只要有任何微小的扰动就可以是层流变为紊流.在实际工程中扰动总是存在的,所以上下临界雷诺数之间的液流是极不稳定的,都可以看作紊流,因此判别液流型态以下临界雷诺数为标准:实际雷诺数大于下临界雷诺数的是紊流,小于下临界雷诺数的是层流.3.11雷诺实验虽然都是以圆管液流为研究对象,但其结论对其他边界条件下的液流也是适用的.只是边界条件不同,下临界雷诺数的数值不同而已.例如明渠的雷诺数,其中R为水力半径(知道).3.12紊流的特征P133(4点,后两个特点很重要)3.13粘性底层在紊流中并不是整个液流都是紊流,在紧靠固体边界表面有一层极薄的层流存在该层流层叫粘性底层.3.14沿程阻力系数的变化规律⑴即液体处于层流状态,只与雷诺数有关,而与相对光滑度无关,且⑵即液体处于从层流进入紊流的过渡区,只与雷诺数有关,而与相对光滑度无关.因其范围很窄,实际意义不大.⑶即液流进入紊流状态,这时决定于粘性底层厚度和绝对粗糙度的关系:①当较小时粘性底层较厚,可以淹没,抵消管壁粗糙度对水流的影响,从而只与雷诺数有关,而与相对光滑度无关.②继续增大, 粘性底层厚度相应减薄,一直不能完全淹没, 管壁粗糙度对水流产生影响, 从而既与雷诺数有关,又与相对光滑度有关.③当增大到一定程度时, 粘性底层厚度已经变得很薄,已经不能再抵消管壁粗糙度对水流的影响,这时管壁粗糙度对起主要作用,从而只与相对光滑度有关,而与雷诺数无关.(因这时与v是平方关系,故该区又叫做阻力平方区)3.15谢齐公式和曼宁公式谢齐公式 ,其中J为水力坡度,/l ,R水力半径.曼宁公式 ,其中n为粗糙系数,简称糙率.第四章有压管中的恒定流4.1简单管道简单管道管道直径不变且无分支的管道.4.2自由出流和淹没出流自由出流管道出口水流流入大气,水股四周都受大气压强的作用,称为自由出流淹没出流管道出口如果淹没在水下,则称为淹没出流4.3短管和长管短管管道中若存在较大的局部水头损失,它在总水损中占的比重较大,不能忽略不计的管道称为短管.长管若管道较长,局部水损和流速水头可以忽略不计,这样的管道叫做长管.4.4简单管道的水力计算(以下均属于连续性方程和能量方程的具体应用)总原则首先确定按长管还是短管计算.若按短管计算,则沿程损失,局损和流速水头都要计算;若按长管计算,只需计算沿程损失, 局部水损和流速水头可以忽略不计;在没有把握估计局损的影响程度时,均按短管计算.(先按短管计算,求出具体的沿程损失和局损数值,比较后可确定到底如何计算,若无法确定具体数值一般的,给水管道按长管计算,虹吸管按短管计算,水泵吸水管按短管计算,压水管根据情况而定.4.4.1自由出流和淹没出流的水力计算自由出流上游存在行近流速,即有一个行近水头,列能量方程需计算在内(但其值一般很小,在计算结果以忽略不计,即公式中的).淹没出流上游存在行近流速,即有一个行近水头,列能量方程需计算在内(但其值一般很小,在计算结果时可以忽略不计,即公式中的). 下游也存在一个流速水头,但由于管道的过水断面积很小,而下游过水断面积很大,水流速度在下游已经变得很小,可以忽略,不需计入能量方程.4.4.2几种基本类型4.4.3虹吸管和水泵装置的水力计算4.4.4串联管道整个管道的水头损失等于各支管水损之和.4.4.5并联管道并联管道一般按长管计算,各支管的水损相等(各支管的水损相等,只表明通过每一并联支管的单位重量液体的机械能损失相等;但各支管的长度,直径及粗糙系数可能不同,因此其流量也不同,股通过各并联支管的总机械能损失是不相等的)4.4.6分叉管道在分叉处分为若干个串联管道进行计算.4.5沿程均匀泄流的水力计算本章的水力计算题均是围绕这能量方程来设计的,所以熟练掌握能量方程的应用,加上对各个类型的管道特点的了解,不用背繁琐的公式也可以解决本章的计算题,当然背下来更好第五章明渠恒定均匀流5.1明渠恒定均匀流(知道)明渠恒定均匀流当明渠水流的运动要素不随时间而变化时,称为明渠恒定流.否则称为明渠非恒定流.明渠恒定流中,如果流线是一簇相互平行的直线,则水深,断面平均流速和流速分布沿程不变,称为明渠恒定均流,否则称为明渠恒定非均匀流.(明渠均匀流中,摩阻力与重力沿水流方向的分力相平衡)5.2矩形,梯形横断面水力要素的计算梯形中,为梯形与水平面的夹角.5.3底坡明渠渠底的纵向倾斜程度称为明渠的底坡, 以符号表示.且,其中为渠底线与水平面的夹角.5.4顺坡,水平和逆坡明渠当明渠渠底沿程降低时,称为顺坡明渠;沿程不变时称为水平明渠;沿程升高时称为逆坡明渠.(在水平明渠中,由于故在其流动过程中,只存在摩阻力;在逆坡明渠中,摩阻力与重力沿水流方向的分力方向一致,因此这两种情况都不可能产生明渠均匀流;只有在顺坡渠道中才可能产生明渠均匀流)5.5明渠恒定均匀流的特性及其产生条件5.6明渠均匀流的计算公式(连续性方程和谢齐公式, 谢齐系数采用曼宁公式) 5.7矩形和梯形水力最佳断面的推导过程5.8允许流速不冲允许流速能够避免渠道遭受冲刷的流速.不於流速能够保证水中悬浮的泥沙不淤积在渠槽的流速.5.9明渠均匀流的水力计算第六章明渠恒定非均匀流6.1明渠非均匀渐变流和明渠非均匀急变流(知道)在明渠非均匀流中,若流线是接近于相互平行的直线,或流线间的夹角很小,流线的曲率半径很大,这种水流称为明渠非均匀渐变流.反之为明渠非均匀急变流.(本章着重研究明渠非均匀渐变流的基本特性及其水力要素沿程变化的规律) 6.2正常水深(知道)因明渠非均匀流的水深沿流程是变化的,为了不致引起混乱,把明渠均匀流的水深称为正常水深.并以表示.6.3明渠水流的三种形态一般明渠水流有三种形态,即缓流,临界流和急流.6.4明渠水流三种形态的判别方法(5种:微波波速法,比能曲线法,Fr法,临界水深法,临界底坡法)6.4.1微波波速法微波波速的描述(了解)P216当 v<,水流为缓流,干扰波能向上游传播;v=,水流为临界流,干扰波恰不能向上游传播;v>,水流为急流,干扰波不能向上游传播.要判别流态,必须首先确定微波传播的相对速度,相对速度的推导过程(了解)P217(如图6.3,对平静断面1-1和波峰所在断面2-2列连续性方程和能量方程.1-1断面流速为,2-2断面流速为,最后令即可得出=,这就是矩形明渠静水中微波传播的相对速度公式.如果明渠为任意形状时,则有=.式中为断面平均水深,A为断面面积,B为水面宽度.在实际工程中水流都是流动的,设水流断面平均流速为v,则微波传播的绝对速度应是静水中的相对波速与水流速度的代数和,即,正号为顺水方向,负号为逆水方向)6.4.2 Fr法当 Fr<1,水流为缓流;Fr=1,水流为临界流;Fr>1,水流为急流.对临界流来说,断面平均流速恰好等于微波相对波速,即,该式可改写为,其中称为弗劳德数,用符号Fr表示.弗劳德数的两个物理意义P2186.4.3比能曲线法断面比能把基准面选在渠底,所计算的单位液体所具有的能量称为断面比能,并以表示.则,在实际应用上,因一般坡底较小,,故常采用 .比能曲线当流量Q和过水断面的形状及尺寸一定时, 断面比能仅仅是水深的函数,按照此函数可以绘出断面比能随水深变化的关系曲线,该曲线称为比能曲线.比能曲线上存在可以使断面比能取最小值的K点.K点把曲线分成上下两支,上支即为缓流所对应的曲线,下支即为急流所对应的曲线.(比能曲线见P220图6.5)比能曲线与弗劳德数的联系()及其推导过程(了解)P2216.4.4临界水深法临界水深相应于断面比能最小值的水深称为临界水深,以表示.当 h> ,Fr<1,水流为缓流;h= ,Fr=1,水流为临界流;h< ,Fr>1,水流为急流.临界水深的计算在矩形断面明渠中,临界流的流速水头是临界水深的1/2,而临界水深则是最小断面比能的2/3.(原题)P221(将.对水深h求导,并令其等于0.得,规定对应于临界水深的水利要素以脚标K,则.对于矩形断面明渠, ,代入得 ,即临界流的流速水头是临界水深的1/2.再代入 ,得,即临界水深是最小断面比能的2/3.断面为任意形状时,临界水深的计算(了解)见P222(试算法和图解法)重要例题:例题6.16.4.5临界底坡法(只适用于均匀流)第七章水跃7.1水跃当明渠中的水流又急流状态过渡到缓流状态时,会产生一种水面突然跃起的特殊局部水力现象,即在较短的渠道内水深从小于临界水深急剧的跃到大于临界水深.这种特殊的局部水力现象称为水跃.跃高跃后水深与跃前水深之差跃长跃前断面至跃后断面的水平距离完全水跃有表面旋滚的水跃。
水力学
流线为什么不能相交? 因流线上任一点的切线方向代表该点的流速方向,如果流 线相交,在交点出就会出现两个切线方向,而同一时刻同 一点流体质点不可能同时向两个方向运动。
3.3.3 均匀流与非均匀流
①定义:总流中沿同一流线各点流速矢量相同 ②性质:1流线相互平行;2过水断面是平面;3沿流程过水断面形 状和大小不变,流速分布图相同 非均匀流 :沿同一根流线各点流速向量不同 在均匀流中,位于同一流线上各质点的流速大小和方向均相同。
有空间点上的运动情况,构成整个液体的运动。
用欧拉法描述液体运动时,液体质点的加速度应是当地加 速度与迁移加速度之和。
3.2 水流的分类
表征液体运动的物理量,如 流速、加速度、动水压强等 恒定流
按运动要素是否随时间变化
非恒定流
一元流 按运动要素随空间坐标的变化 二元流
三元流
均匀流 按流线是否为彼此平行的直线 非均匀流 急变流
Px hc Ax
曲面上静水总压力的水平分力等于曲面在铅垂投影面上 的静水总压力。
Pz Vp
曲面上静水总压力的垂直压力等于压力体内的水体重。 静水总压力
P Px2 Pz2
Pz tan Px
Pz arctg Px
例:某半圆柱面挡水建筑物,半径R=2m,宽度 b 2 m
代入到上式
0.6 pa 0.6 98060 V2 2 g H 2 9.806 2.8 20.78(m/s) g 9806
• 所以管内流量
qV
4
d 2V2 0.785 0.12 2 20.78 0.235(m 3/s)
水力学复习资料
呈单一的降落曲线。 实用堰流:th 宽顶堰流: 水流在重力作用下自由跌落。 h䁥 h䁥h由于堰坎加厚,水舌下缘与堰顶呈面接触,水舌受到堰顶的约束和顶托。
向的约束,过水断面减小,流速增大,由于动能增加,势能剑侠,再加上水流进入堰顶时的局部损失, 所以进口出出现跌落。
缓流:水流断面平均流速小于微波相对速度,Fr 小于 1,水深大于临界水深。 临界流:干扰波恰不能向上传播,Fr 等于 1,水深等于临界水深。 判断方法①当 v<vw,水流为缓流,干扰波能向上游传播 当 v=vw,水流为临界流,干扰波恰不能向上游传播 当 v>vw,水流为急流,干扰波不能向上游传播 ②当 Fr<1,水流为缓流 当 Fr=1,水流为临界流 当 Fr>1,水流为急流 ③当 dh > ,水流为缓流
第三章 液体运动的流束理论
1. 2. 3. 4. 5. 6. 7. 恒定流:如果在流场中任何空间点上所有的运动要素都不随时间而改变,这种水流称为恒定流。 非恒定流: 如果流场中任何空间点上有任何一个运动要素是随时间而变化的, 这种水流称为恒定流。 流线:某一瞬时在流场中绘出的一条曲线,在该曲线上所有各点的速度向量都与该曲线相切。 迹线:某一液体质点在运动过程中,不同时刻所流经的空间点所连成的线称为迹线。 恒定流时流线的形状和位置不随时间改变;恒定流时液体质点运动的迹线与流线相重合。 均匀流:当水流的流线为相互平行 的直线 时,该水流称为均匀流。 .... .. 非均匀流:若水流的流线不是相互平行的直线该水流称为非均匀流。 均匀流特性:①过水断面的形状和尺寸沿程不变②断面平均流速相等③均匀流过水断面上的动水压强 分布规律与静水压强分布规律相同,即在同一断面上各点测压管水头为一常数。 渐变流:水流的流线的曲率半径很大,过水断面上动水压强的分布规律可近似看作与静水压强分布规 律相同。 急变流:若水流的流线之间夹角很大或者流线的曲率半径很小,这种水流称为急变流。
水力学复习资料
水力学复习资料一、选择题:(1)在缓坡明渠中不可以发生的流动是( B )。
a、均匀缓流;b、均匀急流;c、非均匀缓流;d、非均匀急流。
(2)在平衡液体中,质量力与等压面(D )a、重合;b、平行c、相交;d、正交。
(3)闸孔出流的流量Q与闸前水头的H( D )成正比。
a、1次方b、2次方c、3/2次方d、1/2次方(4)液体中某点的绝对压强为100kN/m2,则该点的相对压强为(B)a、1 kN/m2b、2 kN/m2c、5 kN/m2d、10 kN/m2(5)水力学中的一维流动是指(D )a、恒定流动;b、均匀流动;c、层流运动;d、运动要素只与一个坐标有关的流动。
(6)有压管道的管径d与管流水力半径的比值d /R=( B )a、8;b、4;c、2;d、1。
(7)渗流研究的对象是( A )的运动规律。
a、重力水;b、毛细水;c、气态水;d、薄膜水。
(8)已知液体流动的沿程水力摩擦系数与边壁相对粗糙度和雷诺数Re都有关,即可以判断该液体流动属于(C)a、层流区;b、紊流光滑区;c、紊流过渡粗糙区;d、紊流粗糙区(9)突然完全关闭管道末端的阀门,产生直接水击。
已知水击波速c=1000m/s,水击压强水头H = 250m,则管道中原来的流速v0为(C)a、1.54m b 、2.0m c 、2.45m d、3.22m(10)测量水槽中某点水流流速的仪器有(B)a、文丘里计b、毕托管c、测压管d、薄壁堰(11)在明渠中不可以发生的流动是( C )a、恒定均匀流;b、恒定非均匀流;c、非恒定均匀流;d、非恒定非均匀流。
(12)按重力相似准则设计的水力学模型,长度比尺λL=100,模型中水深为0.1米,则原型中对应点水深为和流量比尺为(D)a、1米,λQ =1000;b、10米,λQ =100;c、1米,λQ =100000;d、10米,λQ =100000。
二、判断题:(1)任意受压面上的平均压强等于该受压面形心处的压强。
水力学总复习
端地形高程已知,管道末端自由水头已知,求水塔高? t H H z 0 hf 1 hf(2 hf 3) hf 4
42
第八章 明渠恒定流
明渠的分类
1.按纵向几何条件划分
棱柱型渠道 非棱柱型渠道
2.按横向几何条件划分
梯形渠道 矩形渠道
11
第三章 流体运动学
一. 描述液体运动的两种方法
拉格朗日法
dx dy dz dt ux uy uz
欧拉法
u u
x y
ux (x, uy (x,
y, z,t) y, z,t)
uz uz (x, y, z, t)
12
加速度分量形 式
质 点 加 速 度
ax
ux t
λ=f (Re ). 4.IV区,过渡粗糙区
λ=f (Re、 / d)
5.V区,紊流水力粗糙管区,λ=f ( / d). (阻力平方区)
29
七. 明渠沿程水头损失计算公式
经验公式
1. 谢才公式
v C RJ
2. 谢才系数C
C 1 R1/6 n
C 1 Ry n
曼宁公式
巴氏公式
8g
举例
7
四. 点压强的计算
1.找已知点压强; 2.找出等压面; 3.由静压强基本方程逐步推求未知点压强;
8
五. 作用在平面上的静水总压力
(1)作用在平面上的静水总压力大小:
P pc A ghc A
(2)压力中心(作用点):
yD
yc
Ic yc A
(3)方向:垂直指向受压面.
水力学基本知识
第一章水力学基本知识1.惯性:具有维持它原有运动状态的特性、质量越大,运动状态越难改变,因而惯性越大2.单位体积内液体所具有的重量称为该液体的容重(重度)3.内摩擦力f=黏滞力4.谬u:动力粘滞系数与液体性质有关5.u液体表面与底面流速差6.液体粘滞性还可用运动粘滞系数v表示v=谬u/破p7.压缩性:液体不能承受拉力,可以承受压力。
液体受压缩后体积缩小,密度增加,同时液体内部会产生压力抵抗压缩变形,这种性质被称为液体的压缩性;压力解除后消除变形,恢复原状,这种性质称为液体弹性8.表面张力:表面张力仅在液体表面存在,液体内部不存在9.连续介质假说:假设液体是一种连续充满其所占据空间毫无间隙的连续体,水力学所研究的液体运动是连续介质的连续运动10.理想液体概念:水是不可被压缩,没有粘滞性,没有表面张力的连续介质11.质量力:常见的重力和惯性力皆属于质量力,单位质量液体所受的质量力为单位质量力m第二章水力静学1.等压面:静止液体中凡压强相等的各点连接起来组成的面(平面或曲面)称为等压面2.等压面重要性质:作用于静止液体上任意一点的质量力必须垂直于通过该点的等压面3.重力液体的等压面是重力加速度g互相垂直的曲面4.所以平衡液体的自由表面是等压面,即液体静止时的自由表面是水平面,静止液体中两种不同液体的分界面是等压面5.等压面概念:相连通的两种液体6.绝对压强:以设想没有大气存在的绝对真空状态作为零点计量的压强7.相对压强:把当地大气压作为零点计量的压强8.p’绝对压强p相对压强Pa当地大气压强9.Yh为液体自重产生压强,与水呈线性关系,沿水深的压强分布图为直角三角形10.压强分布图中各点压强方向恒垂直指向作用面,两受压面交点处的压强具有各向等值性11.z—位置高度,即计算点距计算基准面的高度,称位置水头12.p/y—压强高度测压管中水面至计算点的高度,称压强水头13.z+p/y—测压管中水面至计算点的高度,称测压管水头(单位重量液体的势能,简称单位势能)第三章水力学基础1.迹线:是单个液体质点在某一时间段内的运动轨迹线2.流线:是在某一瞬时的空间流场中,表示各质点流动方向的曲线流线上所有各点在该瞬时的厉害矢量都和该流线相切,流线不能相交和转折3.元流,总流,过水断面:充满微小流管内的液体称为元流;充满流管内的液体称为总流,总流是无数元流的总和;与元流或总流中所有流线相正交的截面称为过水断面4.流量:单位时间内通过某一过水断面的液体体积5.恒定流,非恒定流:所有水流运动要素均不随时间变化的液流称恒定流;水流任一运动要素随时间变化的液流称非恒定流6.无压流,有压流:凡过水断面的部分周线为自由表面的液流称为无压流;凡过水断面的全部周线均于固体壁面相接触的液流称为有压流7.毕托管:一种测量液体点流速的仪器8.文丘里管:测量管道中液体流量的常用仪器9.雷诺数:表征了惯性力与黏滞力的比值雷诺数Rek≈2300是一个相当稳定的数值10.层流底层:液体作紊流运动时,紧邻壁面液体层的流速很小,流速梯度很大,黏滞力处于主导地位,且质点的横向混掺受到很大约束,因此总存在有保持层流流动的薄层,称为层流底层11.紊流切应力:在紊流中的水流阻力除了粘性阻力t1外,液体质点混参和运动量交换还将产生附加的切应力t2,简称紊流的附加应力12.重力流,无压流:明渠中水流是直接依靠重力作用而产生的,称重力流;同时它具有自由表面,相对压强为零,故称为无压流13.明渠均匀流形成条件①必须是顺坡渠道i>0并在较长一段距离保持不变②必须是长而直的棱柱形渠道③渠道表面的糙率n应沿程不变④渠道中的水流应是恒定流14.水力最佳断面:矩形渠道水力最佳断面的底宽为水深的两倍即水力半径为水深的1/215.水文资料应有以下四性①可靠性②代表性③独立性④一致性16.水位观测:水位是河流最基本的水文要素12.我国统一规定用青岛验潮站的黄海平均海平面作为水准基面17.水位观测通常用水尺和自记水位计,水尺读数加水尺零点高程就是水位18.水文调查:步骤是先建立水文断面,通过洪水调查,确定各种洪水位和洪水比降,进而确定水文断面的流速和流量19.洪水调查:访问调查洪痕调查20.其他调查:其他调查主要有冰凌调查和既有涉河工程调查21.堰流和堰:在明渠流中,为控制水位或控制流量而设置构筑物,使水流溢过构筑物的流动称为堰流,该构筑物称为堰22.堰水力特性:①堰的上游水流受阻,水面壅高,势能增大;在堰顶上由于水深变小,流速变大,使动能增大,在势能转化为动能过程中,水面有下跌的现象。
《水力学》自己复习整理知识框架
《水力学》自己复习整理知识框架水力学是研究水流在各种流动条件下的物理规律的学科。
水力学的研究对象包括河流、湖泊、水库、海洋等自然水体的运动规律,以及水力工程中涉及的渠道、管道、泵站等的水流行为。
以下是水力学的知识框架及复习整理。
一、基本概念和基本方程1.水力学的研究对象、目标和意义2.水的物理性质及其在水力学中的应用3.流动的基本概念:流线、流量、流速、剖面平均流速、平均流速、瞬时流速、表观流速、临界流速等4.流体运动的宏观描述:物质守恒定律、动量守恒定律、能量守恒定律5.海森堡统一速度场二、流态分类和力学特性1.流态分类:层流和湍流2.湍流的产生和发展机制3.湍流的统计特性:平均流速、涡度、雷诺应力、雷诺应力公式等4.湍流的判别方法和湍流的传输性质三、流动的基本方程1.牛顿第二定律和欧拉方程2.曼宁公式和雨道公式3.马克斯韦方程组和势流理论4.控制体分析法和控制体微分形式四、流动的能量方程1.泊肃叶方程和能量守恒方程2.流动过程中的能量转化和能量损失3.流体摩擦和阻力的计算五、水力学实验和模型1.水力学原理实验、水工模型2.模型尺度和相似理论3.型流和真流的关系4.实测资料的处理和分析六、流动的计算方法1.数值方法在水力学中的应用2.一维水流数值模拟方法3.CFD在水力学中的应用4.流动的计算机模拟与可视化技术七、水动力学1.水体运动的动力学机制2.水体运动的力学特性3.溶解氧和氨氮的弥散4.水体温度和盐度的传输以上是《水力学》的知识框架和复习整理,通过掌握这些知识点,可以对水力学的基本概念、基本方程和流态分类等进行全面地理解和复习。
同时,了解水力学实验和模型、流动的计算方法以及水动力学等内容,可以为深入研究水力学提供一定的基础。
在复习过程中,可以结合教材、参考书籍和相关研究论文进行学习和理解,通过刷题和实践练习来提高对该学科的应用能力和实际问题解决能力。
水力学复习资料
水力学复习资料10.测压管水头线特征11.明渠均匀流特征水流在圆管中作层流运动,其沿程水头损失 hf 与流速 v 1.水的粘滞性大小与温度、压强的关系 2.静水压强的特性为 3.绝对压强、真空压强,相对压强 4.压强单位转换 5.用雷诺数判定层流、紊流。
6.流量 =流速*过水断面面积 7.水头损失的分类 8.描述液体运动的两种方法 9.串联,并联管道的水力特征 12. 质量力 表面力 13. 能量方程的应用条件14. 15. 明渠流梯形断面,矩形断面的水力最佳断面16.连续性方程的适用条件 17. 连续介质的概念 18、 静水压强分布图的绘制19、 局部水头损失,水力最优断面、水力坡度概念20、 两种矩形断面渠道,其过水面积 A ,糙率n ,底坡i 均相等,但是底宽b 及水深h 不同,21、 渠道一 bix h1 = 4m X 1m ,渠道二b2x h2 = 2mx 2m ,比较渠道中通过的流量相对大小 为?22、 3有一水管向水箱中输水,在0.5小时内输入10m 的水,水管直径为50mm ,其管内断面平均流速?23、层流的沿程阻力系数与什么有关? 24、均匀流的特征25、一密闭容器内下部为水,上部为空气,液面下4.2米处的测压管高度为2.2m ,设当地压强为98KPa,则容器内液面的绝对压强为?26、已知谢才系数,求沿程阻力系数A 27. 什么情况下,流线与迹线重合。
28、已知直径,求水力半径。
29、尼古拉兹试验表明,当管道的尺寸及粗糙度一定时,随着流A T- *量的加大,紊流区的变化为?30、图示长管中,A 点的相对压强pA31、如图所示,B 点的相对压强pB (丫水银=13.6 丫水)T0 F包26C 3II32.如右图闸门AB,求作用在AB 上的静水总压力P 和作用点位置h i\Zhiv4nLlOcn3mA T 骨2m ■B 433.图示一密闭容器,两侧各装一测压管,右管上端封闭,其中水面高出容器水面3m,管内液面绝对压强P0=78KN/m2,左支管与大气相通,求左侧管内水面距容器液面的高度h34、图中A点处的压强水头为m,流速水头为m ,总水头为m 。
《水力学》知识点
知识点 第0章 绪论1. 连续介质2.实际流体模型由质点组成的连续体,具有:易流动性、粘滞性、不可压缩性、不计表面张力的性质.3.粘滞性:牛顿内摩擦定律 dydu μτ= 4.理想流体模型:不考虑粘滞性。
5.作用在液体上的力:质量力、表面力例:1.在静水中取一六面体,分析其所受的外力:作用在该六面体上的力有 ( )(a )切向力、正压力 (b) 正压力(c) 正压力、重力 (d) 正压力、切向力、重力2.在明渠均匀流中取一六面体,其所受的外力:作用在该六面体上有 ( )(a )切向力、正压力 (b) 正压力(c) 正压力、重力 (d) 正压力、切向力、重力3. 理想流体与实际流体的区别仅在于,理想流体具有不可压缩性。
( )第1章 水静力学1.静压强的特性(1)垂直指向受压面。
(2)在同一点各方向的静压强大小与受压面方位无关. 2.等压面:等压面是水平面的条件 3.水静力学基本方程2. 基本概念位置水头、压强水头、测压管水头 、绝对压强、相对压强、真空压强。
C gpz =+ρghp p ρ+=03. 静压强分布图 5.点压强的计算利用:等压面、静压强基本方程。
解题思路:① 找等压面② 找已知点压强③利用静压强基本方程推求。
6 作用在平面上的静水总压力图解法:Ω=b P解析法:A gh P c ρ= A y I y y c cc D +=7. 作用在曲面上的静水总压力关键:压力体画法以曲面为底面,向自由液面(自由液面延长面)投影,曲面、铅锤面、自由液面所包围的水体为压力体。
压力体与水在同一侧为实压力体,铅锤分力方向向下。
反之,为虚压力体,铅锤分力方向向上。
例 1. 流体内部某点存在真空,是指 ( )(a )该点的绝对压强为正值 (b )该点的相对压强为正值 (c )该点的绝对压强为负值 (d )该点的相对压强为负值2. 流体内部某点压强为2个大气压,用液柱高度为 ( )a) 10米水柱 b) 22米水柱 c)20米水柱 d)25米水柱3. 无论流体作何种运动,流体内任何一个水平面都是等压面。
(完整版)水力学期末复习总结(考试时的宝典)
1.粘性是有分子间的相互吸引力和分子不规则运动的动量交换产生的;2.液体温度增高时粘性减小,这是因为液体分子间的相互吸引力随温度增高而减小,而分子动量交换对液体粘性的作用影响不大;3.气体粘性的决定性因素是分子不规则运动的动量交换产生的阻力,温度增高,动量交换加剧,因此气体粘性随温度增高而增大;4.动力粘度(Ns/㎡) 运动粘度=/(㎡/s )表面张力系数(N/m )5.内摩擦力T=dyduA 切应力/(N dy du㎡) 6.静水压强nz y x P P P P 7.如果流场中各空间点上的所有运动要素不随时间变化,这种流动称为恒定流;否则,称为非恒定流;8.迹线是表示一个质点在一段时间内流过的轨迹线;流线是表示某瞬时,在流场中,不同质点沿流动方向组成的一条空间曲线,流速方向为该曲线上切点的方向;恒定流是,迹线与流线重合;9.若液体运动时每个液体质点都不存在绕自身轴的旋转运动,即角速度ω=0,称为无旋流,反之,称为有旋流;10.在边壁沿流程无变化的均匀流流段上,产生的流动阻力称为沿程阻力;由于沿程阻力做功而引起的水头损失称为沿程水头损失;11.①层流与紊流的判别标准是临界雷诺数(Re=vd ),V<Vc 为层流,V>Vc 为紊流;②流态的判别数为弗劳德数(Fr=gh v ),Fr<1时,水流为缓流;Fr=1时,水流为临界流;Fr>1时,水流为急流;12.水跃水深)181(23'2'''gh q h h 13.沿程水头损失与切应力的关系为0=ρgRJ ;14.在恒定流动中某一点的流速的数值不是一个常数,而以某一常数为中心,不断地上下跳动,这种跳动叫做脉动;15.紊流中液体质点的脉动使相邻液层之间的质量交换形成动量交换,从而在液层分界面上产生了紊流附加切应力;16.紊流切应力22)(dy dv l dy dv xx17.断面单位能量(断面比能)22v hg e ,比能最小时为临界流;18.尼古拉兹曲线:第一区:层流区,λ与相对粗糙度Δ/d 无关,只是Re 的函数第二区:层流转变紊流过渡区,λ与相对粗糙度Δ/d 无关,只是Re 的函数第三区:紊流光滑区,λ与相对粗糙度Δ/d 无关,只是Re 的函数第四区:紊流过渡区,λ与相对粗糙度Δ/d 有关,又与Re 有关第五区:紊流粗糙区,λ与相对粗糙度Δ/d 有关,与Re 无关;19.明渠均匀流的水力特征:①明渠均匀流的断面流速分布、流量、水深和过水断面的形状大小沿程不变②明渠均匀流的总水头线坡度、测压管水头线和渠底坡度彼此相等;20.明渠均匀流的形成条件:①明渠水流恒定,流量沿程不变②渠道为长直的棱柱形顺坡渠道③底坡、粗糙系数沿程不变④渠道沿程设有建筑物或障碍物的局部干扰;21.无压缓流经障壁顶部溢流,上游壅水,然后水面降落,这一水力现象称为堰流,按H 分类:薄壁堰(H <0.67)、实用断面堰(0.67≤H <2.5)、宽顶堰(2.5≤H <10);22.堰流基本公式:Q=mb g 2H 023;23.薄壁堰按堰口形状不同,可分为矩形薄壁堰、三角形薄壁堰和梯形薄壁堰;24.流体在孔隙介质中的流动称为渗流,达西定律:Q=KAJ= - KA ds dH,其中KJ v 适合于Re ≤1;渗流中不透水的边界线是一条流线;25.液体平衡微分方程理想液体运动微分方程26.实际液体运动微分方程。
水力学复习资料
1、水力学中的一元流动是指( )。
(2.0)A、恒定流动B、均匀流动C、层流运动D、运动要素只与一个坐标有关的流动正确答案: D2、选择下列正确的等压面()(2.0)A、 A − AB、 B − BC、 C − CD、 D − D正确答案: C3、某点压强与受压面的关系是( )(2.0)A、垂直指向受压面B、垂直背向受压面C、平行于受压面D、倾斜指向受压面正确答案: A4、液体中某点发生真空时,该点的()(2.0)A、绝对压强为负值B、相对压强为负值C、绝对压强小于相对压强D、绝对压强大于大气压强正确答案: B5、关于动量方程,以下表达不正确的是()(2.0)A、动量方程的左端,是输入动量减去输出动量B、控制体可任意选取,一般横向边界可取为过水断面C、动量方程是矢量式,流速和作用力都是有方向的D、作用力方向未知时可暂时假定正确答案: A6、分布在各管件()位置上的水头损失称为局部水头损失(2.0)A、局部B、几何形状C、大小D、重量正确答案: A7、明渠流动为急流时( )(2.0)A、 Fr>1B、 h>hc (hc为临界水深)C、 v<cD、 de/dh>0正确答案: A8、水泵的扬程是指()(2.0)A、水泵提水高度B、水泵提水高度+吸水管的水头损失C、水泵提水高度+吸水管与压水管的水头损失正确答案: B9、下列有关圆柱形外管嘴的长度L与直径d之间的关系,正确的是( )(2.0)A、 L=2~5dB、 L=2~4dC、 L=3~4dD、 L=3~5d正确答案: C10、下面四个容器内的水深均为H,容器底静水压强最大的为?()(2.0)A、(A)B、(B)C、(C)D、(D)正确答案: C11、用明渠底坡与临界底坡比较来判别缓流和急流的方法适用于()(2.0)A、均匀流B、渐变流C、急变流D、均匀流和非均匀流正确答案: A12、影响水的运动粘度的主要因素为()(2.0)A、水的温度B、水的容重C、当地气压D、水的流速正确答案: A13、变直径管的直径d1=320mm,d2=160mm,流速v1=1.5m,v2为()。
水力学最新重点资料
复习总结第一章绪论一、 概念1、水力学:用实验和分析的方法,研究液体机械运动(平衡和运动)规律及其实际应用的一门科学。
2、密度和容重:ρ=V M γ=VMg γ=ρg 纯净水1个标准大气压下,1atm 4℃时密度最大ρ水=1000kg /m 3 γ水=9.80kN/m 3 ρ水银=13.6×103 kg /m 3 1N=1kgm/s 23、粘滞性:液体质点抵抗相对运动的性质。
粘滞性是液体内摩擦力存在的表现,是液体运动中能量产生损失的根本原因。
4、理想液体:不考虑粘滞性、可压缩性等特性的液体称为理想液体。
τ=μdy du 或T=μA dyduμ动粘 [ML -1T -1] Pa.s (帕.秒)1 Pa=1N/m2 1N=1kg ²m/s 2ν运粘 [L 2T -1] m 2/sν=μ/ρ水的经验公式:ν=2000221.00337.0101775.0tt ++公式中ν单位为cm 2/s ,t 为水温℃。
5、连续介质模型:假定液体质点毫无空隙地充满所占空间,描述液体运动物理量(质量、速度、压力等)是时间和空间的连续函数,因而可用连续函数的分析方法来研究,这种假定对解决一般工程实际问题是有足够的精度的。
6、压缩性 一般不考虑热膨胀性流动性 二、 问题1、 牛顿内摩擦定律简单应用;2、 作用于液体上的力:质量力、表面力;3、 水力学研究方法:理论分析、数值计算、模型实验方法第二章液体静力学一、概念1、静水压强:p =A PA ∆∆→∆0lim=dA dP2、等压面:均质连通液体中,压强各点相等的点构成的面称为等压面。
二个性质:等压面是等势面,与质量力正交。
汞水··ABC连通不均质AB 不是等压面 均质不连通,ABC 等压,但A 与B 不是等压面3、压强的二种计量基准:绝对压强、相对压强、真空值或真空度p v 或p v /γo绝对压强基准,完全真空)p a)关于真空值或真空度:由于压强的三种度量方法,二者区别并不明显。
《水力学》复习资料
附件1《水力学》复习资料1.什么是粘性?答:流体运动时,具有抵抗剪切变形的能力的性质,称粘性。
2.什么是绝对压强,什么是相对压强?答:绝对压强是以绝对真空为基准的压强,相对压强是以当地大气压强为基准的压强。
3. 试述流体静力学的基本方程z p gC +=ρ及其各项的物理意义。
答:物理意义:z:单位重量液体具有的相对于基准面的重力势能,简称位能。
g pρ:单位重量液体具有的压强势能,简称压能。
Z+p g ρ:单位重量液体具有的总势能。
Z+pg ρ=C :静止液体中各点单位重量液体具有的总势能相等。
4.说明实际总流的伯努利方程的物理意义和几何意义。
答:物理意义:总流各过流断面上单位重量流体所具有的势能平均值和动能平均值之和,亦即机械能的平均值沿流程减小,部分机械能转化为热能等而消失;同时,也表示了各项能量之间可以相互转化的关系。
几何意义:总流各过流断面上平均总水头沿流程减小,所减小的高度即为两过流断面间的平均水头损失;同时,也表示了各项水头之间可以相互转化的关系。
5.什么是恒定流?什么是非恒定流?答:流场中液体质点通过任一空间位置时,各点运动要素(速度、压强等)都不随时间而变化的流动运动称为恒定流。
流场中液体质点通过任一空间位置时,只要有任何一个运动要素是随时间而改变的,就称非恒定流。
6.什么是均匀流?什么是非均匀流?答:在给定的某一时刻,各点运动要素(主要是速度)都不随位置而变化的流体运动,称为均匀流。
在给定的某一时刻,各点运动要素(主要是速度)有随位置而变化的流体运动,称为均匀流。
7.什么是渐变流?什么是急变流?答:在实际液流中,如果流线之间夹角很小、近似于平行,或流线虽略有弯曲,但曲率很小,这样沿流的流速大小或方向的变化很缓慢,这种流动称为渐变流。
若流线之间夹角较大、流线曲率较大,此时称为急变流。
8.什么是沿程阻力和沿程损失?答:粘性流体在管道中流动时,流体与管壁面以及流体之间存在摩擦力,所以沿着流动路程,流体流动时总是受到摩擦力的阻滞,这种沿流程的摩擦阻力,称为沿程阻力。
水力学复习资料
1易流性:液体一旦承受剪切力(尽管切力很小,只要存在)就会连续变形及流动。
2粘滞性:液体在流动过程中,具有抵抗剪切变形的能力3.牛顿内摩擦定律:液体的内摩擦力与液层间接触面面积和流速梯度成正比,并与液体的粘滞性有关,而与接触面上的压力无关。
4动力粘度与压强和温度有关,液体的粘度随温度的升高而减小,气体相反5牛顿内摩擦定律仅适用于牛顿流体,凡是符合牛顿内摩擦定律的均为牛顿流体,当然不符合的为非牛顿流体6压缩性:液体的体积随所受压力的增大而减小7表面张力:液体自由表面在分子作用半径一薄层内,由于分子引力大于斥力,而在表层沿表面方向产生的拉力。
8表面力:作用在液体的表面或截面上且与作用面的面积成正比的力也称面积力接触力9质量力:作用在隔离体内每个液体质点上的力,其大小与液体的质量成正比10静水压强的特性:1)静水强的方向垂直指向作用面2)静止液体中任意点处各个方向的静水压强的大小都相等,与该作用面的方位无关。
11等压面:在互相联通的同一种液体中有压强相等的各点所组成的面。
等压面上任意点处的质量力与等压面正交12绝对压强:设想没有任何气体存在的绝对真空为计算零点所得到的压强。
13相对压强:以当地大气压为计算零点所得到的压强14如果某点的绝对压强小于大气压强其相对压强为负值,则认为该点出现了真空15任意形状平面上的静水总压力等于该平面型心点的压强与平面面积的乘积16当地加速度:时间变化引起的液体质点速度的变化(定位加速度,时变加速度)17变位加速度(迁移加速度):由流场的空间位置变化引起的速度变化18恒定流:如果液体流动时空间各点处的所有运动要素都不随时间变化的流动。
反之非19流线:是某一瞬时在流场中绘出的曲线,在此曲线上所有液体质点的速度矢量都和该曲线相切。
20流线特性:1.一般情况下流线不能相交也不能转折 2.他只能是光滑的曲线或直线 3.在恒定流的情况下,流线的形状位置不随时间变化,而在非恒定流时速度随时间变化,一般流线也会随时间变化4.另外流线簇的整体形状与约束水流的固体边界形状有关,流线簇的疏密程度直接反应该时刻流场中各点的流速大小,流线密集的地方流速大,而稀疏的地方流速小。
水力学复习资料
水力学复习资料1、理想液体是() A.没有切应力又不变形的液体;B.没有切应力但可变形的一种假想液体;C.切应力与剪切变形率成直线关系的液体;D.有切应力而不变形的液体。
2、选择下列正确的等压面: A. A ? A B. B ?B C.C ? C D.D ? D1、理想液体是() A.没有切应力又不变形的液体;B.没有切应力但可变形的一种假想液体;C.切应力与剪切变形率成直线关系的液体;D.有切应力而不变形的液体。
2、选择下列正确的等压面: A. A ? A B. B ?B C.C ? C D.D ? D3、平衡液体中的等压面必为 ( )A.水平面;B.斜平面;C. 旋转抛物面;D.与质量力相正交的面。
4、欧拉液体平衡微分方程 ( ) A. 只适用于静止液体;B. 只适用于相对平衡液体;C. 不适用于理想液体;D. 理想液体和实际液体均适用5、恒定总流的能量方程z1 + p1/g + v12/2g = z2 +p2/g + v22/2g +hw1- 2 ,式中各项代表 ( ) A. 单位体积液体所具有的能量; B.单位质量液体所具有的能量; C.单位重量液体所具有的能量; D.以上答案都不对。
6、在明渠恒定均匀流过水断面上1、2两点安装两根测压管,如图所示,则两测压管高度h1与h2的关系为 ( )A. h1 > h2B.h1 < h2C. h1 = h2D.无法确定7、图示水流通过渐缩管流出,若容器水位保持不变,则管内水流属 ( )A. 恒定均匀流B. 非恒定均匀流C. 恒定非均匀流D.非恒定非均匀流8、均匀流的总水头线与测压管水头线的关系是() A. 互相平行的直线; B.互相平行的曲线; C. 互不平行的直线; D. 互不平行的曲线。
9、按普朗特动量传递理论,紊流的断面流速分布规律符合()A. 对数分布;B. 椭圆分布;C. 抛物线分布;D.直线分布。
10、圆管均匀层流与圆管均匀紊流的()A.断面流速分布规律相同;B.断面上切应力分布规律相同;C.断面上压强平均值相同; D.水力坡度相同。
水力学复习知识点
第一章绪论 1.水力学的研究方法:理论分析方法、实验方法,数值计算法。
2.实验方法:原型观测、模型试验。
3.液体的主要物理性质:①质量和密度②重量和重度③易流动性与粘滞性④压缩性⑤气化特性和表面张力。
4.理想液体:没有粘滞性的液体(μ=0)。
5.实际液体:存在粘滞性的液体(μ≠0)。
6.牛顿液体:τ与du/dy呈过原点的正比例关系的液体。
7.非牛顿液体:与牛顿内摩擦定律不相符的液体。
8.作用在液体上的力:即作用在隔离体上的外力。
9.按物理性质区分:粘性力、重力、惯性力、弹性力、表面张力。
10.按力的作用特点区分:质量力和表面力两类。
11.质量力:作用在液体每一质点上,其大小与受作用液体质量成正比例的力。
12.表面力:作用于液体隔离体表面上的力。
第二章水静力学 1.静水压强特性:①垂直指向作用面②同一点处,静水压强各向等值。
2.静水压强分布的微分方程:dp=ρ(Xdx+ Ydy+ Zdz),它表明静水压强分布取决于液体所受的单位质量力。
3.等压面:液体压强相等各点所构成的曲面。
等压面概念的应用应注意,它必须是相连通的同种液体。
4.压强的单位可有三种表示方法:①用单位面积上的力表示:应力单位Pa,kN/m2②用液柱高度表示:m(液柱),如p=98kN/m2,则有p/γ=98/9.8=10m(水柱)③用工程大气压Pa的倍数表示:1p a=98kP a。
5.绝对压强p abs:以绝对真空作起算零点的压强(是液体的实际压强,≥0)p abs=p o+γh6.相对压强pγ:以工程大气压p a作起算零点的压强,pγ=p abs-p a= (p o+γh)-p a 真空:绝对压强小于大气压强时的水力现象。
真空值p v:大气压强与绝对压强的差值。
7.帕斯卡原理:在静止液体中任一点压强的增减,必将引起其他各点压强的等值增减。
应用:水压机、水力起重机及液压传动装置等。
8.压强分布图的绘制与应用要点:①压强分布图中各点压强方向恒垂直指向作用面,两受压面交点处的压强具有各向等值性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第零章绪论0.1水力学的任务与研究对象(了解)水力学的任务是研究液体(只要是水)的平衡和机械运动的规律及其实际应用.水力学研究的基本规律有两大主要组成部分:一是关于液体平衡的规律.它研究液体处于静止或相对平衡状态时,作用于液体上各种力之间的关系,这一部分称为水静力学;二是关于液体运动的规律,它研究液体在运动状态时,作用于液体上的力与运动要素之间的关系,以及液体的运动特性与能量转换等,这部分称为水动力学.0.2液体的粘滞性(理想液体与实际液体最大的差别)粘滞性当液体处于运动状态时,若液体质点之间发生相对运动,则质点间会产生内摩擦力来阻碍其相对运动,液体的这种性质就称为粘滞性,产生的内摩擦力叫做粘滞力.0.3牛顿内摩擦定律当液体做层流运动时,相邻液层之间在单位面积上作用的内摩擦力(或粘滞力)的大小与速度梯度成正比,同时和液体的性质有关.即 .0.4牛顿内摩擦定律的另一种表述(了解)P70.5运动粘度系数它是动力黏度系数与液体密度的比值,是表征液体粘滞性大小的物理量.其值是随温度的变化而变化的,即温度越高,其值越小(液体的流动性是随温度的升高而增强的)0.6牛顿内摩擦定律只适用于牛顿流体(符合牛顿内摩擦定律的液体,其特点是温度不变,动力黏度系数就不变P8图0.3)0.7体积压缩率液体体积的相对缩小值与压强的增大值之比.(水的压缩性很小,一般不考虑)0.8表面张力表面张力是指液体自由表面上液体分子由于两侧引力不平衡,使其受到及其微小的拉力(表面张力仅存在于液体表面,液体内部不存在,其值表示为自由面单位长度受到拉力的大小,并且随液体种类和温度的变化而变化,怎样变化)0.9毛细现象在水力学实验中,经常使用盛有水或水银细玻璃管做测压计,由于表面张力的影响使玻璃管中液面和与之向连通容器中的液面不在同一水平面上.这就是物理学中所讲的毛细现象.0.10由实验得知,管的内经越小,毛细管升高值越大,所以实验用的测压管内径不宜太小.P10图0.4,0,50.11连续介质在水力学中,把液体当作连续介质看待,即假设液体是一种连续充满其所占据空间毫无空隙的连续体.(水力学所研究的液体运动是连续介质的连续流动,但实际上,从微观角度来看,液体分子与分子之间是存在空隙的,但水力学研究的是液体的宏观运动,故将液体看作连续接介质)0.12把液体看作连续介质的意义如果我们把液体看作连续介质,则液流中的一切物理量都可以视为空间坐标和时间坐标的连续函数,这样,在研究液体的运动规律时,就可以运用连续函数的分析方法.0.13理想液体所谓理想液体,就是把液体看作绝对不可压缩,不能膨胀,没有粘滞性,没有表面张力的连续介质.0.14表面力和质量力表面力表面力是作用于液体的表面,并于受作用的的表面面积成比例的力.质量力质量力是指通过所研究液体的每一部分质量而作用与液体的,其大小和液体的质量成比例的力(质量力又称体积力)课后习题0.2第一章水静力学1.1液体在平衡状态下.没有内摩擦力的存在,因此理想液体和实际液体都是一样的,故在静水中没有区分的必要.1.2静水压力静止(或处于平衡状态)的液体作用在与之接触的表面上的水压力称为静水压力,常以表示.1.3静水压强取微小面积,令作用在上的静水压力为,则面上单位面积上所受的平均静水压力为称为面上的平均静水压强,当无限趋近与一点时,比值的极限值定义为该点的静水压强.1.4静水压强的两个重要特性⑴静水压强的方向与受压面垂直并指向受压面(若不垂直,则必存在一个与液面平行的分力,这样必会破坏液体的平衡状态;静水压强若不指向受压面而是背向受压面,则必会受到拉力,同样不能保持平衡状态)⑵作用在同一点上的静水压强相等(推导过程:在平衡液体内分割出一块无限小的四面体,倾斜面的方向任意选取,为简单起见,建立如图所示的坐标系,让四面体的三个棱边与坐标轴平行,并让轴与重力方向平行,各棱边长为,四面体四个表面上受有周围液体的静水压力,因四个作用面的方向各不相同,如果能够证明微小四面体无限缩小至一点时,四个作用面上的静水压强都相等即可.令为作用在面上的静水压力, 令为作用在面上的静水压力, 令为作用在面上的静水压力, 令为作用在面上的静水压力.又假定作用在四面体上单位质量力在三个坐标方向的投影为,则总质量力在三个坐标方向的投影分别为…因为液体处于平衡状态,由力的平衡条件得:+若…以分别表示四面体四个面的面积,则…将上式都除以,并且有化简可得,上式中分别表示面上的平均静水压强, ,如果微小四面体无限缩小至一点时,均趋近于0,对上式取极限有,同理可证,故作用在同一点上的静水压强相等)1.5等压面在平衡液体中可以找到这样一些点,他们具有相同的静水压力,这些点连成的面称为等压面(对于静止的液体其等压面是水平面,对于处于相对平衡的液体,其等压面与自由液面平行,例如称有液体的圆柱形容器绕桶轴做等角速度旋转,其等压面就是抛物面)1.6等压面的两个性质⑴在平衡液体中等压面即为等势面.⑵等压面与质量力正交.1.7绝对压强和相对压强绝对压强以设想没有大气存在的绝对真空状态作为零点计量的压强,称为绝对压强.相对压强把当地大气压作为零点剂量的压强,称为相对压强.1.8P29图1.11中各字母表示的含义1.9真空及真空度真空当液体中某点的绝对压强小于当地大气压强,即相对压强为负值时,就称该点存在真空.真空度真空度是指该点绝对压强小于当地大气压强的数值.(例题1.4 1.5 .16) 1.10压强的液柱表示法1.11水头与单位势能1.12液体的平衡微分方程式(欧拉平衡微分方程式)的推导过程P20,以及重力作用下静水压强的基本公式的推导过程P24.1.13压强的测量(各种压差计的计算)计算中找等压面须注意:①若为连续液体,高度相等的面即为等压面.②若为不连续液体(如液体被阀门隔开或者一个水平面穿过了不同介质,则高度相等的面不是等压面③两种液体的接触面是等压面.1.14作用于矩形平面上的静水总压力,为压强分布图面积.(压力中心的位置:当压强为三角形分布时, 压力中心离底部距离为当压强分布为梯形分布时,压力中心离底部距离为)1.15作用于曲面上的静水总压力分为水平方向和竖直方向计算,水平方向方法同作用于矩形平面上的静水总压力(将曲面投影在方向的图形即为矩形,则=为形心点处的压强),竖直方向需画出压力体(压力体包括六个面:曲面本身,自由液面或者其延长面,曲面四个边延长至自由液面的四个面.这里注意自由液面必须是只受到大气压强作用的液面),则,其中为压力体的体积.1.16几种质量力同时作用下的液体平衡1.17作用于物体上的静水总压力,潜体与浮力的平衡及其稳定性第二章液体运动的流束理论2.1描述液体运动的两种方法(拉格朗日法和欧拉法)P632.2流线和迹线迹线某一液体质点在运动过程中,不同时刻所流经的空间点所连成的线称为迹线,即迹线就是液体质点运动时所走过的轨迹线流线它是某一瞬时在流场中绘出的一条曲线,在该曲线上所有点的速度向量都与该曲线相切,所以流线表示除了瞬间的流动方向.流线的基本特性P672.3恒定流与非恒定流恒定流如果在流场中所有的运动要素都不随时间而改变,这种水流称为恒定流(也就是说,在恒定流的情况下,任一空间点上,无论哪个液体质点通过,其运动要素都是不变的.运动要素仅仅是空间坐标的函数,而与时间无关)非恒定流如果在流场中所有的运动要素都是随时间而改变的这种水流称为非恒定流.注:本章只研究恒定流.2.4流管在水流中任意取一微分面积,通过该面积周界上的每一给点,均可以作一根直线,这样就构成了一个封闭的管状曲面,称为流管.2.5微小流束充满以流管为边界的一束液流称为微小流束(按照流线不能相交的特性,微小流束内的液体不会穿过流管的管壁向外流动,流管外的液体也不会穿过流管的管壁向流束内流动,当水流为恒定流时,微小流束的形状和位置不会随时间而改变,在非恒定流中,微小流束的形状和位置将随时间而改变.微小流束的很横断面积是很小的,一般在其横断面上各点的流速或动水压强可看作是相等的)2.6总流任何一个实际水流都具有一定规模的边界,这种有一定大小尺寸的实际水流称为总流(总流可以看作由无限多个微小流束所组成)2.7过水断面与微小流束或总流的流线成正交的横断面称为过水断面.2.8流量2.9均匀流与非均匀流均匀流当水流的流线为相互平行的直线时,该水流称为均匀流(直径不变的管道中的水流就是均匀流的典型例子)非均匀流若水流的流线不是相互平行的直线时,该水流称为非均匀流.如果流线虽然相互平行但不是直线(如管径不变的弯管中的水流)或者流线虽直线但不相互平行(如管径沿程缓慢均匀扩散或收缩的渐变管中的水流)都属于非均匀流.2.10均匀流的特性⑴均匀流的过水断面为平面,且过水断面的形状和尺寸沿程不变⑵均匀流中,同一流线上不同点的流速相等⑶均匀流过水断面上的动水压强分布规律与静水压分布规律相同2.11均匀流过水断面上的动水压强分布规律与静水压分布规律相同的推导过程2.12渐变流和急变流渐变流当水流的流线虽然不是相互平行的直线,但几乎近于平行直线称为渐变流急变流若水流的流线之间夹角很大或者流线的曲率半径很小,这话水流称为急变流.2.13恒定总流连续性方程的推导P712.14理想液体恒定流微小流束能量方程的推导P722.15实际液体恒定总流的能量方程的推导P782.15恒定总流动量方程的推导P94第三章液流形态及水头损失3.1沿程水头损失和局部水头损失沿程水头损失在固体边界平直且无障碍物的水道中,单位重量的液体自一断面流至另一断面所损失的机械能叫做沿程水头损失,常用表示.局部水头损失当固体边界发生改变或液体遇到障碍物时,由于边界或障碍物的作用使液体质点相对运动加强,内摩擦增加,产生较大的能量损失,这种发生在局部范围之内的能量损失叫做局部水头损失,常用表示.(就液体内部的物理作用来说,水头损失不论其产生的外因如何,都是因为液体内部质点之间有相对运动,因粘滞性的作用产生切应力的结果)当固体边界发生改变或液体遇到障碍物时,为什么会产生局部水头损失(了解)P1203.2影响水头损失的液流边界条件3.2.1横向条件(过水段面积,湿周和水力半径)湿周液流过水断面与固体边界接触的周界线叫做湿周,常用表示.(当过水段面积相等时,周长不一定相等,水与固体边界的接触要长些,故湿周对水损会产生影响,同样,当湿周相等时, 过水段面积不一定相等,通过同样大小的流量水损也不一定相等,故用水力半径来表征过水断面的水力特征)水力半径过水段面积与湿周的比值称为水力半径,即 .3.2.2纵向条件P1233.3均匀流时无局部水头损失,非均匀渐变流时局部水头损失可以忽略不计,非均匀急变流时两种水头损失均有(知道).3.4均匀流沿程水头损失与切应力的关系,以及半径为r处的(圆管中)切应力计算公式的推导P1323.5计算均匀流沿程水头损失的基本公式——达西公式对圆管来说,水力半径 ,故达西公式也可以写做达西公式的推导过程应该不会考3.6层流和紊流层流当留速较小时,各流层的液体质点是有条不紊的运动,互不混杂,这种形态的流动叫层流.紊流当流速较大时,各流层的液体质点形成涡体,在流动过程中,相互混杂,这种形态的流动叫紊流.3.7雷诺试验雷诺试验数据图形(两点三段.两点即上临界流速—水流从层流刚刚进入到紊流状态的速度和下临界流速—水流从紊流刚刚进入到层流状态的速度.三段即层流,过渡区,紊流所对应的曲线段.)P1293.8根据雷诺实验的结果,层流时雷诺试验图形为一条直线,即沿程水损v呈线性的一次方关系,但是由达西公式知与v是平方关系,试解释其原因.P1323.9雷诺数的物理意义(为什么雷诺数可以判别液流形态)P1313.10为什么采用下临界雷诺数而不采用上临界雷诺数来判断水流的型态这是因为经大量试验证明,圆管中下临界雷诺数是一个比较稳定的数值,其值一般维持在2000左右,但上临界雷诺数是一个不稳定数值(一般在12000-2000),在个别情况下也有高达40000-50000.这要看液体的平静程度和来流有扰动而定,凡雷诺数大于下临界雷诺数的,即使液流原为层流,只要有任何微小的扰动就可以是层流变为紊流.在实际工程中扰动总是存在的,所以上下临界雷诺数之间的液流是极不稳定的,都可以看作紊流,因此判别液流型态以下临界雷诺数为标准:实际雷诺数大于下临界雷诺数的是紊流,小于下临界雷诺数的是层流.3.11雷诺实验虽然都是以圆管液流为研究对象,但其结论对其他边界条件下的液流也是适用的.只是边界条件不同,下临界雷诺数的数值不同而已.例如明渠的雷诺数,其中R为水力半径(知道).3.12紊流的特征P133(4点,后两个特点很重要)3.13粘性底层在紊流中并不是整个液流都是紊流,在紧靠固体边界表面有一层极薄的层流存在该层流层叫粘性底层.3.14沿程阻力系数的变化规律⑴即液体处于层流状态,只与雷诺数有关,而与相对光滑度无关,且⑵即液体处于从层流进入紊流的过渡区,只与雷诺数有关,而与相对光滑度无关.因其范围很窄,实际意义不大.⑶即液流进入紊流状态,这时决定于粘性底层厚度和绝对粗糙度的关系:①当较小时粘性底层较厚,可以淹没,抵消管壁粗糙度对水流的影响,从而只与雷诺数有关,而与相对光滑度无关.②继续增大, 粘性底层厚度相应减薄,一直不能完全淹没, 管壁粗糙度对水流产生影响, 从而既与雷诺数有关,又与相对光滑度有关.③当增大到一定程度时, 粘性底层厚度已经变得很薄,已经不能再抵消管壁粗糙度对水流的影响,这时管壁粗糙度对起主要作用,从而只与相对光滑度有关,而与雷诺数无关.(因这时与v是平方关系,故该区又叫做阻力平方区)3.15谢齐公式和曼宁公式谢齐公式 ,其中J为水力坡度,/l ,R水力半径.曼宁公式 ,其中n为粗糙系数,简称糙率.第四章有压管中的恒定流4.1简单管道简单管道管道直径不变且无分支的管道.4.2自由出流和淹没出流自由出流管道出口水流流入大气,水股四周都受大气压强的作用,称为自由出流淹没出流管道出口如果淹没在水下,则称为淹没出流4.3短管和长管短管管道中若存在较大的局部水头损失,它在总水损中占的比重较大,不能忽略不计的管道称为短管.长管若管道较长,局部水损和流速水头可以忽略不计,这样的管道叫做长管. 4.4简单管道的水力计算(以下均属于连续性方程和能量方程的具体应用)总原则首先确定按长管还是短管计算.若按短管计算,则沿程损失,局损和流速水头都要计算;若按长管计算,只需计算沿程损失, 局部水损和流速水头可以忽略不计;在没有把握估计局损的影响程度时,均按短管计算.(先按短管计算,求出具体的沿程损失和局损数值,比较后可确定到底如何计算,若无法确定具体数值一般的,给水管道按长管计算,虹吸管按短管计算,水泵吸水管按短管计算,压水管根据情况而定.4.4.1自由出流和淹没出流的水力计算自由出流上游存在行近流速,即有一个行近水头,列能量方程需计算在内(但其值一般很小,在计算结果以忽略不计,即公式中的).淹没出流上游存在行近流速,即有一个行近水头,列能量方程需计算在内(但其值一般很小,在计算结果时可以忽略不计,即公式中的). 下游也存在一个流速水头,但由于管道的过水断面积很小,而下游过水断面积很大,水流速度在下游已经变得很小,可以忽略,不需计入能量方程.4.4.2几种基本类型4.4.3虹吸管和水泵装置的水力计算4.4.4串联管道整个管道的水头损失等于各支管水损之和.4.4.5并联管道并联管道一般按长管计算,各支管的水损相等(各支管的水损相等,只表明通过每一并联支管的单位重量液体的机械能损失相等;但各支管的长度,直径及粗糙系数可能不同,因此其流量也不同,股通过各并联支管的总机械能损失是不相等的)4.4.6分叉管道在分叉处分为若干个串联管道进行计算.4.5沿程均匀泄流的水力计算本章的水力计算题均是围绕这能量方程来设计的,所以熟练掌握能量方程的应用,加上对各个类型的管道特点的了解,不用背繁琐的公式也可以解决本章的计算题,当然背下来更好第五章明渠恒定均匀流5.1明渠恒定均匀流(知道)明渠恒定均匀流当明渠水流的运动要素不随时间而变化时,称为明渠恒定流.否则称为明渠非恒定流.明渠恒定流中,如果流线是一簇相互平行的直线,则水深,断面平均流速和流速分布沿程不变,称为明渠恒定均流,否则称为明渠恒定非均匀流.(明渠均匀流中,摩阻力与重力沿水流方向的分力相平衡)5.2矩形,梯形横断面水力要素的计算梯形中,为梯形与水平面的夹角.5.3底坡明渠渠底的纵向倾斜程度称为明渠的底坡, 以符号表示.且,其中为渠底线与水平面的夹角.5.4顺坡,水平和逆坡明渠当明渠渠底沿程降低时,称为顺坡明渠;沿程不变时称为水平明渠;沿程升高时称为逆坡明渠.(在水平明渠中,由于故在其流动过程中,只存在摩阻力;在逆坡明渠中,摩阻力与重力沿水流方向的分力方向一致,因此这两种情况都不可能产生明渠均匀流;只有在顺坡渠道中才可能产生明渠均匀流)5.5明渠恒定均匀流的特性及其产生条件5.6明渠均匀流的计算公式(连续性方程和谢齐公式, 谢齐系数采用曼宁公式) 5.7矩形和梯形水力最佳断面的推导过程5.8允许流速不冲允许流速能够避免渠道遭受冲刷的流速.不於流速能够保证水中悬浮的泥沙不淤积在渠槽的流速.5.9明渠均匀流的水力计算第六章明渠恒定非均匀流6.1明渠非均匀渐变流和明渠非均匀急变流(知道)在明渠非均匀流中,若流线是接近于相互平行的直线,或流线间的夹角很小,流线的曲率半径很大,这种水流称为明渠非均匀渐变流.反之为明渠非均匀急变流.(本章着重研究明渠非均匀渐变流的基本特性及其水力要素沿程变化的规律) 6.2正常水深(知道)因明渠非均匀流的水深沿流程是变化的,为了不致引起混乱,把明渠均匀流的水深称为正常水深.并以表示.6.3明渠水流的三种形态一般明渠水流有三种形态,即缓流,临界流和急流.6.4明渠水流三种形态的判别方法(5种:微波波速法,比能曲线法,Fr法,临界水深法,临界底坡法)6.4.1微波波速法微波波速的描述(了解)P216当 v<,水流为缓流,干扰波能向上游传播;v=,水流为临界流,干扰波恰不能向上游传播;v>,水流为急流,干扰波不能向上游传播.要判别流态,必须首先确定微波传播的相对速度,相对速度的推导过程(了解)P217(如图6.3,对平静断面1-1和波峰所在断面2-2列连续性方程和能量方程.1-1断面流速为,2-2断面流速为,最后令即可得出=,这就是矩形明渠静水中微波传播的相对速度公式.如果明渠为任意形状时,则有=.式中为断面平均水深,A为断面面积,B为水面宽度.在实际工程中水流都是流动的,设水流断面平均流速为v,则微波传播的绝对速度应是静水中的相对波速与水流速度的代数和,即,正号为顺水方向,负号为逆水方向)6.4.2 Fr法当 Fr<1,水流为缓流;Fr=1,水流为临界流;Fr>1,水流为急流.对临界流来说,断面平均流速恰好等于微波相对波速,即,该式可改写为,其中称为弗劳德数,用符号Fr表示.弗劳德数的两个物理意义P2186.4.3比能曲线法断面比能把基准面选在渠底,所计算的单位液体所具有的能量称为断面比能,并以表示.则,在实际应用上,因一般坡底较小,,故常采用 .比能曲线当流量Q和过水断面的形状及尺寸一定时, 断面比能仅仅是水深的函数,按照此函数可以绘出断面比能随水深变化的关系曲线,该曲线称为比能曲线.比能曲线上存在可以使断面比能取最小值的K点.K点把曲线分成上下两支,上支即为缓流所对应的曲线,下支即为急流所对应的曲线.(比能曲线见P220图6.5)比能曲线与弗劳德数的联系()及其推导过程(了解)P2216.4.4临界水深法临界水深相应于断面比能最小值的水深称为临界水深,以表示.当 h> ,Fr<1,水流为缓流;h= ,Fr=1,水流为临界流;h< ,Fr>1,水流为急流.临界水深的计算在矩形断面明渠中,临界流的流速水头是临界水深的1/2,而临界水深则是最小断面比能的2/3.(原题)P221(将.对水深h求导,并令其等于0.得,规定对应于临界水深的水利要素以脚标K,则.对于矩形断面明渠, ,代入得 ,即临界流的流速水头是临界水深的1/2.再代入 ,得,即临界水深是最小断面比能的2/3.断面为任意形状时,临界水深的计算(了解)见P222(试算法和图解法)重要例题:例题6.16.4.5临界底坡法(只适用于均匀流)第七章水跃7.1水跃当明渠中的水流又急流状态过渡到缓流状态时,会产生一种水面突然跃起的特殊局部水力现象,即在较短的渠道内水深从小于临界水深急剧的跃到大于临界水深.这种特殊的局部水力现象称为水跃.跃高跃后水深与跃前水深之差跃长跃前断面至跃后断面的水平距离完全水跃有表面旋滚的水跃。