2021届新高考版高考数学一轮复习课件:§1.1 集合(讲解部分)
高考数学复习考点知识专题讲解课件第1讲 集合
−1 > 1,
−1 ≥ 1,
[解析]由a-1<x<a+1,A⫋B得ቊ
或ቊ
解得2≤a≤4.
+ 1 < 5 + 1 ≤ 5,
课堂考点探究
探究点一
例1
集合的概念
C)
2
(1)设集合A={x∈Z||x|≤2},B={y|y=x +1,x∈A},则B中的元素有(
A.5个 B.4个 C.3个 D.无数个
(3)补集的运算性质:A∪(∁UA)=U;A∩(∁UA)= ⌀ ;∁U(∁UA)= A ;
∩
∁U(A∪B)=(∁UA)
(∁UB);∁U(A∩B)= (∁UA) ∪ (∁UB) .
课前基础巩固
【常用结论】
n
n
1.集合子集的个数:集合A中有n个元素,则集合A有2 个子集、2 -1个真子集、
n
n
2 -1个非空子集、2 -2个非空真子集.
[思路点拨] 求函数的定义域得集合A,根据包含关系建立不等式组求得结果.
≥
−2,
[解析]集合A={x|y= 4− 2 }={x|-2≤x≤2},因为B⊆A,所以ቊ
解得-2≤a≤1.
+ 1 ≤ 2,
故选C.
课堂考点探究
[总结反思]
(1)一般利用数轴法、Venn图法以及结构法判断两集合的关系,如果集合中含
2.针对具体问题,能在自然语言和图形语言的基础上,用符号语言刻画集合.
3.在具体情境中,了解全集与空集的含义.
4.理解集合之间包含与相等的含义,能识别给定集合的子集.
5.理解两个集合的并集与交集的含义,能求两个集合的并集与交集.
2021届新高考版高考数学一轮复习课件:§1.1 集合(讲解部分)
实践探究
例 (2016北京文,16)某网店统计了连续三天售出商品的种类情况:第一天
售出19种商品,第二天售出13种商品,第三天售出18种商品;前两天都售出
的商品有3种,后两天都售出的商品有4种,则该网店:
①第一天售出但第二天未售出的商品有
种;
②这三天售出的商品最少有
种.
解题导引 “网购”是现代购物的重要方式之一,本题以售出商品的种类 为背景,取材于人A必修113页的“阅读与思考——集合中元素的个数”, 考查了集合运算和Venn图等基本知识,同时也涉及化归与转化、数形结合 的数学思想. ①可以通过集合交、补运算确定元素个数;②中“三天共售出的商品种类 最少”应该是第三天与前二天售出的商品种类完全相同时,总的种类最少. 解析 ①设第一天售出的商品为集合A,则A中有19个元素,第二天售出的 商品为集合B,则B中有13个元素.由于前两天都售出的商品有3种,则A∩B 中有3个元素.如图所示, 所以该网店第一天售出但第二天未售出的商品有19-3=16(种). ②由①知,前两天售出的商品为19+13-3=29(种),当第三天售出的18种都是 前两天售出的商品时,这三天售出的商品种类最少,售出的商品最少为29种.
由图可知∁U(M∪N)=(∁UM)∩(∁UN)={2,7},故选B. (2)A={x|x2+x-2≤0}={x|-2≤x≤1},U=R,∴∁UA={x|x<-2或x>1},又B={x|x< 0},∴借助数轴可知(∁UA)∩B={x|x<-2}.故选C. 答案 (1)B (2)C
方法总结 集合的基本运算包括集合的交、并、补运算,解决此类运算问 题一般应注意以下几点:一是看集合的表示方法,用列举法表示的集合,易 用Venn图求解,用描述法表示的数集,常借助数轴分析得出结果,二是对集 合进行化简,有些集合是可以化简的,通过化简集合,可使问题变得简单明 了,易于解决.
2021年高考数学总复习核心突破第1章集合与充要条件1.1集合的概念课件
条件;
(3)韦恩图法:用一条封闭曲线直观地表示集合及其关系
的图形的方法;(韦恩图也叫文氏图)
(4)区间法:用区间表示集合的方法.如不等式的解集及函
数的定义域、值域等常用区间表示,但应注意的是包括区间
端点时用中括号,不包括区间端点时用小括号.(详见第二章)
③传递性:假设A⊂B,B⊂C,那么A⊂C.
(3)集合相等:假设A⊆B且B⊆A,那么称集合A与集合B
相等,记作A=B(事实上,当A与B所含元素完全一样时,A与B
相等).
注意:∈与⊆的区别,∅与{0}、{∅}的区别.
(4)子集个数:假设集合A中有n个元素,那么它有2n个
子集,有2n-1个真子集,有2n-2个非空真子集.
A.{1,2}⊆{1,2,3}
C.Z⊂R
E.{x|x>0}⊆{x|x>1}
【答案】E
)
B.{1,2}⊂{1,2,3}
D.{1}={x|x=1}
F.{x|x<0}⊂{x|x<1}
二、探究提高
【例1】 集合{(x,y)|y=x2+1}与集合{y|y=x2+1}是同一个
集合吗?请用图形把它们表示出来.
分析:用描述法表示集合,要先看元素的一般形式,了解
2.集合的元素
构成集合的对象叫做集合的元素,一般用小写拉丁字母
a,b,c,d,…表示.
说明:(1)集合中的元素满足确定性、互异性和无序性.其中确
定性指对任意一个元素a和集合A,元素a要么属于集合A,记作
a∈A;要么不属于集合A,记作a∉A.互异性指集合中的元素互不一
样.无序性是指集合中的各元素没有先后排列顺序,如集合{1,2}和
2023新高考数学一轮复习创新课件 第1章 第1讲 集合
7.(∁UA)∩(∁UB)=∁U(A∪B),(∁UA)∪(∁UB)=∁U(A∩B). 8.如图所示,用集合A,B表示图中Ⅰ,Ⅱ,Ⅲ,Ⅳ四个部分所表示 的集合分别是A∩B,A∩(∁UB),B∩(∁UA),∁U(A∪B).
9.用card(A)表示有限集合A中元素的个数.对任意两个有限集合A, B,有card(A∪B)=card(A)+card(B)-card(A∩B).
存在元素x∈B,且x∉A
20 _____A__B__或__B___A_______
表示 关系
文字语言
符号语言
任何一个集合是它本身的子集
A⊆A
结论
若A是B的子集,B是C的子集,则A A⊆B,B⊆C⇒ 21 _A_⊆__C__
是C的子集
空集是 22 _任__何___集合的子集,是 23 __任__何__非__空____集合的真子集
∅⊆A ∅ B(B≠∅)
3.集合的基本运算 并集
交集
补集
图形
符号
A∪B= 24 _{_x_|_x∈__A__,__ A∩B= 25 _{_x_|_x_∈__A_,__
_或__x_∈__B__}__
_且__x_∈__B_}__
∁UA= 26 __{_x_|x_∈__U_,___ _且__x_∉__A_}_
A.0
B.2
C.-2
D.1
解析 由题意得,当a=1时,P={1},当a≠1时,P={1,a};当b= -1时,Q={-1},当b≠-1时,Q={-1,b},因为P=Q,所以当且仅 当a=-1,b=1时,符合题意,故a-b=-2.故选C.
解析 答案
(3) 已 知 集 合 A = {x|(x + 1)(x - 6)≤0} , B = {x|m - 1≤x≤2m + 1} . 若 B⊆A,则实数m的取值范围为________.
第1章 第1讲集合的概念与运算-2021版高三数学(新高考)一轮复习课件共45张PPT
第一章 集合与常用逻辑用语
高考一轮总复习 • 数学 • 新高考
返回导航
[解析] (1)B={x|x∈A}={1,2,3}=A,故选 C.
(2)∵集合 A={x|x=sin n3π,n∈Z}={0, 23,- 23},且 B⊆A,∴集合 B 的个 数为 23=8,故选 C.
(3)解法一:(列举法),由题意知
高考一轮总复习 • 数学 • 新高考
返回导航
(2)(多选题)(2020·湖南长郡中学模拟改编)已知集合 M={y|y=x-|x|,x∈R},N
={y|y=(12)x,x∈R},则下列不正确的是(ABD )
A.M=N
B.N⊆M
C.M=∁RN
D.(∁RN)∩M=∅
(3)已知集合 A={x|x2-3x-10≤0},B={x|mx+10>0},若 A⊆B,则 m 的取值范
返回导航
(3)若 a+2=1,则 a=-1,A={1,0,1},不合题意;若(a+1)2=1,则 a=0 或-
2,当 a=0 时,A={2,1,3},当 a=-2 时,A={0,1,1},不合题意;若 a2+3a+3=1,
则 a=-1 或-2,显然都不合题意;因此 a=0,所以 2 0200=1.
∵1∉A,∴a+2≠1,∴a≠-1;(a+1)2≠1,解得 a≠0,-2;a2+3a+3≠1 解
A.(-1,1)
B.(1,2)
C.(-1,+∞)
D.(1,+∞)
[解析] 由题意得A∪B={x|x>-1},即A∪B=(-1,+∞),故选C.
第一章 集合与常用逻辑用语
高考一轮总复习 • 数学 • 新高考
返回导航
6. (2019·全国卷Ⅱ,5分)设集合A={x|x2-5x+6>0},B={x|x-1<0},则A∩B
新课标2023版高考数学一轮总复习第1章预备知识第1节集合课件
根据集合的运算结果求参数的值或范围的方法 (1)将集合中的运算关系转化为两个集合之间的关系.若集合中 的元素能一一列举,则用观察法得到不同集合中元素之间的关系;若 是与不等式有关的集合,则一般利用数轴解决,要注意端点值能否取 到. (2)将集合之间的关系转化为解方程(组)或不等式(组)问题求解.
1.设集合 A={(x,y)|x2+y2=1},B={(x,y)|x+y=1},则 A∩B
(5,6] 解析:因为 P 中恰有 3 个元素,所以 P={3,4,5},故 k 的取值范围为(5,6].
与集合中的元素有关问题的求解思路 (1)确定集合中元素的特征,即集合是数集还是点集或其他集合. (2)看清元素的限制条件. (3)根据限制条件求参数的值或确定集合中元素的个数,但要检 验参数是否满足集合元素的互异性.
1.A∪B=A⇔B⊆A. 2.A∩B=A⇔A⊆B. 3.∁U(∁UA)=A.
4.常用结论 (1)若有限集 A 中有 n 个元素,则 A 的子集有 2n 个,真子集有(2n -1)个,非空真子集有(2n-2)个. (2)子集的传递性:A⊆B,B⊆C⇒A⊆C. (3)∁U(A∩B)=(∁UA)∪(∁UB), ∁U(A∪B)=(∁UA)∩(∁UB).
(4)集合与集合间的基本关系 ①子集:集合A中任意一个元素都是集合B中的元素.用符号表 示为 A⊆B (或 B⊇A ). Venn图如图所示:
②真子集:集合 A⊆B,但存在元素 x∈B,且 x A.用符号表示 为:A B(或 B A).
Venn 图如图所示:
③集合相等:集合A的任何一个元素都是集合B的元素,同时集 合B的任何一个元素都是集合A的元素.用符号表示为 A=B .
1.设全集 U=R,则集合 M={0,1,2}和 N={x|x·(x-2)·log2x=0} 的关系可表示为( )
2021年新高考数学一轮专题复习第01讲-集合(解析版)
8.(2020·江苏省泰州中学高三月考)已知集合 A {x | 0 x 2} , B {x | x 1} ,则 A B ______
【答案】{x |1 x 2}
【解析】因为集合 A {x | 0 x 2} , B {x | x 1} , 所以 A B {x |1 x 2}. 故答案为:{x |1 x 2}
2.子集的传递性:A⊆B,B⊆C⇒A⊆C.
3.A⊆B⇔A∩B=A⇔A∪B=B⇔∁UA⊇∁UB. 4.∁U(A∩B)=(∁UA)∪(∁UB),∁U(A∪B)=(∁UA)∩(∁UB).
三、 经典例题
考点一 集合的基本概念
【例 1-1】(2020·全国高三一模(文))已知集合 A x x2 2ax 2a 0 ,若 A 中只有一个元素,则实数 a
④如果 a1 M , a2 M ,那么 a1 a2 M
其中,正确结论的序号是__________. 【答案】①③
【解析】对①:对 b 2n 1, n N ,
总是有 b 2n 1 n 12 n2 , n 1, n z ,故 B M ,则①正确;
对② c 2n, n N ,若 c 2n M ,则存在 x, y Z ,使得
A.30
B.31
C.62
【答案】A
【解析】因为集合 A x | x 6 且 x N* 1, 2,3, 4,5 ,
D.63
所以 A 的非空真子集的个数为 25 2 30 .
故选:A
【例 2-3】(2020·北京牛栏山一中高三月考)已知集合 A={-2,3,1},集合 B={3,m²}.若 B A,则实数 m 的
解不等式 lg x 1 1,得 0 x 1 10 ,解得 1 x 9 .
A x x 1或x 3 , B x 1 x 9 ,则 ðR A x 1 x 3 ,
2023年新高考数学一轮复习1-1 集合(知识点讲解)解析版
专题1.1 集合【知识框架】【核心素养】1.考查集合的概念、元素的性质,凸显数学抽象的核心素养.2.考查集合的基本关系,凸显数学运算、逻辑推理的核心素养.3.与不等式、数轴、Venn 图等相结合考查集合的运算,凸显数学运算、直观想象的核心素养.【知识点展示】1.元素与集合(1)集合元素的特性:确定性、互异性、无序性.(2)集合与元素的关系:若a 属于集合A ,记作a A ∈;若b 不属于集合A ,记作b A ∉. (3)集合的表示方法:列举法、描述法、区间法、图示法.(4)五个特定的集合及其关系图: N*或N +表示正整数集,N 表示自然数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.2.集合间的基本关系(1)子集:若对任意x∈A,都有x∈B,则A⊆B或B⊇A.(2)真子集:若A⊆B,且集合B中至少有一个元素不属于集合A,则A B或B A.(3)相等:若A⊆B,且B⊆A,则A=B.(4)空集的性质:∅是任何集合的子集,是任何非空集合的真子集.3.集合的基本运算求集合A的补集的前提是“A是全集U的子集”,集合A其实是给定的条件.从全集U中取出集合A的全部元素,剩下的元素构成的集合即为C U A.4.集合的运算性质(1)A∩A=A,A∩∅=∅,A∩B=B∩A.(2)A∪A=A,A∪∅=A,A∪B=B∪A.(3)A∩(C U A)=∅,A∪(C U A)=U,C U(C U A)=A.特别提醒:1.若有限集A中有n个元素,则A的子集有2n个,真子集有2n-1个.2.子集的传递性:A⊆B,B⊆C⇒A⊆C.3.A⊆B⇔A∩B=A⇔A∪B=B⇔C U A⊇C U B.4. C U(A∩B)=(C U A)∪(C U B),C U(A∪B)=(C U A)∩(C U B).【常考题型剖析】题型一集合的基本概念例1.(2018课标II 理2)已知集合(){}22,3,,A x y xy x y =+≤∈∈Z Z ,则A 中元素的个数为( )A .9B .8C .5D .4【答案】A方法二:根据集合A 的元素特征及圆的方程在坐标系中作出图形,如图,易知在圆x 2+y 2=3中有9个整点,即为集合A 的元素个数,故选A.【规律方法】与集合中的元素有关的问题的三种求解策略(1)研究一个用描述法表示的集合时,首先要看集合中的代表元素,然后再看元素的限制条件. (2)根据元素与集合的关系求参数时要注意检验集合中的元素是否满足互异性. (3)集合中的元素与方程有关时注意一次方程和一元二次方程的区别.例2.(2022·贵州·贵阳一中模拟预测(文))已知集合{}()()2,1,0,1,2,{Z 230},A B x x x =--=∈+-<∣则集合{},,z z xy x A y B =∈∈∣的元素个数为( ) A .6 B .7C .8D .9【答案】B 【解析】 【分析】化简集合B ,由条件确定{},,z z xy x A y B =∈∈∣的元素及其个数. 【详解】由()()023x x +-<解得23x -<<,所以{}1,0,1,2B =-.又{}2,1,0,1,2A =--所以{}{},,2,0,2,4,1,1,4z z xy x A y B =∈∈=---∣,共有7个元素, 故选:B.【规律方法】与集合元素有关问题的思路:(1)确定集合的元素是什么,即确定这个集合是数集还是点集. (2)看这些元素满足什么限制条件.(3)根据限制条件列式求参数的值或确定集合元素的个数,但要注意检验集合是否满足元素的互异性 题型二:集合间的基本关系例3.(2022·河南·开封市东信学校模拟预测)集合{0,1,2}A =的非空真子集的个数为( ) A .5 B .6 C .7 D .8【答案】B 【解析】 【分析】根据真子集的定义即可求解. 【详解】由题意可知,集合A 的非空真子集为{0},{1},{2},{0,1},{0,2},{1,2},共6个. 故选:B.【易错警示】空集是任何集合的子集,在涉及集合关系时,必须优先考虑空集的情况,否则会造成漏解. 例4.(2012·湖北省高考真题(文))已知集合{}{}2|320,,|05,A x x x x R B x x x N =-+=∈=<<∈,则满足条件A C B ⊆⊆的集合C 的个数为( ) A .1 B .2C .3D .4【答案】D 【解析】求解一元二次方程,得{}()(){}2|320,|120,A x x x x x x x x =-+=∈=--=∈R R {}1,2=,易知{}{}|05,1,2,3,4B x x x =<<∈=N .因为A C B ⊆⊆,所以根据子集的定义,集合C 必须含有元素1,2,且可能含有元素3,4, 原题即求集合{}3,4的子集个数,即有224=个,故选D. 【方法技巧】(1)判断两集合之间的关系的方法:当两集合不含参数时,可直接利用数轴、图示法进行判断;当集合中含有参数时,需要对满足条件的参数进行分类讨论或采用列举法.(2)要确定非空集合A 的子集的个数,需先确定集合A 中的元素的个数,再求解.不要忽略任何非空集合是它自身的子集.(3)根据集合间的关系求参数值(或取值范围)的关键是将条件转化为元素或区间端点间的关系,进而转化为参数所满足的关系,常用数轴、图示法来解决这类问题. 题型三:集合的基本运算例5.(2022·全国·高考真题(文))设集合5{2,1,0,1,2},02A B xx ⎧⎫=--=≤<⎨⎬⎩⎭∣,则A B =( ) A .{}0,1,2 B .{2,1,0}-- C .{0,1} D .{1,2}【答案】A 【解析】 【分析】根据集合的交集运算即可解出. 【详解】因为{}2,1,0,1,2A =--,502B x x ⎧⎫=≤<⎨⎬⎩⎭∣,所以{}0,1,2A B =. 故选:A.例6.(2022·全国·高考真题(理))设全集{2,1,0,1,2,3}U =--,集合{}2{1,2},430A B xx x =-=-+=∣,则()UA B ⋃=( )A .{1,3}B .{0,3}C .{2,1}-D .{2,0}-【答案】D 【解析】 【分析】解方程求出集合B ,再由集合的运算即可得解.【详解】由题意,{}{}2=4301,3B x x x -+==,所以{}1,1,2,3A B ⋃=-,所以(){}U2,0A B ⋃=-.故选:D.例7.(2022·全国·高考真题(理))设全集{1,2,3,4,5}U =,集合M 满足{1,3}U M =,则( ) A .2M ∈B .3M ∈C .4M ∉D .5M ∉【答案】A 【解析】 【分析】先写出集合M ,然后逐项验证即可 【详解】由题知{2,4,5}M =,对比选项知,A 正确,BCD 错误 故选:A例8.(2020·全国高考真题(理))已知集合{(,)|,,}A x y x y y x =∈≥*N ,{(,)|8}B x y x y =+=,则A B 中元素的个数为( ) A .2 B .3C .4D .6【答案】C 【解析】采用列举法列举出A B 中元素的即可.【详解】由题意,A B 中的元素满足8y x x y ≥⎧⎨+=⎩,且*,x y N ∈,由82x y x +=≥,得4x ≤,所以满足8x y +=的有(1,7),(2,6),(3,5),(4,4), 故AB 中元素的个数为4.故选:C. 【规律方法】 如何解集合运算问题(1)看元素构成:集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的关键.(2)对集合化简:有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了、易于解决. (3)应用数形结合:常用的数形结合形式有数轴、坐标系和Venn 图.(4)创新性问题:以集合为依托,对集合的定义、运算、性质进行创新考查,但最终化为原来的集合知识和相应数学知识来解决.题型四:利用集合的运算求参数例9.(2020·全国高考真题(理))设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =( )A .–4B .–2C .2D .4【答案】B 【解析】由题意首先求得集合A ,B ,然后结合交集的结果得到关于a 的方程,求解方程即可确定实数a 的值. 【详解】求解二次不等式240x -≤可得:{}2|2A x x -=≤≤, 求解一次不等式20x a +≤可得:|2a B x x ⎧⎫=≤-⎨⎬⎩⎭. 由于{}|21A B x x ⋂=-≤≤,故:12a-=,解得:2a =-. 故选:B. 【方法规律】利用集合的运算求参数的值或取值范围的方法①与不等式有关的集合,一般利用数轴解决,要注意端点值能否取到;①若集合能一一列举,则一般先用观察法得到不同集合中元素之间的关系,再列方程(组)求解.例10.(2022·山西运城·高二阶段练习)设集合{23},{}A x x B x x a =-<<=>,若R A B ⋂=∅,则实数a 的取值范围为____. 【答案】2a ≤- 【解析】 【分析】 先求出RB ,则RA B ⋂=∅,{23}A x x =-<<,由分析即可求出a 的取值范围.【详解】RB {}x x a =≤,又因为RA B ⋂=∅,{23}A x x =-<<,所以2a ≤-.故答案为:2a ≤-.【易错提醒】(1)认清元素的属性.解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.(2)注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致错误.(3)防范空集.在解决有关,A B A B ⋂=∅⊆等集合问题时,往往容易忽略空集的情况,一定要先考虑∅时是否成立,以防漏解.题型五:集合的新定义问题例11.(2015·湖北高考真题(理))已知集合A ={(x,y)|x 2+y 2≤1, x,y ∈Z},B ={(x,y)| |x|≤2 , |y|≤2, x,y ∈Z},定义集合A ⊕B ={(x 1+x 2,y 1+y 2)|(x 1,y 1)∈A, (x 2,y 2)∈B},则A ⊕B 中元素的个数为( )A .77B .49C .45D .30 【答案】C 【解析】因为集合A ={(x,y)|x 2+y 2≤1, x,y ∈Z},所以集合中有9个元素(即9个点),即图中圆中的整点,集合B ={(x,y)| |x|≤2 , |y|≤2, x,y ∈Z}中有25个元素(即25个点):即图中正方形中的整点,集合A ⊕B ={(x 1+x 2,y 1+y 2)|(x 1,y 1)∈A, (x 2,y 2)∈B}的元素可看作正方形中的整点(除去四个顶点),即个.例12. (2021·江西·丰城九中高二阶段练习)已知非空集合,A B 满足下列四个条件:①{}1,2,3,4,5,6,7A B =;①A B =∅;③A 中的元素个数不是A 中的元素;④B 中的元素个数不是B 中的元素.(1)若集合A 中只有1个元素,则A =________;(2)若两个集合A 和B 按顺序组成的集合对()A B ,叫作有序集合对,则有序集合对(),A B 的个数是________.【答案】 {6} 32 【解析】 【分析】根据给定信息,分析集合A ,B 不能取的元素即可得解;按集合A 中元素个数分类计算作答. 【详解】(1)因{}1,2,3,4,5,6,7A B =,A B =∅,则集合A ,B 的元素个数和为7,而集合A 中只有1个元素,则集合B 中有6个元素,又B 中的元素个数不是B 中的元素,即6B ∉, 所以{6}A =;(2)集合A 中有1个元素时,由(1)知{6}A =,{1,2,3,4,5,7}B =,则有序集合对(),A B 有1个,集合A 中有2个元素时,即2,5A B ∉∉,则{5,},{1,3,4,6,7}A a a =∈,有序集合对(),A B 有15C 5=个,集合A 中有3个元素时,即3,4A B ∉∉,则{4,,},,{1,2,5,6,7}A a b a b =∈,有序集合对(),A B 有25C 10=个,集合A 中有4个元素时,即4,3A B ∉∉,则{3,,,},,,{1,2,5,6,7}A a b c a b c =∈,有序集合对(),A B 有35C 10=个,集合A 中有5个元素时,即5,2A B ∉∉,则{2,,,,},,,,{1,3,4,6,7}A a b c d a b c d =∈,有序集合对(),A B 有45C 5=个,集合A 中有6个元素时,即6,1A B ∉∉,则{1,,,,,},,,,,{2,3,4,5,7}A a b c d e a b c d e =∈,有序集合对(),A B 有55C 1=个,所以有序集合对()A B ,的个数是1+5+10+10+5+1=32. 故答案为:{6};32 【方法技巧】解决集合新定义问题的方法(1)正确理解新定义:耐心阅读,分析含义,准确提取信息是解决这类问题的前提,剥去新定义、新法则、新运算的外表,利用所学的集合性质等知识将陌生的集合转化为我们熟悉的集合,是解决这类问题的突破口.(2)合理利用集合性质:运用集合的性质(如元素的性质、集合的运算性质等)是破解新定义型集合问题的关键.在解题时要善于从题设条件给出的数式中发现可以使用集合性质的一些因素,并合理利用.(3)对于选择题,可结合选项,通过验证、排除、对比、特值法等进行求解或排除错误选项,当不满足新定义的要求时,只需通过举反例来说明,以达到快速判断结果的目的.。
新高考数学人教A版一轮总复习课件1.1集合应用篇
例 (2016北京文,14)某网店统计了连续三天售出商品的种类情况:第一
天售出19种商品,第二天售出13种商品,第三天售出18种商品;前两天都售
出的商品有3种,后两天都售出的商品有4种,则该网店:
①第一天售出但第二天未售出的商品有
种;
②这三天售出的商品最少有
种.
解题导引 “网购”是现代购物的重要方式之一,本题以售出商品的种
由图知该网店第一天售出但第二天未售出的商品有19-3=16(种). ②由①知,前两天售出的商品有19+13-3=29(种),当第三天售出的18种都 是前两天售出的商品时,这三天售出的商品种类最少,售出的商品最少有 29种.
答案 ①16 ②29
方法总结 本题实际上是把实际问题用集合的符号语言及图形语言表 示出来,体现数学的转化与化归思想,这与数学抽象、逻辑推理等学科核 心素养是紧密关联的,在强调核心素养的大环境下,需关注此类问题.解决 此类问题的关键是灵活运用Venn图.
类为背景,考查了集合运算和Venn图等基本知识,同时也涉及转化与化
归、数形结合的数学思想.
①可以通过集合交、补运算确定元素个数;②中三天与前两天售出的商品种类完全相同时,总的种类最少.
解析 ①设第一天售出的商品为集合A,则A中有19个元素,第二天售出的 商品为集合B,则B中有13个元素.由于前两天都售出的商品有3种,则A∩B 中有3个元素,如图所示,
2023年新高考数学一轮复习1-1 集合(真题测试)解析版
专题1.1集合(真题测试)一、单选题1.(2022·全国·高考真题(文))集合{}{}2,4,6,8,10,16M N x x ==-<<,则M N =( )A .{2,4}B .{2,4,6}C .{2,4,6,8}D .{2,4,6,8,10}2.(2021·全国高考真题(理))已知集合{}21,S s s n n ==+∈Z ,{}41,T t t n n ==+∈Z ,则ST ( )A .∅B .SC .TD .Z3.(2022·辽宁·鞍山一中模拟预测)设全集{}22,4,U a =,集合{}4,2A a =+,{}UA a =,则实数a 的值为( ) A .0B .-1C .2D .0或24.(2021·全国·高考真题(理))设集合{}104,53M x x N x x ⎧⎫=<<=≤≤⎨⎬⎩⎭,则MN =( )A .103x x ⎧⎫<≤⎨⎬⎩⎭B .143x x ⎧⎫≤<⎨⎬⎩⎭C .{}45x x ≤<D .{}05x x <≤5.(2021·全国·高考真题(理))已知集合{}21,S s s n n ==+∈Z ,{}41,T t t n n ==+∈Z ,则S T ( )A .∅B .SC .TD .Z6.(2021·全国·高考真题)设集合{1,2,3,4,5,6},{1,3,6},{2,3,4}U A B ===,则()UA B =( )A .{3}B .{1,6}C .{5,6}D .{1,3}7.(2021·江苏·高考真题)已知集合{}1,3M =,{}1,3N a =-,若{}1,2,3M N =,则a 的值是( )A .-2B .-1C .0D .18.(2020·全国高考真题(文))已知集合A ={x ||x |<3,x ∈Z },B ={x ||x |>1,x ∈Z },则A ∩B =( ) A .∅ B .{–3,–2,2,3) C .{–2,0,2}D .{–2,2}9.(2020·全国高考真题(理))已知集合U ={−2,−1,0,1,2,3},A ={−1,0,1},B ={1,2},则()UA B ⋃=( )A .{−2,3}B .{−2,2,3}C .{−2,−1,0,3}D .{−2,−1,0,2,3}10.(2022·福建省德化第一中学高二阶段练习)设集合(){},A x y y x ==,(){}22,1B x y xy =+=,则A B 的子集的个数是( )A .2B .3C .4D .511.(2022·北京·高考真题)已知全集{33}U x x =-<<,集合{21}A x x =-<≤,则UA ( )A .(2,1]-B .(3,2)[1,3)--C .[2,1)-D .(3,2](1,3)--12.(2022·浙江·高考真题)设集合{1,2},{2,4,6}A B ==,则A B ⋃=( ) A .{2}B .{1,2}C .{2,4,6}D .{1,2,4,6}13.(2022年普通高等学校统一模拟招生考试新未来4月联考理科数学试题)已知全集R U =,集合{}|2,1x A y y x ==>,{}|24B x x =-<<,则图中阴影部分表示的集合为( )A .[2,2]-B .(2,2)-C .(2,2]-D .[2,2)-14.(2022·贵州·贵阳一中高三阶段练习(理))已知集合{2,1,0,1,2}A =--,203x B x Zx ⎧⎫+=∈<⎨⎬-⎩⎭∣,则集合{},,z z xy x A y B =∈∈的元素个数为( )A .6B .7C .8D .915.(2021·全国·高考真题(文))已知全集{}1,2,3,4,5U =,集合{}{}1,2,3,4M N ==,则()U M N ⋃=( ) A .{}5B .{}1,2C .{}3,4D .{}1,2,3,416.(2021·北京·高考真题)已知集合{}|11A x x =-<<,{}|02B x x =≤≤,则A B ⋃=( ) A .{}|12x x -<< B .{}|12x x -<≤ C .{}|01x x ≤<D .{}|02x x ≤≤17.(2022·全国·高考真题)已知集合{}{}1,1,2,4,11A B x x =-=-≤,则A B =( ) A .{1,2}-B .{1,2}C .{1,4}D .{1,4}-18.(2022·全国·高考真题)若集合{4},{31}M xN x x =<=≥∣,则M N =( )A .{}02x x ≤<B .123x x ⎧⎫≤<⎨⎬⎩⎭C .{}316x x ≤<D .1163x x ⎧⎫≤<⎨⎬⎩⎭二、填空题19.(2022·上海·高考真题)已知(1,2)A =-,(1,3)B =,则A B =________20.(2022·安徽·高一期中)设集合12|3A x N y N x ⎧⎫=∈=∈⎨⎬+⎩⎭,则集合A 的子集个数为________ 21.(2022·北京八中高二阶段练习)给定数集M ,若对于任意a 、b M ∈,有a b M ,且a b M -∈,则称集合M 为闭集合,则下列所有正确命题的序号是______: ①集合{}2,1,0,1,2M =--是闭集合; ②正整数集是闭集合;③集合{}3,Z M n n k k ==∈是闭集合; ④若集合1A 、2A 为闭集合,则12A A ⋃为闭集合.。
新高考数学复习考点知识与题型专题讲解1---集合的概念(解析版)
新高考数学复习考点知识与题型专题讲解1 集合的概念考点知识讲解1 元素与集合1.元素与集合的概念(1)元素:一般地,把统称为元素.元素常用小写的拉丁字母a,b,c,…表示.(2)集合:把一些元素组成的叫做集合(简称为__).集合通常用大写的拉丁字母A,B,C,…表示.(3)集合相等:只要构成两个集合的是一样的,就称这两个集合是相等的.(4)元素的特性:、、.答案:(1)研究对象(2)总体集(3)元素(4)确定性无序性互异性2.元素与集合的关系答案:∈∈NN*或N+ZQR考点知识讲解2 集合的表示方法1.列举法把集合的元素出来,并用花括号“{}”括起来表示集合的方法叫做列举法.温馨提示:运用列举法表示集合,应注意:(1)元素间用“,”分隔,不能用其它符号代替;(2)元素不重复;(3)元素间无顺序;(4)“{}”表示“所有”、“整体”的含义,不能省略2.描述法(1)定义:用集合所含元素的表示集合的方法称为描述法.(2)书写形式:,其中x代表集合中的元素,p(x)为集合中元素所具备的共同特征.要注意竖线不能省略,同时表达要力求简练、明确.答案:一一列举共同特征{x|p(x)}题型一对集合含义的理解1.考察下列每组对象,能构成集合的是()①中国各地最美的乡村;②直角坐标系中横、纵坐标相等的点;③不小于3的自然数;④2018年第23届冬季奥运会金牌获得者.A.③④B.②③④C.②③D.②④【答案】B【解析】①中“最美”标准不明确,不符合确定性,②③④中的元素标准明确,均可构成集合.故选:B.2.下列每组对象能构成一个集合是________(填序号).(1)某校2019年在校的所有高个子同学;(2)不超过20的非负数;(3)帅哥;(4)平面直角坐标系内第一象限的一些点;(5.【答案】(2)【解析】(1)“高个子”没有明确的标准,因此(1)不能构成集合. (2)任给一个实数x,可以明确地判断是不是“不超过20的非负数”,故“不超过20的非负数”能构成集合;(3)“帅哥”没有一个明确的标准,因此不能构成集合;(4)“一些点”无明确的标准,因此不能构成集合;(5)”不明确精确到什么程度,所以不能构成集合.故答案为:(2)题型二元素与集合的关系3.下面有四个语句:①集合N*中最小的数是0;②-a∉N,则a∈N;③a∈N,b∈N,则a+b的最小值是2;④x2+1=2x的解集中含有两个元素.其中说法正确的个数是()A.0B.1C.2D.3【答案】A【解析】因为N*是不含0的自然数,所以①错误;取a∉N,∉N,所以②错误;对于③,当a =b =0时,a +b 取得最小值是0,而不是2,所以③错误; 对于④,解集中只含有元素1,故④错误. 故选:A4.下列各组中集合P 与Q ,表示同一个集合的是( )A .P 是由元素1π构成的集合,Q 是由元素π,1,|构成的集合B .P 是由π构成的集合,Q 是由3.141 59构成的集合C .P 是由2,3构成的集合,Q 是由有序数对(2,3)构成的集合D .P 是由满足不等式-1≤x ≤1的整数构成的集合,Q 是由方程x ()()1-1x x +=0的解构成的集合 【答案】AD【解析】由于A ,D 中P ,Q 的元素完全相同,所以P 与Q 表示同一个集合,而B ,C 中P ,Q 的元素不相同,所以P 与Q 不能表示同一个集合.故选:AD. 题型三 元素的特性的应用5.已知集合A ={x ∈Z|2x -4x -5<0},B ={x|4x >2m },若A∩B 有三个元素,则实数m 的取值范围是( )A .[3,6)B .[1,2)C .[2,4)D .(2,4] 【答案】C【解析】∵A ={x ∈Z|-1<x<5}={0,1,2,3,4},B ={x|x>},A∩B 有三个元素,∴1≤<2,即2≤m<4. 故答案为C6.设a ,b ∈R ,集合A 中含有0,b ,ba三个元素,集合B 中含有1,a ,a +b 三个元素,且集合A 与集合B 相等,则a +2b =( )A .1B .0C .﹣1D .不确定 【答案】A【解析】由题意可知a ≠0,则只能a +b =0,则有以下对应关系:01a b b a a b +=⎧⎪⎪=⎨⎪=⎪⎩①或01a b b a b a⎧⎪+=⎪=⎨⎪⎪=⎩②; 由①得a =﹣1,b =1,符合题意; ②无解;则a +2b =﹣1+2=1. 故选:A题型四 用列举法表示集合 7.集合M ={61aN a ∈+,且a Z ∈},用列举法表示集合M =______________ 【答案】{}0,1,2,5 【解析】61N a ∈+016a ∴<+≤,即15a -<≤ 又a Z ∈0a ∴=时,661N a =∈+;1a =时,631N a =∈+;2a =时,621N a =∈+; 3a =时,6312N a =∉+;4a =时,6615N a =∉+;5a =时,611N a =∈+ {}0,1,2,5M ∴=本题正确结果:{}0,1,2,5 8.根据要求写出下列集合.(1)已知{}25|50x x ax -∈--=,用列举法表示集合{}2|40x x x a --=. (2)已知集合16|8A N x N x ⎧⎫=∈∈⎨⎬-⎩⎭,用列举法表示集合A .(3)已知方程组10240x y x y -+=⎧⎨+-=⎩,分别用描述法、列举法表示该集合.(4)已知集合B ={(x ,y )|2x +y -5=0,x ∈N ,y ∈N },用列举法表示该集合. (5)用适当的方法表示坐标平面内坐标轴上的点集.【答案】(1){2};(2){2,4,8,16};(3){(x ,y )|x =1,y =2},{(1,2)};(4){(0,5),(1,3),(2,1)};(5){(x ,y )|xy =0}. 【解析】(1){}25|50x x ax -∈--=,()()25550a ∴--⨯--=,解得4a =-,2440x x -+=的解为2x =,∴用列举法表示集合{}2|40x x x a --=为{}2;(2)168N x∈-,则8x -可取的值有1,2,4,8,16,x 的可能值有7,6,4,0,8-, x N ∈,7,6,4,0x ∴=,162,4,8,168x∴=-, {}2,4,8,16A ∴=;(3)方程组10240x y x y -+=⎧⎨+-=⎩的解为12x y =⎧⎨=⎩,∴用描述法表示该集合为(){},1,2x y x y ==,列举法表示该集合为(){}1,2;(4)当0x =时,5y =;当1x =时,3y =;当2x =时,1y =,∴用列举法表示该集合为()()(){}0,5,1,3,2,1;(5)坐标轴上的点满足0x =或0y =,即0xy =, 则该集合可表示为(){},0x y xy =.题型五 用描述法表示集合9.用列举法表示集合**{(,)|5,,}A x y x y x y =+=∈∈N N 是_____________________;用描述法表示“所有被4除余1的整数组成的集合”是_____________________. 【答案】()()()(){}1,42,33,24,1,,,{}41z x z x k k ∈=+∈,【解析】由题意{(1,4),(2,3),(3,2),(4,1)}A =,所有被4除余1的整数组成的集合为{|41,}x Z x k k Z ∈=+∈.故答案为:{(1,4),(2,3),(3,2),(4,1)};{|41,}x Z x k k Z ∈=+∈ 题型六 集合表示方法的综合应用10. (1)用列举法表示集合A =⎩⎨⎧⎭⎬⎫x|x ∈Z ,且86-x ∈N =________.(2)集合A ={x ∈R |kx 2-8x +16=0},若集合A 中只有一个元素,试求实数k 的值,并用列举法表示集合A .(1)解析 ∵x ∈Z 且86-x ∈N ,∴1≤6-x ≤8,-2≤x ≤5.当x =-2时,1∈N ;当x =-1时,87∉N ;当x=0时,43∉N ;当x =1时,85∉N ;当x =2时,2∈N ;当x =3时,83∉N ;当x =4时,4∈N ;当x =5时,8∈N .综上可知A ={-2,2,4,5}. 答案 {-2,2,4,5} 1.下列集合中,结果是空集的是( ) A .{x ∈R |x 2-1=0}B .{x |x >6或x <1} C .{(x ,y )|x 2+y 2=0}D .{x |x >6且x <1} 【答案】D【解析】A 选项:21{|10}x R x ±∈∈-=,不是空集;B 选项:7∃∈{x |x >6或x <1},不是空集;C 选项:(0,0)∈{(x ,y )|x 2+y 2=0},不是空集;D 选项:不存在既大于6又小于1的数, 即:{x |x >6且x <1}=∅. 故选:D2.下面有四个语句:①集合N*中最小的数是0;②-a∉N,则a∈N;③a∈N,b∈N,则a+b的最小值是2;④x2+1=2x的解集中含有两个元素.其中说法正确的个数是()A.0B.1C.2D.3【答案】A【解析】因为N*是不含0的自然数,所以①错误;取a∉N,∉N,所以②错误;对于③,当a=b=0时,a+b取得最小值是0,而不是2,所以③错误;对于④,解集中只含有元素1,故④错误.故选:A3.下列各组对象:①接近于0的数的全体;②比较小的正整数全体;③平面上到点O的距离等于1的点的全体;④正三角形的全体;.其中能构成集合的组数有()A.2组B.3组C.4组D.5组【答案】A【解析】①“接近于0的数的全体”的对象不确定,不能构成集合;②“比较小的正整数全体”的对象不确定,不能构成集合;③“平面上到点O的距离等于1的点的全体”的对象是确定的,能构成集合;④“正三角形的全体”的对象是确定的,能构成集合;⑤的近似值的全体的对象”不确定,不能构成集合;故③④正确.故选:A.4.下列各组中集合P 与Q ,表示同一个集合的是( )A .P 是由元素1π构成的集合,Q 是由元素π,1,|构成的集合B .P 是由π构成的集合,Q 是由3.141 59构成的集合C .P 是由2,3构成的集合,Q 是由有序数对(2,3)构成的集合D .P 是由满足不等式-1≤x ≤1的整数构成的集合,Q 是由方程x ()()1-1x x +=0的解构成的集合 【答案】AD【解析】由于A ,D 中P ,Q 的元素完全相同,所以P 与Q 表示同一个集合,而B ,C 中P ,Q 的元素不相同,所以P 与Q 不能表示同一个集合.故选:AD. 5.下列各组中的M ,P 表示同一集合的是( ) A .M ={3,-1},P ={(3,-1)} B .M ={(3,1)},P ={(1,3)} C .M ={y |y =x -1},P ={t |t =x -1}D .集合M ={m |m +1≥5},P ={y |y =x 2+2x +5,x ∈R } 【答案】CD【解析】在A 中,M ={3,-1}是数集,P ={(3,-1)}是点集,二者不是同一集合,故错误;在B 中,M ={(3,1)},P ={(1,3)}表示的不是同一个点的集合,二者不是同一集合,故错误;在C 中,M ={y |y =x -1}={y |y ≥-1},P ={t |t =x -1}={t |t ≥-1},二者表示同一集合,故正确;在D 中,M ={m |m ≥4,m ∈R },即M 中元素为大于或等于4的所有实数,P ={y |y =(x +1)2+4},y =(x +1)2+4≥4,所以P 中元素也为大于或等于4的所有实数,故M ,P 表示同一集合,故正确. 故选:CD 6.定义集合运算(){}|,,AB z z xy x y x A y B ==+∈∈,集合{}{}0,1,2,3A B ==,则集合A B 所有元素之和为________【答案】18【解析】当0,2,0==∴=x y z 当1,2,6==∴=x y z 当0,3,0==∴=x y z 当1,3,12==∴=x y z 和为0+6+12=18 故答案为:187.下列命题正确的个数__ (1)很小的实数可以构成集合;(2)集合{y |y =x 2﹣1}与集合{(x ,y )|y =x 2﹣1}是同一个集合; (3)1,361,,||,0.5242-,这些数组成的集合有5个元素; (4)集合{(x ,y )|xy ≤0,x ,y ∈R }是指第二和第四象限内的点集. 【答案】0【解析】解:对于(1)很小的实数不满足集合中元素的确定性,所以(1)不正确.对于(2)集合{y |y =x 2﹣1}表示的是函数y =x 2﹣1的值域,而集合{(x ,y )|y =x 2﹣1}表示的是y =x 2﹣1图象上的点,故(2)不正确;对于(3):因为3624=,10.52-=,不满足集合中的元素是互异的,故(3)不正确; 对于(4)集合{(x ,y )|xy ≤0,x ,y ∈R }是指第二和第四象限内的点集及两个坐标轴上的点,故(4)不正确, 故答案为:0.8.设A 是由一些实数构成的集合,若a ∈A ,则11a - ∈A ,且1∉A , (1)若3∈A ,求A .(2)证明:若a ∈A ,则11A a -∈. 【答案】(1)123,,23A ⎧⎫=-⎨⎬⎩⎭;(2)证明见解析. 【解析】(1)因为3∈A , 所以11132A =-∈-, 所以12131()2A =∈--, 所以13213A =∈-, 所以123,,23A ⎧⎫=-⎨⎬⎩⎭. (2)因为a ∈A , 所以11A a∈-, 所以1111111a A a a a -==-∈---. 9.已知集合{}2320,,A x ax x x R a R =-+=∈∈.(1)若A 是空集,求a 的取值范围;(2)若A 中只有一个元素,求a 的值,并求集合A ;(3)若A 中至多有一个元素,求a 的取值范围 【答案】(1)9,8⎛⎫+∞ ⎪⎝⎭;(2)当0a =时,23A ⎧⎫=⎨⎬⎩⎭;当98a =时,43A ⎧⎫=⎨⎬⎩⎭;(3){}90,8⎡⎫⋃+∞⎪⎢⎣⎭. 【解析】(1)若A 是空集,则方程ax 2﹣3x +2=0无解此时0,a ≠∆=9-8a <0即a 98> 所以a 的取值范围为9,8⎛⎫+∞ ⎪⎝⎭(2)若A 中只有一个元素则方程ax 2﹣3x +2=0有且只有一个实根当a =0时方程为一元一次方程,满足条件当a ≠0,此时∆=9﹣8a =0,解得:a 98=∴a =0或a 98= 当0a =时,23A ⎧⎫=⎨⎬⎩⎭;当98a =时,43A ⎧⎫=⎨⎬⎩⎭(3)若A 中至多只有一个元素,则A 为空集,或有且只有一个元素 由(1),(2)得满足条件的a 的取值范围是{}90,8⎡⎫⋃+∞⎪⎢⎣⎭.。
2021新高考数学一轮复习 第01章 1.1 集 合
§1.1集合1.集合与元素(1)集合中元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、图示法.(4)常见数集的记法集合自然数集正整数集整数集有理数集实数集符号N N*(或N+)Z Q R2.集合的基本关系(1)子集:若对于任意的x∈A都有x∈B,则A⊆B;(2)真子集:若A⊆B,且A≠B,则A B;(3)相等:若A⊆B,且B⊆A,则A=B;(4)∅是任何集合的子集,是任何非空集合的真子集.3.集合的基本运算表示运算文字语言集合语言图形语言记法交集属于A且属于B的所有元素组成的集合{x|x∈A,且x∈B} A∩B并集属于A或属于B的元素组成的集合{x|x∈A,或x∈B} A∪B概念方法微思考1.若一个集合A有n个元素,则集合A有几个子集,几个真子集.提示2n,2n-1.2.从A∩B=A,A∪B=A中可以分别得到集合A,B有什么关系?提示A∩B=A⇔A⊆B,A∪B=A⇔B⊆A.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)任何一个集合都至少有两个子集.(×)(2){x|y=x2+1}={y|y=x2+1}={(x,y)|y=x2+1}.(×)(3)若{x2,1}={0,1},则x=0,1.(×)(4)若P∩M=P∩N=A,则A⊆(M∩N).(√)题组二教材改编2.若集合A={x∈N|x≤ 2 021},a=22,则下列结论正确的是()A.{a}⊆A B.a⊆AC.{a}∈A D.a∉A答案 D3.已知集合A={a,b},若A∪B={a,b,c},满足条件的集合B有________个.答案 4解析因为(A∪B)⊇B,A={a,b},所以满足条件的集合B可以是{c},{a,c},{b,c},{a,b,c},所以满足条件的集合B有4个.4.设全集U=R,集合A={x|0≤x≤2},B={y|1≤y≤3},则(∁U A)∪B=________.答案(-∞,0)∪[1,+∞)解析因为∁U A={x|x>2或x<0},B={y|1≤y≤3},所以(∁U A)∪B=(-∞,0)∪[1,+∞).题组三易错自纠5.(多选)已知集合A={x|x2-2x=0},则有()A.∅⊆A B.-2∈AC.{0,2}⊆A D.A⊆{y|y<3}答案ACD解析易知A={0,2},A,C,D均正确.6.已知集合A={1,3,m},B={1,m},若B⊆A,则m=________.答案0或3解析因为B⊆A,所以m=3或m=m.即m=3或m=0或m=1,根据集合元素的互异性可知m≠1,所以m=0或3.7.已知集合M={x|x-a=0},N={x|ax-1=0},若M∩N=N,则实数a的值是________.答案0或1或-1解析易得M={a}.∵M∩N=N,∴N⊆M,∴N=∅或N=M,∴a=0或a=±1.集合的含义与表示1.已知集合A ={0,1,2},则集合B ={(x ,y )|x ≥y ,x ∈A ,y ∈A }中元素的个数是( ) A .1 B .3 C .6 D .9 答案 C解析 当x =0时,y =0;当x =1时,y =0或y =1; 当x =2时,y =0,1,2.故集合B ={(0,0),(1,0),(1,1),(2,0),(2,1),(2,2)},即集合B 中有6个元素.2.已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈Z ⎪⎪32-x ∈Z,则集合A 中的元素个数为( ) A .2 B .3 C .4 D .5 答案 C 解析 因为32-x∈Z ,且x ∈Z ,所以2-x 的取值有-3,-1,1,3,所以x 的值分别为5,3,1,-1,故集合A 中的元素个数为4. 3.给出下列四个命题: ①{(x ,y )|x =1或y =2}={1,2};②{x |x =3k +1,k ∈Z }={x |x =3k -2,k ∈Z };③由英文单词“apple ”中的所有字母组成的集合有15个真子集;④设2 021∈{x ,x 2,x 2},则满足条件的所有x 组成的集合的真子集的个数为3. 其中正确的命题是________.(填序号) 答案 ②③④解析 ①中左边集合表示横坐标为1,或纵坐标为2的所有点组成的集合,即x =1和y =2两直线上所有点的集合,右边集合表示有两个元素1和2,左、右两集合的元素属性不同.②中3k +1,3k -2(k ∈Z )都表示被3除余1的数,易错点在于认为3k +1与3k -2中的k 为同一个值,对集合的属性理解错误.③中集合有4个元素,其真子集的个数为24-1=15(个).④中x =-2 021或x =- 2 021,满足条件的所有x 组成的集合为{-2 021,- 2 021},其真子集有22-1=3个.所以②③④正确.思维升华 解决集合含义问题的关键有三点:一是确定构成集合的元素;二是确定元素的限制条件;三是根据元素的特征(满足的条件)构造关系式解决相应问题.特别提醒:含字母的集合问题,在求出字母的值后,需要验证集合的元素是否满足互异性.集合间的基本关系例1 (1)集合M =⎩⎨⎧⎭⎬⎫x ⎪⎪ x =n 2+1,n ∈Z ,N =⎩⎨⎧⎭⎬⎫y ⎪⎪y =m +12,m ∈Z ,则两集合M ,N 的关系为( ) A .M ∩N =∅ B .M =N C .M ⊆N D .N ⊆M答案 D解析 由题意,对于集合M ,当n 为偶数时,设n =2k (k ∈Z ),则x =k +1(k ∈Z ),当n 为奇数时,设n =2k +1(k ∈Z ),则x =k +1+12(k ∈Z ),∴N ⊆M ,故选D.(2)已知集合A ={x ∈R |x 2-3x +2=0},B ={x ∈N |0<x <5},则满足条件A ⊆C ⊆B 的集合C 的个数为________. 答案 4解析由题意可得,A={1,2},B={1,2,3,4}.又∵A⊆C⊆B,∴C={1,2}或{1,2,3}或{1,2,4}或{1,2,3,4},∴有4个.(3)已知集合A={x|x2-2 021x+2 020<0},B={x|x<a},若A⊆B,则实数a的取值范围是________________________________________________________________________.答案[2 020,+∞)解析由x2-2 021x+2 020<0,解得1<x<2 020,故A={x|1<x<2 020}.又B={x|x<a},A⊆B,如图所示,可得a≥2 020.思维升华(1)空集是任何集合的子集,在涉及集合关系时,必须考虑空集的情况,否则易造成漏解.(2)已知两个集合间的关系求参数时,关键是将条件转化为元素或区间端点间的关系,进而转化为参数所满足的关系,常用数轴、Venn图等来直观解决这类问题.跟踪训练1(1)已知集合A={x|y=1-x2},B={x|x=m2,m∈A},则()A.A B B.B AC.A⊆B D.B=A答案 B解析由题意知A={x|y=1-x2},所以A={x|-1≤x≤1}.所以B={x|x=m2,m∈A}={x|0≤x≤1},所以B A ,故选B.(2)已知集合A ={x |(x +1)(x -6)≤0},B ={x |m -1≤x ≤2m +1}.若B ⊆A ,则实数m 的取值范围为________.答案 (-∞,-2)∪⎣⎡⎦⎤0,52 解析 A ={x |-1≤x ≤6}. ∵B ⊆A ,∴B =∅或B ≠∅.当B =∅时,m -1>2m +1,即m <-2.符合题意. 当B ≠∅时,⎩⎪⎨⎪⎧m -1≤2m +1,m -1≥-1,2m +1≤6.解得0≤m ≤52.得m <-2或0≤m ≤52.集合的基本运算命题点1 集合的运算例2 (1)(2019·日照模拟)已知集合A ={x |x 2-2x -3≤0},B ={x |x <2},则A ∩B 等于( ) A .(1,3) B .(1,3] C .[-1,2) D .(-1,2)答案 C解析 因为A ={x |x 2-2x -3≤0}={x |-1≤x ≤3},B ={x |x <2},所以A ∩B =[-1,2).(2)(2020·沈阳检测)已知全集U={1,3,5,7},集合A={1,3},B={3,5},则如图所示的阴影区域表示的集合为()A.{3} B.{7} C.{3,7} D.{1,3,5}答案 B解析由图可知,阴影区域为∁U(A∪B).由题意知,A∪B={1,3,5},U={1,3,5,7},则由补集的概念知,∁U(A∪B)={7}.故选B.命题点2利用集合的运算求参数例3(1)已知集合A={x|x2-3x<0},B={1,a},且A∩B有4个子集,则实数a的取值范围是()A.(0,3) B.(0,1)∪(1,3)C.(0,1) D.(-∞,1)∪(3,+∞)答案 B解析因为A∩B有4个子集,所以A∩B中有2个不同的元素,所以a∈A,所以a2-3a<0,解得0<a<3.又a≠1,所以实数a的取值范围是(0,1)∪(1,3),故选B.(2)已知集合A={x|x<a},B={x|x2-3x+2<0},若A∩B=B,则实数a的取值范围是() A.a<1 B.a≤1C.a>2 D.a≥2答案 D解析集合B={x|x2-3x+2<0}={x|1<x<2},由A∩B=B可得B⊆A,作出数轴如图.可知a≥2.本例(2)中,若集合A={x|x>a},其他条件不变,则实数a的取值范围是________.答案(-∞,1]解析∵A={x|x>a},B={x|1<x<2},由B⊆A结合数轴观察(如图).可得a≤1.思维升华(1)一般来讲,集合中的元素若是离散的,可用Venn图表示;数集中的元素若是连续的,则可用数轴表示,此时要注意端点的情况.(2)运算过程中要注意集合间的特殊关系的使用,灵活使用这些关系,会使运算简化.跟踪训练2(1)(2019·全国Ⅰ)已知集合U={1,2,3,4,5,6,7},A={2,3,4,5},B={2,3,6,7},则B∩∁U A等于()A.{1,6} B.{1,7}C.{6,7} D.{1,6,7}答案 C解析∵U={1,2,3,4,5,6,7},A={2,3,4,5},∴∁U A={1,6,7}.又B={2,3,6,7},∴B∩∁U A={6,7}.(2)设集合A={x|-1≤x<2},B={x|x<a},若A∩B≠∅,则a的取值范围是()A.-1<a≤2 B.a>2C.a≥-1 D.a>-1答案 D解析在数轴上画出集合A,B(如图),观察可知a >-1.解决以集合为背景的新定义问题,要抓住两点:(1)紧扣新定义.首先分析新定义的特点,把新定义所叙述的问题的本质弄清楚,应用到具体的解题过程之中.(2)用好集合的性质.解题时要善于从试题中发现可以使用集合性质的一些因素.例1 对于集合M ,定义函数f M (x )=⎩⎪⎨⎪⎧-1,x ∈M ,1,x ∉M .对于两个集合A ,B ,定义集合A △B ={x |f A (x )·f B (x )=-1}.已知A ={2,4,6,8,10},B ={1,2,4,8,12},则用列举法写出集合A △B 的结果为________. 答案 {1,6,10,12}解析 要使f A (x )·f B (x )=-1,必有x ∈{x |x ∈A 且x ∉B }∪{x |x ∈B 且x ∉A }={1,6,10,12},所以A △B ={1,6,10,12}.例2 (多选)设P 是一个数集,且至少含有两个数,若对任意a ,b ∈P ,都有a +b ,a -b ,ab ,ab ∈P (除数b ≠0),则称P 是一个数域,例如有理数集Q 是数域,下列命题中正确的是( ) A .数域必含有0,1两个数 B .整数集是数域C .若有理数集Q ⊆M ,则数集M 必为数域D .数域必为无限集 答案 AD解析 当a =b 时,a -b =0,ab =1∈P ,故可知A 正确.当a =1,b =2时,12∉Z 不满足条件,故可知B 不正确.当M 比Q 多一个元素i 时,则会出现1+i ∉M ,所以它也不是一个数域,故可知C 不正确. 根据数域的性质易得数域有无限多个元素,必为无限集,故可知D 正确.例3 已知集合A ={x ∈N |x 2-2x -3≤0},B ={1,3},定义集合A ,B 之间的运算“*”:A *B ={x |x =x 1+x 2,x 1∈A ,x 2∈B },则A *B 中的所有元素数字之和为( ) A .15 B .16 C .20 D .21 答案 D解析 由x 2-2x -3≤0,得(x +1)(x -3)≤0,得A ={0,1,2,3}.因为A *B ={x |x =x 1+x 2,x 1∈A ,x 2∈B },所以A *B 中的元素有:0+1=1,0+3=3,1+1=2,1+3=4,2+1=3(舍去),2+3=5,3+1=4(舍去),3+3=6,所以A *B ={1,2,3,4,5,6},所以A *B 中的所有元素数字之和为21.1.下列各组集合中表示同一集合的是()A.M={(3,2)},N={(2,3)}B.M={2,3},N={3,2}C.M={(x,y)|x+y=1},N={y|x+y=1}D.M={2,3},N={(2,3)}答案 B2.已知集合M={x|x2-x-6=0},则下列表述正确的是()A.{-2}∈M B.2∈MC.-3∈M D.3∈M答案 D解析∵集合M={x|x2-x-6=0}.∴集合M={-2,3},∴-2∈M,3∈M,故选D.3.(2018·全国Ⅱ)已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A中元素的个数为() A.9 B.8 C.5 D.4答案 A解析将满足x2+y2≤3的整数x,y全部列举出来,即(-1,-1),(-1,0),(-1,1),(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1),共有9个.故选A.4.已知集合A={x∈N*|x2-3x-4<0},则集合A的真子集有()A.7个B.8个C.15个D.16个答案 A解析 ∵集合A ={x ∈N *|x 2-3x -4<0}={x ∈N *|-1<x <4}={1,2,3}, ∴集合A 中共有3个元素,∴真子集有23-1=7(个).5.已知集合M ={x |x >4或x <1},N =[-1,+∞),则M ∩N 等于( ) A .(-∞,+∞) B .(-1,1)∪(4,+∞) C .∅ D .[-1,1)∪(4,+∞)答案 D解析 因为M ={x |x >4或x <1},N =[-1,+∞),所以M ∩N =[-1,1)∪(4,+∞). 6.(2020·山东模拟)设集合A ={(x ,y )|x +y =2},B ={(x ,y )|y =x 2},则A ∩B 等于( ) A .{(1,1)} B .{(-2,4)} C .{(1,1),(-2,4)} D .∅答案 C解析 首先注意到集合A 与集合B 均为点集,联立⎩⎪⎨⎪⎧ x +y =2,y =x 2,解得⎩⎪⎨⎪⎧ x =1,y =1或⎩⎪⎨⎪⎧x =-2,y =4.从而集合A ∩B ={(1,1),(-2,4)}.7.(多选)已知集合A ={x |-1<x ≤3},集合B ={x ||x |≤2},则下列关系式正确的是( ) A .A ∩B =∅B .A ∪B ={x |-2≤x ≤3}C .A ∪∁R B ={x |x ≤-1或x >2}D .A ∩∁R B ={x |2<x ≤3} 答案 BD解析 ∵A ={x |-1<x ≤3},B ={x ||x |≤2}={x |-2≤x ≤2}, ∴A ∩B ={x |-1<x ≤3}∩{x |-2≤x ≤2}={x |-1<x ≤2},A 不正确; A ∪B ={x |-1<x ≤3}∪{x |-2≤x ≤2}={x |-2≤x ≤3},B 正确; ∵∁R B ={x |x <-2或x >2},∴A ∪∁R B ={x |-1<x ≤3}∪{x |x <-2或x >2}={x |x <-2或x >-1},C 不正确; A ∩∁R B ={x |-1<x ≤3}∩{x |x <-2或x >2}={x |2<x ≤3},D 正确.8.(多选)已知集合A ={x |x 2-3x +2≤0},B ={x |2<2x ≤8},则下列判断不正确的是( )A .A ∪B =B B .(∁R B )∪A =RC .A ∩B ={x |1<x ≤2}D .(∁R B )∪(∁R A )=R答案 ABD解析 因为x 2-3x +2≤0,所以1≤x ≤2,所以A ={x |1≤x ≤2}; 因为2<2x ≤8,所以1<x ≤3,所以B ={x |1<x ≤3}. 所以A ∪B ={x |1≤x ≤3},A ∩B ={x |1<x ≤2}.(∁R B )∪A ={x |x ≤2或x >3},(∁R B )∪(∁R A )={x |x ≤1或x >2}.9.设集合A ={1,2,4},B ={x |x 2-4x +m =0}.若A ∩B ={1},则B =________. 答案 {1,3}解析 ∵A ∩B ={1},∴1∈B . ∴1-4+m =0,即m =3. ∴B ={x |x 2-4x +3=0}={1,3}.10.(2019·湖北黄石一中模拟)设集合M ={y |y =2cos x ,x ∈[0,5]},N ={x |y =log 2(x -1)},则M ∩N =________. 答案 {x |1<x ≤2}解析 ∵M ={y |y =2cos x ,x ∈[0,5]}={y |-2≤y ≤2},N ={x |y =log 2(x -1)}={x |x >1}, ∴M ∩N ={y |-2≤y ≤2}∩{x |x >1}={x |1<x ≤2}.11.设集合A ={-1,1,2},B ={a +1,a 2-2},若A ∩B ={-1,2},则a 的值为________. 答案 -2或1解析 ∵集合A ={-1,1,2},B ={a +1,a 2-2},A ∩B ={-1,2},∴⎩⎪⎨⎪⎧a +1=-1,a 2-2=2或⎩⎪⎨⎪⎧a +1=2,a 2-2=-1,解得a =-2或a =1. 经检验,a =-2和a =1均满足题意.12.已知集合A ={x |x 2+x =0,x ∈R },则集合A 中的元素为________.若集合B 满足B ⊆A ,则集合B 的个数是________. 答案 -1,0 4解析 解方程x 2+x =0得x =-1或x =0, 所以集合A ={x |x 2+x =0,x ∈R }={-1,0},故集合A中的元素为-1,0.因为集合B满足B⊆A,所以集合B的个数为22=4.13.(2020·青岛模拟)已知集合A={x∈R||x+2|<3},集合B={x∈R|(x-m)(x-2)<0},且A∩B =(-1,n),则m=______,n=________.答案-1 1解析A={x∈R||x+2|<3}={x∈R|-5<x<1},由A∩B=(-1,n),可知m<1,则B={x|m<x<2},画出数轴,可得m=-1,n=1.14.设常数a∈R,集合A={x|(x-1)(x-a)≥0},B={x|x≥a-1},若A∪B=R,则a的取值范围为________.答案(-∞,2]解析当a>1时,A=(-∞,1]∪[a,+∞),B=[a-1,+∞),当且仅当a-1≤1时,A∪B=R,故1<a≤2;当a=1时,A=R,B={x|x≥0},A∪B=R,满足题意;当a<1时,A=(-∞,a]∪[1,+∞),B=[a-1,+∞),又∵a-1<a,∴A∪B=R,故a<1满足题意,综上知a∈(-∞,2].15.(多选)设S为复数集C的非空子集.若对任意x,y∈S,都有x+y,x-y,xy∈S,则称S为封闭集.下列命题中是真命题的有()A.集合S={a+b i|a,b为整数,i为虚数单位}为封闭集B.若S为封闭集,则一定有0∈SC.封闭集一定是无限集D.若S为封闭集,则满足S⊆T⊆C的任意集合T也是封闭集答案AB解析两个复数的和、差、积仍是复数,且运算后的实部、虚部仍为整数,所以集合S={a+b i|a,b为整数,i为虚数单位}为封闭集,A正确.当S为封闭集时,因为x-y∈S,取x=y,得0∈S,B正确.对于集合S={0},显然满足所有条件,但S是有限集,C错误.取S={0},T={0,1},满足S⊆T⊆C,但由于0-1=-1不属于T,故T不是封闭集,D错误.16.当两个集合有公共元素,且互不为对方的子集时,我们称这两个集合“相交”.对于集合M ={x |ax 2-1=0,a >0},N =⎩⎨⎧⎭⎬⎫-12,12,1,若M 与N “相交”,则a =________.答案 1 解析 M =⎩⎨⎧⎭⎬⎫-1a ,1a ,由1a =12,得a =4,由1a=1,得a =1. 当a =4时,M =⎩⎨⎧⎭⎬⎫-12,12,此时M ⊆N ,不合题意;当a =1时,M ={-1,1},满足题意.。
2021届浙江新高考数学一轮复习课件:第一章 1 第1讲 集合及其运算
(3)因为 A={x|x2-x-2<0}={x|-1<x<2}, B={x|1<x<3}, 所以 A∪B={x|-1<x<3}. 又因为 A∩B={x|1<x<2}, 所以∁U(A∩B)={x|x≤1 或 x≥2}. 【答案】 (1)C (2)A (3)(-1,3) (-∞,1]∪[2,+∞)
与集合中的元素有关问题的求解步骤
1.(2020·温州八校联考)已知集合 M={1,m+2,m2+4},且 5∈M,则 m 的值为( )
A.1 或-1
B.1 或 3
C.-1 或 3
D.1,-1 或 3
解析:选 B.因为 5∈{1,m+2,m2+4},所以 m+2=5 或 m2+4=5,即 m=3 或 m=±1. 当 m=3 时,M={1,5,13};当 m=1 时,M={1,3,5};当 m=-1 时,不满足互异 性.所以 m 的值为 3 或 1.
2.已知集合 M={x|x-2=0},N={x|ax-1=0},若 M∩N=N,则实数 a 的值是________.
解析:易得 M={2}.因为 M∩N=N,所以 N⊆M,所以 N=∅或 N=M,所以 a=0 或 a =12. 答案:0 或12
3.已知集合 A={x|x2-4x+3<0},B={x|2<x<4},则 A∩B=________,A∪B= ________,(∁RA)∪B=________. 解析:由已知得 A={x|1<x<3},B={x|2<x<4},所以 A∩B={x|2<x<3},A∪B= {x|1<x<4}, (∁RA)∪B={x|x≤1 或 x>2}. 答案:(2,3) (1,4) (-∞,1]∪(2,+∞)
2025年高考数学一轮复习-第一章-集合与常用逻辑用语【课件】
谢谢观赏!!
要条件、数学定义与充要条件的关系.
统计 逻辑用语
Ⅰ卷·T7
2.理解全称量词和存在量词的意义,能正确对
两种命题进行否定.
1.题型设置:主要以选择题、填空题为主. 命题 2.内容考查:集合的基本关系、集合的基本运算、充分必要条件的判断 趋势 和含有一个量词命题的否定.
3.能力考查:运算求解能力及逻辑推理能力.
第一章 集合与常用逻辑用语
【高考研究·备考导航】
三年考情
角度 考查内容
课程标准
高考真题
1.了解集合的含义,了解全集、空集的
含义.
2023年:新高考Ⅰ卷·T1
2.理解元素与集合的属于关系,理解集 2023年:新高考Ⅱ卷·T2
考题
合间的包含和相等关系.
2022年:新高考Ⅰ卷·T1
集合
统计
3.会求两个集合的并集、交集与补集. 2022年:新高考Ⅱ卷·T1
备考策略 根据近三年新高考卷命题特点和规律,复习本章时,要注意以下几个方面: 1.全面系统复习,深刻理解知识本质 (1)理解集合、空集、子集等概念;会根据具体条件求集合的子集的个数;理
解并集、交集、补集的含义,注意符号语言的正确应用. (2)理解充分条件、必要条件、充要条件的含义. (3)理解全称量词、存在量词、全称量词命题、存在量词命题的概念.
2.熟练掌握解决以下问题的方法规律 (1)能准确判断所给集合中元素的特征,会根据问题情境选择恰当的方法表 示集合. (2)掌握集合并集、交集、补集运算,注意与解不等式、解方程和函数基本 概念的交汇问题. (3)能准确判断命题的真假,并能根据具体问题情境判断充分条件、必要条 件和充要条件. (4)能准确地对全称量词命题(或存在量词命题)进行否定.
2024年高考数学一轮复习课件(新高考版) 第1章 §1.1 集 合
+1,n∈Z},则S∩T等于
A.∅
B.S
√C.T
D.Z
方法一 在集合T中,令n=k(k∈Z),则t=4n+1=2(2k)+1(k∈Z), 而集合S中,s=2n+1(n∈Z),所以必有T⊆S,所以S∩T=T. 方法二 S={…,-3,-1,1,3,5,…},T={…,-3,1,5,…},观 察可知,T⊆S,所以S∩T=T.
②若x∈M,则x2∈M.则集合M可能是
√A.{-1,1} √C.{1}
B.{-1,1,2,4} D.{1,-2,2}
由题意可知3∉M且4∉M,而-2或2与4同时出现, 所以-2∉M且2∉M, 所以满足条件的非空集合M有{-1,1},{1}.
(2)函数f(x)= x2-2x-3 的定义域为A,集合B={x|-a≤x≤4-a},若 B⊆A,则实数a的取值范围是__(-__∞__,__-__3_]_∪__[_5_,_+__∞__)__.
2024年高考数学一轮复习课件(新高考版)
第一章 集合、常用逻辑用语、不等式
§1.1 集 合
考试要求
1.了解集合的含义,了解全集、空集的含义. 2.理解元素与集合的属于关系,理解集合间的包含和相等关系. 3.会求两个集合的并集、交集与补集. 4.能用自然语言、图形语言、集合语言描述不同的具体问题,能使用Venn图
第
二 部 分
探究例1 (1)(2022·衡水模拟)设集合A={(x,y)|y=x},B={(x,y)|y=x2},则
集合A∩B的元素个数为
A.0
B.1
√C.2
D.3
如图,函数y=x与y=x2的图象有两个交点, 故集合A∩B有两个元素.
(2)已知集合A={1,a-2,a2-a-1},若-1∈A,则实数a的值为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考点清单
1.集合的含义与表示
(1)集合中元素的三个特性:确定性、互异性、① 无序性 .
(2)集合中元素与集合的关系有且仅有两种:属于(用符号“∈”表示)和不
属于(用符号“∉”表示).
(3)常用数集及其符号表示
名称
非负整数集 (自然数集)
正整数集
整数集
有理数集
实数集
符号
②N
N*或N+
方法总结 1.判断两集合的关系一般有两种方法:一是化简集合,从其中直 接寻找两集合的关系;二是用列举法(或Venn图法)表示各个集合,从元素 (或图形)中寻找关系. 2.已知两集合间的关系求参数的取值范围时,关键是将两集合间的关系转 化为元素间的关系,进而转化为参数满足的关系.解决这类问题时常常需要 合理利用数轴、Venn图帮助分析.
A=B
集合A中任意一个元素均为集合B中的元素
A⊆B(或B⊇A)
集合A中任意一个元素均为集合B中的元素,且B A⫋B(或B⫌A) 中至少有一个元素A中没有
空集是任何集合的子集
⌀⊆B
空集是任何⑤ 非空 集合的真子集
⌀⫋B(B≠⌀)
注意 遇到形如A⊆B的问题,要优先考虑A=⌀是否满足题意.
知识拓展 若A为有限集合,card(A)=n(n∈N*),则:A的子集个数是⑥ 2n ;A的 真子集个数是2n-1;A的非空子集个数是2n-1;A的非空真子集个数是⑦ 2n-2 .
考法二 集合运算问题的求解方法
例2 (1)(2019湖南重点中学摸底联考,1)已知全集U={1,2,3,4,5,6,7},M={3, 4,5},N={1,3,6},则集合{2,7}= ( ) A.M∩N B.(∁UM)∩(∁UN) C.(∁UM)∪(∁UN) D.M∪N (2)(2019重庆(区县)调研,1)已知全集U=R,集合A={x|x2+x-2≤0},B={x|x<0}, 则(∁UA)∩B= ( ) A.{x|x<-1} B.{x|-2≤x<0} C.{x|x<-2} D.{x|x≤-1} 解题导引 (1)思路一:由已知集合,分别求出∁UM,∁UN,再验证选项. 思路二:根据集合U,M,N的关系画出Venn图,从而确定结论. (2)先求出集合A,再求出∁UA,借助于数轴求出(∁UA)∩B.
实践探究
例 (2016北京文,16)某网店统计了连续三天售出商品的种类情况:第一天
售出19种商品,第二天售出13种商品,第三天售出18种商品;前两天都售出
的商品有3种,后两天都售出的商品有4种,则该网店:
①第一天售出但第二天未售出的商品有
种;
②这三天售出的商品最少有
种.
解题导引 “网购”是现代购物的重要方式之一,本题以售出商品的种类 为背景,取材于人A必修113页的“阅读与思考——集合中元素的个数”, 考查了集合运算和Venn图等基本知识,同时也涉及化归与转化、数形结合 的数学思想. ①可以通过集合交、补运算确定元素个数;②中“三天共售出的商品种类 最少”应该是第三天与前二天售出的商品种类完全相同时,总的种类最少. 解析 ①设第一天售出的商品为集合A,则A中有19个元素,第二天售出的 商品为集合B,则B中有13个元素.由于前两天都售出的商品有3种,则A∩B 中有3个元素.如图所示, 所以该网店第一天售出但第二天未售出的商品有19-3=16(种). ②由①知,前两天售出的商品为19+13-3=29(种),当第三天售出的18种都是 前两天售出的商品时,这三天售出的商品种类最少,售出的商品最少为29种.
考点二 集合的基本运算
集合的并集
集合的交集
集合的补集
符号表示 A∪B 图形表示
A∩B
若全集为U,则集合A的补集为∁UA
意义 性质
{x|x∈A或x∈B}
A∪⌀=A; A∪A=A; A∪B=B∪A; A∪B=A⇔⑩ B⊆A
{x|⑧ x∈A,且x∈B } {x|⑨ x∈U,且x∉A }
A∩⌀=⌀;A∩A=A;A∩B= A∪(∁UA)=U;A∩(∁UA)=⌀;∁U(∁UA)=A B∩A;A∩B=A⇔A⊆B ;∁U(A∪B)=(∁UA)∩(∁UB);∁U(A∩B)=
③Z
Q
R
(4)集合常用的表示方法:列举法、④ 描述法 、Venn图法.
注意 集合元素互异性的应用:(1)利用集合元素的互异性找到解题的切入 点;(2)在解答完毕时,注意检查集合的元素是否满足互异性,以确保答案正确. 2.集合间的基本关系
表示关系
定义
记法
集合 间的 基本 关系
空集
相等 子集 真子集
集合A与集合B中的所有元素都相同
0,c>0}={x|0<x<c}.由A⊆B,画出数轴,如图所示,得c≥1,故选B.
解法二:A={x|y=lg(x-x2)}={x|x-x2>0}={x|0<x<1},取c=1,得B={x|0<x<1},则A ⊆B成立,可排除C、D;取c=2,得B={x|0<x<2},则A⊆B成立,可排除A,故选B. 答案 (1)B (2)B
由图可知∁U(M∪N)=(∁UM)∩(∁UN)={2,7},故选B. (2)A={x|x2+x-2≤0}={x|-2≤x≤1},U=R,∴∁UA={x|x<-2或x>1},又B={x|x< 0},∴借助数轴可知(∁UA)∩B={x|x<-2}.故选C. 答案 (1)B (2)C
方法总结 集合的基本运算包括集合的交、并、补运算,解决此类运算问 题一般应注意以下几点:一是看集合的表示方法,用列举法表示的集合,易 用Venn图求解,用描述法表示的数集,常借助数轴分析得出结果,二是对集 合进行化简,有些集合是可以化简的,通过化简集合,可使问题变得简单明 了,易于解决.
解析
(1)集合M=x
x
k 2
1 4
,k
Z
=
x
x=1 (2k+1),k∈Z
4
,N=
x
x
k 4
1 2
,k
Z=
x
x= 1 (k+2),k∈Z
4
,当k∈Z时,2k+1是奇数,k+2是整
数,又知奇数均为整数,而整数不一定为奇数,所以M⫋N,故选B.
(2)解法一:由题意知,A={x|y=lg(x-x2)}={x|x-x2>0}={x|0<x<1},B={x|x2-cx<
(∁UA)∪(∁UB)
知能拓展
考法一 集合间基本关系的求解方法
例1 (1)(2019湖北天门调研,1)集合M= x x k 1 ,k Z ,N=
24
x
x
k 4
1 2
,k
Z,则
(
)
A.M=N B.M⫋N
C.N⫋M D.M与N没有相同的元素
(2)(2018中原名校联考,2)已知集合A={x|y=lg(x-x2)},B={x|x2-cx<0,c>0},若A
答案 ①16 ②29
方法总结 本题实际上是把实际问题用集合的符号语言及图形语言表示 出来,体现数学的转化与化归思想,这与数学抽象,逻辑推理等学科核心素 养是紧密关联的,在强调核心素养的大环境下,需关注此类问题,关键是灵 活运用Venn图来分析、解决问题.
⊆B,则实数c的取值范围为 ( )
A.(0,1] B.[1,+∞) C.(0,1) D.(1,+∞)
解题导引 (1)化简两集合,观察两集合中元素的构成特征,再确定两个集 合的关系,得出结果. (2)思路一:首先化简两集合,利用A⊆B确定两集合端点值的大小关系,结合 数轴得出实数c的取值范围. 思路二:首先化简集合A,然后对c取特殊值,运用排除法,从而得出正确答案.
解析 (1)解法一:∵U={1,2,3,4,5,6,7},M={3,4,5},N={1,3,6},∴∁UM={1,2,6, 7},∁UN={2,4,5,7},M∩N={3},M∪N={1,3,4,5,6},∴(∁UM)∩(∁UN)={2,7}, (∁UM)∪(∁UN)={1,2,4,5,6,7},故选B. 解法二:由集合M,N,U的关系画出Venn图(如图所示).