专训2 图形中的排列规律(2)
2021年九年级中考数学一轮复习专题 《找规律:图形变化类》高频考点训练(二)
2021年九年级中考数学一轮复习专题《找规律:图形变化类》高频考点训练(二)1.将图①所示的正六边形进行第一次分割得到图②,则②中共有4个正六边形;再将图②中最小的某一个正六边形按同样地方式进行第二次分割得到图③,则图③中共有7个正六边形;…,按此规律继续进行分割,则:(1)第三次分割后,图中共有个正六边形;(2)第n次分割后,图中共有个正六边形(用含有n的代数式表示).2.下列图案都是有若干个全等的等边三角形按一定规律摆放而成,依此规律,第10个图中等边三角形的个数为.3.如图所示,将一个等边三角形各边中点连接起来,得到四个小等边三角形(如图1),再将最上边的一个小等边三角形按同样的方法画出四个更小的等边三角形(如图2),然后再按同样地方法画出第三个图形(如图3)…如此继续下去,第n个图中有个等边三角形.(用含n的式子表示)4.观察下列各图中圆的个数,按此规律第(10)个图形中有个圆.5.按如下规律摆放三角形:则第(7)堆三角形的个数为.6.观察下列下面的图形,请问照这样第8个图形共有○的个数应当是.7.如图,第1个图形由5个小正方形组成,第2个图形由9个小正方形组成,第3个图形由13个小正方形组成…以此规律,第n个图形由个小正方形组成.8.按如图所示规律摆放三角形:则第13个图形中三角形的个数是.9.如图,下面是用棋子摆成的反写“T”字,问:按这样的规律摆下去,摆成第10个反写“T”字需要个棋子.10.根据下列4个图形及相应点的个数的变化规律,试猜测第n个图中有个点.11.如图,小宇用黑白棋子组成的一组图案,第1个图案由1个黑子组成,第2个图案由1个黑子和6个白子组成,第3个图案由13个黑子和6个白子组成,按照这样的规律排列下去,则第6个图案中共有个黑子.12.如图,把一个正三角形的每一边三等分,取中间一段为边向外作正三角形,并把这“中间一段”擦掉,重复上述两步,画出更小的正三角形;一直重复,直到无穷,所画出的曲线叫做“科镂曲线”,又称为“雪花曲线”.已知图①中正三角形的周长为C1=3,图②中图形的周长C2=4,按此规律下去,第5个图形的周长C5=.13.观察下列一组图形,根据其变化规律,可得第8个图形中所有正方形的个数为个.14.如图①,图②,图③,图④,…,是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,第n个“广”字中的棋子个数是.15.如图,共由381个点组成的是第个图形.16.观察图1至图5中小黑点的摆放规律,并按照这样的规律继续摆放.记第n个图中小黑点的个数为y.则y与n的函数关系式为.17.武汉市在开展“创建全国文明城市”过程中,园标局在解放公园举办了大型花展,某园艺公司将“郁金香”摆成菱形图案(每一个小黑点代表一盆郁金香),第五个图案共摆放的郁金香有盘18.观察右面的4个点阵图,探究其中的规律,并按规律写出摆第10个这样的图形需要个点.19.某花圃摆放的一组花盆图案如图所示(“〇”表示红花花盆,“×”表示黄花花盆).观察图形,并探索规律,在第10个图案中,红花与黄花盆数的差为.20.观察下列图形:它们是按一定规律排列的,依照此规律,第2010个图形中共有个★.参考答案1.解:(1)分析可得:将图①所示的正六边形进行进行分割得到图②,增加了3个正六边形,共4个;再将图②中最小的某一个正六边形按同样的方式进行分割得到图③,又增加了3个正六边形,共4+3=7个;则第三次分割后,图中共有10个正六边形;(2)故每次分割,都增加3个正六边形,那么第n个图形中,共有3n+1.故答案为10;3n+1.2.解:结合图形,发现:第10个图中等边三角形有10×4=40(个).故答案为:40.3.解:∵图1中等边三角形的个数是5=4×1+1;图2中等边三角形的个数是9=4×2+1;图3个图中等边三角形的个数是13=4×3+1;…∴第n个图中有(4n+1)个等边三角形.故答案为(4n+1).4.解:第十个图大圆中的小圆的个数是:102=100,因而圆的总个数是:100+1=101.故答案是:101.5.解:观察可得:第(1)堆三角形的个数为5;第(2)堆三角形的个数为5+3=8个;第(3)堆三角形的个数为5+3+3=11个,…第(7)堆三角形的个数为5+3×6=23个.6.解:第一个图形有1个○,第二个图形有1+6×(2﹣1)个圆,第三个图形有1+6+6×(3﹣1)个圆,…第n个图形有1+6+12+…+6(n﹣1)个○,当n=8时,有1+6+12+18+24+30+36+42=169个○.故答案为:169.7.解:∵第1个图形由5个小正方形组成,第2个图形由5+4=9个小正方形组成,第3个图形由5+2×4=13个小正方形组成,∴第n个图形由5+4(n﹣1)=4n+1(个)小正方形组成.故答案为:4n+1.8.解:观察可得,第(1)个图形的三角形个数为3×1+2=5;第(2)个图形的三角形的个数为3×2+2=8;第(3)个图形的三角形的个数为3×3+2=11;…;故第n个图形的三角形的个数为3n+2.当n=13时,3n+2=3×13+2=41个三角形.故答案为41.9.解:第1个图形,横向有3个棋子,纵向有2个棋子,共有棋子:3+2=5个;第2个图形,横向有5个棋子,纵向有3个棋子,共有棋子:5+3=8个;第3个图形,横向有7个棋子,纵向有4个棋子,共有棋子:7+4=11个;…,依此类推,第n个图形,横向有(2n+1)个棋子,纵向有(n+1)个棋子,共有棋子:(2n+1)+(n+1)=3n+2个;所以,第10个图形需要棋子:3×10+2=32.故答案为:32.10.解:第1个图形有1个点,第2个图形有4×1+1=5个点,第3个图形有4×2+1=9个点,第4个图形有4×3+1=13个点,…,依此类推,第n个图形有4(n﹣1)+1=4n﹣3个点.故答案为:4n﹣3.11.解:第1个图案由1个黑子组成,第2个图案由1个黑子和6个白子组成,第3个图案由1+3×6﹣6=13个黑子和6个白子组成,第4个图案由13个黑子和6+4×6﹣6=24个白子组成,第5个图案由13+5×6﹣6=37个黑子和24个白子组成,第6个图案由37个黑子和24+6×6﹣6=54个白子组成.故答案为37.=3,12.解:图①中正三角形的周长为C1=3+×3=3+1=4,图②中图形的周长C2=4+××3×4=,图③中正三角形的周长为C3=+×××3×4×4=,图④中图形的周长C4=+××××3×4×4×4=.图⑤中图形的周长C5故答案为.13.解:第1个图形有1个正方形,第2个图形比第1个图形多4个小正方形,共有5个正方形,5=4×1+1,第3个图形比第2个图形又多4个小正方形,共有9个正方形,9=4×2+1 第4个图形比第3个图形又多4个小正方形,共有13个正方形,13=4×3+1,…,依此类推,第n个图形共有4(n﹣1)+1=4n﹣3个正方形,所以,n=8时,4×8﹣3=29.故答案为:29.14.解:由题目得,第1个“广”字中的棋子个数是7;第2个“广”字中的棋子个数是9;第3个“广”字中的棋子个数是11;4个“广”字中的棋子个数是13;发现第5个“广”字中的棋子个数是15…进一步发现规律:第n个“广”字中的棋子个数是(2n+5).故答案为:2n+5.15.解:从图形可知,从一个点向2个方向增加1个点,向3个方向增加2个点,向4个方向增加3个点,…向n个方向增加n﹣1个点,∴第n个图形共有n(n﹣1)+1=n2﹣n+1个,∴n2﹣n+1=381解得:n=20故答案为20.16.解:根据题意分析可得:第n个图中,从中心点分出n个分支,每个分支上有(n﹣1)个点,不含中心点;则第n个图中小黑点的个数y=n×(n﹣1)+1=n2﹣n+1.即y与n的函数关系式为y=n2﹣n+1.故答案是:y=n2﹣n+1.17.解:依题意得:第一个图案有1+4,第二个有1+4+8,第三个有1+4+8+12,∴第四个图案有1+4+8+12+16个,∴第五个图案有1+4+8+12+16+20=61个.故答案为:61.18.解:依题意得:(1)摆第1个“小屋子”需要5个点;摆第2个“小屋子”需要11个点;摆第3个“小屋子”需要17个点.当n=n时,需要的点数为(6n﹣1)个∴摆第10个这样的“小屋子”需要的点数为60﹣1=59.故答案为59.19.解:第1个图案,红花花盆:1=12个,黄花花盆4×1个,第2个图案,红花花盆:4=22个,黄花花盆8=4×2个,第3个图案,红花花盆:9=32个,黄花花盆12=4×3个,第4个图案,红花花盆:16=42个,黄花花盆16=4×4个,…第n个图案,红花花盆:n2个,黄花花盆4n个,∴在第10个图案中,红花与黄花盆数的差为:102﹣4×10=100﹣40=60.故答案为:60.20.解:第1个图形中有4个★;第2个图形中有4+3个★;第3个图形中有4+2×3个★;…第2010个图形中有4+2009×3=6031个★;故答案为6031.。
中考专题思维训练复习---找规律2
3.验证所归纳的结论。
课堂小结
二.关于寻找“图形序列”规律 的思维步骤:
1.观察图形的排列规律找到基本图形, 找到图形之间的变与不变的规律。 2.猜想规律与“序号”间的对应关系, 用关于“序号”的数学式子表示出来。
3.验证所归纳的结论。
17. 图8是一组有规律的图案,第1个 图案由4个基 础图形组成,第2个图案由7个基础图形组 成,……,第(n是正整数)个图案中由 3n+1 个基础 图形组成.
(4)如图,摆n个这样联体图形需______根 9n+4 火柴.
练习
1.用红白两种颜色的正方形纸片,按红色 纸片数逐一增加的规律拼成一列图案:
第一图
第二图
Байду номын сангаас
第三图
……
(1)第4个图案中,白色纸片一共有___张; 13
(2)第n个图案中,白色纸片一共有_____ 张 3n+1
2.用黑白两种颜色的正方形纸片,按 黑色纸片数逐一增加的规律拼成一列图 案,第五个图案中,白色正方形的个数 一共有_____个. 28
观察下列排列的等式:
1×2-1=12, 2×3-2=22, 3×4-3=32, 4×5-4=42,…….
猜想:第n个等式(n为正整数)
n(n+1)-n=n2 . 应为________________
13+23+33+43+53=152
n2+n=n×(n+1)
1+2+3+…+n+(n-1)+(n-2)+…+1=n2
观 察
思 考
5.如下图是某同学在沙滩上用石子摆成 的小房子,观察图形的变化规律,写出 第n个小房子用了______________ (n+1)2+(2n-1) 块石子.
图形的排列规律经典讲解和练习题(经典完整版)
图形的排列规律经典讲解和练习题找规律是解决数学问题的一种重要手段。
而发现规律既需要敏锐的观察力,又需要严密的逻辑推理能力。
同学们一定听说过福尔摩斯这个人吧,他是世界著名的大侦。
我们从小说和电视剧中看到福尔摩斯的“破案”简值神极了,什么疑难案件,他都能把业超级大国去肪分析清楚。
他靠的不仅是渊博的知识,还有细心敏锐的观察与严密的逻辑推理。
这一讲将为你提供很多图形,它们在某一个方面,比如颜色、形状、大小、结构、位置或繁难等有些共同的特征或变化规律,我们要学会通过观察找规律,并根据规律来推断结果。
例题与方法
例1 下面哪个图形和其他几个不一样,请你找出来,并打上“√”。
例2 按顺序观察下图的变化规律,想一想在带“?”处应选择哪一个图形?
可供选项:
例3仔细观察下面的三个图形,然后选择一个合适的图形填在“?”处。
例4根据等号左边两个图形的变换关系,推断出“?”处应选择第几号图形?
例5下面的图形是按一定规律排列的,请仔细观察,并在“?”处填上适当的图形。
练习与思考
1.选择合适的图形,将图号填入虚线框内。
(1)
(2)
(3)
2.仔细观察下面图形,按其变化规律在“?”处填上合适的图形。
(1)
(2)
3.根据左边图形的关系,画出右边图形的另一半。
(1)
(2)
(3)
4.从所给的6个图形中,选出一个适当的图形,将它的编号填入“?”处。
(1)
(2)。
人教版七年级数学上图形的规律和线段及角度的计算专题训练含答案
专题训练(一) 图形的规律探索——教材P70T10的变式与应用教材母题:(教材P70T10)如图所示,由一些点组成形如三角形的图形,每条“边”(包括两个顶点)有n(n>1)个点,每个图形总的点数S是多少?当n=5,7,11时,S是多少?【思路点拨】观察图形,可得到点的总数S与n之间的关系,用含n的式子表示S,便可分别求出当n=5,7,11时,S的值.【解答】观察图形,当n=2时,有两排点,总的点数为1+2=3(个);当n=3时,有三排点,总的点数为1+2+3=6(个);当n=4时,有四排点,总的点数为1+2+2+4=9(个);当n=5时,有五排点,总的点数为1+2+2+2+5=12(个).根据此规律,可知点的总数S=1+2(n-2)+n=3n-3,当n=7时,S=3×7-3=18;当n=11时,S=3×11-3=30.故当n=5,7,11时,S的值分别是12,18,30.【方法归纳】解决图形规律探索问题,首先从简单的基本图形入手,随着“序号”或“编号”增加时,后一个图形与前一个图形相比,在数量上的变化情况或图形变化情况,找出变化规律,从而推出一般性结论.1.如图是用相同长度的小棒摆成的一组有规律的图案,其中图1需要4根小棒,图2需要10根小棒,…,按此规律摆下去,则第11个图案所需小棒的根数为(C)A.70 B.68 C.64 D.582.(荆州中考)如图,用黑白两种颜色的纸片,按黑色纸片数逐渐增加1的规律拼成下列图案.若第n个图案中有2 017个白色纸片,则n的值为(B)A.671 B.672 C.673 D.6743.(益阳中考)小李用围棋子排成下列一组有规律的图案,其中第1个图案有1枚棋子,第2个图案有3枚棋子,第3个图案有4枚棋子,第4个图案有6枚棋子,…,那么第9个图案的棋子数是13枚.4.如图是用棋子摆成的图案:根据图中棋子的排列规律解决下列问题:(1)第4个图中有22枚棋子,第5个图中有32枚棋子;(2)写出你猜想的第n 个图中棋子的枚数(用含n 的式子表示)是n +2+n 2.5.下面是用棋子摆成的“小房子”.摆第10个这样的“小房子”需要多少枚棋子?摆第n 个这样的“小房子”呢?你是如何得到的?解:第1个“小房子”,下边正方形棋子4×2-4=4(枚),上边1枚,共4+1=5(枚); 第2个“小房子”,下边正方形棋子4×3-4=8(枚),上边3枚,共8+3=11(枚); 第3个“小房子”,下边正方形棋子4×4-4=12(枚),上边5枚,共12+5=17(枚); 第4个“小房子”,下边正方形棋子4×5-4=16(枚),上边7枚,共16+7=23(枚); …第n 个“小房子”,下边正方形棋子4×(n+1)-4=4n(枚),上边(2n -1)枚,共4n +2n -1=(6n -1)(枚).当n =10时,6n -1=6×10-1=59(枚).专题训练(二) 线段的计算——教材P128练习T3的变式与应用教材母题:(教材P 128练习T 3)如图,点D 是线段AB 的中点,C 是线段AD 的中点,若AB =4 cm ,求线段CD 的长度.【解答】 因为点D 是线段AB 的中点,AB =4 cm , 所以AD =12AB =12×4=2(c m ).因为C 是线段AD 的中点, 所以CD =12AD =12×2=1(cm ).【方法归纳】 结合图形,将待求线段长转化为已知线段的和、差形式.若题目中出现线段的中点,常利用线段中点的性质,结合线段的和、差、倍、分关系求解.同时应注意题目中若没有图形,或点的位置关系不确定时,常需要分类讨论,确保答案的完整性.1.如图,线段AB =22 cm ,C 是线段AB 上一点,且AC =14 cm ,O 是AB 的中点,求线段OC 的长度.解:因为点O 是线段AB 的中点,AB =22 cm , 所以AO =12AB =11 cm .所以OC =AC -AO =14-11=3(cm ).2.如图,已知C 是AB 的中点,D 是AC 的中点,E 是BC 的中点.(1)若DE =9 cm ,求AB 的长; (2)若CE =5 cm ,求DB 的长.解:(1)因为D 是AC 的中点,E 是BC 的中点, 所以AC =2CD ,BC =2CE.所以AB =AC +BC =2DE =18 cm . (2)因为E 是BC 的中点, 所以BC =2CE =10 cm .因为C 是AB 的中点,D 是AC 的中点, 所以DC =12AC =12BC =5 cm .所以DB =DC +BC =5+10=15(cm ).3.如图,B ,C 两点把线段AD 分成2∶5∶3三部分,M 为AD 的中点,BM =6 cm ,求CM 和AD 的长.解:设AB =2x cm ,BC =5x cm ,CD =3x cm , 所以AD =AB +BC +CD =10x cm . 因为M 是AD 的中点, 所以AM =MD =12AD =5x cm .所以BM =AM -AB =5x -2x =3x(cm ). 因为BM =6 cm , 所以3x =6,x =2.故CM =MD -CD =5x -3x =2x =2×2=4(cm ), AD =10x =10×2=20(cm ).4.如图,线段AB =1 cm ,延长AB 到C ,使得BC =32AB ,反向延长AB 到D ,使得BD =2BC ,在线段CD 上有一点P ,且AP =2 cm .(1)请按题目要求画出线段CD ,并在图中标出点P 的位置;(2)求出线段CP 的长度.解:(1)线段CD 和点P 的位置如图1、2所示.(2)因为AB =1 cm , 所以BC =32AB =32 cm .所以BD =2BC =3 cm .当点P 在点A 的右边时,CP =AB +BC -AP =12cm ;当点P 在点A 的左边时,点P 与点D 重合,CP =BD +BC =92 cm .专题训练(三) 角的计算类型1 利用角度的和、差关系找出待求的角与已知角的和、差关系,根据角度和、差来计算. 1.如图,已知∠AOC=∠BOD=75°,∠BOC =30°,求∠AOD 的度数.解:因为∠AOC=75°,∠BOC =30°,所以∠AO B =∠AOC-∠BOC=75°-30°=45°. 又因为∠BOD=75°,所以∠AOD=∠AOB+∠BOD=45°+75°=120°. 2.将一副三角板的两个顶点重叠放在一起.(两个三角板中的锐角分别为45°、45°和30°、60°)(1)如图1所示,在此种情形下,当∠DAC=4∠BAD 时,求∠CAE 的度数; (2)如图2所示,在此种情形下,当∠ACE=3∠BCD 时,求∠ACD 的度数.解:(1)因为∠BAD+∠DAC=90°,∠DAC =4∠B AD , 所以5∠BAD=90°,即∠BAD=18°. 所以∠DAC=4×18°=72°. 因为∠DAE =90°,所以∠CAE=∠DAE-∠DAC=18°.(2)因为∠BCE=∠DCE-∠BCD=60°-∠BCD,∠ACE =3∠BCD, 所以∠ACB=∠ACE+∠BCE=3∠BCD+60°-∠BCD=90°. 解得∠BCD=15°.所以∠ACD=∠ACB+∠BCD=90°+15°=105°.类型2 利用角平分线的性质角的平分线将角分成两个相等的角,利用角平分线的这个性质,再结合角的和、差关系进行计算.3.如图,点A ,O ,E 在同一直线上,∠AOB =40°,∠EOD =28°46′,OD 平分∠COE,求∠COB 的度数.解:因为∠EOD=28°46′,OD 平分∠COE, 所以∠COE=2∠EOD=2×28°46′=57°32′. 又因为∠AOB=40°,所以∠COB=180°-∠AOB-∠COE=180°-40°-57°32′=82°28′.4.已知∠AOB=40°,OD 是∠BOC 的平分线.(1)如图1,当∠AOB 与∠BOC 互补时,求∠COD 的度数; (2)如图2,当∠AOB 与∠BOC 互余时,求∠COD 的度数. 解:(1)因为∠AOB 与∠BOC 互补, 所以∠AOB+∠BOC =180°. 又因为∠AOB=40°,所以∠BOC=180°-40°=140°. 因为OD 是∠BOC 的平分线, 所以∠COD=12∠BOC=70°.(2)因为∠AOB 与∠BOC 互余, 所以∠AOB+∠BOC=90°. 又因为∠AOB=40°,所以∠BOC=90°-40°=50°. 因为OD 是∠BOC 的平分线, 所以∠COD=12∠BOC=25°.类型3 利用方程思想求解在解决有关余角、补角,角的比例关系或倍分关系问题时,常利用方程思想来求解,即通过设未知数,建立方程,通过解方程使问题得以解决. 5.一个角的余角比它的补角的23还少40°,求这个角的度数.解:设这个角的度数为x °,根据题意,得 90-x =23(180-x)-40.解得x =30.所以这个角的度数是30°. 6.如图,已知∠AOE 是平角,∠DOE =20°,OB 平分∠AOC,且∠COD∶∠BOC=2∶3,求∠BOC 的度数.解:设∠COD=2x °,则∠BOC=3x °. 因为OB 平分∠AOC, 所以∠AOB=3x °.所以2x +3x +3x +20=180. 解得x =20.所以∠BOC=3×20°=60°.7.如图,已知∠AOB=12∠BOC,∠COD =∠AOD=3∠AOB ,求∠AOB 和∠C OD 的度数.解:设∠AOB=x °,则∠COD=∠AOD=3∠AOB=3x °. 因为∠AOB=12∠BOC,所以∠BOC=2x °.所以3x +3x +2x +x =360. 解得x =40.所以∠AOB=40°,∠COD =120°.类型4 利用分类讨论思想求解在角度计算中,如果题目中无图,或补全图形时,常需分类讨论,确保答案的完整性. 8.已知∠AOB=75°,∠AOC =23∠AOB,OD 平分∠AOC,求∠BOD 的大小.解:因为∠AOB=75°,∠AOC =23∠AOB,所以∠AOC=23×75°=50°.因为O D 平分∠AOC,所以∠AOD=∠COD=25°.如图1,∠BOD =75°+25°=100°; 如图2,∠BOD =75°-25°=50°.9.已知:如图,OC 是∠AOB 的平分线.(1)当∠AOB=60°时,求∠AOC 的度数;(2)在(1)的条件下,∠EOC =90°,请在图中补全图形,并求∠AOE 的度数;(3)当∠AOB=α时,∠EOC =90°,直接写出∠AOE 的度数.(用含α的代数式表示)解:(1)因为OC 是∠AOB 的平分线, 所以∠AOC=12∠AOB.因为∠AOB=60°, 所以∠AOC=30°.(2)如图1,∠AOE =∠EOC+∠AOC=90°+30°=120°;如图2,∠AOE =∠EOC-∠AOC=90°-30°=60°. (3)90°+α2 或90°-α2.。
寻找规律·从图形排列中找规律·方法技巧
寻找规律·从图形排列中找规律·方法技巧从图形排列中找规律要从图形的整体变化及内部相对位置的变化,如旋转、折叠类,数量的增多或减少类,颜色变化类等方面综合观察.
寻找规律·从数字排列中找规律·方法技巧解答从数字排列中找规律这类问题,也要善于观察、联想,要善于分析相邻项间的数量关系,准确地判断出数列的特征.
寻找规律·从数表排列中找规律·方法技巧1.在数表排列中找规律没有一个固定的模式,这就需要同学们灵活地去思考并综合运用有关知识,一种方法不行就换另一种方法试试.
2.对于找到的规律应该适合数表中的所有数.
3.数表中数的规律往往与这些数在表中上、下、左、右的位置有关.寻找规律·从物体排列中找规律·方法技巧关于从物体排列中找规律的问题,要注意物体排列中的周期现象,以及周期是多少.只需了解一个周期的排列规律,就可以掌握整个排列规律;物体在排列中若呈等差数列方式,需要求出首项、末项及项数是多少,然后根据等差数列求和公式求和.。
2021届东营中考数学复习专题类型突破专题二探索规律问题训练
2021届东营中考数学复习专题类型突破专题二探索规律问题训练专题类型突破话题二:探索法律类型一数式规律命题视角?数字法初探(2021泰安中考)观察“田”字中各数之间的关系:【分析】依次观察每个“字段”中相同位置的数字,找出数字变化规律,然后观察同一“字段”中每个位置的数字关系。
[独立回答]解数式规律型问题的一般方法(1)当给定的一组数字是整数时,首先观察这组数字是自然数序列、正数序列、奇数序列、偶数序列还是平方、平方加1或减1后的正整数序列,然后观察这组数字的符号,判断数字符号的正负是交替出现还是只出现一个符号,最后结合数字定律和符号定律得出结果;(2)当数是分数和整数的组合时,首先将这组数据中的所有整数写成分数,然后分别推导分子和分母定律,最后得到这组数据中第n项的定律;(3)当给定的代数公式包含系数时,首先观察每个项的系数之间是否有一定的对称性,如自然序列、正整数序列、奇数序列、偶数序列或交替,然后观察索引中是否有相似的规律,最后将系数律律和索引律结合起来得到结果1.(2021百色中考)观察以下一列数的特点:0,1,-4,9,-16,25,…,则第11个数是()a.-121b、-100c.100d、 1212.(2021十堰中考)如图,10个不同的正偶数按下图排列,箭头上方的每个数都等于其下方两数的和,例如,如果A1=A2+a3,则A1的最小值为()a.32b、 36c.38d、 403.(2021枣庄中考)将从1开始的连续自然数按如下规律排列:…则2018在第________行.命题角度?数字循环类规律探索一百一十一(2021成都中考)已知a>0,s1=,s2=-s1-1,s3=,s4=-s3-1,s5=,…(即当n为大于as2s411,Sn=;当n是大于1的偶数时,Sn=-Sn-1-1),根据该定律,s2022=____sn-1【分析】根据sn数的变化找出sn的值每6个一循环,结合2018=336×6+2,此题得解.【自主解答】数圈定律的问题是出现了几个数圈。
探索图形中的数的排列规律
探索图形中的数的排列规律引言在数学领域中,排列是一个重要的概念。
排列是指给定一组元素,通过不同的方式进行排列来形成不同的组合。
在图形中,数的排列规律也是一个有趣且具有挑战性的问题。
本文将探索一些常见的图形,并研究其中数字排列的规律。
正方形图形的数字排列规律首先,让我们研究正方形图形中数字的排列规律。
在一个正方形的格子中,我们可以按照从左到右、从上到下的顺序给每个格子标上一个数字。
例如,一个3x3的正方形格子可以如下所示:1 2 34 5 67 8 9观察这个数字排列,我们可以发现以下规律:•从左到右、从上到下,数字的顺序是依次增加的。
•这个数字排列是一个线性排列,每一行和每一列的数字都是有序的。
所以,我们可以推断,在一个n x n的正方形格子中,数字的排列规律是以n 为步长的线性排列。
这个规律可以简化为以下公式:number = row * n + column其中,number表示格子中的数字,row表示行的索引,column表示列的索引,n表示正方形的边长。
三角形图形的数字排列规律接下来,让我们研究三角形图形中数字的排列规律。
在一个等边三角形中,我们可以按照从顶点开始,按照螺旋状的方式给每个顶点标上一个数字。
例如,一个边长为3的等边三角形可以如下所示:12 34 5 6观察这个数字排列,我们可以发现以下规律:•每一行的数字数量逐渐增加。
•从顶点开始到底边结束,数字的顺序是依次增加的。
•三角形的数字排列是一个类似于螺旋的排列,从顶点开始顺时针旋转。
所以,我们可以推断,在一个边长为n的等边三角形中,数字的排列规律是逐行增加,并按照顺时针旋转的方式排列。
这个规律可以简化为以下公式:number = (row * (row + 1)) / 2 + column其中,number表示顶点到当前位置的数字数量,row表示行的索引,column 表示列的索引。
圆形图形的数字排列规律最后,让我们研究圆形图形中数字的排列规律。
图形规律排序操作方法
图形规律排序操作方法图形规律排序是一种基于图形,通过识别图形规律并进行排序的方法。
它是一种常见的智力训练题目,在很多考试和招聘面试中也会出现。
通过解答这类题目,我们可以锻炼自己的逻辑思维和空间想象能力,提高问题分析和解决问题的能力。
在图形规律排序中,一般会给出一组图形,并要求我们根据某种规律将它们进行排序。
为了解题,我们需要熟悉常见的图形元素和图形变化规律,以及一些常用的排序方法。
在开始解题之前,我们首先要观察和分析给出的图形,找出它们之间的规律和联系。
具体而言,可以从以下几个方面进行观察:1. 图形的形状:观察图形的形状,看是否存在某种规律。
包括图形的边数、角的个数、相对位置等。
2. 图形的颜色:观察图形的颜色,看是否存在某种颜色的规律。
包括是否有颜色的渐变、某种颜色的出现频率等。
3. 图形的大小:观察图形的大小,看是否存在某种大小的规律。
包括大小的递增或递减、大小的比例关系等。
4. 图形的方向:观察图形的方向,看是否存在某种方向的规律。
包括图形的旋转、翻转、镜像等。
5. 图形的排列方式:观察图形的排列方式,看是否存在某种排列的规律。
包括图形的顺序、间距、对称性等。
在观察和分析完图形之后,我们可以根据识别出的规律,进行排序操作。
具体的方法有以下几种:1. 逻辑推理法:根据观察到的图形规律进行逻辑推理,推断出下一个图形的位置。
这种方法需要我们运用逻辑思维进行推断和推理,通过排除法找到正确答案。
2. 分组分类法:根据观察到的图形规律,将整组图形分成若干个类别,并找出每个类别内的排序规律。
然后根据排序规律将图形进行排序。
3. 矩阵填空法:将图形按照一定的规律排列成一个矩阵,然后根据规律填写矩阵中的空缺位置。
这种方法常用于较为复杂的图形规律排序题目。
4. 直观感知法:基于对图形的直观感知,通过观察图形的整体特征和变化趋势,进行排序。
在进行排序操作时,我们需要灵活运用以上方法,并在不同的题目中选择合适的方法。
中考数学考前强化题型二 规律探索 类型二 图形规律(专题训练)(原卷版)
题型二规律探索类型二图形规律1.如图,小正方形是按一定规律摆放的,下面四个选项中的图片,适合填补图中空白处的是A.B.C.D.2.将字母“C”,“H”按照如图所示的规律摆放,依次下去,则第4个图形中字母“H”的个数是()A.9 B.10 C.11 D.123.把菱形按照如图所示的规律拼图案,其中第①个图案中有1个菱形,第②个图案中有3个菱形,第③个图案中有5个菱形,…,按此规律排列下去,则第⑥个图案中菱形的个数为()A.15 B.13 C.11 D.94.如图是用黑色棋子摆成的美丽图案,按照这样的规律摆下去,第10个这样的图案需要黑色棋子的个数为()A .148B .152C .174D .2025.把黑色三角形按如图所示的规律拼图案,其中第①个图案中有1个黑色三角形,第②个图案中有3个黑色三角形,第③个图案中有6个黑色三角形,…,按此规律排列下去,则第⑤个图案中黑色三角形的个数为( )A .10B .15C .18D .216.观察下列树枝分杈的规律图,若第n 个图树枝数用n Y 表示,则94Y Y -=( )A .4152⨯B .4312⨯C .4332⨯D .4632⨯7.用正方形按如图所示的规律拼图案,其中第①个图案中有5个正方形,第②个图案中有9个正方形,第③个图案中有13个正方形,第④个图案中有17个正方形,此规律排列下去,则第⑨个图案中正方形的个数为( )A .32B .34C .37D .418.在平面直角坐标系中,等边AOB ∆如图放置,点A 的坐标为()1,0,每一次将AOB ∆绕着点О逆时针方向旋转60︒,同时每边扩大为原来的2倍,第一次旋转后得到11A OB ∆,第二次旋转后得到22A OB ∆,…,依次类推,则点2021A 的坐标为( )A .()202020202,32-- B .()202120212,32 C .()202020202,32 D .()201120212,32-- 9.如图,用大小相同的小正方形拼大正方形,拼第1个正方形需要4个小正方形,拼第2个正方形需要9个小正方形…,按这样的方法拼成的第(n+1)个正方形比第n 个正方形多 个小正方形.10.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2019个图形中共有__________个〇.11.如图,每一图中有若干个大小不同的菱形,第1幅图中有1个菱形,第2幅图中有3个菱形,第3幅图中有5个菱形,如果第n 幅图中有2019个菱形,则n=__________.12.观察下列图形规律,当图形中的“○”的个数和“.”个数差为2022时,n的值为____________.13.将黑色圆点按如图所示的规律进行排列,图中黑色圆点的个数依次为:1,3,6,10,……,将其中所有能被3整除的数按从小到大的顺序重新排列成一组新数据,则新数据中的第33个数为___________.14.如图,3条直线两两相交最多有3个交点,4条直线两两相交最多有6个交点,按照这样的规律,则20条直线两两相交最多有______个交点15.如图,用火柴棍拼成一个由三角形组成的图形,拼第一个图形共需要3根火柴棍,拼第二个图形共需要5根火柴棍;拼第三个图形共需要7根火柴棍;……照这样拼图,则第n 个图形需要___________根火柴棍.16.如图都是由同样大小的小球按一定规律排列的,依照此规律排列下去,第___个图形共有210个小球.17.如图,由两个长为2,宽为1的长方形组成“7”字图形(1)将一个“7”字图形按如图摆放在平面直角坐标系中,记为“7”字图形ABCDEF ,其中顶点A 位于x 轴上,顶点B ,D 位于y 轴上,O 为坐标原点,则OB OA的值为__________. (2)在(1)的基础上,继续摆放第二个“7”字图形得顶点F 1,摆放第三个“7”字图形得顶点F 2,依此类推,…,摆放第n 个“7”字图形得顶点F n-1,…,则顶点F 2019的坐标为__________.18.如图,正方形1ABCB 中,3AB =AB 与直线l 所夹锐角为60︒,延长1CB 交直线l 于点1A ,作正方形1112A B C B ,延长12C B 交直线l 于点2A ,作正方形2223A B C B ,延长23C B 交直线l 于点3A ,作正方形3334A B C B ,…,依此规律,则线段20202021A A =________.19.如图,菱形ABCD 中,120ABC ∠=︒,1AB =,延长CD 至1A ,使1DA CD =,以1A C 为一边,在BC 的延长线上作菱形111A CC D ,连接1AA ,得到1ADA ∆;再延长11C D 至2A ,使1211D A C D =,以21A C 为一边,在1CC 的延长线上作菱形2122A C C D ,连接12A A ,得到112A D A ∆……按此规律,得到202020202021A D A ∆,记1ADA ∆的面积为1S ,112A D A ∆的面积为2S ……202020202021A D A ∆的面积为2021S ,则2021S =_____.20.将一些相同的“〇”按如图所示的规律依次摆放,观察每个“龟图”的“〇”的个数,则第30个“龟图”中有___________个“〇”.21.下面各图形是由大小相同的三角形摆放而成的,图①中有1个三角形,图②中有5个三角形,图③中有11个三角形,图④中有19个三角形…,依此规律,则第n 个图形中三角形个数是_______.22.如图是一组有规律的图案,它们是由边长相等的正三角形组合而成,第1个图案有4个三角形,第2个图案有7个三角形,第3个图案有10个三角形…按此规律摆下去,第n 个图案有 个三角形(用含n 的代数式表示).23.如图,四边形ABCD 是矩形,延长DA 到点E ,使AE =DA ,连接EB ,点F 1是CD 的中点,连接EF 1,BF 1,得到△EF 1B ;点F 2是CF 1的中点,连接EF 2,BF 2,得到△EF 2B ;点F 3是CF 2的中点,连接EF 3,BF 3,得到△EF 3B ;…;按照此规律继续进行下去,若矩形ABCD 的面积等于2,则△EF n B的面积为.(用含正整数n的式子表示)。
图形的排列规律
图形的排列规律
课前导入
探究新知
课堂练习
课堂小结
课后作业
图形的排列规律
课前导入 用
图片各3张,按要求摆一摆。
把它们有规律地排成一行。
返回
图形的排列规律
探究新知
把它们有规律地摆在右面的方格里。
每行都相同。
每列都相同。
返回
图形的排列规律
圆形把三角形和 正方形分开。
每行每列各 不相同。
返回
正确解答:
返回
图形的排列规律
找规律,接着画。
1×1=1 2×2=4 3×3=9
4×4=16
返回
图形的排列规律
课堂练习 选一选,把合适的图形圈起来。
返回
图形的排列规律
下面 “?”处应该画什么?
返你们都学会了哪些知识?
一组图形的循环排列规律:①把最后的放在 最前,其余的往后移。②把最前的放在最后, 其余的往前移。
返回
图形的排列规律
课后作业 1.从教材课后习题中选取; 2.从课时练中选取。
返回
图形的排列规律
按规律继续往下画。
返回
图形的排列规律
解题思路:
图中有四种图形,我们可以分别来观察每种图 形在方格中的位置变化,找到规律,再确定空白的方 格中每种图形的具体位置。观察△可知,△的变化 规律是右上→左上→左下,那么第四幅图应是“右 下”的位置,其他三个图形也是按这个规律变化的。
返回
图形的排列规律
七年级数学图形中的排列规律重难点题型总结(含解析版)
图形中的排列规律重难点题型汇编【举一反三】【考点1 图形中的周期规律】【方法点拨】观察题目中图形的变化特点,找到重合点即为一个周期,利用数形结合思想进行求解.【例1】(2019秋•义乌市校级月考)依次观察如图三个图形,并判断照此规律从左到右第2019个图形是()A.B.C.D.【变式1-1】(2019秋•莒县期中)观察图中正方形四个顶点所标的数字规律,推测数2019应标在()A.第504个正方形的左下角B.第504个正方形的右下角C.第505个正方形的右下角D.第505个正方形的左上角【变式1-2】(2019春•海安市校级月考)如图,两个连接在一起的菱形的边长都是1cm,一只电子甲虫从点A开始按ABCDAEFGAB…的顺序沿菱形的边循环爬行,当电子甲虫爬行2018cm时停下,则它停的位置是()A.点F B.点E C.点A D.点C【变式1-3】(2019秋•工业园区期末)如图,物体从A点出发,按照A→B(第一步)→C(第二步)→D →A→E→F→G→A→B……的顺序循环运动,则第2018步到达()A.A点B.C点C.E点D.F点【考点2 图形中的等差规律】【方法点拨】解此类问题的关键在于将图形的规律转化为数字规律,即将图形的个数转化为数字,会发现后一项与前一项的差均相等,即为等差规律,应用公式:第n个图形的个数=第一个图形的个数+差数×(n-1). 【例2】(2019春•南岸区校级期中)用黑白两种颜色的正方形纸片,按白色纸片数逐渐加1并按下图的规律拼成一列图案,则第100个图案中黑色正方形纸片的张数是()A.300B.301C.302D.303【变式2-1】(2018秋•南山区校级期中)用棋子按下面的规律摆图形,则摆第2018个图形需要围棋子()枚.A.6053B.6054C.6056D.6060【变式2-2】(2018秋•宁都县期中)下列图形都是由同样大小的黑色正方形纸片组成,其中第①个图中有3张黑色正方形纸片,第②个图中有5张黑色正方形纸片,第③个图中有7张黑色正方形纸片,…,按此规律排列下去第⑩个图中黑色正方形纸片的张数为()A.15B.17C.21D.27【变式2-3】(2018秋•万州区期中)如图,是用棋子摆成的“上”字:如果按照此规律继续摆下去,那么通过观察,可以发现:第10个“上”字需用多少枚棋子()A.36B.38C.42D.50【考点3 图形中的乘方规律】【方法点拨】观察题目中图形的特点,出现1,4,9,16,25.....正方形的图阵,即可联想到利用乘方来表示.【例3】(2019春•江岸区校级期中)如图图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑥个图形中菱形的个数为()A.42B.43C.56D.57【变式3-1】(2019春•南岸区校级期中)如图是一组有规律的图案,第1个图案由5个基础图形组成,第2个图案由8个基础图形组成,……,如果按照以下规律继续下去,那么通过观察,可以发现:第20个图案需要()个基本图形.A.402B.404C.406D.408【变式3-2】(2018秋•亭湖区校级期中)下面是某同学在沙滩上用石子摆成的小房子观察图形的变化规律,则第10个小房子用了____颗石子.()A.119B.121C.140D.142【变式3-3】(2019秋•九龙坡区校级期中)如图,们一个图形都是由一些黑点按一定的规律排列组成的,其中第①个图形中共有6个小黑点,第②个图形中有10个黑点,第③个图形中一共有16个小黑点,…,按此规律,则第⑩个图形中小黑点的个数是()A.112B.114C.116D.118【考点4 图形中的自然数求和规律】【方法点拨】解此类问题的关键在于将图形的规律转化为数字规律,即将图形的个数转化为数字,利用1+2+3+4+...+n=n(n+1)/2求解即可,需注意若首项不为1,需将公式进行适当变形.【例4】(2019秋•青山区校级月考)如图是一个三角点阵,从上向下数有无数多行,其中第一行有1个点,第二行有2个点……第n行有n个点……则下列说法:①10是三角点阵中前4行的点数和;②300是三角点阵中前24行的点数和;③前n个点数和为200的点,在这个三角点阵中位于第20行第10个点,其中正确的个数是()A.0个B.1个C.2个D.3个【变式4-1】(2019秋•沙坪坝区校级月考)如图,图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,按此规律,则第(6)个图形中面积为1的正方形的个数为()A.14B.20C.24D.27【变式4-2】(2019春•北碚区校级期中)如图图形是用同样大小的铜币摆放的四个图案,根据摆放图案的规律,则第8个图案需要铜币的个数为()A.29B.36C.37D.46【变式4-3】(2018秋•市南区校级期中)下列是用火柴棒拼成的一组图形,第①个图形中有3根火柴棒,第②个图形中有9根火柴棒,第③个图形中有18根火柴棒,…,按此规律排列下去,第⑥个图形中火柴棒的根数是()A.63B.60C.56D.45【考点5 图形中的奇数求和规律】【方法点拨】解此类问题的关键在于将图形的规律转化为数字规律,即将图形的个数转化为数字,利用1+3+5+7+9+11+…+2n﹣1=(n+1)2求解即可,需注意若首项不为1,需将公式进行适当变形.【例5】(2018秋•九龙坡区校级期中)如图,将等边三角形按一定规律排列,第①个图形中有1个小等边三角形,第②个图形中有4个小等边三角形,按此规律,则第⑥个图形中有()个小等边三角形.A.36个B.49个C.35个D.48个【变式5-1】(2018秋•三台县期中)如图是由一些黑点组成的图形,按此规律,在第n个图形中,黑点的个数有()A.4n﹣1B.n2﹣1C.n2+2D.2n+1【变式5-2】(2019•云南模拟)如图用棋子摆成三角形的图案,第(1)个三角形中有4枚棋子,第(2)个三角形中有9枚棋子,第(3)个三形中有16枚棋了,…,按照这样的规律摆下去第()个三角形中有2025枚棋子.A.42B.43C.44D.45【变式5-3】(2019•沙坪坝区校级一模)观察下列图形,①中有1个圆,②中有5个圆,③中有13个圆……,若依此规律,则第⑥个图形中圆的个数为()A.25B.61C.41D.65【考点6 图形中的组合规律】【方法点拨】此类问题是将上述两种规律结合在一起,需将图形进行拆分,找出各个部分的规律进行组合即可.【例6】(2019•长寿区模拟)下列图形都是由●按照一定规律组成的,其中第①个图共有四个●,第②个图中共有8个●,第③个图中共有13个●,第④个图中共有19个●,…,照此规律排列下去,则第10 个图形中●的个数为()A.50B.53C.64D.76【变式6-1】(2018秋•九龙坡区校级期中)下列图形都是由同样大小的黑点按一定规律组成的,其中第①个图形中一共有3个黑点,第②个图形中一共有8个黑点,第③个图形中一共有14个黑点,……,则第⑧个图形中黑点的个数是()A.29B.38C.48D.59【变式6-2】(2018春•沙坪坝区校级期中)下列图形都是由同样大小的●和〇按照一定规律组成的,其中第①个图中共有6个●,第②个图中共有13个●,第③个图中共有25个●,第④个图中共有42个●,…,照此规律排列下去,则第⑦个图中●的个数为()A.91B.112C.123D.160【变式6-3】(2019春•北碚区校级月考)下列图形都是由同样大小的黑色圆点按照一定规律所组成的,其中第①个图形中一共有6个黑色圆点第②个图形中一共有15个黑色圆点,第③个图形中一共有28个黑色圆点,…,按此规律排列下去,第⑦个图形中黑色圆点的个数为()A.66B.91C.120D.135图形中的排列规律重难点题型汇编【举一反三】【考点1 图形中的周期规律】【方法点拨】观察题目中图形的变化特点,找到重合点即为一个周期,利用数形结合思想进行求解.【例1】(2019秋•义乌市校级月考)依次观察如图三个图形,并判断照此规律从左到右第2019个图形是()A.B.C.D.【分析】根据题目中给出的图形,可知每五个一个循环,空白的大三角形按照顺时针旋转,从而可以得到从左到右第2019个图形是选项中的哪个图形,本题得以解决.【答案】解:由图可知,每连续的五个为一组,也就是五个一循环,2019÷5=403…4,故选:A.【点睛】本题考查图形的变化类,解答本题的关键是明确题意,发现题目中图形的变化特点,利用数形结合的思想解答.【变式1-1】(2019秋•莒县期中)观察图中正方形四个顶点所标的数字规律,推测数2019应标在()A.第504个正方形的左下角B.第504个正方形的右下角C.第505个正方形的右下角D.第505个正方形的左上角【分析】设第n个正方形中标记的最大的数为a n,观察给定图形,可找出规律“a n=4n”,依此规律即可得出结论.【答案】解:设第n个正方形中标记的最大的数为a n.观察给定正方形,可得出:每个正方形有4个数,即a n=4n.∵2019=504×4+3,∴数2019应标在第505个正方形左上角.故选:D.【点睛】本题考查了规律型中的图形的变化类,解题的关键是找出变换规律a n=4n.本题属于基础题,难度不大,需找出2019在第几个正方形上.【变式1-2】(2019春•海安市校级月考)如图,两个连接在一起的菱形的边长都是1cm,一只电子甲虫从点A开始按ABCDAEFGAB…的顺序沿菱形的边循环爬行,当电子甲虫爬行2018cm时停下,则它停的位置是()A.点F B.点E C.点A D.点C【分析】观察图形不难发现,每移动8cm为一个循环组依次循环,用2018除以8,根据商和余数的情况确定最后停的位置所在的点即可.【答案】解:∵两个菱形的边长都为1cm,∴从A开始移动8cm后回到点A,∵2018÷8=252余2,∴移动2018cm为第253个循环组的第2cm,在点C处.故选:D.【点睛】本题是对图形变化规律的考查,观察图形得到每移动8cm为一个循环组依次循环是解题的关键.【变式1-3】(2019秋•工业园区期末)如图,物体从A点出发,按照A→B(第一步)→C(第二步)→D →A→E→F→G→A→B……的顺序循环运动,则第2018步到达()A.A点B.C点C.E点D.F点【分析】先求出由A点开始按照A→B(第1步)→C(第2步)→D→A→E→F→G→A→B→…的顺序循环运动走一圈所走的步数,在用2018除以此步数即可.【答案】解:∵如图物体从点A出发,按照A→B(第1步)→C(第2步)→D→A→E→F→G→A→B →…的顺序循环运动,此时一个循环为8步,∴2018÷8=252…2.∴当物体走到第252圈后再走2步正好到达C点.故选:B.【点睛】本题考查的是图形的变化类这一知识点,解答此题的关键是根据题意得出物体走一个循环的步数,找出规律即可轻松作答.【考点2 图形中的等差规律】【方法点拨】解此类问题的关键在于将图形的规律转化为数字规律,即将图形的个数转化为数字,会发现后一项与前一项的差均相等,即为等差规律,应用公式:第n个图形的个数=第一个图形的个数+差数×(n-1). 【例2】(2019春•南岸区校级期中)用黑白两种颜色的正方形纸片,按白色纸片数逐渐加1并按下图的规律拼成一列图案,则第100个图案中黑色正方形纸片的张数是()A.300B.301C.302D.303【分析】观察图形,发现:黑色纸片在4的基础上,依次多3个,根据其中的规律,计算出第100个图案的黑纸片个数即可.【答案】解:第1个图案中有黑色纸片3×1+1=4张,第2个图案中有黑色纸片3×2+1=7张,第3图案中有黑色纸片3×3+1=10张,…第n个图案中有黑色纸片:(3n+1)张,∴第100个图案中有黑纸片301张.故选:B.【点睛】本题主要考查学生对图形的变化类的知识点的理解和掌握,此题的关键是注意发现前后图形中的数量之间的关系,难度适中.【变式2-1】(2018秋•南山区校级期中)用棋子按下面的规律摆图形,则摆第2018个图形需要围棋子()枚.A.6053B.6054C.6056D.6060【分析】观察图形可知:第1个图形需要围棋子的枚数=5;第2个图形需要围棋子的枚数=5+3;第3个图形需要围棋子的枚数=5+3×2;第4个图形需要围棋子的枚数=5+3×3,…,则第n个图形需要围棋子的枚数=5+3(n﹣1),然后把n=2018代入计算即可.【答案】解:∵第1个图形需要围棋子的枚数=5,第2个图形需要围棋子的枚数=5+3,第3个图形需要围棋子的枚数=5+3×2,第4个图形需要围棋子的枚数=5+3×3,…,∴第n个图形需要围棋子的枚数=5+3(n﹣1)=3n+2,∴第2018个图形需要围棋子的枚数=3×2018+2=6056,故选:C.【点睛】此题考查图形的变化规律,找出图形之间的联系,得出一般的运算规律解决问题.【变式2-2】(2018秋•宁都县期中)下列图形都是由同样大小的黑色正方形纸片组成,其中第①个图中有3张黑色正方形纸片,第②个图中有5张黑色正方形纸片,第③个图中有7张黑色正方形纸片,…,按此规律排列下去第⑩个图中黑色正方形纸片的张数为()A.15B.17C.21D.27【分析】仔细观察图形知道第一个图形有3个正方形,第二个有5=3+2×1个,第三个图形有7=3+2×2个,由此得到规律求得第⑩个图形中正方形的个数即可.【答案】解:观察图形知:第一个图形有3个正方形,第二个有5=3+2×1个,第三个图形有7=3+2×2个,…故第⑩个图形有3+2×9=21(个),故选:C.【点睛】此题主要考查了图形的变化规律,是根据图形进行数字猜想的问题,关键是通过归纳与总结,得到其中的规律,然后利用规律解决一般问题.【变式2-3】(2018秋•万州区期中)如图,是用棋子摆成的“上”字:如果按照此规律继续摆下去,那么通过观察,可以发现:第10个“上”字需用多少枚棋子()A.36B.38C.42D.50【分析】由图可得,第1个“上”字中的棋子个数是6;第2个“上”字中的棋子个数是10;第3个“上”字中的棋子个数是14;…进一步发现规律:第n个“上”字中的棋子个数是(4n+2);由此求得问题答案.【答案】解:第1个“上”字中的棋子个数是6=4+2;第2个“上”字中的棋子个数是10=4×2+2;第3个“上”字中的棋子个数是14=4×3+2;…第n个“上”字中的棋子个数是(4n+2);所以第10个“上”字需用棋子的数量是4×10+2=42个.故选:C.【点睛】本题主要考查了图形的变化规律,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.通过分析找到各部分的变化规律后直接利用规律求解.【考点3 图形中的乘方规律】【方法点拨】观察题目中图形的特点,出现1,4,9,16,25.....正方形的图阵,即可联想到利用乘方来表示.【例3】(2019春•江岸区校级期中)如图图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑥个图形中菱形的个数为()A.42B.43C.56D.57【分析】设第n个图形中一共有a n个菱形(n为正整数),根据各图形中菱形个数的变化可得出变化规律“a n=n2+n+1(n为正整数)”,再代入n=6即可求出结论.【答案】解:设第n个图形中一共有a n个菱形(n为正整数),∵a1=12+2=3,a2=22+3=7,a3=32+4=13,a4=42+5=21,…,∴a n=n2+n+1(n为正整数),∴a6=62+7=43.故选:B.【点睛】本题考查了规律型:图形的变化类,根据各图形中菱形个数的变化,找出变化规律“a n=n2+n+1(n为正整数)”是解题的关键.【变式3-1】(2019春•南岸区校级期中)如图是一组有规律的图案,第1个图案由5个基础图形组成,第2个图案由8个基础图形组成,……,如果按照以下规律继续下去,那么通过观察,可以发现:第20个图案需要()个基本图形.A.402B.404C.406D.408【分析】仔细观察图形,找到图形变化的规律,利用规律求解即可.【答案】解:第1个图案由12+4=5个基础图形组成,第2个图案由22+4=8个基础图形组成,……,如果按照以下规律继续下去,可以发现:第20个图案需要202+4=404个基本图形.故选:B.【点睛】本题考查了图形的变化类问题,解题的关键是仔细观察图形并找到图形变化的规律,难度不大.【变式3-2】(2018秋•亭湖区校级期中)下面是某同学在沙滩上用石子摆成的小房子观察图形的变化规律,则第10个小房子用了____颗石子.()A.119B.121C.140D.142【分析】根据图示,可得:第1个小房子用的石子的数量是:1+22,第2个小房子用的石子的数量是:3+32,第3个小房子用的石子的数量是:5+42,…,据此求出第10个小房子用了多少颗石子即可.【答案】解:第1个小房子用的石子的数量是:1+22,第2个小房子用的石子的数量是:3+32,第3个小房子用的石子的数量是:5+42,…,∴第n个小房子用的石子的数量是:2n﹣1+(n+1)2,∴第10个小房子用的石子的数量是:19+112=19+121=140.故选:C.【点睛】此题主要考查了图形的变化类问题,要熟练掌握,解答此类问题的关键是首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.【变式3-3】(2019秋•九龙坡区校级期中)如图,们一个图形都是由一些黑点按一定的规律排列组成的,其中第①个图形中共有6个小黑点,第②个图形中有10个黑点,第③个图形中一共有16个小黑点,…,按此规律,则第⑩个图形中小黑点的个数是()A.112B.114C.116D.118【分析】第①个图形中有1×1+1+4=6个黑点;第②个图形中有2×2+2+4=10个黑点;第③个图形中有3×3+3+4=16个黑点,第④个图形中有4×4+4+4=24个黑点,那么可得第n个图形中有n•n+n+4个黑点.【答案】解:第①个图形中有1×1+1+4=6个黑点;第②个图形中有2×2+2+4=10个黑点;第③个图形中有3×3+3+4=16个黑点,第④个图形中有4×4+4+4=24个黑点,可得第n个图形中有n•n+n+4个黑点.把n=10代入可得:10×10+10+4=114,故选:B.【点睛】本题考查规律型:图形的变化类;根据图形的排列规律正确列式是解决本题的关键.【考点4 图形中的自然数求和规律】【方法点拨】解此类问题的关键在于将图形的规律转化为数字规律,即将图形的个数转化为数字,利用1+2+3+4+...+n=n(n+1)/2求解即可,需注意若首项不为1,需将公式进行适当变形.【例4】(2019秋•青山区校级月考)如图是一个三角点阵,从上向下数有无数多行,其中第一行有1个点,第二行有2个点……第n行有n个点……则下列说法:①10是三角点阵中前4行的点数和;②300是三角点阵中前24行的点数和;③前n个点数和为200的点,在这个三角点阵中位于第20行第10个点,其中正确的个数是()A.0个B.1个C.2个D.3个【分析】根据题意和题目中点的个数的变化,可以判断各个小题是否正确,从而可以解答本题.【答案】解:当n=4时,三角点阵中的点数之和是:1+2+3+4=10,故①正确,当1+2+…+n=300时,即,得n=24,故②正确,当n=19时,三角点阵中的点数之和为=190,∵190+10=200,∴前n个点数和为200的点,在这个三角点阵中位于第20行第10个点,故③正确;故选:D.【点睛】本题考查图形的变化类,解答本题的关键是明确题意,发现题目中点的个数的变化规律,利用数形结合的思想解答.【变式4-1】(2019秋•沙坪坝区校级月考)如图,图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,按此规律,则第(6)个图形中面积为1的正方形的个数为()A.14B.20C.24D.27【分析】根据已知图形得出第n个图形中面积为1的正方形有2+3+4+…+n+1=,据此求解可得.【答案】解:第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n个图形中面积为1的正方形有2+3+4+…+(n+1)=个,则第(6)个图形中面积为1的正方形的个数为2+3+4+5+6+7=27个.故选:D.【点睛】此题考查图形的变化规律,找出图形与数字之间的运算规律,利用规律解决问题.【变式4-2】(2019春•北碚区校级期中)如图图形是用同样大小的铜币摆放的四个图案,根据摆放图案的规律,则第8个图案需要铜币的个数为()A.29B.36C.37D.46【分析】找出相邻两个图形铜币的数目的差,从而可发现其中的规律,于是可求得问题的答案.【答案】解:n=1时,铜币个数=1+1=2;当n=2时,铜币个数=1+1+2=4;当n=3时,铜币个数=1+1+2+3=7;当n=4时,铜币个数=1+1+2+3+4=11;…第n个图案,铜币个数=1+1+2+3+4+…+n=n(n+1)+1,当n=8时,×8×9+1=37,故选:C.【点睛】本题主要考查的是图形的变化规律,找出其中的规律是解题的关键.【变式4-3】(2018秋•市南区校级期中)下列是用火柴棒拼成的一组图形,第①个图形中有3根火柴棒,第②个图形中有9根火柴棒,第③个图形中有18根火柴棒,…,按此规律排列下去,第⑥个图形中火柴棒的根数是()A.63B.60C.56D.45【分析】由图可知:第①个图形中有3根火柴棒,第②个图形中有9根火柴棒,第②个图形中有18根火柴棒,…依此类推第n个有1+2+3+…+n个三角形,共有3×(1+2+3+…+n)=n(n+1)根火柴;由此代入求得答案即可.【答案】解:∵第①有1个三角形,共有3×1根火柴;第②个有1+2个三角形,共有3×(1+2)根火柴;第③个有1+2+3个三角形,共有3×(1+2+3)根火柴;…∴第n个有1+2+3+…+n个三角形,共有3×(1+2+3+…+n)=n(n+1)根火柴;∴第⑥个图形中火柴棒根数是3×(1+2+3+4+5+6)=63,故选:A.【点睛】此题考查了图形的变化规律,解题的关键是发现三角形个数的规律,从而得到火柴棒的根数.【考点5 图形中的奇数求和规律】【方法点拨】解此类问题的关键在于将图形的规律转化为数字规律,即将图形的个数转化为数字,利用1+3+5+7+9+11+…+2n﹣1=(n+1)2求解即可,需注意若首项不为1,需将公式进行适当变形.【例5】(2018秋•九龙坡区校级期中)如图,将等边三角形按一定规律排列,第①个图形中有1个小等边三角形,第②个图形中有4个小等边三角形,按此规律,则第⑥个图形中有()个小等边三角形.A.36个B.49个C.35个D.48个【分析】根据已知得出第n个图形有1+3+5+…+(2n﹣1)=n2个三角形,据此代入计算可得.【答案】解:第①个图有1=12个三角形,第②个图形有1+3=4=22个三角形,第③个图形有1+3+5=9=32个三角形,…第⑥个图形有62=36个三角形,故选:A.【点睛】本题考查了规律型:图形的变化类:通过从一些特殊的图形变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.【变式5-1】(2018秋•三台县期中)如图是由一些黑点组成的图形,按此规律,在第n个图形中,黑点的个数有()A.4n﹣1B.n2﹣1C.n2+2D.2n+1【分析】分析数据可得:第①个图形中点的个数为3;第②个图形中点的个数为3+3;第③个图形中点的个数为3+3+5;第④个图形中点的个数为3+3+5+7;…则知第n个图形中小圆的个数为3+3+5+7+…+(2n﹣1).据此可以求得答案.【答案】解:第①个图形中点的个数为3;第②个图形中点的个数为3+3;第③个图形中点的个数为3+3+5;第④个图形中点的个数为3+3+5+7;…第n个图形中小圆的个数为3+3+5+7+…+(2n﹣1)=n2+2.故选:C.【点睛】此题属于图形与数字结合规律的题目.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.【变式5-2】(2019•云南模拟)如图用棋子摆成三角形的图案,第(1)个三角形中有4枚棋子,第(2)个三角形中有9枚棋子,第(3)个三形中有16枚棋了,…,按照这样的规律摆下去第()个三角形中有2025枚棋子.A.42B.43C.44D.45【分析】首先要从简单图形入手,抓住随着“编号”或“序号”增加时,后一个图形与前一个图形相比,在数量上增加(或倍数)情况的变化,找出数量上的变化规律,从而推出一般性的结论.【答案】解:第1个三角形图案:1+3=4=22,第2个三角形图案:1+3+5=9=32,第3个三角形图案:1+3+5+7=16=42,第4个三角形图案:1+3+5+7+9=16+9=25=52,第5个三角形图案:1+3+5+7+9+11=25+11=36,则第n个三角形图案:1+3+5+7+9+11+…+2n﹣1=(n+1)2,令(n+1)2=2025,解得:n=44或n=﹣46(舍去)故选:C.【点睛】本题是图形与数字类的变化规律的综合问题,首先要探寻规律,认真观察、仔细思考,善用联想来解决这类问题;本题不仅要从图形中看规律,还要从数字变化看规律,两方面结合得出结论.【变式5-3】(2019•沙坪坝区校级一模)观察下列图形,①中有1个圆,②中有5个圆,③中有13个圆……,若依此规律,则第⑥个图形中圆的个数为()A.25B.61C.41D.65【分析】仔细观察图形,找到图形的变化规律,利用规律解得即可.【答案】解:第一个图形有1个圆,第二个图形有1+3+1=5个圆,第三个图形有1+3+5+3+1=13个圆,第四个图形有1+3+5+7+5+3+1=25个圆,…第六个图形有1+3+5+7+9+11+9+7+5+3+1=61个圆,故选:B.【点睛】此题考查图形的变化规律,找出图形之间的运算规律,利用规律解决问题.【考点6 图形中的组合规律】【方法点拨】此类问题是将上述两种规律结合在一起,需将图形进行拆分,找出各个部分的规律进行组合即可.【例6】(2019•长寿区模拟)下列图形都是由●按照一定规律组成的,其中第①个图共有四个●,第②个图中共有8个●,第③个图中共有13个●,第④个图中共有19个●,…,照此规律排列下去,则第10 个图形中●的个数为()A.50B.53C.64D.76【分析】根据已知图形得出图n中点的个数为(n+1)2﹣(1+2+3+…+n﹣1),据此可得.【答案】解:因为图①中点的个数为4=22﹣0,图②中点的个数为8=32﹣1,图③中点的个数为13=42﹣(1+2),图④中点的个数为19=52﹣(1+2+3),……所以图⑨中点的个数为102﹣(1+2+3+…+8)=100﹣36=64,故选:C.【点睛】本题主要考查数字的变化规律,解题的关键是根据已知图形得出图n中点的个数为(n+1)2﹣(1+2+3+…+n﹣1).【变式6-1】(2018秋•九龙坡区校级期中)下列图形都是由同样大小的黑点按一定规律组成的,其中第①个图形中一共有3个黑点,第②个图形中一共有8个黑点,第③个图形中一共有14个黑点,……,则第⑧个图形中黑点的个数是()。
图形的排列规律
教学目标:1、使学生初步认识简单的排列规律,会根据规律指出下一个物体。
2、通过各种活动,培养学生的观察、推理、动手能力,激发创新意识。
3、使学生在活动中体会数学与生活的密切联系,同时培养学生发现和欣赏数学美的意识。
4、运用规律解决问题。
教学重点:引导学生充分参与到探究规律的活动中,学会找规律的方法,运用规律解决实际问题。
教学难点:用合理、清晰的语言阐述自己所发现的规律,学会创造规律。
教具、学具准备:多媒体课件、水彩笔、若干个三角形、圆形、正方形。
教学过程:一、情境导入师:同学们,咱们来做个游戏好吗?老师发口令,你们用动作完成. 师:拍拍手,拍拍手,跺跺脚,拍拍手,拍拍手,跺跺脚、、、、、、你们猜猜接下去应该做什么呢?学生做动作。
师:哇,你们真聪明,猜的很准。
谁来说说你是怎么猜到的?师:同学们真细心!在我们的日常生活中也有很多像这样按照一定方式来排列的事物,我们把这种排列方式叫做规律。
今天,我们一起来学习找规律。
二、学习新知师:小朋友,你们知道6月1日是什么节日吗?(六一儿童节)。
为了庆祝六一,一年级的小朋友准备开联欢会庆祝自己的节日,他们把会场打扮得漂漂亮亮的。
大家想不想去看看?请看大屏幕。
师:你们观察得很仔细,这些彩旗、花朵、灯笼都是按一定的顺序摆的。
我们就说,它们的摆放都是有规律的。
其实规律在我们的日常生活中是经常遇到的,今天这节课,我们就要用数学的眼光来寻找图形中的排列规律规律。
(板书课题:图形的排列规律)(1)教学彩旗图中的规律。
师:猜一猜下一面旗会是什么颜色?你们是怎么想的?生:下一面旗是红色的,因为彩旗是一红一黄排列的。
师:你观察到真仔细,彩旗的排列是有规律的,它是按照一红一黄的顺序依次重复下去的。
(2)同桌讨论彩花图、灯笼图和小朋友的队形图中的规律。
师:彩旗的规律我们已经找到了,那么彩花的排列、灯笼的摆放和小朋友的队形又有什么规律呢?下一朵花、下一个灯笼会是什么颜色?下一个小朋友是男孩还是女孩呢?把你发现的秘密小声地告诉同桌。
小学四年级奥数思维训练-找规律
小学四年级奥数思维训练专题-找规律找规律(一)专题简介:一般以下几个方面来找规律:1.根据每组相邻两个数之间的关系,找出规律,推断出所要填的数;2.根据相隔的每两个数的关系,找出规律,推断出所要填的数;3.要善于从整体上把握数据之间的联系,从而很快找出规律;4.数之间的联系往往可以从不同的角度来理解,只要言之有理,所得出的规律都可以认为是正确的.例1:找出下面数列的规律,并在括号里填上适当的数.1,4,7,10,(),16,19分析:相邻的两个数的差都是3,所以:应填:10+3=13或16-3=13像上面按照一定的顺序排列的一串数叫做.试一试1:先找出下面数列的规律,再填空.(1)33,28,23,(),13,(),3(2)2,6,18,(),162,()(3)128,64,32,(),8,(),2例2:找出下列数排列的规律,再填空.1,2,4,7,(),16,22分析:前4个数每相邻的两个数的差递增1,即依次是1、2、3…….应填的数为:7+4=11或16-5=11试一试2:先找出下面数列的规律,再填空.(1)1,4,9,16,25,(),49,64(2)53,44,36,29,(),18,(),11,9,8例3:先找出规律,然后在括号里填上适当的数.23,4,20,6,17,8,(),(),11,12分析:第1、3、5……个数递减3;第2、4、6……个数递增2.8后面的一个数为:17-3=14, 11前面的数为:8+2=10.试一试3:先找出规律,然后在括号里填上适当的数.(1)13,2,15,4,17,6,(),()(2)4,28,6,26,9,23,(),(),18,14例4:在数列1,1,2,3,5,8,13,(),34,55……中,括号里应填什么数?分析:从第三个数开始,每个数等于它前面两个数的和.括号里:8+13=21或34-13=21上面这个数列叫做斐波那切(意大利古代著名数学家)数列,也叫做“兔子数列”.试一试4:先找出规律,然后在括号里填上适当的数.(1)2,2,4,6,10,16,(),()(2)34,21,13,8,5,(),2,()(3)1,3,6,8,16,18,(),(),76,78例5:下面每个括号里的两个数都是按一定的规律组合的,在□里填上适当的数.(8,4)(5,7)(10,2)(□,9)分析:每个括号里的两个数的和都是12.□应为:12-9=3试一试5:下面括号里的两个数是按一定的规律组合的,在□里填上适当的数.(1)(1,24)(2,12)(3,8)(4,□)(2)(18,17)(14,10)(10,1)(□,5)(3)(2,3)(5,7)(7,10)(10,□)专题二找规律(二)专题简析:对于较复杂的按规律填数的问题,从以下几个方面来思考:1,对于几列数组成的一组数变化规律,没有一成不变的方法,一种方法不行,就要及时调整思路,换一种方法再分析;2,分布在图中的数,变化规律与数在图形中的特殊位置有关,是解题的突破口.例1:根据下表中的排列规律,在空格里填上适当的数.分析:经仔细观察、分析表格中的数可以发现:12+6=18,8+7=15,即每一横行中间的数等于两边的两个数的和.依此规律,空格中应填的数为:4+8=12.试一试1:找规律,在空格里填上适当的数.例2:根据前面图形中的数之间的关系,想一想第三个图形的括号里应填什么数?分析:前面两个圈中三个数之间有这样的关系:5×12÷10=6 4×20÷10=8第三个圈中右下角应填:8×30÷10=24试一试2:根据前面图形中数之间的关系,想一想第三个图形的空格里应填什么数.例3:根据第1个算式直接写出后几个算式的结果.12345679×9=11111111112345679×18=12345679×54=12345679×81=分析:几个算式第1个因数相同.第二个因数成倍数关系:18=9×2 54=9×6 81=9×9所以:12345679×18=12345679×9×2=222222222 12345679×54=12345679×9×6=666666666 12345679×81=12345679×9×9=999999999试一试3:找规律,写得数.1×1=1 11×11=121111×111=111111111×111111111=。
最新2019-2020年度浙教版七年级数学上册《代数式》高频考点专训及答案点拨-精品试题
专项训练一:求代数式值的技巧名师点金:用数值代替代数式里的字母,按照代数式里的运算符号,计算出的结果就是代数式的值.如果要求值的式子比较简单,可以直接代入求值;如果要求值的式子比较复杂,可考虑先将式子化简,然后再代入求值;有时我们还需根据题目的特点,选择特殊的方法求式子的值,如整体代入求值等.直接代入求值1.当a=3,b=2或a=-2,b=-1或a=4,b=-3时,(1)求a2+2ab+b2,(a+b)2的值;(2)从中你发现了什么规律?先化简再代入求值2.已知A=1-x2,B=x2-4x-3,C=5x2+4,求多项式A-2[A-B-2(B -C)]的值,其中x=-1.特殊条件代入求值3.已知:|x-2|+(y+1)2=0,求-2(2x-3y2)+5(x-y2)-1的值.整体代入求值4.已知:2x-3y=5,求6x-9y-5的值.5.已知当x=2时,多项式ax3-bx+1的值为-17,那么当x=-1时,多项式12ax-3bx3-5的值等于多少?整体加减求值6.已知x2-xy=-3,2xy-y2=-8,求代数式2x2+4xy-3y2的值.7.已知m2-mn=21,mn-n2=-12.求下列代数式的值:(1)m2-n2;(2)m2-2mn+n2.取特殊值代入求值8.已知(x+1)3=ax3+bx2+cx+d,求a+b+c的值.专项训练二:数阵中的排列规律名师点金:数阵中的排列规律的探究一般都是先找一个具有代表性的数(设为某个字母)作为切入点,然后找出其他数与该数的关系,并用字母表达式写出来,从而解决相关问题.平行四边形排列1.如图所示的数据是小明同学用一些奇数排成的,你能与小明一起探讨下列问题吗?动手试一试.(第1题)(1)框中的四个数有什么关系?(2)再任意画一个类似(1)中的框,设左上角的一个数为x,那么其他三个数怎样表示?你能求出这四个数的和吗?十字排列2.将连续的奇数1,3,5,7,9,…按如图所示的规律排列:(第2题)(1)十字框中的五个数的平均数与15有什么关系?(2)若将十字框上下左右平移,可框住另外的五个数,这五个数的和能等于315吗?若能,请求出这五个数;若不能,请说明理由.斜排列3.如图所示是2 015年4月份的日历.(第3题)(1)平行四边形框中的5个数的和与其中间的数有什么关系?(2)(1)题中的关系对任意这样的平行四边形框都适用吗?设中间的数为a,请将这5个数的和用含有a的式子表示出来.人字形排列4.如图是由从1开始的连续自然数组成的,观察规律并完成下面各题.12 3 45 6 7 8 910 11 12 13 14 15 1617 18 19 20 21 22 23 24 2526 27 28 29 30 31 32 33 34 35 36………………(第4题)(1)第8行的最后一个数是______,它是自然数______的平方,第8行共有________个数;(2)用含n(n为正整数)的式子表示:第n行的第一个数是____________________,最后一个数是__________,第n行共有________个数.专项训练三:整式在几何中的应用名师点金:利用整式加减解决几何问题,解题的关键是根据题意正确地列出表示相关量之间关系的整式,然后再进行计算.利用整式求周长1.已知三角形的第一条边长是a+2b,第二条边长比第一条边长长(b-2),第三条边长比第二条边长短5.(1)求三角形的周长;(2)当a=2,b=3时,求三角形的周长.利用整式求面积(数形结合思想)2.如图是一个工件的横断面及其尺寸(单位:cm).(1)用含a,b的式子表示它的面积S;(2)当a=15,b=8时,求S的值.(π≈3.14,结果精确到0.01)(第2题)3.某小区有一块长为40 m,宽为30 m的长方形空地,现要美化这块空地,在上面修建如图所示的十字形花圃,在花圃内种花,其余部分种草.(1)求花圃的面积;(2)若建造花圃及种花的费用为100元/m2,种草的费用为50元/m2,则美化这块空地共需多少元?(第3题)利用整式解决计数问题(从特殊到一般的思想、方程思想) 4.用同样大小的黑色棋子按如图所示的规律摆放:(第4题)(1)第5个图形中有多少颗黑色棋子?第n个图形中有多少颗黑色棋子?(2)第几个图形中有2 016颗黑色棋子?请说明理由.专项训练四:思想方法荟萃名师点金:本章中主要体现了整体思想、数形结合思想、转化思想、从特殊到一般的思想.整体思想1.已知x3-y3=19,x2y+xy2=21,求(x3+2y3)-2(x3-2xy2+x2y)+(y3+4x2y-2xy2-2x3)的值.2.当x=2时,多项式ax3-bx+5的值是4,求当x=-2时,多项式ax3-bx+5的值.数形结合思想3.实数x,y在数轴上对应的点的位置如图所示,试化简|y-x|-3|y+1|-|x|.(第3题)转化思想4.在一个边长为a的正方形硬纸片上,画一个直径为a的半圆和一个底边长为a的等腰三角形,如图所示.请你求出阴影部分的面积.(第4题)从特殊到一般的思想5.如图所示,有一个形如六边形的点阵,它的中心是一个点,第二层每边有两个点,第三层每边有三个点,以此类推.(第5题)(1)填写下表:层数 1 2 3 4 5 6该层对应的点数所有层的总点数(2)写出第n层所对应的点数.答案专项训练一1.解:(1)当a=3,b=2时,a2+2ab+b2=32+2×3×2+22=25,(a +b)2=(3+2)2=25;当a=-2,b=-1时,a2+2ab+b2=(-2)2+2×(-2)×(-1)+(-1)2=9,(a+b)2=[(-2)+(-1)]2=9;当a=4,b=-3时,a2+2ab+b2=42+2×4×(-3)+(-3)2=16-24+9=1,(a+b)2=(4-3)2=1.(2)a2+2ab+b2=(a+b)2.2.解:原式=A-2A+2B+4(B-C)=A-2A+2B+4B-4C=-A+6B -4C,因为A=1-x2,B=x2-4x-3,C=5x2+4,所以原式=x2-1+6x2-24x-18-4(5x2+4)=-13x2-24x-35,当x=-1时,原式=-13×(-1)2-24×(-1)-35=-13+24-35=-24.3.解:由|x-2|+(y+1)2=0,得x-2=0且y+1=0,所以x=2,y=-1,原式=-4x+6y2+5x-5y2-1=x+y2-1,当x=2,y=-1时,原式=2+(-1)2-1=2.4.解:因为2x-3y=5,所以6x-9y-5=3(2x-3y)-5=3×5-5=10.5.解:因为当x=2时,多项式ax3-bx+1的值为-17,所以8a-2b+1=-17,所以8a-2b=-18.当x=-1时,12ax-3bx3-5=-12a+3b-5=(-12a+3b)-5=-3 2(8a-2b)-5=-32×(-18)-5=22.6.解:由x2-xy=-3,得2x2-2xy=-6①;由2xy-y2=-8,得6xy -3y2=-24②.①+②,得(2x2-2xy)+(6xy-3y2)=(-6)+(-24)=-30,即2x2+4xy-3y2=-30.7.解:(1)因为m2-mn=21,mn-n2=-12,所以m2-n2=(m2-mn)+(mn-n2)=21-12=9.(2)因为m2-mn=21,mn-n2=-12,所以m2-2mn+n2=(m2-mn)-(mn-n2)=21-(-12)=21+12=33.8.解:令x=0,得(0+1)3=d,所以d=1.再令x=1,得(1+1)3=a+b +c+d,所以a+b+c+d=8,所以a+b+c=8-1=7.专项训练二1.解:(1)对角两数的和相等.(2)其他三个数分别为:x+2,x+8,x+10,这四个数的和为x+(x+2)+(x+8)+(x+10)=4x+20.2.解:(1)十字框中的五个数的平均数与15相等.(2)这五个数的和能等于315.设正中间的数为x,则上面的数为x-10,下面的数为x+10,左边的数为x-2,右边的数为x+2.令x+(x-10)+(x+10)+(x-2)+(x+2)=315.解得x=63.这五个数分别是53、61、63、65、73.3.解:(1)平行四边形框中的5个数的和是平行四边形框中间的数的5倍;(2)适用.因为中间的数为a,所以其余4个数分别为a-12,a-6,a+6,a+12,它们的和为(a-12)+(a-6)+a+(a+6)+(a+12)=5a.4.(1)64;8;15(2)(n-1)2+1;n2;(2n-1)专项训练三1.解:(1)由题意可得:第二条边长为a+3b-2,第三条边长为a+3b-7.所以三角形的周长为(a+2b)+(a+3b-2)+(a+3b-7)=3a+8b-9.(2)当a=2,b=3时,三角形的周长=3×2+8×3-9=21.2.解:(1)S=23ab+12π×⎝⎛⎭⎪⎫a22=⎝⎛⎭⎪⎫23ab+π8a2(cm2).(2)当a=15,b=8时,S≈23×15×8+3.148×152≈168.31(cm2).3.解:(1)花圃的面积为40x+30x-x2=(70x-x2)(m2).(2)美化这块空地共需100(70x-x2)+50[30×40-(70x-x2)]=7 000x-100x2+60 000-3 500x+50x2=(-50x2+3 500x+60 000)(元).4.解:(1)第5个图形中有18颗黑色棋子,第n个图形中有3(n+1)颗黑色棋子.(2)设第n个图形中有2 016颗黑色棋子,根据(1)得3(n+1)=2 016,解得n=671,则第671个图形中有2 016颗黑色棋子.专项训练四1.解:(x3+2y3)-2(x3-2xy2+x2y)+(y3+4x2y-2xy2-2x3)=x3+2y3-2x3+4xy2-2x2y+y3+4x2y-2xy2-2x3=-3x3+3y3+2x2y+2xy2.因为x3-y3=19,x2y+xy2=21,所以原式=-3(x3-y3)+2(x2y+xy2)=-3×19+2×21=-15.点拨:本题最后逆用乘法分配律,变形后可整体代入求值.2.解:当x=2时,23×a-2b+5=4,即8a-2b=-1.当x=-2时,ax3-bx+5=(-2)3×a-(-2)×b+5=-8a+2b+5=-(8a-2b)+5=-(-1)+5=6.点拨:求多项式的值时,有时给出相应字母的值,直接求值;有时不能求出字母的值,就需要观察已知条件与所求式子之间的关系,将已知条件和所求式子经过适当变形后,整体代入求解.3.解:根据题图可知:x>0,y<-1,y<x,所以|y-x|=x-y,|y+1|=-1-y,|x|=x,所以|y-x|-3|y+1|-|x|=x-y+3+3y-x=2y+3.点拨:本题运用了数形结合思想.解答此类题应先确定绝对值符号内式子的正负,再去绝对值符号.4.解:上半部分的阴影面积为12a2-12π·⎝⎛⎭⎪⎫12a2=12a2-18πa2.下半部分的阴影面积为12a2-14a2=14a2.所以阴影部分的面积为14a2+12a2-18πa2=34a2-18πa2.点拨:本题运用了转化思想,把求一个不规则图形(阴影部分)的面积,转化为求几个规则图形(长方形、半圆、三角形)的面积的和或差,从而利用相应的面积公式求出阴影部分的面积.5.解:(1)如下表:层数 1 2 3 4 5 6该层对应的点数 1 6 12 18 24 30所有层的总点数 1 7 19 37 61 91 (2)由(1)知,只有第一层是1,其余层的点数都是6的倍数,所乘倍数正好比层数少1,所以第n层所对应的点数是6(n-1)(n≥2).。
排列图形的规律
二年级下册
排列图形的规律
南珠学校:彭丽
壁砖
竖
第一行壁砖 ,圆形图案排在最前面 第二行壁砖 ,在第一行排第一的圆形图案排到最后去了 第三行壁砖 ,在第二行排第一的菱形图案排到最后去了 第四行壁砖 ,在第三行排第一的三角形图案排到最后
第一小队: 第二小队: 第三小队:
第四小队:
第一小队:
第二小队:
第三小队:
第四小队:
(1)我不怕苦
不怕苦我
怕苦我不
(2)1234
苦我不怕 4123 3412
2341
试着画一画,你有什么发现?
1 2 3
4
5
第一行壁砖 :
第二行壁砖 :
第三行壁砖 :
第四行壁砖 :
第五行壁砖:
动物园开运动会
第一小队:
第二小队:
第三小队:
第四小队:
第一小队:
第二小队:
第三小队:
第四小队:
第一小队:
第二小队:
第三小队:
第四小队:
第一四小队:
第一小队小熊排在最前面 第二小队里,在第一小队里排第一的小熊跑到最后去了 第三小队里,在第二小队里排第一的小兔跑到最后去了 第四小队里,在第三小队排第一的猴子就要跑到最后去了
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专训2 图形中的排列规律
名师点金:图形中的排列规律都与它所处位置的序号有关,所以解题的切入点是:先设法列出关于序号的式子,再用关于序号的式子表示图形的变化规律.
图形变化规律探究
1.【2016·重庆】观察下列一组图形(如图),其中图形①中共有2颗星,图形②中共有6颗星,图形③中共有11颗星,图形④中共有17颗星,…,按此规律,图形⑧中星星的颗数是()
(第1题)
A.43
B.45
C.51
D.53
2.如图,一组“穿心箭”按如下规律排列,照此规律,画出第2 016支“穿心箭”是W.
(第2题)
图形个数规律探究
三角形个数规律探究
3.【2015·山西】如图是一组有规律的图案,它们是由边长相同的正方形和正三角形镶嵌而成.第1个图案有4个三角形,第2个图案有7个三角形,第3个图案有10个三角形……依此规律,第n个图案有个三角形(用含n的整式表示).
(第3题)
四边形个数规律探究
4.【2016·临沂】用大小相等的小正方形按一定规律拼成下列图形,则第n个图形中小正方形的个数是(
)
(第4题)
A.2n+1 2-1
C.(n+1)2-1
D.5n-2
5.【中考·金华】
一种长方形餐桌的四周可坐6人用餐,现把若干张这样的餐桌按如图所示方式进行拼接.
(2)若用餐的有90人,则需要这样的餐桌多少张?
点阵图形中个数规律探究
6.观察如图的点阵图形和与之相对应的等式,探究其中的规律:
①4×0+1=4×1-3;
②4×1+1=4×2-3;
③4×2+1=4×3-3;
④;
⑤W.
…
(第6题)
(1)请你在④和⑤后面的横线上分别写出相对应的等式;(2)通过猜想,写出与第n个图形相对应的等式.
答案
1.C点拨:设图形中星星的颗数是(n为自然数),
观察,发现规律:a1=1+1,a2=1+2+3,a3=1+2+3+5,a4=1+2+3+4+7,所以=+(2n-1).
令n=8,则a8=+2×8-1=51.
故选C.
2.
3.(3n+1) 点拨:方法1:因为4=1+3×1,7=1+3×2,10=1+3×3,…,所以第n个图案有1+3×n=(3n +1)个三角形.
方法2:因为4=4+0×3,7=4+1×3,10=4+2×3,…,所以第n个图案有4+(n-1 )×3=(3n+1)个三角形.
4.C点拨:由第1个图形中小正方形的个数是22-1、第2个图形中小正方形的个数是32-1、第3个图形中小正方形的个数是42-1,可知第n个图形中小正方形的个数是(n+1)2-1.
5.解:(1)1张长方形餐桌的四周可坐4+2=6(人),
2张长方形餐桌的四周可坐4×2+2=10(人),
3张长方形餐桌的四周可坐4×3+2=14(人),
…
n张长方形餐桌的四周可坐(4n+2)人.
所以4张长方形餐桌的四周可坐4×4+2=18(人),
8张长方形餐桌的四周可坐4×8+2=34(人).
(2)设需要这样的餐桌x张,由题意得4x+2=90,
解得x=22.
答:需要这样的餐桌22张.
6.解:(1)④4×3+1=4×4-3
⑤4×4+1=4×5-3
(2)4(n-1)+1=4n-3(n为正整数).
点拨:结合图形观察①、②、③等式左右两边,发现有规律可循.等式左边都是式子顺序数少1的4倍,再加上1;而等式右边,恰好是式子顺序数的4倍减3,这样④、⑤等式可以写出,进而我们可以归纳出第n个图形相对应的等式为4(n-1)+1=4n-3(n为正整数).。