高中数学数形结合

合集下载

数形结合思想方法在高中数学教学中的运用

数形结合思想方法在高中数学教学中的运用

数形结合思想方法在高中数学教学中的运用一、数形结合思想方法的概念数形结合思想方法是指将数学中的抽象概念与具体图形相结合,使抽象概念更加形象化和具体化,从而帮助学生更好地理解和掌握数学知识。

这种方法通过将数学问题转化为几何问题,突出了问题的形象性和直观性,使学生更容易理解和掌握数学内容。

二、数形结合思想方法的运用1. 代数表达与几何图形在代数学习中,常常涉及到各种方程、函数及其图像。

教师可以引导学生通过绘制函数图像的方法,帮助学生更好地理解代数表达式的意义。

对于一元二次函数y=ax^2+bx+c,教师可以通过绘制抛物线的图像,让学生直观地感受到a、b、c对函数图像的影响,从而加深对函数的理解和运用。

2. 数列与平面几何在数列的学习中,常常涉及到数列的通项公式和求和公式。

通过将数列的通项公式和求和公式与平面几何结合起来,可以帮助学生更好地理解数列的规律和性质。

教师可以通过绘制数列的图形,让学生直观地感受到数列的增减规律及其和的变化规律,从而加深对数列的理解和掌握。

3. 解析几何与代数方程在解析几何的学习中,常常涉及到直线、圆、抛物线等几何图形的方程式。

教师可以通过将几何图形的方程式与代数方程结合起来,帮助学生更直观地理解几何图形的性质和方程的意义。

教师可以通过分析直线方程和圆的方程的关系,让学生理解方程式与几何图形的联系,从而加深对解析几何的理解和运用。

2. 培养学生的几何直观能力学生在数学学习中往往更倾向于代数计算,而对几何图形的理解和运用能力相对较弱。

数形结合思想方法可以帮助学生培养几何直观能力,提高他们对几何图形的理解和运用水平。

3. 提高学生的数学思维能力数形结合思想方法可以激发学生的求知欲,培养他们的数学思维能力。

通过将数学问题转化为几何问题,学生能够更主动地思考和解决问题,提高他们的数学思维能力。

2. 拓展教学手段和方法数形结合思想方法为教师提供了新的教学手段和方法,丰富了教学内容和形式,提高了教学的多样性和趣味性,能够激发学生的学习兴趣。

高中数学中数形结合思想在函数解题中的运用

高中数学中数形结合思想在函数解题中的运用

高中数学中数形结合思想在函数解题中的运用(一)数形结合在求函数定义域方面的应用例1:求函数y =的定义域. 解析:若要解决该函数的定义域,则有23200x x x ⎧-+≥⎨≠⎩,要解决此类不等式的解集, 需要借助图像,如右图:由图像可以看出,若要2320x x -+≥,只需1,x ≤或2x ≥,再由0x ≠,得出该函数的定义域即为:()(][),00,12,-∞+∞. 小结:随着学生做题熟练程度的增强,二次不等式的求解已不用再画图。

因此在求函数定义域方面,多见于画数轴选择出取值范围。

(二)数形结合在求函数值域方面的应用例2:求函数(]223,1,2y x x x =--∈-的值域. 解析:看到所求函数为二次函数,由于函数是非单调的,所以并不能代端点值去求出值域,因此需要借助图像来观察,如右图:借助图像的直观表达可知道,具有区间范围的该二次函数的图像应为黄色区域部分,此函数的最小值是在对称轴处取得,即当1x =时,4y =-。

从而该函数的值域为:(]0,4-。

小结:对于此类问题是学生的常见出错点,学生们习惯于直接带入端点值得出其值域,因此对于给定区间上的二次函数值域问题,培养学生数形结合的思想是非常重要的。

(三)数形结合在函数单调性方面的应用例3:已知2()2(1)2f x x a x =+-+在(],4-∞上是减函数,求实数a 的取值范围。

解析:函数解析式中含有字母,因此函数在坐标系内的具体位置不能固定,需要画图分析,看何种情况才能满足题干要求:通过图像分析可知:若要满足函数在给定区间上为单调函数,只能是后两种情况,也就是函数图像的对称轴不能出现在所给区间内,从而解题找到突破口。

所给函数对称轴方程:1x a =- ,由图像分析可知,需有a 14-≥,从而a 5≥。

小结:该类问题常见于二次函数中,因其单调性与对称轴的位置有关,故通常画图分析更能直观得出题目所需情况,从而快速得出结论。

(四)数形结合在函数奇偶性方面的应用例4:已知函数()f x 是定义在R 上的奇函数,当0x ≥时,()(1)f x x x =+.试求当0x <时,函数()f x 的解析式。

高中数学高考二轮复习数形结合思想教案

高中数学高考二轮复习数形结合思想教案

第二讲数形结合思想对应学生用书P1291数形结合的含义(1)数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法.数形结合思想通过“以形助数,以数辅形”,使复杂问题简单化,抽象问题具体化,能够变抽象思维为形象思维,有助于把握数学问题的本质,它是数学的规律性与灵活性的有机结合.(2)数形结合包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:一是借助形的生动性和直观性来阐明数形之间的联系,即以形作为手段,数作为目的,比如应用函数的图象来直观地说明函数的性质;二是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质.2数形结合的途径(1)通过坐标系“形题数解”借助于直角坐标系、复平面,可以将几何问题代数化.这一方法在解析几何中体现得相当充分(在高考中主要也是以解析几何作为知识载体来考查的).值得强调的是,“形题数解”时,通过辅助角引入三角函数也是常常运用的技巧(这是因为三角公式的使用,可以大大缩短代数推理).实现数形结合,常与以下内容有关:①实数与数轴上的点的对应关系;②函数与图象的对应关系;③曲线与方程的对应关系;④以几何元素和几何条件为背景,建立起来的概念,如复数、三角函数等;⑤所给的等式或代数式的结构含有明显的几何意义.如等式(x -2)2+(y -1)2=4,表示坐标平面内以(2,1)为圆心,2为半径的圆.(2)通过转化构造“数题形解”许多代数结构都有着相对应的几何意义,据此,可以将数与形进行巧妙地转化.例如,将a (a >0)与距离互化;将a 2与面积互化,将a 2+b 2+ab =a 2+b 2-2|a ||b |cos θ(θ=60°或θ=120°)与余弦定理沟通;将a ≥b ≥c >0且b +c >a 中的a 、b 、c 与三角形的三边沟通;将有序实数对(或复数)和点沟通;将二元一次方程与直线、将二元二次方程与相应的圆锥曲线对应等等.这种代数结构向几何结构的转化常常表现为构造一个图形(平面的或立体的).另外,函数的图象也是实现数形转化的有效工具之一,正是基于此,函数思想和数形结合思想经常相互渗透,演绎出解题捷径.例1 已知函数f (x )=sin ⎝ ⎭⎪⎫2ωx +π3的相邻两条对称轴之间的距离为π4,将函数f (x )的图象向右平移π8个单位后,再将所有点的横坐标伸长为原来的2倍,得到g (x )的图象,若g (x )+k =0在x ∈⎣⎢⎡⎦⎥⎤0,π2有且只有一个实数根,则k 的取值范围是( )A.k ≤12B .-1≤k <-12 C.-12<k ≤12 D .-12<k ≤12或k =-1解析 因为f (x )相邻两条对称轴之间的距离为π4,结合三角函数的图象可知T 2=π4.又T =2π2ω=πω=π2,所以ω=2,f (x )=sin ⎝ ⎛⎭⎪⎫4x +π3. 将f (x )的图象向右平移π8个单位得到f (x )=sin ⎣⎢⎡⎦⎥⎤4⎝ ⎛⎭⎪⎫x -π8+π3=sin ⎝ ⎛⎭⎪⎫4x -π6,再将所有点的横坐标伸长为原来的2倍得到g (x )=sin ⎝ ⎛⎭⎪⎫2x -π6. 所以方程为sin ⎝ ⎛⎭⎪⎫2x -π6+k =0. 令2x -π6=t ,因为x ∈⎣⎢⎡⎦⎥⎤0,π2,所以-π6≤t ≤5π6. 若g (x )+k =0在x ∈⎣⎢⎡⎦⎥⎤0,π2有且只有一个实数根, 即g (t )=sin t 与y =-k 在⎣⎢⎡⎦⎥⎤-π6,5π6有且只有一个交点. 如图所示,由正弦函数的图象可知-12≤-k <12或-k =1,即-12<k ≤12或k =-1.利用数形结合求方程解应注意两点(1)讨论方程的解(或函数的零点)可构造两个函数,使问题转化为讨论两曲线的交点问题,但用此法讨论方程的解一定要注意图象的准确性、全面性,否则会得到错解.(2)正确作出两个函数的图象是解决此类问题的关键,数形结合应以快和准为原则而采用,不要刻意去数形结合.模拟演练1 已知函数f (x )满足f (x )+1=1f (x +1),当x ∈[0,1]时,f (x )=x ,若在区间(-1,1]上方程f (x )-mx -m =0有两个不同的实根,则实数m 的取值范围是( )A.⎣⎢⎡⎭⎪⎫0,12 B.⎣⎢⎡⎭⎪⎫12,+∞ C.⎣⎢⎡⎭⎪⎫0,13 D.⎝ ⎛⎦⎥⎤0,12 答案 D解析方程f (x )-mx -m =0有两个不同的实根等价于方程f (x )=m (x +1)有两个不同的实根,等价于直线y =m (x +1)与函数f (x )的图象有两个不同的交点.因为当x ∈(-1,0)时,x +1∈(0,1),所以f (x )+1=1f (x +1)=1x +1,所以f (x )=1x +1-1,所以f (x )=⎩⎨⎧ x ,x ∈[0,1]1x +1-1,x ∈(-1,0).在同一平面直角坐标系内作出直线y =m (x+1)与函数f (x ),x ∈(-1,1]的图象,由图象可知,当直线y =m (x +1)与函数f (x )的图象在区间(-1,1]上有两个不同的公共点时,实数m 的取值范围为⎝ ⎛⎦⎥⎤0,12.例2 (1)使log 2(-x )<x +1成立的x 的取值范围是________.(2)若不等式|x -2a |≥12x +a -1对x ∈R 恒成立,则a 的取值范围是________.。

浅谈高中数学教学中的“数形结合”

浅谈高中数学教学中的“数形结合”

图 1

成 立.
例 4 当 1 <n < 6时 , 求证: a >
解 析 :“ > _ 1㈢

b ), ( C, 0), ( 0, d) .
( 6 — 1)l n a >
由 F, G分 别 为 A B, C D 中点 ,
知 F ( 一 旦 2 , 一 b ) , G ( 专 , 导 ) .
又 E 同时 在 AC, B D 的垂 直

\ /
( n 一 1 ) 1 n “ 一 半 l > D — l .
设 函数 l ,( ) =l n x, 则 其 图 像 必 过 点 C( 1 , 0 ) , 在 图像 上 任取 两 点 A( “ , l n a) ,
波利亚在《 怎样解题 》 一 书 中说 : “ 数 学 解 题 是 命 题 的 连 续
的变 换 . ” 可见“ 转化” 是 解 题 的 重要 手 段 . 而数 形 结 合 , 是 转 化 的重 要 方 法 之 一 . 纵 观 近 年 来 的高 考 , 熔“ 数” 和“ 形” 于 一 体 的 试 题 屡 见不 鲜 . 本 文就 运 用 “ 数形 结合” 进 行 解 题 的 常 见题 型 进行分类解析.
一 2 f

『 J
图 3
特 定 的 问题 , 可以被转化为一个图形 , 那 么 思 想 就 整 体 地 把 握
了问题 , 并且能创造性地思索问题的解法. ”
即— l n a l n l >
得证

数学 教学 中 的 数 形结合 浅 谈 4 . 利 用 图 形 求最 值 例 2 解不等式 l 3 x -2 l +I 3 十1 l ≤6 ( ∈ R) .

高中数学中的数形结合方法和应用

高中数学中的数形结合方法和应用

数形结合是一种数学思想方法,它通过将抽象的数学语言与直观的图形相结合,使问题变得更加清晰易懂。

在高中数学中,数形结合方法的应用非常广泛,包括函数、方程、不等式、三角函数、向量、解析几何等方面。

首先,我们来了解一下数形结合方法的定义。

数形结合方法是指将数学语言和图形相结合,通过直观的图形来帮助解决抽象的数学问题。

这种方法的核心思想是将抽象的数学语言转化为直观的图形,从而更好地理解问题。

接下来,我们来探讨数形结合方法在高中数学中的应用。

1. 函数函数是高中数学中的重要概念之一。

通过数形结合方法,我们可以将函数图像与函数解析式相结合,从而更好地理解函数的性质和特点。

例如,在研究函数的单调性时,我们可以画出函数的图像,通过观察图像来了解函数的单调性。

2. 方程方程是高中数学中的另一个重要概念。

通过数形结合方法,我们可以将方程的解转化为函数的图像,从而更好地理解方程的解。

例如,在求解一元二次方程时,我们可以画出根的判别式与根的关系图像,从而更好地理解方程的解。

3. 不等式不等式是高中数学中的另一个重要概念。

通过数形结合方法,我们可以将不等式的解转化为函数的图像,从而更好地理解不等式的性质和特点。

例如,在研究不等式的单调性时,我们可以画出函数的图像,通过观察图像来了解不等式的单调性。

4. 三角函数三角函数是高中数学中的另一个重要概念。

通过数形结合方法,我们可以将三角函数的图像与三角函数的解析式相结合,从而更好地理解三角函数的性质和特点。

例如,在研究三角函数的周期性时,我们可以画出三角函数的图像,通过观察图像来了解三角函数的周期性。

5. 向量向量是高中数学中的另一个重要概念。

通过数形结合方法,我们可以将向量的坐标与向量的长度、方向相结合,从而更好地理解向量的性质和特点。

例如,在研究向量的加法、减法时,我们可以画出向量的图像,通过观察图像来了解向量的加法、减法。

6. 解析几何解析几何是高中数学中的另一个重要概念。

高中数学数形结合教案

高中数学数形结合教案

高中数学数形结合教案
主题:数学与数形结合
教学目标:
1. 能够熟练掌握常见数形的性质和相关计算方法;
2. 能够运用数学知识解决实际问题;
3. 能够灵活运用数形结合的思维方式解决各类问题。

教学重点:
1. 数形的性质和计算方法;
2. 数学与数形结合的思维方式。

教学内容:
1. 基础数形的性质和计算方法;
2. 数形结合的应用实例。

教学步骤:
第一步:引入
通过展示一些常见的数形,引导学生思考数形之间的联系和应用。

第二步:学习数形的性质和计算方法
1. 讲解常见数形(如矩形、三角形、圆等)的性质和计算方法;
2. 练习相关计算题目,巩固学生对数形的理解和应用能力。

第三步:数形结合的思维方式
1. 介绍数形结合的思维方式,引导学生掌握解决问题的方法;
2. 指导学生运用数形结合的思维方式解决实际问题。

第四步:综合练习
组织学生进行综合练习,检验他们的数形结合能力。

第五步:总结与反思
总结本节课的学习内容,鼓励学生积极思考数形结合的应用领域,并提出问题和建议。

教学方式:
1. 教师讲解与学生练习相结合;
2. 个别指导与小组合作相结合。

教学工具:
1. 黑板和彩色粉笔;
2. 教科书和练习册;
3. 数学工具箱。

教学评价:
通过课堂练习和作业评估学生的学习情况,检查学生对数形结合的理解和应用能力。

高中数学中数形结合教学方式的意义分析

高中数学中数形结合教学方式的意义分析

高中数学中数形结合教学方式的意义分析数学是一门重要的学科,也是人类智慧的结晶,它是科学发展与进步的基石。

数学不仅是其他学科的基础,而且在现代科学技术中占据着重要的地位。

尽管数学知识的庞大和抽象性已成为人类认知和掌握的障碍,但将数学的抽象概念与形象概念相结合,可以增强人们对数学知识的理解和记忆能力。

因此,数形结合教学方式成为了高中数学教学活动的重要组成部分,其意义不可忽视。

一、数形结合教学方式的意义1.促进视觉空间思维能力的发展数形结合教学方式通过运用图形展示数学概念,通过几何形状、颜色、大小、位置等视觉元素来展示数学知识,使学生在观察和思考过程中通过视觉感受学习知识,激发视觉空间思维。

这将有助于学生形成全面的数学认识体系,发掘自身的空间思维能力,增强抽象思维能力,提高解决实际问题的能力。

2.提高学生数学兴趣和探索欲数形结合教学方法可大大增加学生学习数学的乐趣和动力,引起学生的学习兴趣。

在解决问题的过程中,学生可以探索、发现、发明更多的数学知识。

学生们将更愿意接受数学知识,更轻松地理解知识点。

这将有助于激发学生自主学习的积极性,培养学生独立思考和创新思维能力。

3.增强数学与现实生活的联系性数形结合教学方式把数学抽象概念与形象概念相结合,使学生更好地理解和应用数学知识。

教师可以通过实际问题、实物、工程图和虚拟实验等进行启发式教学,把抽象的数学知识与学生的实际生活联系起来,使学生更好地认识数学的应用价值,增加数学学科在学生中的重要性。

二、数形结合教学方式的实施1.教师课前准备:教师需要事先准备好教材、教具和实验装置。

针对学生的实际情况,确定课程设计和教学目标、教学内容与教学方式等。

2.设计多种教学方法:教师可采用讲授、互动、实验、讨论、问题解决和小组合作等多种教学方法。

通过各种教学方法,引导学生在数学学科中发现问题,探索解决问题的方法。

3.指导学生理解数学概念。

教师应在互动教学中,从视觉形式入手,让学生以图像的形式来认识和理解数学知识。

高中数学四大数学思想

高中数学四大数学思想

高中数学四大数学思想1.数形结合思想数形结合思想在高考中占有非常重要的地位,其“数”与“形”结合,相互渗透,把代数式的精确刻划与几何图形的直观描述相结合,使代数问题、几何问题相互转化,使抽象思维和形象思维有机结合. 应用数形结合思想,就是充分考查数学问题的条件和结论之间的内在联系,既分析其代数意义又揭示其几何意义,将数量关系和空间形式巧妙结合,来寻找解题思路,使问题得到解决. 运用这一数学思想,要熟练掌握一些概念和运算的几何意义及常见曲线的代数特征.应用数形结合的思想,应注意以下数与形的转化:(1)集合的运算及韦恩图;(2)函数及其图象;(3)数列通项及求和公式的函数特征及函数图象;(4)方程(多指二元方程)及方程的曲线.以形助数常用的有:借助数轴;借助函数图象;借助单位圆;借助数式的结构特征;借助于解析几何方法.以数助形常用有:借助于几何轨迹所遵循的数量关系;借助于运算结果与几何定理的结合.2.分类讨论思想分类讨论思想就是根据所研究对象的性质差异,分各种不同的情况予以分析解决. 分类讨论题覆盖知识点较多,利于考查学生的知识面、分类思想和技巧;同时方式多样,具有较高的逻辑性及很强的综合性,树立分类讨论思想,应注重理解和掌握分类的原则、方法与技巧、做到“确定对象的全体,明确分类的标准,分层别类不重复、不遗漏的分析讨论”.应用分类讨论思想方法解决数学问题的关键是如何正确分类,即正确选择一个分类标准,确保分类的科学,既不重复,又不遗漏. 如何实施正确分类,解题时需要我们首先明确讨论对象和需要分类的全体,然后确定分类标准与分类方法,再逐项进行讨论,最后进行归纳小结.常见的分类情形有:按数分类;按字母的取值范围分类;按事件的可能情况分类;按图形的位置特征分类等. 分类讨论思想方法可以渗透到高中数学的各个章节,它依据一定的标准,对问题分类、求解,要特别注意分类必须满足互斥、无漏、最简的原则.3.函数与方程思想函数与方程思想是最重要的一种数学思想,高考中所占比重较大,综合知识多、题型多、应用技巧多. 函数思想简单,即将所研究的问题借助建立函数关系式亦或构造中间函数,结合初等函数的图象与性质,加以分析、转化、解决有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题;方程思想即将问题中的数量关系运用数学语言转化为方程模型加以解决.运用函数与方程的思想时,要注意函数,方程与不等式之间的相互联系和转化,应做到:(1)深刻理解函数f(x)的性质(单调性、奇偶性、周期性、最值和图象变换),熟练掌握基本初等函数的性质,这是应用函数思想解题的基础.(2)密切注意三个“二次”的相关问题,三个“二次”即一元二次函数、一元二次方程、一元二次不等式是中学数学的重要内容,具有丰富的内涵和密切的联系. 掌握二次函数基本性质,二次方程实根分布条件,二次不等式的转化策略.4.转化与化归思想化归与转化的思想,就是在研究和解决数学问题时采用某种方式,借助某种函数性质、图象、公式或已知条件将,问题通过变换加以转化,进而达到解决问题的思想. 转化是将数学命题由一种形式向另一种形式的变换过程,化归是把待解决的问题通过某种转化过程归结为一类已经解决或比较容易解决的问题.转化与化归思想是中学数学最基本的思想方法,堪称数学思想的精髓,它渗透到了数学教学内容的各个领域和解题过程的各个环节中. 转化有等价转化与不等价转化. 等价转化后的新问题与原问题实质是一样的. 不等价转化则部分地改变了原对象的实质,需对所得结论进行必要的修正.应用转化与化归思想解题的原则应是化难为易、化生为熟、化繁为简,尽量是等价转化. 常见的转化有:正与反的转化、数与形的转化、相等与不等的转化、整体与局部的转化、空间与平面相互转化、复数与实数相互转化、常量与变量的转化、数学语言的转化.。

数形结合在高中数学教学中的巧妙应用

数形结合在高中数学教学中的巧妙应用

数形结合在高中数学教学中的巧妙应用数形结合是指数学中将数学概念与图形形式相结合,通过使用图形直观地表示数学问题,从而加深学生对数学概念的理解和记忆。

在高中数学教学中,数形结合的巧妙应用可以使学生更加深入地理解和掌握数学知识,并能够更好地应用于解决实际问题。

数形结合可以帮助学生更加形象地理解几何图形的性质。

以平行四边形为例,传统教学中通常使用文字和符号来描述平行四边形的定义和性质,但学生往往难以直观地理解其几何特征。

而将平行四边形的定义和性质与相应的图形形式结合起来,可以使学生通过观察图形直观地感受到其特点,从而更好地理解和记忆。

数形结合还可以帮助学生更加直观地理解数学中的变量和函数关系。

在函数的教学中,常常使用符号和公式来表述函数关系,但对于学生来说,往往难以把握函数图形与其代数表达的对应关系。

而通过绘制函数图形,可以使学生直观地观察到函数关系的变化规律,从而更加深入地理解和掌握函数的性质和特点。

数形结合在解决数学问题中也有着巧妙的应用。

以解方程为例,传统的解方程方法往往通过运算步骤来推导出方程的解,但对于一些复杂的方程,运算步骤往往会较为繁杂,学生容易迷失在计算中。

而通过数形结合的方法,可以将方程转化为图形问题,通过观察图形解决方程,不仅更能激发学生的兴趣,还能够简化解题过程,提高解题效率。

在几何证明中,数形结合也有着重要的应用价值。

几何证明通常需要通过逻辑推理和形式化的描述来确立结论,而对于一些复杂的几何证明,学生往往难以从中找到突破口。

而通过数形结合的方法,可以将几何问题转化为数学问题,通过对数学关系或性质的推导来解决几何证明,从而使学生更加直观地理解几何问题的本质,提高几何证明的能力。

高中数学教学中学生数形结合思维的培养

高中数学教学中学生数形结合思维的培养

高中数学教学中学生数形结合思维的培养高中数学教学中,数形结合是一种非常重要的教学方式。

利用数形结合的教学方法,可以激发学生的数学学习兴趣,培养学生的数学思维能力,提高学生的数学解决问题的能力。

本文将从数形结合的重要性、培养学生数形结合思维的方法以及数形结合教学对学生的益处等方面进行探讨。

一、数形结合的重要性数学是一门抽象的学科,数学问题往往需要通过抽象的符号和计算进行求解。

而数形结合的教学方法可以将抽象的数学知识与具体的几何形式进行结合,使得学生能够更直观地理解数学概念,进而更好地掌握数学知识。

数形结合不仅可以帮助学生理解数学知识,还可以帮助学生培养数学思维能力和解决问题的能力。

通过数形结合的教学,可以让学生在具体的空间中感受数学的魅力,从而激发学生的学习兴趣,提高学生的学习效果。

二、培养学生数形结合思维的方法1. 引导学生学会观察数形结合思维的培养首先需要学生学会观察。

在数学教学中,教师可以通过引导学生观察一些数学问题的实际情况,让学生在观察中逐渐形成对数学事物的感性认识。

在学习坐标系时,可以通过引导学生观察图形在坐标系中的位置、属性以及与数学函数的关系,让学生从直观的观察中理解数学概念,从而培养学生的数形结合思维能力。

2. 练习数形转化数形结合思维的培养还需要学生掌握数和形之间的转化。

在数学教学中,教师可以通过一些练习题让学生将数学问题转化为几何图形的形式,或者将几何图形转化为数学公式的形式,从而训练学生的数形结合能力。

通过大量的练习,学生可以逐渐掌握数形结合的方法和技巧,从而提高数学解决问题的能力。

3. 鼓励学生思维延伸在数学教学中,教师还可以通过鼓励学生进行思维延伸的方式来培养学生的数形结合思维能力。

在学习三角函数的时候,教师可以鼓励学生思考三角函数的图形特征与数学公式的关系,从而引导学生将抽象的数学概念与具体的几何形式进行结合,培养学生的数形结合思维能力。

三、数形结合教学对学生的益处1. 激发学生的学习兴趣通过数形结合的教学方法,学生可以更直观地感受到数学的魅力,从而激发学生的学习兴趣。

高中数学二轮专题复习——数形结合思想

高中数学二轮专题复习——数形结合思想

思想方法专题数形结合思想【思想方法诠释】一、数形结合的思想所谓的数形结合,就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义,使数量关系和空间形式巧妙、和谐地结合起来,并充分利用这种“结合”,寻找解题思路,使问题得到解决,数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法。

数形结合思想通过“以形助数,以数解形”,使复杂问题简单化,抽象问题具体化,从形的直观和数的严谨两方面思考问题,拓宽了解题思路,是数学的规律性与灵活性的有机结合.数形结合的实质是将抽象的数学语言与直观的图象结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化.二、数形结合思想解决的问题常有以下几种:1.构建函数模型并结合其图象求参数的取值范围;2.构建函数模型并结合其图象研究方程根的范围;3.构建函数模型并结合其图象研究量与量之间的大小关系;4.构建函数模型并结合其几何意义研究函数的最值问题和证明不等式;5.构建立体几何模型研究代数问题;6.构建解析几何中的斜率、截距、距离等模型研究最值问题;7.构建方程模型,求根的个数;8.研究图形的形状、位置关系、性质等。

三、数形结合思想是解答高考数学试题的一种常见方法与技巧,特别是在解选择题、填空题时发挥奇特功效,具体操作时,应注意以下几点:1.准确画出函数图象,注意函数的定义域;2.用图象法讨论方程(特别是含参数的方程)的解的个数是一种行之有效的方法,值得注意的是首先把方程两边的代数式看作是两个函数的表达式(有时可能先作适当调整,以便于作图)然后作出两个函数的图象,由图求解。

四、在运用数形结合思想分析问题和解决问题时,需做到以下四点:1.要清楚一些概念和运算的几何意义以及曲线的代数特征;2.要恰当设参,合理用参,建立关系,做好转化;3.要正确确定参数的取值范围,以防重复和遗漏;4.精心联想“数”与“形”,使一些较难解决的代数问题几何化,几何问题代数化,以便于问题求解。

高中数学:用数形结合的方法,解决不等式的问题

高中数学:用数形结合的方法,解决不等式的问题

高中数学:用数形结合的方法,解决不等式的问题数与形是数学中两个最古老而又最基本的对象。

正如华罗庚先生所说的:“数形结合千般好”,其特征主要体现是将代数问题几何化,即通过图形反映相关的代数关系,从而直观地解决有关的代数问题。

一. 解含参不等式在解决含有参数的不等式时,由于涉及到参数,往往需要讨论,导致演算过程繁琐冗长。

如果题设与几何图形有联系,那么利用数形结合的方法,问题将会简练地得到解决。

例1. 已知,解关于x的不等式。

解:如图1所示,在同一坐标系中,作和的图象。

图1解和交点的坐标,即在时,由,得。

由图1知,当时,曲线的上方。

所以原不等式的解集为:例2. 已知,解关于x的不等式。

解:如图2所示,在同一坐标系中,作曲线及直线:。

联立和,解得。

图2由图2知,曲线C在直线上方部分的点的横坐标范围,即为原不等式的解集:。

二. 确定参数的范围在确定不等式参数的范围时,几何图形更能使问题直观而易于理解。

例3. 求实数a的范围,使当时,不等式恒成立。

解:原不等式变形得:令如图3所示,在同一坐标系中作出曲线C:和直线。

由于直线恒经过定点,由图3可知,要使在时恒成立,直线应在原点下方,即斜率a应该大于。

所以a的取值范围是。

图3例4. 已知关于x的不等式的解集为,求实数a、b的值。

解:将原不等式同解变形为如图4所示,在同一坐标系中作出曲线和直线。

图4根据题意,求出直线和曲线C的交点,将坐标代入的方程得:解之得:三. 证明不等式把要证明的不等式赋予一定的几何意义,将使复杂的证明问题获得明快解决。

例5. 已知:。

求证:。

分析:表示原点到点的距离,利用这种几何意义,问题就变得很简单了。

证明:如图5所示,设,则(1)当时,在△AOB中由得(2)当时,由得综合(1)、(2)得图5▍ ▍ ▍。

数形结合方法在高中数学教学中的应用

数形结合方法在高中数学教学中的应用

数形结合方法在高中数学教学中的应用数形结合方法是指通过将数学问题转化为几何图形的方式来解决问题的方法。

在高中数学教学中,数形结合方法被广泛应用于解决各类数学问题,不仅能够帮助学生理解抽象的数学概念,还可以培养学生的几何思维和直观感性思维能力。

下面就是数形结合方法在高中数学教学中的一些典型应用:1. 几何图形的面积和体积计算:数形结合方法可以帮助学生将抽象的计算问题转化为具体的几何图形问题,从而更加直观地计算图形的面积和体积。

通过将一个复杂的图形分解为多个简单的几何图形,可以使用面积的叠加或减法来计算整个图形的面积,同时通过将一个立体体积分解为多个简单的几何体积,可以使用体积的叠加或减法来计算整个立体体积。

2. 几何图形的相似比例关系:数形结合方法可以帮助学生直观地理解几何图形的相似比例关系。

在相似三角形的问题中,学生可以通过构造相似三角形,并比较它们的边长和角度来确定它们的相似比例关系。

通过数形结合方法,学生可以更好地理解抽象的相似比例关系,并能够应用这些比例关系解决相关的问题。

3. 解决变量问题:数形结合方法可以帮助学生解决含有变量的数学问题。

在解决二次函数的最值问题时,可以通过将函数图像与坐标系中的几何图形相结合,找到函数图像与几何图形的最值点的位置关系,从而解决问题。

通过数形结合方法,学生能够更直观地理解变量的含义,并能够将变量与几何图形进行关联。

4. 证明几何问题:数形结合方法可以帮助学生进行几何问题的证明。

在证明平行线定理时,可以通过将平行线与直线上的任意两点相连,构成一组相似三角形,并利用相似三角形的相似比例关系来证明平行线定理。

通过数形结合方法,学生能够建立几何图形与数学公式之间的联系,并能够进行推理和证明。

数形结合在高中数学教学中的巧妙应用

数形结合在高中数学教学中的巧妙应用

数形结合在高中数学教学中的巧妙应用数形结合是高中数学教学中的一个重要部分,它是数学与几何的深度融合,也是把具体图形化为数学概念的一种实用技巧。

数形结合在高中数学教学中的应用非常广泛,可以帮助学生深刻理解各种数学概念和定理,增强学生对数学的兴趣和学科钻研能力,下面将来介绍数形结合在高中数学教学中的详细应用。

1.平面向量与几何关系的数形结合平面向量是高中数学中的一个重要概念,它与几何关系的数形结合可以帮助学生更直观地理解平面向量的性质和作用。

例如,在解平面向量共线性问题时,我们可以将向量作为几何图形表示出来,通过数学分析这些图形之间的几何关系,来判断向量是否共线;在证明平面向量的一些基本定理时,我们也可以利用图形直观地验证定理的正确性。

这种数形结合的方法既可以提高学生的几何直观能力,又可以加深其对平面向量理论的认识和理解。

2.集合论中的数形结合集合论是高中数学中的重要分支,它研究集合和元素的关系,是数学中最基本和最抽象的概念之一。

在集合论中,我们可以利用数形结合来进一步深入理解集合和元素之间的关系。

例如,在研究集合的交、并、差等操作时,我们可以用图形表示出它们之间的集合关系,通过直观的方式来理解集合操作的本质。

同时,在研究包含问题时,我们也可以利用集合的图形来方便地表示出它们之间的元素关系。

3.函数图像的数形结合函数是高中数学中的重要概念,它是用来描述自变量和因变量之间的对应关系。

在研究函数图像时,我们可以利用数形结合方法来增加学生的视觉感受力,使得学生更加直观地理解函数的性质和特点。

例如,在研究一元一次和二次函数的图像时,我们可以用几何图形代表函数的性质和特点,来直观地理解函数的增减性、单调性、零点、极值以及对称轴等特征,从而提高学生的图像思维能力和实际应用能力。

立体几何是高中数学中的一项重要内容,它是数学与空间结合的一种具体体现。

在研究立体几何的问题时,我们可以利用数形结合的方法来进行分析和推理。

高中数学数形结合思想在解题中的应用

高中数学数形结合思想在解题中的应用

中学数学数形结合思想在解题中的应用一、学问整合1.数形结合是数学解题中常用的思想方法,运用数形结合的方法,许多问题能迎刃而解,且解法简捷。

所谓数形结合,就是依据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法。

数形结合思想通过“以形助数,以数解形”,使困难问题简洁化,抽象问题详细化能够变抽象思维为形象思维,有助于把握数学问题的本质,它是数学的规律性与敏捷性的有机结合。

2.实现数形结合,常与以下内容有关:①实数与数轴上的点的对应关系;②函数与图象的对应关系;③曲线与方程的对应关系;④以几何元素和几何条件为背景,建立起来的概念,如复数、三角函数等;⑤所给的等式或代数式的结构含有明显的几何意义。

如等式()()x y -+-=214223.纵观多年来的高考试题,奇妙运用数形结合的思想方法解决一些抽象的数学问题,可起到事半功倍的效果,数形结合的重点是探讨“以形助数”。

4.数形结合的思想方法应用广泛,常见的如在解方程和解不等式问题中,在求函数的值域,最值问题中,在求复数和三角函数问题中,运用数形结合思想,不仅直观易发觉解题途径,而且能避开困难的计算与推理,大大简化了解题过程。

这在解选择题、填空题中更显其优越,要留意培育这种思想意识,要争取胸中有图,见数想图,以开拓自己的思维视野。

二、例题分析例1.的取值范围。

之间,求和的两根都在的方程若关于k k kx x x 310322-=++ 分析:0)(32)(2=++=x f x k kx x x f 程轴交点的横坐标就是方,其图象与令()13(1)0y f x f =-->的解,由的图象可知,要使二根都在,之间,只需,(3)0f >,()()02bf f k a-=-<10(10)k k -<<∈-同时成立,解得,故,例2. 解不等式x x +>2 解:法一、常规解法:原不等式等价于或()()I x x x x II x x ≥+≥+>⎧⎨⎪⎩⎪<+≥⎧⎨⎩02020202解,得;解,得()()I x II x 0220≤<-≤<综上可知,原不等式的解集为或{|}{|}x x x x x -≤<≤<=-≤<200222 法二、数形结合解法: 令,,则不等式的解,就是使的图象y x y x x x y x 121222=+=+>=+在的上方的那段对应的横坐标,y x 2=如下图,不等式的解集为{|}x x x x A B ≤<而可由,解得,,,x x x x x B B A +===-222故不等式的解集为。

高中数学思想中数形结合

高中数学思想中数形结合

高中数学思想中的数形结合纵观整个中学数学可以看到,中学数学研究的对象可分为两大部分,一部分是数,一部分是形。

数是数量关系的体现,形是空间形式的体现,两者是对立统一的,我们在探讨数量关系时常常借助于图形直观地去研究;而在研究图形时,又常借助于图形间隐含的数量关系去求解。

即将数与形灵活地转换,运用彼此间的相互联系和作用,去有效地探求问题的解答,我认为这就是数形结合的思想方法。

华罗庚教授曾精彩地诠释:“数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休。

”由此可见,数形结合的巧与妙,数形结合的思想方法能扬数之长,取形之优,使得数量关系与空间形式珠联壁合,相映生辉。

因此它足以成为高中数学思想方法的一朵奇葩。

数形结合思想在高中数学新课程教材中渗透之深是显而易见的,新教材之中的每一章节内容几乎都有以数形结合的形式出现的题目,这样能很好地培养和发展学生的数形结合思想。

新教材中渗透这一方法,对发展学生的解题思路、寻找最佳解题方法明显带有指导性作用,通过对问题进行正确的分析、比较、合理联想,训练学生思维、拓宽视野,逐步形成正确的解题观;还可在学习中引导学生对抽象概念给予形象化的理解和记忆,提高数学认知能力,并提升对现实世界的认识能力,从而提高数学素养,不断完善自己。

在运用数形结合思想解题时,应必须关注以下几个方面:(1)由数想形时,要注意“形”的准确性,这是数形结合的基础。

(2)数形结合,贵在结合,要充分发挥两者的优势。

“形”有直观、形象的特点,但代替不上具体的运算和证明,在解题中往往提供一种数学解题的平台或模式,而“数”才是其真正的主角,若忽视这一点,很容易造成对数形结合的谬用。

下面我将通过几个模块习题的讲解来感受一下数形结合思想的灵活应用。

一、数形结合在函数问题中应用例题:已知奇函数f(x)的定义域是{x|x≠0,x∈r},且在(0,+∞)上单调递增,若f(1)=0,满足xf(x)<0的x的取值范围是。

高中数学常用的数学思想——数形结合

高中数学常用的数学思想——数形结合

高中数学常用的数学思想一、数形结合思想方法中学数学的基本知识分三类:一类是纯粹数的知识,如实数、代数式、方程(组)、不等式(组)、函数等;一类是关于纯粹形的知识,如平面几何、立体几何等;一类是关于数形结合的知识,主要体现是解析几何。

数形结合是一个数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:或者是借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图像来直观地说明函数的性质;或者是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质。

恩格斯曾说过:“数学是研究现实世界的量的关系与空间形式的科学。

”数形结合就是根据数学问题的条件和结论之间的内在联系,既分析其代数意义,又揭示其几何直观,使数量关的精确刻划与空间形式的直观形象巧妙、和谐地结合在一起,充分利用这种结合,寻找解题思路,使问题化难为易、化繁为简,从而得到解决。

“数”与“形”是一对矛盾,宇宙间万物无不是“数”和“形”的矛盾的统一。

华罗庚先生说过:数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休。

数形结合的思想,其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化。

在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意义;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三是正确确定参数的取值范围。

数学中的知识,有的本身就可以看作是数形的结合。

如:锐角三角函数的定义是借助于直角三角形来定义的;任意角的三角函数是借助于直角坐标系或单位圆来定义的。

Ⅰ、再现性题组:1.设命题甲:0<x<5;命题乙:|x-2|<3,那么甲是乙的_____。

数形结合思想在高中数学教学中的有效运用

数形结合思想在高中数学教学中的有效运用

数形结合思想在高中数学教学中的有效运用1. 几何问题的解决在传统的几何教学中,往往只强调几何定理的运用和推导,缺乏对实际问题的应用和解释。

而数形结合思想则可以帮助学生更好地理解几何问题,并将其与实际问题相结合。

通过数学模型的建立和图形的绘制,学生可以更加直观地理解几何知识,并且能够将其运用到实际生活中解决问题。

在求解几何问题时,可以通过建立坐标系和绘制图形,将几何问题转化为代数问题,从而更好地理解和解决问题。

2. 函数与图形的关系在高中数学中,函数与图形是一个重要的内容,学生需要掌握函数的性质与图形的特征。

数形结合思想可以帮助学生更好地理解函数与图形之间的关系。

通过构建函数的图象,分析图象的性质,学生可以更直观地理解函数的变化规律和特点,从而更好地掌握函数的概念和性质。

通过图象的变化和变化规律,学生也可以更好地理解函数的意义和应用,使抽象的函数概念变得更加具体和直观。

3. 统计问题的分析在统计学中,数据的收集、整理和分析是一个重要的内容,而数形结合思想可以帮助学生更加直观地理解和应用统计知识。

在统计问题的分析中,可以通过建立数学模型和绘制统计图表,帮助学生更好地理解数据的特点和规律,从而更好地进行数据的分析和应用。

数形结合思想还可以帮助学生理解统计数据与生活实际的联系,加深对统计知识的理解和运用。

1. 提高学生的学习兴趣和积极性数形结合思想可以帮助学生更加直观地理解数学知识,使抽象的数学概念变得更加具体和直观。

通过数学模型的建立和图形的绘制,学生可以更好地理解和应用数学知识,从而提高了他们对数学学习的兴趣和积极性。

相比传统的教学方法,数形结合思想更能激发学生的学习兴趣,使他们更愿意投入到数学学习中去。

2. 培养学生的数学思维和创造力数形结合思想注重培养学生的数学思维和创造力,可以帮助学生更好地理解和运用数学知识,培养他们的数学思维和创造力。

通过数学模型的建立和图形的绘制,学生需要运用数学知识解决实际问题,从而锻炼了他们的数学思维和创造力。

高中数学中的数形结合思想方法详解

 高中数学中的数形结合思想方法详解

高中数学中的数形结合思想方法详解在高中数学中,数形结合思想方法被广泛应用于各类数学问题的解决过程中。

数形结合思想方法是将数学问题与几何形状相结合,通过观察、分析和推理,找到问题的解决路径的一种思维方式。

本文将详细介绍数形结合思想方法在高中数学中的应用。

一、图形与代数的结合图形与代数的结合是数形结合思想方法中的一种常见形式。

通过将代数式与几何图形相对应,可以更加直观地理解代数表达式的含义,从而更好地解决问题。

以一元二次方程为例,我们可以通过绘制抛物线图像来帮助理解方程的根的个数和特点。

当抛物线与 x 轴相交于两个点时,方程有两个实数根;当抛物线与 x 轴相切于一个点时,方程有一个实数根;当抛物线不与 x 轴相交时,方程没有实数根。

借助图形,我们可以更加准确地判断方程的解的情况。

同样,在平面几何的问题中,我们可以通过引入代数的思想,使用变量和代数式来表示未知量和条件。

将几何问题转化为代数问题后,可以通过代数运算和推导来解决问题,再将结果转化回几何语言,从而得到问题的几何意义。

图形与代数的结合使得数学问题更加具体化,同时也拓宽了解题思路,提高了问题解决的灵活性和多样性。

二、图形与函数的结合在高中数学中,图形与函数的结合也是数形结合思想方法的一种重要应用。

通过绘制函数图像,可以更好地理解函数的性质和变化规律,从而解决与函数相关的问题。

以一元函数为例,我们可以通过绘制函数的图像来观察函数的单调性、极值点、零点等特征。

通过分析函数图像的变化,可以得到函数在特定区间上的性质,并进一步解决与函数相关的问题。

在解析几何中,图形与函数的结合也发挥着重要的作用。

通过使用函数的定义式,我们可以得到相应函数的方程,并进一步利用函数的性质来解决几何问题。

例如,通过绘制两点之间的直线与圆的图像,我们可以发现直线与圆的交点可能有 0 个、1 个或 2 个,从而解决与直线和圆相关的问题。

图形与函数的结合使得数学问题更加具象化和形象化,使抽象的函数概念更加有实际意义,有助于学生更好地理解和掌握相关知识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数形结合实现数形结合,常与以下内容有关:①实数与数轴上的点的对应关系;②函数与图象的对应关系;③曲线与方程的对应关系;④以几何元素和几何条件为背景,建立起来的概念,如复数、三角函数等;⑤所给的等式或代数式的结构含有明显的几何意义。

如等式()()x y -+-=21422一、联想图形的交点例1. 已知,则方程的实根个数为01<<=a a x x a |||log |()A. 1个B. 2个C. 3个D. 1个或2个或3个分析:判断方程的根的个数就是判断图象与的交点个数,画y a y x x a ==|||log |出两个函数图象,易知两图象只有两个交点,故方程有2个实根,选(B )。

例2. 解不等式x x +>2 令,,则不等式的解,就是使的图象y x y x x x y x 121222=+=+>=+ 在的上方的那段对应的横坐标,y x 2=如下图,不等式的解集为{|}x x x x A B ≤<而可由,解得,,,x x x x x B B A +===-222故不等式的解集为。

{|}x x -≤<22练习:设定义域为R 函数⎩⎨⎧=≠-=1 01 1lg )(x x x x f ,则关于x 的方程0)()(2=++c x bf x f 有7个不同实数解的充要条件是( ) 0,0. 0,0. 0,0. 0,0.=≥=<<>><c b D c b C c b B c b A 答案C二、联想绝对值的几何意义例1、已知0>c ,设P :函数x c y =在R 上单调递减,Q :不等式12>++c x x 的解集为R ,如果P 与Q 有且仅有一个正确,试求c 的范围。

因为不等式12>++c x x 的几何意义为:在数轴上求一点)(x P ,使P 到)2(),0(c B A 的距离之和的最小值大于1,而P 到AB 二点的最短距离为12>=c AB ,即21>c 而P :函数x c y =在R 上单调递减,即1<c ∴由题意可得:1210≥≤<c c 或 三、联想二次函数例1、已知关于x 的方程m x x =+-542有四个不相等的实根,则实数m 的取值范围为 分析:直接求解,繁难!。

由方程联想二次函数进行数形结合,以数助形,则简洁明了。

设m y x x y =+-=221,54。

又1y 为偶函数,由图可知51<<m四、联想反函数的性质例1、方程3log ,322=+=+x x x x 的实根分别为21,x x ,则21x x +=解:令x y x y y x -===3,log ,23221 21,y y 互为反函数,其图象关于x y =对称,设)3,(),3,(2211x x B x x A --213x x -=∴ 即321=+x x六、联想斜率公式例1. 求函数的值域。

y x x =+-sin cos 22 y x x y y y x x =+-=--sin cos 222121的形式类似于斜率公式 y x x P P x x =+--sin cos ()(cos sin )22220表示过两点,,,的直线斜率 221P x y +=由于点在单位圆上,如图, 显然,k y k P A P B 00≤≤设过的圆的切线方程为P y k x 022+=-() 则有,解得±||22114732k k k ++==-即,k k P A P B 00473473=--=-+ ∴--≤≤-+473473y ∴函数值域为,[]---+473473例2、实系数方程022=++b ax x 的一根在0和1之间,另一根在1和2之间,求12--a b 的取值范围。

解:数形结合由12--a b 的结构特征,联想二次函数性质及12--a b 的几何意义来求解,以形助数,则简洁明了。

令b ax x x f 2)(2++=,则由已知有⎪⎩⎪⎨⎧><>0)2(0)1(0)0(f f f 得到⎪⎩⎪⎨⎧>++<++>020210b a b a b这个二元一次不等式组的解为ABC ∆内的点),(b a 的集合由12--a b 的几何意义为过点),(b a 和点)2,1(D 的直线的斜率 由此可以看出:11241=<--<=BD AD k a b k 即12--a b 的取值范围是)1,41(。

练习:如果实数、满足,则的最大值为x y x y y x()()-+=2322 答案D A B C D (1)233323五、联想两点间的距离公式例1、设b a R b a x x f ≠∈+=且,,1)(2,求证:b a b f a f -<-)()(解:,b a ≠ 不妨设b a >,构造如图的OAP Rt ∆,其中b OB a OA OP ===,,1 则b a AB b f b PB a f a PA -==+==+=),(1),(122在OAP Rt ∆中,有AB PB PA <-∴b a b f a f -<-)()(六、联想点到直线的距离公式例1、已知P 是直线0843=++y x 上的动点,PB PA ,是012222=+--+y x y x 的两条切线,B A ,是切点,C 是圆心,求四边形PACB 面积的最小值。

解:121222-==⋅⋅⋅==∆PC PA AC PA S S PAC PACB 要使面积最小,只需PC 最小,即定点C 到定直线上动点P 距离最小即可 即点C )1,1(到直线0843=++y x 的距离,而3438241322=++⋅+⋅=d 2213)(2m in =-=∴PACB S七、联想函数奇偶性例1、设)(x f y =是定义在R 上的奇函数,且)(x f y =的图象关于直线21=x 对称,则=++++)5()4()3()2()1(f f f f f解:本题由于)(x f y =不明确,故)(x f 的函数值不好直接求解。

若能联想到奇函数的性质,数形结合,以数助形来解决,则简洁明了。

则可知0)0(=f ,又且)(x f y =的图象关于直线21=x 对称,0)1(=∴f 则奇函数可得:0)1(=-f ,则又由对称性知:0)2(=f 同理:0)5()4()3(===f f f∴=++++)5()4()3()2()1(f f f f f 0八、其它简单方法:例1.的取值范围。

之间,求和的两根都在的方程若关于k k kx x x 310322-=++解:0)(32)(2=++=x f x k kx x x f 程轴交点的横坐标就是方,其图象与令 ()13(1)0y f x f =-->的解,由的图象可知,要使二根都在,之间,只需,(3)0f >,()()02b f f k a-=-<10(10)k k -<<∈-同时成立,解得,故,课后练习:1. 方程lg sin x x =的实根的个数为( ) A. 1个 B. 2个 C. 3个 D. 4个2. 函数y a x y x a ==+||与的图象恰有两个公共点,则实数a 的取值范围是( )A. ()1,+∞B. ()-11,C. (][)-∞-+∞,,11D. ()()-∞-+∞,,113. 设命题甲:03<<x ,命题乙:||x -<14,则甲是乙成立的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 不充分也不必要条件 4. 若方程lg()lg()[]-+-=-x x m x 23303在,上有唯一解,求m 的取值范围。

5. 设a a >01且≠,试求下述方程有解时k 的取值范围。

log ()log ()a a x ak x a -=-222。

练习答案1. C 2. D 提示:画出y a x y x a ==+||与的图象情形1:a a a >>⎧⎨⎩⇒>011 情形2:a a a <<-⎧⎨⎩⇒<-011 3. A4.解:原方程等价于-+->->≤≤-+-=-⎧⎨⎪⎪⎩⎪⎪⇒-+->≤<-+-=⎧⎨⎪⎩⎪x x m x x x x m x x x m x x x m 222230300333300343 令y x x y m 12243=-+-=,,在同一坐标系内,画出它们的图象,其中注意03≤<x ,当且仅当两函数的图象在[0,3)上有唯一公共点时,原方程有唯一解,由下图可见,当m=1,或-≤≤30m 时,原方程有唯一解,因此m 的取值范围为[-3,0] {1}。

5.解:将原方程化为:log ()log aa x ak x a -=-22, ∴x ak x a x ak x a -=-->->222200,且,令y x ak 1=-,它表示倾角为45°的直线系,y 10>令y x a 222=-,它表示焦点在x 轴上,顶点为(-a ,0)(a ,0)的等轴双曲线在x 轴上方的部分,y 20>∵原方程有解, ∴两个函数的图象有交点,由下图,知->-<-<ak a a ak 或0 ∴k k <-<<101或 ∴k 的取值范围为()()-∞-,,101。

相关文档
最新文档