第五章 电液伺服阀
电液气控制工程 第五章电液伺服阀
Kc xv
mc-线圈组件的质量 Bc-在磁场中运动部件所受的阻力力系数 Kc-弹簧刚度
R
-
c
线
圈
电
阻
rp- 线 圈 回 路 中 放 大 器 的 内 阻
ic 信 号 电 流 L- 线 圈 电 感
e
B c
D
N
c
dxv dt
B
-
g
气
隙
磁
通
密
度
D 线 圈 平 均 直 径
N
-
c
线
圈
的
匝ห้องสมุดไป่ตู้
数
x v- 线 圈 位 移
• 对线圈运动部件建立力平衡方程为:
F
mc
d 2xv dt 2
Bc
• 作为电液控制元件的前置级,其稳态控制精度和 动态响应性能以及抗干扰能力和工作的可靠性都 要求很高。
• 电-机械转换元件一般采用电磁作用原理设计, 最常见的有动圈式力马达、动铁式力矩马达、比 例电磁铁、步进电机、直流和交流电机等。
运动组件惯量小、支撑弹簧刚度大, 故动态响应快。在相同功率下,固 有频率是动圈式的15倍;在同功率 同尺寸下,输出力是动圈式的7倍; 但是在相同条件下,其线性范围只 有动圈式的1/3左右。
利用滑阀位置反馈和负载流量反馈得到的是流量控制伺服阀, 阀的输出流量与输入电流成正比例。
利用负载压力反馈得到的是压力控制伺服阀,阀的输出压力与 输入电流成正比例。
电-机械转换元件
电-机械转换元件
• 电-机械转换元件是电液控制系统中的重要单元, 它将电气装置输入的电信号转换为机械量,即力 (力矩)和位移。
线性度好,在响应速度不是很高但 是线性特性要求高的工业伺服系统 中,得到广泛的应用。
《液压伺服控制》(王春行版)课后题答案
第二章 液压放大元件 习题1. 有一零开口全周通油的四边滑阀,其直径m d 3108-⨯=,径向间隙m r c 6105-⨯=,供油压力Pa p s 51070⨯=,采用10号航空液压油在40C ︒工作,流量系数62.0=d C ,求阀的零位系数。
s pa ⋅⨯=-2104.1μ3/870m kg =ρ解:对于全开口的阀,d W π=由零开口四边滑阀零位系数s m p w C K s d q /4.1870/107010814.362.02530=⨯⨯⨯⨯=⋅=-ρ()s p m r K a c c ⋅⨯=⨯⨯⨯⨯⨯⨯⨯=⋅=----/104.4104.13210814.310514.33231223620μπ m p K K r p C K a c q c s dp /1018.332110020⨯==⋅=πρμ2. 已知一正开口量m U 31005.0-⨯=的四边滑阀,在供油压力Pa p s 51070⨯=下测得零位泄漏流量min /5L q c =,求阀的三个零位系数。
解:正开口四边滑阀零位系数ρsd q p wc k 20= ssd co p p wuc k ρ=ρsd c p wuc q 2=s m q K cq /67.11005.060/1052330=⨯⨯==--ν s a s c c p m p q K ⋅--⨯=⨯⨯⨯==/1095.51070260/1052312530 m p K K K a c q p /1081.211000⨯==3. 一零开口全周通油的四边滑阀,其直径m d 3108-⨯=,供油压力Pa p s 510210⨯=,最大开口量m x m 30105.0-⨯=,求最大空载稳态液动力。
解:全开口的阀d W π= 最大空载液动力:4.113105.010********.343.043.035300=⨯⨯⨯⨯⨯⨯⨯=⋅⋅=--⋅m s s x p W F4. 有一阀控系统,阀为零开口四边滑阀,供油压力Pa p s 510210⨯=,系统稳定性要求阀的流量增益s m K q /072.220=,试设计计算滑阀的直径d 的最大开口量m x 0。
电液伺服阀
油器。 ⑾ 动圈式伺服阀使用中要加颤振信号,有些还要
求泄油直接回油箱,伺服阀还必须垂直安装。 ⑿ 双喷挡伺服阀要求先通油后给电信号。
五、电液伺服阀使用维护说明
3. 维修保护 ① 定期检查工作液的污染度 。 ② 建立新油是“脏油”的概念 ,注入新油前应彻
一、电液伺服阀的选用
伺服阀的选用方式 : • A:按精度要求选用 • B:按用途选用 ① 位置伺服系统
一、电液伺服阀的选用
② 压力或力控制伺服系统
一、电液伺服阀的选用
③ 速度控制伺服系统
二、通用型伺服阀的介绍
1、双喷嘴挡板力反馈电液流量伺服阀
二、通用型伺服阀的介绍
2、射流管式力反馈电液流量伺服阀
二、通用型伺服阀的介绍
3、动圈式(或动铁式)电液流量伺服阀
二、通用型伺服阀的介绍
4、直接驱动单级伺服阀(DDV)
二、通用型伺服阀的介绍
5、偏导射流式电液伺服阀
二、通用型伺服阀的介绍
6、射流管式电液压力伺服阀
二、通用型伺服阀的介绍
• 双喷挡阀、射流管阀和偏导射流式阀都是力反馈 型伺服阀,线性度好,性能稳定,抗干扰能力强, 零漂小。
• DDV阀:一级电反馈脉宽调制阀,力马达直接驱 动阀芯,动态特性与供油压力没有直接关系,低 压工作性能比较好。
• 两个问题: ① 大流量输出时控制电流可达1.4A或更大。 ② 力马达输出力较电磁铁大,但比有液压前置级的
两级阀还是小很多。
二、通用型伺服阀的介绍
M公司认为射流管先导级工作特点: a) 流量接受效率高 ,能耗低。 b) 具有很高的无阻尼自然频率(500Hz)。 c) 性能可靠。压力效率高,阀芯驱动力大,阀芯的
电液伺服阀论述
电液伺服阀论述1.概述电液伺服阀是电液伺服系统中的核心元件。
它既是电液转换元件,又是功率放大元件。
在系统中将输入的小功率电信号转换为大功率的液压能(压力与能量)输出,其性能对系统特性影响很大。
电液伺服阀在电厂中被广泛使用,伺服阀是电液伺服控制系统中的重要控制元件,在系统中起着电液转换和功率放大作用。
电液伺服阀的性能和可靠性将直接影响系统的性能和安全,是电液伺服控制系统中引人瞩目的关键元件。
20 世纪70 年代以来,国内开始了对电液伺服系统的研究和应用。
近年来,随着国内机械工业的高速发展,对于高精度金属成型装备的需求大大增加,大规格电液伺服系统在锻压机械、轧钢机械、折弯机中的应用越来越广泛。
而电液伺服阀的发展可以追溯到二战末期,1940 年前后,在飞机上最早出现了电液伺服控制系统。
电液伺服阀将输入的小功率电信号转换为大功率液压输出形式( 压力和流量) ,具有控制精度高和响应速度快的特点。
电液伺服阀结构精密,对油液介质要求高,价格昂贵。
典型结构有喷嘴挡板式和射流管式,喷嘴挡板式动态响应快,灵敏度高,但是零位泄漏量大,喷嘴易堵塞。
与喷嘴挡板式电液伺服阀相比,射流管式电液伺服阀抗污染能力强,但是响应速度略慢。
为使电液伺服系统能够可靠并廉价地应用到实际工业生产中,20 世纪60 年代末,出现了电液比例阀。
电液比例阀是阀内比例电磁铁根据输入的电压信号产生相应动作,使阀芯产生位移,阀口尺寸发生改变并以此完成与输入电压成比例的压力、流量输出的元件。
后来又经过了一系列的发展,20 世纪末,伺服技术与比例技术相结合,伺服比例阀应运而生。
与电液伺服阀相比,电液比例阀抗污染能力强,成本低,但是其直线性和响应速度均不及电液伺服阀。
电液伺服阀和电液比例阀有其独有的特点和优势,但也因其自身结构特点的原因,有一些先天的劣势。
特别是当要求输出的液压功率较大,而电-机械转换元件输出功率较小,无法直接驱动功率级主阀时,需要增加液压先导级,无疑使阀的结构更加复杂,稳定性降低。
第5章 电液伺服阀PPT课件
液压伺服系统
第五章 电液伺服阀
Part 5.3.3 稳定性分析
包括两个反馈回路:滑阀位移的力反馈回路
作用在挡板上的压力反馈回路
1、力反馈回路:
Kvf 2mf mf
2、压力反馈回路:
设计时:
K vf 0.25
mf
液压伺服系统
3、力反馈伺服阀的传递函数:
第五章 电液伺服阀
Kt
sXv
Kf rb
I
xvmax06.4110033 1567
不能采用全周开口,取阀芯直径 d5103m
阀杆直径 dr 3103m
按
4
d2dr2
4xvmax
验算,满足要求。
液压伺服系统
第五章 电液伺服阀
2)喷嘴挡板阀主要结构参数的确定:
①根据设计要求,并考虑留有一定的余地,取喷嘴
挡板阀的零位泄漏量 qc 0.45Lmin
第五章 电液伺服阀
力矩马达的分析计算包括: 1)永磁磁路计算 2)电路计算 3)静态特性和动态特性的分析计算
电磁力矩的计算属于永磁磁路计算的一个内容
3、传递函数和静动态分析:
液压伺服系统
第五章 电液伺服阀
Part 5.2.4 永磁动圈式力马达
根据载流导体在磁场中受力而工作的。改变控制线圈电流的大小 和方式,可以得到不同大小和方向的输出力。
根据滑阀流量方程可求出阀的最大开口面积
xvmaxcdQ 0m psax0.6 15 5 2 10 1 0 1 30 6 0 38052.4 01 0 6m 2
根据经验取阀芯行程 xvma x0.41 03m
则滑阀节流窗口面积梯度 02..44 1100 63 6103m
液压伺服系统
电液伺服阀工作原理图
电液伺服阀工作原理图
抱歉,我是无法提供图片的文本描述。
但是,电液伺服阀的工作原理可以用文字描述如下:
电液伺服阀是一种电控液压阀,通过电信号控制液压系统的流量或压力以实现精确的动力控制。
其工作原理如下:
1. 电液伺服阀由电磁铁和液压阀两部分组成。
电磁铁接收控制信号,并根据信号的大小和方向来控制阀芯的移动。
2. 当电磁铁受到电信号激励时,它会创建一个磁场,将阀芯吸引或推动到特定的位置。
阀芯的位置决定了液压阀的开度。
3. 液压阀根据阀芯的位置来控制液压系统的流量或压力。
当阀芯被吸引或推动时,阀芯上的孔会打开或关闭相应的液压通道。
4. 开启或关闭的液压通道会影响液压系统中的液流路径和压力分布,从而实现对液压系统的动力控制。
5. 当电信号变化时,电磁铁会根据新的信号调整阀芯的位置,进而改变液压阀的开度和液压系统的工作状态。
综上所述,电液伺服阀通过电磁铁控制阀芯的位置,从而精确控制液压系统的流量和压力,实现动力控制。
电液伺服阀的原理分类和应用简介
电液伺服阀的原理分类和应用简介一.电液伺服阀的工作原理电液伺服阀由力矩马达和液压放大器组成。
力矩马达工作原理磁铁把导磁体磁化成N、S极,形成磁场。
衔铁和挡板固连由弹簧支撑位于导磁体的中间。
挡板下端球头嵌放在滑阀中间凹槽内;线圈无电流时,力矩马达无力矩输出,挡板处于两喷嘴中间;当输入电流通过线圈使衔铁3左端被磁化为N极,右端为S极,衔铁逆时针偏转。
弹簧管弯曲产生反力矩,使衔铁转过θ角。
电流越大θ角就越大,力矩马达把输入电信号转换为力矩信号输出。
前置放大级工作原理压力油经滤油器和节流孔流到滑阀左、右两端油腔和两喷嘴腔,由喷嘴喷出,经阀9中部流回油箱力矩马达无输出信号时,挡板不动,滑阀两端压力相等。
当力矩马达有信号输出时,挡板偏转,两喷嘴与挡板之间的间隙不等,致使滑阀两端压力不等,推动阀芯移动。
功率放大级工作原理当前置放大级有压差信号使滑阀阀芯移动时,主油路被接通。
滑阀位移后的开度正比于力矩马达的输入电流,即阀的输出流量和输入电流成正比;当输入电流反向时,输出流量也反向。
滑阀移动的同时,挡板下端的小球亦随同移动,使挡板弹簧片产生弹性反力,阻止滑阀继续移动;挡板变形又使它在两喷嘴间的位移量减小,实现了反馈。
当滑阀上的液压作用力和挡板弹性反力平衡时,滑阀便保持在这一开度上不再移动。
二.电液伺服阀的分类1 按液压放大级数可分为单级电液伺服阀,两级电液伺服阀,三级电液伺服阀。
2 按液压前置级的结构形式,可分为单喷嘴挡板式,双喷嘴挡板式,滑阀式,射流管式和偏转板射流式。
3 按反馈形式可分为位置反馈式,负载压力反馈式,负载流量反馈式,电反馈式等。
4 按电机械转换装置可分为动铁式和动圈式。
5 按输出量形式可分为流量伺服阀和压力控制伺服阀。
三.电液伺服阀的发展趋势1/新型结构的设计在20 世纪90 年代,国外研制直动型电液伺服阀获得了较大的成就.现形成系列产品的有Moog 公司的D633,D634 系列的直动阀,伊顿威格士(EatonVickers)公司的LFDC5V 型,德国Bosch 公司的NC10 型,日本三菱及KYB 株式会社合作开发的MK 型阀及Moog 公司与俄罗期沃斯霍得工厂合作研制的直动阀等.该类型的伺服阀去掉了一般伺服阀的前置级, 利用一个较大功率的力矩马达直接拖动阀芯, 并由一个高精度的阀芯位移传感器作为反馈.该阀的最大特点是无前置级,提高了伺服阀的抗污染能力.同时由于去掉了许多难加工零件,降低了加工成本,可广泛使用于工业伺服控制的场合.国内有些单位如中国运载火箭技术研究院第十八研究所, 北京机床研究所, 浙江工业大学等单位也研制出了相关产品的样机. 特别是北京航空航天大学研制出转阀式直动型电液伺服阀. 该伺服阀通过将普通伺服阀的滑阀滑动结构转变为滑阀的转动, 并在阀芯与阀套上相应开了几个与轴向有一定倾角的斜槽.阀芯阀套相互转动时,斜槽相互开通或相互封闭,从而控制输出压力或流量.由于在工作时阀芯阀套是相互转动的,降低了阀工作时的摩擦阻力,同时污染物不容易在转动的滑阀内堆积,提高了抗污染性能.此外,Park 公司开发了"音圈驱动(Voice Coil Drive)"技术(VCD),以及以此技术为基础开发的DFplus 控制阀.所谓音圈驱动技术, 顾名思义, 即是类似于扬声器的一种驱动装置, 其基本结构就是套在固定的圆柱形永久磁铁上的移动线圈,当信号电流输入线圈时,在电磁效应的作用下,线圈中产生与信号电流相对应的轴向作用力,并驱动与线圈直接相连的阀芯运动,驱动力很大.线圈上内置了位移反馈传感器,因此,采用VCD 驱动的DFplus 阀本质上是以闭环方式进行控制的,线性度相当好.此外,由于VCD 驱动器的运动零件只是移动线圈,惯量极小,相对运动的零件之间也没有任何支承,DFplus 阀的全部支承就是阀芯和阀体间的配合面,大大减小了摩擦这一非线性因素对控制品质的影响.综合上述的技术特点,配合内置的数字控制模块,使DFplus 阀的控制性能佳,尤其在频率响应方面更是优越,可达400Hz.从发展趋势来看,新型直动型电液伺服阀在某些行业有替代传统伺服阀特别是喷嘴挡板式伺服阀的趋向, 但它的最大问题在于体积大, 重量重, 只适用于对场地要求较低的工业伺服控制场合. 如能减轻其重量, 减小其体积,在航空,航天等军工行业亦具有极大的发展潜力.另外,近年来伺服阀新型的驱动方式除了力矩马达直接驱动外,还出现了采用步进电机,伺服电机,新型电磁铁等驱动结构以及光-液直接转换结构的伺服阀.这些新技术的应用不仅提高了伺服阀的性能, 而且为伺服阀发展开拓了思路, 为电液伺服阀技术注入了新的活力.2/新型材料的采用当前在电液伺服阀研制领域的新型材料运用,主要是以压电元件,超磁致伸缩材料及形状记忆合金等为基础的转换器研制开发.它们各具有其自己的优良特性.2.1 压电元件压电元件的特点是"压电效应":在一定的电场作用下会产生外形尺寸的变化,在一定范围内,形变与电场强度成正比.压电元件的主要材料为压电陶瓷(PZT),电致伸缩材料(PMN)等.比较典型的压电陶瓷材料有日本TOKIN 公司的叠堆型压电伸缩陶瓷等.PZT 直动式伺服阀的原理是: 在阀芯两端通过钢球分别与两块多层压电元件相连. 通过压电效应, 使压电材料产生伸缩驱动阀芯移动.实现电-机械转换.PMN 喷嘴挡板式伺服阀则在喷嘴处设置一与压电叠堆固定连接的挡板,由压电叠堆的伸,缩实现挡板与喷嘴间的间隙增减,使阀芯两端产生压差推动阀芯移动.目前压电式电-机械转换器的研制比较成熟并已得到较广泛的应用.它具有频率响应快的特点,伺服阀频宽甚至能达到上千赫兹,但亦有滞环大,易漂移等缺点,制约了压电元件在电液伺服阀上的进一步应用.2.2 超磁致伸缩材料液压与电气论坛超磁致伸缩材料(GMM)与传统的磁致伸缩材料相比,在磁场的作用下能产生大得多的长度或体积变化. 利用GMM 转换器研制的直动型伺服阀是把GMM 转换器与阀芯相连,通过控制驱动线圈的电流,驱动GMM 的伸缩,带动阀芯产生位移从而控制伺服阀输出流量.该阀与传统伺服阀相比不仅有频率响应高的特点,而且具有精度高,结构紧凑的优点.目前,在GMM 的研制及应用方面,美国,瑞典和日本等国处于领先水平.国内浙江大学利用GMM 技术对气动喷嘴挡板阀和内燃机燃料喷射系统的高速强力电磁阀, 进行了结构设计和特性研究.从目前情况来看GMM 材料与压电材料和传统磁致伸缩材料相比,具有应变大,能量密度高,响应速度快,输出力大等特点.世界各国对GMM 电-机械转换器及相关的技术研究相当重视,GMM 技术水平快速发展,已由实验室研制阶段逐步进入市场开发阶段.今后还需解决GMM 的热变形,磁晶各向异性,材料腐蚀性及制造工艺, 参数匹配等方面的问题,以利于在高科技领域得到广泛运用.2.3 形状记忆合金形状记忆合金(SMA)的特点是具有形状记忆效应.将其在高温下定型后,冷却到低温状态,对其施加外力.一般金属在超过其弹性变形后会发生永久变形,而SMA 却在将其加热到某一温度之上后, 会恢复其原来高温下的形状. 利用其特性研制的伺服阀是在阀芯两端加一组由形状记忆合金绕制的SMA 执行器, 通过加热和冷却的方法来驱动SMA 执行器, 使阀芯两端的形状记忆合金伸长或收缩, 驱动阀芯作用移动, 同时加入位置反馈来提高伺服阀的控制性能.从该阀的情况来看,SMA 虽变形量大,但其响应速度较慢,且变形不连续, 也限制了其应用范围.与传统伺服阀相比,采用新型材料的电-机械转换器研制的伺服阀,普遍具有高频响, 高精度,结构紧凑的优点.虽然目前还各自呈在某些关键技术需要解决,但新型功能材料的应用和发展,给电液伺服阀的技术发展发展提供了新的途径.3/电子化,数字化技术的运用液压与电气论坛目前电子化, 数字化技术在电液伺服阀技术上的运用主要有两种方式: 其一,在电液伺服阀模拟控制元器件上加入D/A 转换装置来实现其数字控制.随着微电子技术的发展,可把控制元器件安装在阀体内部,通过计算机程序来控制阀的性能,实现数字化补偿等功能.但存在模拟电路容易产生零漂,温漂,需加D/A 转换接口等问题.其二, 为直动式数字控制阀. 通过用步进电机驱动阀芯, 将输入信号转化成电机的步进信号来控制伺服阀的流量输出.该阀具有结构紧凑,速度及位置开环可控及可直接数字控制等优点,被广泛使用.但在实时性控制要求较高的场合,如按常规的步进方法,无法兼顾量化精度及响应速度的要求.浙江工业大学采用了连续跟踪控制的办法,消除了两者之间的矛盾,获得了良好的动态特性. 此外还有通过直流力矩电机直接驱动阀芯来实现数字控制等多种控制方式或伺服阀结构改变等方法来形成众多的数字化伺服阀产品.随着各项技术水平的发展,通过采用新型的传感器和计算机技术研制出机械,电子, 传感器及计算机自我管理(故障诊断,故障排除)为一体的智能化新型伺服阀.该类伺服阀可按照系统的需要来确定控制目标:速度,位置,加速度,力或压力.同一台伺服阀可以根据控制要求设置成流量控制伺服阀, 压力控制伺服阀或流量/ 压力复合控制伺服阀. 并且伺服阀的控制参数,如流量增益,流量增益特性,零点等都可以根据控制性能最优化原则进行设置.伺服阀自身的诊断信息,关键控制参数(包括工作环境参数和伺服阀内部参数)可以及时反馈给主控制器;可以远距离对伺服阀进行监控,诊断和遥控.在主机调试期间,可以通过总线端口下载或直接由上位机设置伺服阀的控制参数, 使伺服阀与控制系统达到最佳匹配,优化控制性能.而伺服阀控制参数的下载和更新,甚至在主机运转时也能进行.而在伺服阀与控制系统相匹配的技术应用发展中, 嵌入式技术对于伺服阀已经成为现实. 按照嵌入式系统应定义为:"嵌入到对像体系中的专用计算机系统"."嵌入性","专用性"与"计算机系统"是嵌入式系统的三个基本要素.它是在传统的伺服阀中嵌入专用的微处理芯片和相应的控制系统, 针对客户的具体应用要求而构建成具有最优控制参数的伺服阀并由阀自身的控制系统完成相应的控制任务(如各控制轴同步控制),再嵌入到整个的大控制系统中去.从目前的技术发展和控制系统对伺服阀的要求看, 伺服阀的自诊断和自检测功能应该有更大的发展. 结束语当前的液压伺服控制技术已经能将自动控制技术, 液压技术与微电子有机的结合起来, 形成新一代的伺服阀产品.而随着电子设备,控制策略,软件及材料等方面的发展与进步, 电液控制技术及伺服阀产品将在机,电,液一体化获得长足的进步.四 .电液伺服阀的发展历程液压控制技术的历史最早可追溯到公元前240 年,当时一位古埃及人发明了人类历史上第一个液压伺服系统――水钟. 然而在随后漫长的历史阶段, 液压控制技术一直裹足不前, 直到18 世纪末19 世纪初,才有一些重大进展.在二战前夕,随着工业发展的需要,液压控制技术出现了突飞猛进地发展,许多早期的控制阀原理及专利均是这一时代的产物.如: Askania 调节器公司及Askania-Werke 发明及申请了射流管阀原理的专利.同样, Foxboro 发明了喷嘴挡板阀原理的专利.而德国Siemens 公司发明了一种具有永磁马达及接收机械及电信号两种输入的双输入阀,并开创性地使用在航空领域.在二战末期,伺服阀是用螺线管直接驱动阀芯运动的单级开环控制阀.然随着控制理论的成熟及军事应用的需要, 伺服阀的研制和发展取得了巨大成就. 1946 年, 英国Tinsiey 获得了两级阀的专利;Raytheon 和Bell 航空发明了带反馈的两级阀;MIT 用力矩马达替代了螺线管使马达消耗的功率更小而线性度更好.1950 年,W.C.Moog 第一个发明了单喷嘴两级伺服阀.1953 年至1955 年间,T.H.Carson发明了机械反馈式两级伺服阀; W.C.Moog 发明了双喷嘴两级伺服阀; Wolpin 发明了干式力矩马达, 消除了原来浸在油液内的力矩马达由油液污染带来的可靠性问题.1957 年R.Atchley 利用Askania 射流管原理研制了两级射流管伺服阀.并于1959 年研制了三级电反馈伺服阀.1959 年 2 月国外某液压与气动杂志对当时的伺服阀情况作了12 页的报道, 显示了当时伺服阀蓬勃发展的状况.那时生产各种类型的伺服阀的制造商有20 多家.各生产厂家为了争夺伺服阀生产的霸权地位展开了激烈地竞争. 回顾历史, 可以看到最终取胜的几个厂家, 大多数生产具有反馈及力矩马达的两级伺服阀.我们可以看到, 1960 年的伺服阀已具有现代伺服阀的许多特点.如:第二级对第一级反馈形成闭环控制;采用干式力矩马达;前置级对功率级的压力恢复通常可达到50%;第一级的机械对称结构减小了温度,压力变化对零位的影响. 同时, 由早期的直动型开环控制阀发展变化而来的直动型两级闭环控制伺服阀也已出现.当时的伺服阀主要用于军事领域,随着太空时代的到来,伺服阀又被广泛用于航天领域,并研制出高可靠性的多余度伺服阀等尖端产品.与此同时,随着伺服阀工业运用场合的不断扩大,某些生产厂家研制出了专门使用于工业场合的工业伺服阀. Moog 公司就在1963 年推出了第一款专为工业场合使用的73 如系列伺服阀产品.随后,越来越多的专为工业用途研制的伺服阀出现了.它们具有如下的特征:较大的体积以方便制造;阀体采用铝材(需要时亦可采用钢材);独立的第一级以方便调整及维修;主要使用在14MPa 以下的低压场合;尽量形成系列化,标准化产品.然而Moog 公司在德国的分公司却将其伺服阀的应用场合主要集中在高压场合, 一般工作压力在21MPa,有的甚至到35MPa,这就使阀的设计专重于高压下的使用可靠性.而随着伺服阀在工业场合的广泛运用, 各公司均推出了各自的适合工业场合用的比例阀. 其特点为低成本, 控制精度虽比不上伺服阀, 但通过先进的控制技术和先进的电子装置以弥补其不足, 使其性能和功效逼近伺服阀.1973 年,Moog 公司按工业使用的需要,把某些伺服阀转换成工业场合的比例阀标准接口.Bosch 研制出了其标志性的射流管先导级及电反馈的平板型伺服阀.1974 年,Moog 公司推出了低成本,大流量的三级电反馈伺服阀.Vickers 公司研制了压力补偿的KG 型比例阀.Rexroth,Bosch 及其他公司研制了用两个线圈分别控制阀芯两方向运动的比例阀等等五. 电液伺服阀运转不良引起的故障1 油动机拒动在机组启动前做阀门传动试验时,有时出现个别油动机不动的现象,在排除控制信号故障的前提下,造成上述现象的主要原因是电液伺服阀卡涩。
电液伺服阀结构与原理
电液伺服阀结构与原理
2016-12-01
电液伺服阀结构组成:
电液伺服阀是一种接受模拟电信号后,相应输出调制的流量和压力的液压控制阀。
电液伺服阀通常由力矩马达、液压放大器和反馈机构组成。
力矩马达:将电气信号转换为力矩或力。
液压放大器:控制流向液压执行机构的流量或压力。
反馈机构:也称平衡机构,使输出的流量或压力与输入的电气控制信号成比例。
电液伺服阀剖视图
电液伺服阀工作原理:
当没有控制信号时,力矩马达的衔铁处于平衡位置,挡板固定在两喷嘴中间。
高压油从油口流入,经过滤器后分四路流出,其中两路经左、右节流孔,到阀芯左、右两端,再经左、右喷嘴喷出至溢流腔,最后经回油节流孔从回油口流出。
另外两路高压油分别流到阀套上被阀芯左、右两凸肩盖住的窗孔处,而不能流入负载油路(与作动筒相
通的油路)。
当有控制信号时,衔铁带动挡板偏转一定角度,使阀芯偏离中间位置(如向左移动),阀芯的左凸肩处窗孔打开,使高压油与作动筒进油管路接通,阀芯中间凸肩右端处回油窗孔打开,使之与作动筒的回油接通,这样,伺服阀便可控制作动筒运动。
第5章 电液伺服阀
3)按极化磁场产生的方式可分为:非激磁式、固定电 流激磁和永磁式三种。 2、对力矩马达的要求 作为阀的驱动装置,对它提出以下要求; 1)能够产生足够的输出力和行程,问时体积小、重 量轻。 2)动态性能好、响应速度快。 3)直线件好、死区小、灵敏度高和磁滞小。 4)在某些使用情况下,还要求它抗振、抗冲击、不 受环境温度和压力等影响。 二、永磁力矩马达
三、动压反馈伺服阀 压力—流量伺服阀虽然增加了系统的阻尼,但降低了 系统的静刚度,为了克服这个缺点.出现了功压反馈 伺服阀,与压力—流量伺服阀相比。它增加乐由出弹 簧活寒和液阻(固定节流孔)所组成的压力微分网络,负 载压力通过压力微分网络反馈到滑阀,此阀在动态 时,具有压力—流量伺服阀的持性,在稳态时具有流 量伺服阀的持性。
5.5 其它型式的电液伺服阀简介
一、弹簧对中式两级电液伺服阀
弹簧对中式伺服阀是早期伺服阀的结构型式,它的第—级是双 喷嘴挡板阀,第二级是滑阀,阀芯两端各有一根对中弹簧。当 控制电流输入时,阀芯在对中弹簧作用下处于中位。当有控制 电流输入时,对中弹簧力与喷嘴挡板阀输出的液压力相平衡, 使阀芯取得一个相应的位移,输出相应的流量。 这种伺服阀属于开环控制、其性能受温度、压力及阀内部结 构参数变化的影响较大;衔铁及挡板的位移都较大.对力矩马 达的线件要求较高;对中弹簧要求体积小、刚度大、抗疲劳 好,因此制造困难;两端对中弹簧由于制造和安装的误差.易 对阀芯产生侧向卡紧力.增加阀芯摩擦力.使阀的滞环增大, 分辨率降低。但由于结构简单、造价低,可适用于—般的、性 能要求不高的电液伺服系统。
二、基本方程与方框图
力矩马达的运动方程包括基本电压方程,衔铁和挡板 组件的运动方程,挡板位移于转角之间的关系,喷嘴 挡板至滑阀的传递函数,阀控液压缸的传递函数,以 及作用在挡板上的压力反馈方程,根据这些方程可以 画出电液伺服阀的方框图。
电液伺服阀结构分析
电液伺服阀结构分析1.电磁操纵部分:电磁操纵部分由电磁操纵阀芯、电磁线圈和阀体组成。
电磁操纵阀芯在无电压状态下处于闭合状态,当电磁线圈通电时,产生的磁场使阀芯向上移动,从而打开阀口。
当电磁线圈断电时,弹簧力使阀芯回到闭合状态,关闭阀口。
电磁操纵部分控制液压系统中的工作压力和流量,是电液伺服阀的控制部分。
2.液动执行部分:液动执行部分由主阀芯、主阀座和主阀弹簧组成。
主阀芯在电磁操纵部分的控制下,控制液压系统中的工作压力和流量。
主阀芯与主阀座之间的间隙决定了液压系统的工作压力和流量大小。
主阀弹簧的刚度决定了主阀芯回位的力大小,从而控制液压系统的工作状态。
3.辅助部分:辅助部分包括阀体、油路和密封组件等。
阀体是电液伺服阀的结构支撑部分,承受系统的工作压力和力矩。
油路是液压系统中的液体通路,将液压油引导到相应的部位。
密封组件用于防止液压油泄漏,保证系统的密封性能。
1.阀口设计:阀口设计直接影响液压系统的流量特性。
合理设计的阀口可以减小压力损失,提高系统的流量效率。
2.密封设计:液压系统要求具有较高的密封性能,阀口与阀座之间的密封性能直接影响系统的泄漏量。
密封件的材料和结构设计对系统的密封性能有很大影响。
3.材料选择:电液伺服阀需要承受较高的工作压力和力矩,因此需要选择具有较高强度和耐腐蚀性的材料。
4.结构可靠性:电液伺服阀通常工作在恶劣的环境条件下,需要具有良好的抗震、抗振动和抗冲击能力,保证系统长时间稳定运行。
综上所述,电液伺服阀的结构设计是保证其性能和功能的关键。
合理的结构设计能够提高电液伺服阀的控制精度、响应速度和可靠性,满足不同工况下的液压系统需求。
电液伺服阀的不断创新和发展将进一步推动工程技术的进步和应用。
液压伺服控制(电液伺服阀)课件
图6.2用弹簧管支承衔铁的力矩马达 1——弹簧管,2——液压放大元件
15
在零位时,衔铁 正好处于四个气隙的 中间位置,弹簧管也 正好在正中零位。当 输 入 i 而 产 生 电 磁 力 矩后,电磁力矩使衔 铁偏转,弹簧管也受 力歪斜变形,作用在 衔铁上的电磁力矩与 弹簧管变形时的弹性 力矩平衡,也就是电 磁 力 矩 Td 通 过 弹 簧 管 弯曲变形而转化为衔 铁的角位移。
滑阀、单(双)喷嘴挡板阀、射流管阀、偏转板射流阀
滑阀: 优点:流量增益和压力增益高,对油液清洁度要求低 缺点:结构工艺复杂、阀芯受力大、阀分辨率低、滞环大、响应慢
喷嘴挡板阀:单喷嘴特性不好很少用,多为双喷嘴 优点:压力灵敏度高、线性好、零漂小、需输入功率小、动态响应 快 缺点:对油液清洁度要求高
射流管阀: 优点:抗污染能力强、压力效率和容积效率高,使功率级滑阀具有
图6.2用弹簧管支承衔铁的力矩马达 1——弹簧管,2——液压放大元件
16
由于力矩马达直接控制液压放大元件,所以在结构安装上,力矩马 达必须与液压放大元件紧连在一起而形成一个整体。
液压放大元件中充满着油液,因弹簧管与液压放大元件间有密封圈 隔开,与衔铁也是,紧密固接的,这样,液压放大元件中的油液就不会 渗漏到力矩马达中去。力矩马达不是浸泡在油液中的,故称干式。
“失效对中”能力 缺点:特性不易预测、动态响应慢、低温特性差
8
3、按反馈形式分:位置反馈、负载流量反馈、负载压力反馈
位置反馈、负载流量反馈流量控制伺服阀:输出流量与输入电流成正比 负载压力反馈压力控制伺服阀:输出压力与输入电流成正比
滑阀位置反馈的两级伺服阀:最常用。 根据功率级滑阀位移反馈到放大器的形式可分为:
3
反馈机构(或平衡机构):使伺服阀的输出压力或流量与输入 电气控制信号成比例,使伺服阀本身 成为闭环系统
电液伺服阀的工作原理
电液伺服阀的工作原理电液伺服阀的工作原理000电液伺服阀电液伺服阀既是电液转换元件,又是功率放大元件,它能够把微小的电气信号转换成大功率的液压能(流量和压力)输出。
它的性能的优劣对系统的影响很大。
因此,它是电液控制系统的核心和关键。
为了能够正确设计和使用电液控制系统,必须掌握不同类型和性能的电液伺服阀。
伺服阀输入信号是由电气元件来完成的。
电气元件在传输、运算和参量的转换等方面既快速又简便,而且可以把各种物理量转换成为电量。
所以在自动控制系统中广泛使用电气装置作为电信号的比较、放大、反馈检测等元件;而液压元件具有体积小,结构紧凑、功率放大倍率高,线性度好,死区小,灵敏度高,动态性能好,响应速度快等优点,可作为电液转换功率放大的元件。
因此,在一控制系统中常以电气为“神经”,以机械为“骨架”,以液压控制为“肌肉”最大限度地发挥机电、液的长处。
由于电液伺服阀的种类很多,但各种伺服阀的工作原理又基本相似,其分析研究的方法也大体相同,故今以常用的力反馈两级电液伺服阀和位置反馈的双级滑阀式伺服阀为重点,讨论它的基本方程、传递函数、方块图及其特性分析。
其它伺服阀只介绍其工作原理,同时也介绍伺服阀的性能参数及其测试方法。
一电液伺服阀的组成电液伺服阀在电液控制系统中的地位如图1所示。
电液伺服阀包括电力转换器、力位移转换器、前置级放大器和功率放大器等四部分。
1.1 电力转换器包括力矩马达(转动)或力马达(直线运动),可把电气信号转换为力信号。
1.2 力位移转换器包括钮簧、弹簧管或弹簧,可把力信号变为位移信号而输出。
1.3 前置级放大器包括滑阀放大器、喷嘴挡板放大器、射流管放大器。
1.4 功率放大器——滑阀放大器由功率放大器输出的液体流量则具有一定的压力,驱动执行元件进行工作。
图1 电液控制系统方块图电液伺服阀的分类电液伺服阀的种类很多,根据它的结构和机能可作如下分类:1)按液压放大级数,可分为单级伺服阀、两级伺服阀和三级伺服阀,其中两级伺服阀应用较广。
第5章电液伺服阀
五 力反馈两级电液伺服阀
xv r
动铁式单级电液伺服阀原理图 1-永久磁铁 2-衔铁 3-扭轴 4-导磁体
按反馈形式分类:
可分为滑阀位置反馈、负载流量反馈和负载压力反馈三种。
按力矩马达是否浸泡在油中分类:
湿式:可使力矩马达受到油液的冷却,但油液中存在的铁污物使力 短马达持性变坏; 干式:则可使力矩马达不受油液污染的影响,目前的伺服阀都采用 干式的。
5.2 电气-机械转换器
电气—机械转换器:利用电磁原理工作的。它由永久磁铁或激磁
第三项是线圈内电流变化所引起的感应 电动势;(包括线圈的自感和互感),由于 串联线圈,互感等于自感,所以每个线 圈的总电感为2Lc
5.3 力反馈两级电液伺服阀
基本电压方程:
2 K uU g Rc rp i 2 K b s 2 Lc sI K b 每个线圈的反电动势力 常数 Lc 每个线圈的自感系数
组成:永久磁铁、上导磁体、下 导磁体、衔铁、控制线圈、弹簧管 等组成。 原理:衔铁固定在弹簧管上端, 由弹簧管支承在上、下导磁体的中 间位置,可绕弹簧管(扭轴)的转 动中心作微小的转动。衔铁两端与 上、下导磁体(磁极)形成四个工作 气隙①、②、③、④。两个控制线 圈套在衔铁之上。上、下导磁体除 作为磁极外,还为永久磁铁产生的 极化磁通和控制线圈产生的控制磁 通提供磁路。
二、永磁力矩马达
2、力矩马达的电磁力矩
通过力矩马达的磁路分析可以求出电磁 力矩的计算公式。从磁路分析知电磁力 矩是非线性的,因此为保证输出曲线的 线性,往往设计成可动位移和气隙长度 比小于三分之一,控制磁通远远小于极 化磁通。 应用 :动铁式力矩马达输出力矩较小,适 合控制喷嘴挡板之类的先导级阀。
电液伺服阀
1 5-1简述电液伺服阀的基本组成及各部分的作用。
电液伺服阀通常由电-机械转换器、液压放大器(先导级阀和功率级主阀)和反馈机构(或平衡机构)三大部分组成。
电-机械转换器的作用是把输入电信号的电能转换成机械运动的机械能,进而驱动液压放大器的控制元件,使之转换成液压能;液压放大级用于电液伺服阀的力矩马达或力马达的输出力矩或力很小,在阀的流量比较大时,无法直接驱动功率级阀运动,起到放大功率作用;反馈机构用来消除积分环节作用,来为解决滑阀的定位问题。
5-2根据反馈的形式不同,电液伺服阀分为哪几类?从它们的压力-流量特性曲线来看,有何差别?按反馈形式分类分为位置反馈、负载流量反馈、负载压力反馈。
图5-1为不同反馈形式伺服阀的稳态压力-流量特性曲线。
利用滑阀位置反馈和负载流量反馈得到的是流量控制伺服阀,阀的输出流量与输入电流成比例。
利用负载压力反馈得到是压力控制伺服阀,阀的输出压力与输入电流成比例。
由于负载流量与负载压力反馈伺服阀的结构比较复杂,使用的比较少,滑阀位置反馈伺服阀应用最多。
图5-1 不同反馈形式电液伺服阀的稳态压力-流量特性曲线5-3简述两级滑阀式电液伺服阀的工作原理。
滑阀式电液伺服阀的工作原理是力矩马达在线圈中通入电流后产生扭矩,使弹簧管上的挡板在两喷嘴间移动,移动的距离和方向随电流的大小和方向而变化。
5-4在什么情况下电液伺服阀可看成振荡环节、惯性环节或比例环节?在大多数的电液私服系统中,伺服阀的动态响应往往高于动力元件的动态响应。
为了简化系统的动态特性分析与设计,伺服阀的传递函数可以进一步简化,一般可以用二阶震荡环节表示。
如果伺服阀二阶震荡环节的固有频率高于动力元件的固有频率,伺服阀传递函数还可以用一阶惯性环节表示,当伺服阀的固有频率远远大于动力元件的固有频率,伺服阀可以看成比例环节。
5-5射流管伺服阀有何优缺点?。
电液伺服阀
三级电液伺服阀通常 是在一个通用型两级伺服 阀(称前量阀)下接一个滑 阀式液压放大器(第三级) 构成;
1.永久磁铁;2.导磁体;3. 衔铁转轴;4.档板;5.阀芯; 6.阀体;
14
7.固定节流口;8.控制线圈;9.喷嘴;10、11.内部通道
电液控制技术-电液伺服阀
常见电液伺服阀的典型结构和 工作原理
二、两级电液伺服阀
1、滑阀位置反馈两级伺服阀 4)机械反馈两级伺服阀
1.永久磁铁;2.导磁体;3.十字弹簧;4.控制杆;5.输出级阀芯; 6.输出级阀体;
常见电液伺服阀的典型结构和 工作原理
二、两级电液伺服阀
3、其它形式的两级电液伺服阀 1)射流管式力反馈两级伺服阀
1.力矩马达;2.柔性供油管; 3.射流管;4.射流接收器; 5.反馈弹簧;6. 阀芯;7.过滤器
18
电液控制技术-电液伺服阀
常见电液伺服阀的典型结构和 工作原理
二、两级电液伺服阀
3、其它形式的两级电液伺服阀 2)压力-流量伺服阀
1.永久磁铁;2.导磁体;3. 衔铁 转轴;4.档板;5.阀芯; 6.阀体; 7.固定节流口;8.控制线圈;9.
喷嘴;10、11.内部通道
13
电液控制技术-电液伺服阀
常见电液伺服阀的典型结构和 工作原理
二、两级电液伺服阀
1、滑阀位置反馈两级伺服阀 3)弹簧对中两级伺服阀
弹簧设计制作困难; 属于开环控制; 受外界条件影响大。
2
电液控制技术-电液伺服阀 电液伺服阀的基本组成和分类
一、电液伺服阀的基本组成
反馈机构有机械反馈、液压反馈和电反馈等多种方式, 反馈物理量包括位置反馈、压力反馈和流量反馈。
3
(a) 滑阀位置反馈 (b) 负载压力反馈 (c) 负载流量反馈
电液伺服阀
电液伺服阀
电液伺服阀的分类 电液伺服阀的种类很多,根据它的结构和机能可作如下分类: 1)按液压放大级数,可分为单级伺服阀、两级伺服阀和三级伺服阀,其 中两级伺服阀应用较广。 2)按液压前置级的结构形式,可分为单喷嘴挡板式、双喷嘴挡板式、滑 阀式、射流管式和偏转板射流式。 3)按反馈形式可分为位置反馈、流量反馈和压力反馈。 4)按电-机械转换装置可分为动铁式和动圈式。 5)按输出量形式可分为流量伺服阀和压力控制伺服阀。 6)按输入信号形式可分为连续控制式和脉宽调制式。
电液伺服阀
• 零飘与零偏 伺服阀由于供油压力的变化和工作油温度的变化而引起的零位 (QL=pL=0的几何位置)变化称为零飘。零飘一般用使其恢复位所需加的 电流值与额定电流值之比来衡量。这一比值越小越好。另外,由于制造、 调整、装配的差别,控制线圈中不加电流时,滑阀不一定位于中位。有时 必须加一定的电流才能使其恢复中位(零位)。这一现象称为零偏。零偏 以使阀恢复零位所需加之电流值与额定电流值之比来衡量。 • 不灵敏度 由于不灵敏区的存在,伺服阀只有在输入信号电流达一定值时才会改变 状态。使伺服阀发生状态变化的最小电流与额定电流之比称为不灵敏度。 其值愈小愈好。
电液伺服阀
由于采用了力反馈,力矩马达基本上在零位 附近工作,只要求其输出电磁力矩与输入电流成 正比(不象位置反馈中要求力矩马达衔铁位移和 输入电流成正比),因此线性度易于达到。另外 滑阀的位移量在电磁力矩一定的情况下,决定于 反馈弹簧的刚度,滑阀位移量便于调节,这给设 计带来了方便。 采用了衔铁式力矩马达和喷嘴挡板使伺服阀 结构极为紧凑,并且动特性好。但这种伺服阀工 艺要求高,造价高,对于油的过滤精度的要求也 较高。所以这种伺服阀适用于要求结构紧凑,动 特性好的场合。
电液伺服阀 2、液压部分 分别依次排除以下故障的可能性:油压管道和油缸内有空气、液压油污染、油缸 内漏严重、控制油路和主油路压力不稳定。最后认定是伺服阀本体故障。更换伺服 阀先导部分.开机正常。 经拆开检查,发现力矩马达导磁体与衔铁缝隙中有许多金属屑,相当于减小了衔 铁在中位时的每个气隙长度g。根据《液压控制系统》的分析结论:当|x/g |>1/3时(x 为衔铁端部偏离中位的位移),衔铁总是不稳定的。因此认为液压系统中的金属屑被 吸附在永磁体上,减小了气隙长度g,破坏了力矩马达原有的静态特性,是本次故障 的根本原因。 维护措施 针对本次故障原因,以及分析的其他可能,采取了以下措施: 1、定期更换油路滤芯,清理变质油 由于此次故障由液压油中金属污染造成,因此定期更换该系统油路中的滤芯,放 掉滤油器中存油,可防止污物进入伺服阀,有效的防止故障发生,延长伺服阀的运 行时间。 力矩马达和先导阀完全浸泡在与回油相通的油液里,位置又处于管道的盲端,所 以该处的油液几乎不流动,易氧化变质,因此需定期放掉变质的液压油。
电液伺服阀介绍
伺服阀工作原理
• 在力矩马达中,安 装有环绕在衔铁四 周的永久磁铁磁轭
伺服阀工作原理
• 在力矩马达线圈中 输入电流会激励磁 衔铁,应引起衔铁 倾斜,衔铁倾斜方 向由电流的极性来 确定(正或负), 倾斜程度则取决于 电流大小
伺服阀工作原理
• 衔铁倾斜会使挡板 更靠近一个喷嘴, 而远离另一个喷嘴 ; • 这样就会使主阀芯 两端控制腔中压力 产生压差。
伺服阀结构
伺服阀结构
特点
采用双线圈、四气隙、对称式干 式力矩马达 两级液压放大器结构 前置级为无摩擦的双喷嘴挡板阀 阀芯驱动力大 阀芯对称式设计 动态响应性能高,频率响应:300Hz 结构坚固,使用寿命长 压力高:315bar 高分辨率,低滞环 可更换的控制油过滤器
伺服阀阀体
伺服阀结构从阀体开始
电液伺输入至系统的小功率控制电信号 转变为阀芯的运动,而阀芯的运动又去控制流向液 压执行元件的压力能(压力和流量),实现电液信 号的转换和放大以及对液压执行元件的精确控制。 伺服阀是电液伺服系统的核心元件。 • 伺服阀的特点:伺服阀有机地结合了精密机械、电 子技术和液压技术;具有控制精度高、响应快、体 积小、结构紧凑、功率放大系数高、直线度好、死 区小、灵敏度高、动态性能高等特点。已广泛应用 于各种液压伺服系统中。
伺服阀工作原理
• 从而引起主阀芯移 动,伺服阀有流量 输出,随着主阀芯 的移动,当两个控 制腔中的压力相等 时,挡板又处于中 间位置,这是主阀 芯停止移动。
伺服阀技术参数
• 流量增益: • 阀套开有矩形通流窗口,它与主阀芯构 成控制阀口,此控制阀口开口的大小由 输入电流值来决确定,流量增益(单位 阀芯位移对应的流量)由该矩形窗口宽 度决定。在输入电流100%,阀压降70bar 时,流经阀的流量是一个确定值,在此 情况下,若进一步增大流量增益,将使 阀体通流饱和而流量曲线弯折。
Z 第5章电液伺服阀PPT课件
三、 永磁动圈式力马达 图示为永磁动式力马达的结构原理。 力马达的可动线圈悬置于作气隙中,永 久磁铁在工作气隙中形成极化磁通,当 控制电流加到线圈上时,线圈就会受到 电磁力的作用而运动。 线圈的运动方向可根据磁通方向和电流 方向按左手定则判断。线圈上的电磁力 克服弹簧 力和负载力,使线圈产生一个与控制电 流成比例的位移。
第5章 电液伺服阀
本章摘要
电液伺服阀既是电液转换元件,又是功率放大元件。 它能够将输入的微小电气信号转换为大功率的液压信号(流 量与压力)输出。根据输出液压信号的不同,电液伺服阀和 比例阀可分为电液流量控制伺服阀和比例阀和电液压力控 制伺服阀和比例阀两大类。
电液伺服阀控制精度高、响应速度快,是一种高性能的电液控制元件,在液压伺服系统中得到了广泛的应用。
缺点是:结构工艺复杂,阀芯受力较大,阀的分辨率低, 滞环较大,响应慢。
单喷嘴挡板阀: 很少使用,特性不好 双喷嘴挡板阀:
优点:动态响应快、压力灵敏度高、特性线性度好、所需输入功率小。 缺点:喷嘴与挡板间的间隙小,易堵塞,抗污染能力差,对油液清洁度要求高。 射流管阀: 优点:抗污染能力强,压力效率和容积效率高。 缺点:特性不易预测,低温特性稍差。
2 二战期间。
在二战前夕,由于空气动力学的应用要求一种能够实现机 械信号与气体信号转换装置。阿斯卡尼亚控制器公司及Askania Werke根据射流原理发明了射流管阀并申请了专利。根据同样的 原理,福克斯波罗申请了双喷嘴挡板阀的专利。德国西门子公司 发明了永磁式力矩马达,它可以接受通过弹簧输入的机械信号和 移动线圈产生的电信号,并开创性地使用在航空领域。
在二战末期,伺服阀是采用滑阀阀芯在阀套中移动的结构。 阀芯的运动是直流螺线管产生的电磁力与弹簧产生的压力共同作 用的结果,因此,此时的伺服阀还仅仅是一种单级开环控制阀。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线圈 气隙3 永磁铁
5.2. Analysis of torque motor type electrohydraulic servo valve力矩马达式电液伺服阀分析
磁路2:永磁铁 气隙2 线圈 气隙4 永磁铁 M o Nc I c 22 R2 M o Nc Ic M o Nc Ic 2 于是就有:1 2 R2 2 R1 式中: M o 2 Rgg—磁铁的磁动势 g —磁铁在气隙中的磁通 N c I c 2 Rgc —线圈的磁动势 c —线圈电流产生的磁通 g Rg —衔铁中位时气隙磁阻, o Ag N c and types 构造与类型
力马达与力矩马达 动圈式力马达 载流体在磁场中受力的原理 输出力:F=πDNBgI=KfI 输入电流I=150~300mA,F=3~5N 最大位移±(1~3)mm,频响≤100Hz 式中:D-线圈直径,N-线圈匝数 Bg-磁感强度,Kf-电磁力系数
力矩马达磁路
F1
x 2 c 2 ( ( ) 1 x g 即 , 考虑到: c g 即 ) 1,上式化简后得: g g Tm K t I c K m ——力矩马达电磁力矩方程
a K t 2( ) N cg—电磁力矩系数 式中: g a 2 K m 4( ) 2 Rgg —磁弹簧系数 g
5.1. Structures and types 构造与类型
(2). 力矩马达式双喷嘴挡板电 液伺服阀 构造 动铁式力矩马达 前置级:双喷嘴挡板阀 功率级:零开口四边滑阀 位置(力)反馈。 QDY系列(MooG)系列 工程用
1-永磁铁 2-下导磁体 3-衔铁 4-线圈 5-弹簧 管 6-上导磁体 7 喷嘴 8-滑阀 9-固定节流孔
管 6-上导磁体 7 喷嘴 8-滑阀 9-固定节流孔
5.2. Analysis of torque motor type electrohydraulic servo valve力矩马达式电液伺服阀分析
5.2.2 Analysis of nozzle flapper valve 喷嘴挡板阀分析 (1). 挡板组件的力矩方程 d 2 d Tm J a 2 f a K a TL dt dt 式中: J a —挡板组件的转动惯量 f a —挡板组件的粘性阻尼系数 K a—弹簧管的刚度系数 TL K f [( r b) xv ]( r b) 反馈杆力矩,其中K f是反馈杆的弹簧刚度。 将TL 和Tm K t I c K m 代入上式拉斯变换后得 K t I c ( J a s 2 f a s K l ) K f (r b) X v (1) 式中: Kl K a K m K f (r b) 2 K f (r b) 2,设计时保证了K a K m 即弹簧管刚度等于磁弹簧刚度
大亚湾核电站主蒸汽阀门 电液伺服控制机构
大亚湾核反应堆模型
核燃料棒模型
核电站模型
核燃核电站外景
Chapter 5 Electro-hydraulic Servo valve 第五章 电液伺服阀
5.0 Introduction 引言 5.1. Structures and types 构造与类型 5.2. Analysis of torque motor type electrohydraulic servo valve力矩马达式电液伺服阀分析
5.2. Analysis of torque motor type electrohydraulic servo valve力矩马达式电液伺服阀分析
Ic
Kt
Tm
---
1 J a s 2 f a s Kl
r
xp
K qp As
xv
K f ( r b)
化简后得:
Ic
Kt K f ( r b)
5.2.1 Analysis of torque motor 力矩马达分析 Ag (1)电磁力矩:
Tm 2( F1 F2 )a
F2
(2)电磁力:
2 F 2 0 Ag
力矩马达磁路
—气隙中的磁通 式中: 4 10 7 —空气的磁导率,H/m Ag—气隙的面积,㎡
F1
5.2. Analysis of torque motor type electrohydraulic servo valve力矩马达式电液伺服阀分析
5.2.1 Analysis of torque motor 力矩马达分析 5.2.2 Analysis of nozzle flapper valve 喷嘴挡板阀分析 1-永磁铁 2-下导磁体 3-衔铁 4-线圈 5-弹簧 5.2.3 Analysis of coil circuit 线圈电路分析
12 因此就有: F1 2 0 Ag1 设计时保证了 Ag1 Ag 2 Ag 3 Ag 4 Ag 1 2 2 F F ( 所以就有: 1 2 1 2) 20 Ag
磁路1:永磁铁 气隙1
Ag
F2
力矩马达磁路
F1
(3)等效磁路的磁动势(柯希霍夫第2定律)
M o 1R1 Nc I c 3 R3 0 ∵ 1R1 3 R3
5.2. Analysis of torque motor type electrohydraulic servo valve力矩马达式电液伺服阀分析
gx gx R1 R2 , 分别是气隙1,2处的磁阻 o Ag o Ag g—衔铁中位时气隙长度,x—衔铁在气隙中的偏转量 Ag 带入相关参数整理后得: F2 g c g c 1 2 x x 1 1 g g F
3-永磁铁 4-衔铁 5-导磁体 6-弹簧管
1-永磁铁 2-下导磁体 3-衔铁 4-线圈 5-弹簧 管 6-上导磁体 7 喷嘴 8-滑阀 9-固定节流孔
5.1. Structures and types 构造与类型
5.1.3 类型 (1). 动圈力马达伺服阀 构造 机-电转换的动圈式力马达 两级滑阀放大 前置级—正开口滑阀 功率级—零开口四边滑阀 位置反馈 DY系列,工业用
5.2.1 Analysis of torque motor 力矩马达分析 5.2.2 Analysis of nozzle flapper valve 喷嘴挡板阀分析 5.2.3 Analysis of coil circuit 线圈电路分析
5.2. Analysis of torque motor type electrohydraulic servo valve力矩马达式电液伺服阀分析
5.1.2构造 电-机械转换器(力马达、力矩 马达) 电流—电磁力(力矩)—机械 位移(角位移) 液压功率放大器(液压阀) 前置放大:双喷嘴挡板阀(正 开口四边滑阀,喷管阀) 功率放大:零开口四边滑阀 反馈装置(放大级间反馈)
1-永磁铁 2-下导磁体 3-衔铁 4-线圈 5-弹簧 管 6-上导磁体 7 喷嘴 8-滑阀 9-固定节流孔
5.1.1电液伺服阀作用: 信号转换元件:电信号— —机械信号(机-电接口) 功率放大元件:信号功率 (毫瓦-瓦级)——驱动功 率(千瓦-数百千瓦级)
1-永磁铁 2-下导磁体 3-衔铁 4-线圈 5-弹簧 管 6-上导磁体 7 喷嘴 8-滑阀 9-固定节流孔
5.1. Structures and types 构造与类型
1
5.2. Analysis of torque motor type electrohydraulic servo valve力矩马达式电液伺服阀分析
a 2 2 T 2 ( F F ) a ( ∴ m 1 2 1 2) 0 Ag
2g N c
Ag
F2
a x g 2 a 2 [1 ( ) 2 ]I c 4 g ( ) [1 ( c ) 2 ] g g 0 Ag g g x [1 ( ) 2 ]2 g
Chapter 5 Electro-hydraulic Servo valve 第五章 电液伺服阀
5.0 Introduction 引言 5.1. Structures and types 构造与类型 5.2. Analysis of torque motor type electrohydraulic servo valve力矩马达式电液伺服阀分析
5.2. Analysis of torque motor type electrohydraulic servo valve力矩马达式电液伺服阀分析
xp r (2)挡板角位移与挡板线位移之间的关系 (x p r tg r ,偏转角很小时,正切值就等于角的弧度)
X p ( s) r ( s) 拉斯变换后得: (2) (3)挡板线位移与滑阀位移之间的关系 K qp x p xv dt A K qp X p ( s) (3) 拉斯变换整理后得: X v ( s) As K qp —喷嘴挡板阀的流量增益, x p —挡板在喷嘴处的位移m 式中: A —滑阀的阀芯截面积,m2 , xv —滑阀阀芯位移,m 由上3式可得以滑阀位移为输出,马达线圈电流为输入的方框图
Chapter 5 Electro-hydraulic Servo valve 第五章 电液伺服阀
5.0 Introduction 引言 5.1. Structures and types 构造与类型 5.2. Analysis of torque motor type electrohydraulic servo valve力矩马达式电液伺服阀分析
5.0 Introduction 引言 5.1. Structures and types 构造与类型 5.2. Analysis of torque motor type electrohydraulic servo valve力矩马达式电液伺服阀分析