第四章生产理论
微观经济学第四章生产理论
目录
• 生产理论概述 • 生产函数 • 成本最小化与产出最大化 • 生产要素的最优组合 • 扩展生产理论
01 生产理论概述
生产、生产函数与生产可能性边界
01
02
03
生产
生产是指企业使用一定数 量的生产要素,经过一定 的加工或组合,创造新的 使用价值或效用的过程。
生产函数
生产函数描述了在一定技 术条件下,一定数量的投 入与最大产出之间的关系。
生产可能性边界
生产可能性边界描述了在 一定资源和技术条件下, 一个经济能够生产的商品 的最大数量组合。
短期与长期生产函数
短期生产函数
短期生产函数描述了在固定生产 规模下,一定数量的可变投入与 最大产出之间的关系。
长期生产函数
长期生产函数描述了在可变规模 下,一定数量的可变投入与最大 产出之间的关系。
详细描述
固定投入比例生产函数形式为 Y=min{aX,bK},其中Y表示产出,X和 K分别表示劳动和资本两种投入要素,a 和b为常数。这种生产函数形式强调各 投入要素之间的比例关系固定不变。
柯布-道格拉斯生产函数
总结词
柯布-道格拉斯生产函数是一种常用的生产函数形式,用于描述现实生产过程中投入和产出的关系。
最优的生产要素组合应当满足边际技术替代率和边际替代率相等,即等产量线和等 成本线相切的条件。
05 扩展生产理论
要素可替代性
要素替代性
在生产过程中,如果两种或多种生产要 素可以互相替代使用,则它们被称为可 替代要素。可替代要素之间存在一定的 替代关系,当一种要素价格上涨时,生 产者可能会选择使用更多的另一种要素 来代替它,以保持生产成本不变或降低 生产成本。
规模收益对于企业的竞争策略具有重要影响 。企业可以通过扩大生产规模来降低成本和 提高市场份额,从而在竞争中获得优势。同 时,企业也需要根据市场需求和自身条件, 合理地选择生产规模和经营策略,以实现最
第4章 生产理论
问题: 请画出我国的劳动力比外国便宜,资本比外国贵,实现相同的产量图形?如果两国都没有扬长避短,这个图形会有什么变化?
如果中国像美国那样买那么多资本,美国人像中国那样买那么多劳动力,中国等成本线只能在C点。这就实现不了既定的产出。美国等成本只能在D上。如果我们将短期低成本的优势当作长期的终极目标,而不迅速提高工资,我们会在科学技术上被人家彻底淘汰。
问题9: 何谓规模报酬递减规律,它与边际产出递减规律有何异同?
规模报酬递减规律指在技术不变的情况下,等比扩大所有的投入要素,其产出经历规模产出递增,规模产出不变和规模产出递减三个阶段。
规模收益可分为三个阶段: a.规模收益递增 ---- 生产要素扩大规模 小于产出扩大规模。 b.规模收益不变---- 生产要素扩大规模 等于产出扩大规模。 c.规模收益递减---- 生产要素扩大规模 大于产出扩大规模。
(四)总产量和平均产量的关系: 总产量上升,平均产量也上升;平均产量达到最高点后,总产量的上升趋于递减。
(五)边际产量和平均产量的关系: 边际产量大于平均产量,平均产量上升,边际产量小于平均产量,平均产量下降,边际产量与平均产量相交于平均产量的最高点。 产量弹性等于零时,总产出最大。
(一)等产量曲线 表明在生产要素不同组合条件下形成相同产量的轨迹。等产量曲线的特点与无差异曲线相同,因为等产量曲线就是产量的无差异曲线,而无差异曲线则是效用相等的曲线。但等产量曲线为客观技术条件决定,无差异曲线则由主观判断决定。
(二)等产量曲线的特征: 同一个平面图上可以画无数条等产量曲线; 等产量曲线凸向原点; 边际技术替代率递减; 两条等产量曲线不能相交。
问题1: 经济活动中的长期和短期与日常生活中的时间概念有什么不同?
(二)短期与长期 生产中的短期与长期不是就时间的长短,而是就生产要素是否全部可变而言的。 只要有一个生产要素不变就是短期,不管实际时间有多长;所有的生产要素都变则是长期,也不管它的实际时间有多短。不同的行业固定资本投入规模不同,长短期不一样。
第四章 生产理论
微观经济学M I C R O E C O N O M I C S生产者行为研究的三个层次投入的生产要素与产量的关系——生产理论即如何在生产要素既定时实现产量最大,或者在产量既定时使投入的生产要素最少。
成本与收益的关系——成本理论要使利润最大化,就是要使扣除成本后的收益达到最大化。
这就要进行成本-收益分析并确定一个利润最大化的原则。
不同市场结构下产品产量与价格的确定——市场结构理论市场有各种结构,即竞争与垄断的程度不同,当厂商处于不同的市场上时,应该如何确定自己产品的产量与价格。
第四章生产理论目录/Contents01 02 03生产与生产函数短期生产理论长期生产理论01生产与生产函数1.厂商定义:市场上商品或劳务的供给者,是购买或雇佣生产要素并将之组织起来生产和销售商品或劳务的经济组织。
目标:利润最大化分类:厂商分为个人企业,合伙制企业和公司制企业。
2.生产生产是对各种生产要素进行组合以制成产品的行为。
所以,生产也就是把投入变为产出的过程。
3.生产要素:生产中所使用的各种资源现代西方经济学认为生产要素包括劳动力、土地、资本、企业家四种4.生产函数Q=f(X1,X2,……X n),Q表示所能生产的最大产量,X1,X2,……X n表示生产要素的投入数量一般简化为:Q=f(L,K),L表示劳动投入数量,K表示资本投入数量。
短期是生产者来不及调整全部生产要素的数量,至少有一种生产要素的投入数量固定不变的生产周期。
长期是生产者可以调整全部生产要素投入数量的生产周期。
5.生产期间的分类一些具体的生产函数0102指在每一个产量水平上任何一对要素投入量之间的比例都是固定的生产函数。
其中,常数u 和v 分别为固定的劳动和资本的生产技术系数,他们分别表示生产一单位产品所需要的固定的劳动投入量和资本投入量。
产量Q 取决于和这两个比值中较小的那一个,即使其中的一个比例数值较大,那也不会提高产量Q 。
固定投入比例生产函数――里昂惕夫生产函数Leontief Production Function(0<α,β <1)其中,A 为技术系数,即给定的技术水平对总产出的效应;L ,K 分别为劳动和资本的投入量;α,β分别为固定的劳动和资本的生产技术系数,它们分别表示生产以单位产品所需要的劳动投入量和固定的资本投入量。
第四章 生产理论
第四章生产论第一节生产函数一、概述生产者也称厂商,指能够作出统一的生产决策的单个经济单位。
包括个人、合伙和公司性质的经营组织形式。
厂商被假定为是符合理性的经济人,提供产品的目的在于追求最大的利润。
厂商进行生产的过程确实是基本从生产要素的投进到产品的产出的过程。
生产要素的类型一般被划分为以下四种:•劳动〔L〕:指人类在生产过程中提供的体力和智力的总和。
•土地〔N〕:包括土地和地上、地下的一切自然资源。
•资本〔K〕:包括资本品〔实物形态〕和货币资本〔货币形态〕。
•企业家才能〔E〕:指企业家组织建立和经营治理企业的才能。
生产函数表示在一定时期内,在技术水平不变的情况下,生产中所使用的各种生产要素的数量与所能生产的最大产量之间的关系。
假定X1、X2……Xn依次表示某产品生产过程中所使用的n种生产要素的投进数量,Q表示所能生产的最大产量,那么生产函数可写为:Q=f〔X1、X2……Xn〕通常假定生产中只使用劳动〔L〕和资本〔K〕两种生产要素,那么生产函数写为:Q=f〔L、K〕注重:生产函数的前提条件是一定时期内既定的生产技术水平,一旦生产技术水平变化,原有生产函数就会变化,从而形成新的生产函数。
二、常见的生产函数〔一〕固定投进比例生产函数固定投进比例生产函数是指在每一个产量水平上任何一对要素投进量之间的比例基本上固定的生产函数。
假定生产中只使用劳动〔L〕和资本〔K〕两种生产要素,那么固定投进比例生产函数通常写为:其中,Q表示一种产品的产量,U和V分不为固定的劳动和资本的生产技术系数,各表示生产一单位产品所需的固定的劳动的投进量和资本的投进量。
该生产函数表示:产量Q取决于和这两个比值中较小的一个。
这是因为Q的生产被假定为必须按照L和K之间的固定比例,当一种生产要素数量固定时,另一种生产要素数量再多,也不能增加产量。
该生产函数一般又假定劳动〔L〕和资本〔K〕两种生产要素都满足最小的要素投进组合的要求,那么有:,即上式表示两种生产要素的固定投进比例等于两种生产要素的固定生产技术系数之比。
第四章生产理论
第四章⽣产理论第四章⽣产理论通过前⾯的学习,我们完成了微观经济学价格理论中关于需求理论的介绍,从本章开始我们进⼊另⼀部分即供给理论的分析。
供给理论所讨论的是⽣产者⾏为,考察⽣产者⾏为的⽬的是为了弄清位于供给曲线背后的东西。
第⼀节⽣产理论概述⼀、⼚商的定义及其组织形式⽣产理论所讨论的是⼚商的⾏为,⼚商是指能够作出统⼀的⽣产和销售决策,并且以盈利为⽬的的经济组织。
如同消费者⾏为理论中假定⼀个理性的消费者是以效⽤最⼤化为⽬标⼀样,在分析⼚商⾏为时,微观经济学假定⼚商是以利润最⼤化为⽬标的。
⼚商的法定组织形式⼀般有以下⼏种:(⼀)业主制业主制(Proprietorship)或称个体业主制,是最原始的企业组织形式。
业主制企业只有⼀个产权所有者,业主直接经营,享有全部经营所得,并对企业的⼀切债务负有⽆限责任。
业主制企业⼀般结构简单,规模较⼩。
其优点是建⽴和停业的程序简便,产权能⾃由转让,经营灵活,责任与权益明确。
其缺陷是财⼒有限,获得贷款和偿债的能⼒较差,抗风险能⼒较弱,经营规模难以迅速扩张,并且企业的⽣命在很⼤程度上取决于业主的个体状况。
(⼆)合伙制合伙制(Partnership)是以两个或两个以上业主的个体财产为基础建⽴起来的企业。
合伙⼈对企业合作经营,分享企业所得,共同承担债务责任。
由于共同筹资,它的经营规模和贷款、偿债能⼒都优于业主制。
但由于⼤多数合伙制企业具有⽆限责任,⼀旦亏损且其他合伙⼈⽆⼒偿债时,即使投资1%也负有赔偿100%债务的连带责任。
合伙协议关于买卖份额的法定程序也⼗分复杂,没有全体合伙⼈的⼀致同意,原有的合伙⼈难以将他的份额出售给新加⼊者。
如果合伙协议得不到保证,合伙制就⾯临解体的危险。
(三)公司制公司制(Corporation)是指依法设⽴,具有法⼈资格,并以营利为⽬的的企业组织。
世界各国的公司制可以分为以下四种常见的类型:由两个以上股东组成,股东对公司债务负连带责任的⽆限责任公司;由⼀定⼈数的股东组成,股东只以其出资额为限对公司承担责任,公司只以其全部资产对公司债务承担责任的有限责任公司;由⼀个或者⼀个以上的⽆限责任股东与⼀个或⼀个以上的有限责任股东所组成的两合公司;由⼀定⼈数以上的股东组成,公司全部资本分为等额股份,股东以其所认股份为限对公司承担责任,公司以其全部资产对公司债务承担责任的股份有限公司。
第四章生产理论
(一)生产理论
基本 要 求
什么是生产函数及其特点?
短期分析 vs. 长期分析; 不变投入 vs. 可变投入; 规模报酬变动 vs. 边际报酬变动? 边际报酬递减规律及其前提条件。 生产三个阶段? 等产量曲线、等成本线、要素最佳投入组合、规模报 酬变动的三种情况。
难 点
总总总总 (AP)
• 长期含义:在这段时期内,所有投入的生产要素(L,K) 等都是可以变动的。
• 微观经济学常以一种可变生产要素的生产函数考察短期 生产理论,以两种可变生产要素的生产函数考察长期生 产理论。
第三节
一种可变要素的生产函数
2、不变投入与可变投入含义 • 不变投入:是指当市场条件的变化要求产出变化时,其投 入量不能随之变化的投入。例如,厂房、机器设备、土地 等。 • 可变投入:是指当市场条件的变化要求产出变化时,其投 入量能立即随之变化的投入。例如劳动量的投入。 • 不变投入与可变投入的划分是建立在长期与短期划分的基 础之上的。 • 注:与短期相关的另一个概念是特短期。特短期是指在这 一时期内一切生产要素都不能调整。因此,厂商只能通过 调整存货来适应市场需求的变动。
• 其中u、v为常数,min表示括号内两个比例中的最小者。 • 在固定比例投入的生产中,若一种要素的投入固定,而增 加另一种要素的投入,并不能使产量增加,也就是说要素 的边际产量为零。
Table4-1
Table 4-7 function Leontief function Leontief
K R
C K3 B K2 Q2 Q3
公司制
公 司 制 所有者承担制 限制 ¨ 永远存在 永远存在
¨
管理体系复杂、决策缓慢
¨ 管理体系复杂 、 决策 要交公司所得税和个人所得税 ¨ ¨
西方经济学第四章生产理论
4.3.3 边际技术替代率
(Marginal rate of technical
substitution)
在维持产量水平不变的条件下,增加一个 单位的某种要素投入量时所减少的另一种要素 的投入数量,被称为边际技术替代率。
K MRTS L
K dK MRTS lim L0 L dL
证明:
MRTS等于两要素边际产量之 比。
4.4 等成本线
等成本线是指,在既定的成本和生产要素 价格条件下,生产者可以购买到的两种生产要 素的各种不同数量组合的轨迹。可用成本方程 加以表示:
C=PLL+PKK
等成本线
K C/PK
O
C/PL
L
等成本线的移动
K C/PK
Oቤተ መጻሕፍቲ ባይዱ
C/PL
L
4.5
最优生产要素组合(生产者均衡)
在要素价格和技术水平不变的条件下,最优 生产要素组合可分为两种情况: 既定成本条件下的最大产量
既定产量条件下的最小成本
K A C
K1
E
Q3
Q1 B
D
O L1
Q2
L
生产者均衡的条件
MPL MPK PL PK
均衡条件的意义
对既定成本条件下的产量最大化的情况,它 表示:厂商可以通过对这两要素投入量的不 断调整,使得最后一单位的货币成本无论用 来购买那一种生产要素所获得的边际产量相 等,从而实现既定成本条件下的最大产量; 对既定产量条件下的成本最小化的情况,它 表示:企业应该通过对两要素投入量的不断 调整,使得花费在两要素上的最后一单位的 货币成本所带来的边际产量相等。
平均产量
边际产量
产量曲线
第四章 生产理论
一单位劳动投入量,必须放弃的资本投入量,也即
资本与劳动的替代比例。
2、公式: MRTSLK = -ΔK /ΔL
绝对值,以便于比较。
加负号是为了取
3、几何意义:边际技术替代率,实际上就是等产
量线上点的斜率的绝对值。
在通常情况下,由于劳动和资本的变 化量成反方向变动,为使边际技术替代率 是正值以便于比较,在公式中加了一个负 号。 当 时,则有:
说明等产量曲线上任一点的边际技术替 代率等于等产量曲线在该点的斜率的绝对 值。
对于任意一条给定的的等产量曲线来说,当用 劳动投入去替代资本投入时,在维持产量水平 不变的前提下,由增加劳动投入量所带来的总 产量的增加量和由减少资本投入量所带来的总 产量的减少量必定是相等的。
• 厂商及企业组织
生产者、厂商或企业是指能够做出统一的生产决 策的单个经济单位。 或者市场经济中为达到一定目标而从事生产活 动的经济单位。 ( 厂商不仅生产出有形的商品,还包括提供无 形的服务。) 在经济学中,企业被假定为合乎理性的经济人, 是以营利为目标,能够独立核算和自主经营的经
济单位,或者说,我们假设企业把利润最大化作
劳动的平均产量APL指总产量与 所使用的可变要素劳动的投入量之 比,写为:
劳动的边际产量MPL指增加一 单位可变要素劳动的投入量所增加 的产量,写为:
或:
总产量的导数就是边际产量,边际产量是总产量曲线的 斜率。
二、边际报酬递减规律
1、定义: 在技术水平不变的条件下,在连续等量地把某一种 可变生产要素增加到其他一种或几种数量不变的生 产要素上去的过程中,当这种可变生产要素的投入 量小于某一特定值时,增加该要素投入所带来的边 际产量是递增的;当这种可变要素的投入量连续增 加并超过这个特定值时,增加该要素投入所带来的 边际产量是递减的。这就是边际报酬递减规律。 简单描述:对一种可变生产要素的生产函数来说,边 际产量先上升然后下降。
《西方经济学》第四章 生产理论
彭
腾主讲
西方经济学
第四章 生产理论
二、边际收益递减规律
总产量要经历一个逐渐上升加快 增长趋缓 最大不变绝对下降的过程。 边际收益(报酬)递减规 律:在技术和其他生产 要素不变的情况下,追 加一种生产要素,所形 成的产量,最初会增加, 但到一定限度后,增幅 开始递减,最终还会使 产量绝对减少。 Q
2、等产量线的特征
A.等产量线是一条向右下方倾斜的线。
B.等产量线不能相交。 K
C、在同一个平面上可以 有无数条等产量线。 D、凸向原点。
9
Q
0
彭
L
腾主讲
二、等成本线
西方经济学
第四章 生产理论
• 等成本线(企业预算线):指生产要素价格一定 时,既定的成本可购买的两种生产要素(K,L)最 大组合的轨迹。 • 成本方程: TC = PL· + PK· L K
11
K
•成本既定,产 量最大; • 产量既定, 成本最小。 E
Q
L
彭
腾主讲
西方经济学
第四章 生产理论
第三节 全部生产要素的投入 (规模经济)
• 一、规模经济与规模不经济
技术水平不变,生产要素按同样的比例增加即
生产规模扩大,起初量的增加要大于生产规模 的扩大;随生产规模扩大超过一定的限度,产 量的增加将小于生产规模的扩大甚至使产量绝 对地减少,则规模经济走向规模不经济。 规模经济是指生产者在一定的技术条件下,所 有生产要素按相同比例增加而能获得相应的经 济上的收益。
6
彭
腾主讲
西方经济学
第四章 生产理论
三、生产的合理投入区域
•第一阶段,平均产出递 增,因为生产的规模效 益正在表现出来; F TP •第二阶段,平均产出递 减,总产出增长的速度 Ⅱ Ⅲ 放慢; •第三阶段,边际产出为 E 负,总产出绝对下降。 AP 生产合理区域在第二阶 L 段。 A B MP
第四章 生产理论
Q 2
第二节 几组概念分析
1.规模报酬递增与规模经济 (1)规模报酬递增是指产量增加的比例大于各种要素投入增加的比例。产生规 模报酬递增的主要原因是由于企业生产规模扩大所带来的生产效率的提高。 它可以表现为:生产规模扩大以后,企业能够利用更先进的技术和机器设备 等生产要素,而较小规模的企业可能无法利用这样的技术和生产要素。随着 对较多的人力和机器的使用,企业内部的生产分工能够更加合理和专业化。 此外,人数较多的技术培训和具有一定规模的生产经营管理,也可以节省成 本。 (2)规模经济指由于生产规模扩大而导致长期成本下降的情况。产生规模经济 的主要原因是劳动分工和专业化,以及技术因素。企业规模扩大后使得劳动 分工更细,专业化程度更高,这将大大提高劳动生产率,降低企业的长期成 本。技术因素是指规模扩大后可以使生产要素得到充分的利用。 (3)在长期中,当产出水平变化时,企业改变投入比例是有利的。规模经济是 指企业可以以低于双倍的成本获得双倍的产出。规模经济包括规模报酬递增 的特殊情形,只是它更为普遍,因为它使企业能够在其改变生产水平时改变 要素组合。在这种更普遍的意义上,U形的长期平均成本曲线是与企业面临 的产出较高时的规模经济和产出较低时的规模不经济相一致的。
第四章 生产理论
第一节 一·生产和生产函数 1.生产四要素 •劳动:体力劳动和脑力劳动 •土地:一个广义的概念,不仅包括狭义上所说的土地,还包括山川河流等 一切自然资源 •资本:机械、厂房等资本物品 •企业家才能 2.生产过程 生产过程就是将上述生产要素在企业内部进行组合,并转化为社会所需要 的产品或劳务。即使生产同一种产品,在不同的企业内部使用的生产要素 组合也不尽相同,因而就表现出在生产效率方面的差异。达到最大产量, 生产要素组合有一个最佳的比例,离这个比例越近,生产效率也就越高。 3.生产函数 生产函数表示一定数量的生产要素组合所能得到的最大产量。
第四章 生产理论(production)
规模报酬 (returns to scale)
从长期的角度分析,企业可以调整产量 使其平均成本达到最低。这就决定于企 业规模。企业扩大规模时,收益或产量 的变动会出现规模收益不变、规模收益 递增和规模收益递减三种情况。
正大光明
规模收益的三个阶段:
劳动(L)
100 200 400 800
资本(K)
正大光明
第三节、短期生产分析
短期:指时间短到厂商来不及调整生产规模来 达到调整产量的目的,而只能在原有厂房、机 器、设备条件下来调整产量。 短期生产函数(见备注) Q=f(K,L)或Q=f(K,L) 劳动的总产量、平均产量和边际产量 总产量(TPL )=APL · L 平均产量(APL )=TPL /L 边际产量(MPL )=ΔTPL /ΔL
正大光明
技术效率与经济效率: 技术效率[Technological Efficiency] ——投入既定,产出较多的方法效率 较高;或产出既定,投入较少的方法 效率较高。 经济效率[Economic Efficiency] ——成本既定,收益较高的方法效率 较高;或收益既定,成本较低的方法 效率较高。 正大光明
生产者的效率
技术观念与经济观念: 技术观念——技术上是否合理; 经济观念——经济上是否划算。 技术上合理,经济上不一定划算; 技术上不合理,经济上一定不划算。 技术角度——投入—产出分析; [Input-Output Analysis] 经济角度——成本—收益分析。 [Cost-Revenue Analysis]
正大光明
柯布-道格拉斯生产函数(C-D生产函数)
柯布-道格拉斯(Cobb-Dauglas)生产函数是 由美国数学家柯布和经济学家道格拉斯于 二十世纪30年代初一起提出来的。 Q=ALα Kβ (A、 α 、β 为三个参数, 0 <α , β <1) 柯布-道格拉斯生产函数中的参数α 、β
经济学-第四章 生产理论
一种可变投入品生产函数可被下表所描述:
劳动力数 量(L) 0 1 2 3 4 5 6 7 8 9 10 资本数量 (K) 10 10 10 10 10 10 10 10 10 10 10 总产量 (TP) 0 10 30 60 80 95 108 112 112 108 100 平均产量 (AP) 10 15 20 20 19 18 16 14 12 10 边际产量 (MP) 10 20 30 20 15 13 4 0 -4 -8
二、边际收益递减规律
注意几点:
• (1)收益递减规律具有独立于经济制度或其它社 会条件而发生作用的普遍性或一般性。 • (2)边际收益递减规律作用前提之一“技术水平” 不变,它不否认技术条件变化可能导致劳动生产 率提高。 • (3)规律表述有“最终”二字修饰条件。也就是 说,某一投入边际收益并非自始至终递减,它有 可能在一定范围内呈现增加趋势。
K 5 E
4 3
2 1 D C A B Q3=90 Q2=75 Q1=55 3 4 L 5
0
1
2
2、等产量线的特征
(1)等产量线是一条 向右下方倾斜的曲 线。 (2)在同一平面图上 可以有无数条等产 量线,不同的等产 量线代表不同的产 量水平。
K 5 E
4
3 2 1 B D A C Q3=90 Q2=75 Q1=55 3 4 5 L
K A
利率(PK)变化使等成 本线以B点为轴心旋转。
O
B1
B2
B3
L
四、生产要素的最适组合
1、既定成本下 产量最大 2、既定产量下 成本最低
• 等成本线和等产量线 的切点。这时: • MPL / MPK = PL / PK, 即两种投入品的边际 产量比率等于它们的 价格比率。或者: • MPL / PL = MPK / PK, 即两种投入品的边际 产量与其价格比率相 等。
西方经济学 第四章生产理论
2、企业是对市场的替代
企业作为一种生产组织形式,在某种程度上上是对市场 的一种替代,以生产衣服的过程为例:
第一阶段:棉农种植棉花,卖给纺纱工; 第二阶段:由纺纱工件棉花纺成棉纱,卖给织布工; 第三阶段:由织布工将棉纱织成棉布,卖给成衣工; 第四阶段:由成衣工将棉布制成上衣。
衣服制成之前,需要三次交易,每次交易都有相应的交 易成本。如将这四个阶段由一个企业完成,则不需要中 间产品的交易,因而交易成本得以降低。由此可见,同 样的一个交易,可以通过市场进行,也可以通过企业进 行,两者的交易成本不一样。 思考:是否所有的交易如果通过企业就可以降低交易成 本,或者说企业没有交易成本?
C
D TPL
B
B'
C'
D'
APL
L2 L3
L4MP L L
31
六、生产的三个阶段
Q
1、第一阶段:APL上 升直到最大值阶段 2、第二阶段:生产者 进行短期生产的决策 区间 3、第三阶段:MPL由0 将为负值的阶段
C
第一阶段
D
第二 阶段
C'
TPL
第三阶段
D'
B
B'
APL
L2 L3
L4MP L L
32
35
1、等产量曲线的概念
表示两种生产要素的不同数量的组合可以带来
相等产量的一条曲线。它表示某一固定数量的产
品,可以用所需要的两种生产要素的不同数量的
组合生产出来。
Q ( L, K ) Q
0
36
Q
2、产量曲面与等产量曲 线
Q f ( L, K )
第四章 生产理论《经济学》PPT课件
4.1 生产及生产函数概述 4.1.3 短期生产函数
这里的“短期”,不是指一个具体的时间跨度,而是指厂商不 能根据其所要达到的生产量来调整其全部生产要素的时期。不 同行业中的“短期”也不同,这取决于投入品变动所需要的时 间。短期生产函数是指在短期内所反映的投入产出关系。通常 表示为:
4.1 生产及生产函数概述 4.1.4 长期生产函数
递减趋势;当MP= AP(AP的最高点)时,第一阶段结束。
• 第Ⅱ区间是投入劳动L从A点增加到B点。其特点是:TP保持递增趋势,
AP呈递减趋势;AP>MP,MP>0;当MP= 0时,TP达到最大值,第
二阶段结束。
• 第Ⅲ区间是投入劳动L从B点增加到无限大。其特点是:TP呈递减趋势
;AP继续保持递减趋势;MP<0。
第4章 生产理论
知识结构图
4.1 生产及生产函数概述
又称为企业或厂商,是指使用生产要素自主从事商品或
劳务生产的单位。
厂商从组织形式上可以划分为业主制、合伙制和公司制三种类
型。
4.1 生产及生产函数概述 4.1.1 生产与生产要素
(1)生产。从经济学的角度看,生产是指投入各种不同的生 产要素以制成产品的过程,也就是把投入变为产出的过程。
4.3 长期生产函数:两种可变生产要素的投入及规模经济
4.3.2 规模经济
2)影响规模经济变动的因素 ➢ 规模经济变化的不同情况要由内在经济和外在经济来解释。
01
内在经济
02
内在不经济
03
外在经济
04
外在不经济
4.3 长期生产函数:两种可变生产要素的投入及规模经济
4.3.2 规模经济
3)适度规模 ➢ 适度规模是指两种生产要素的增加使规模扩大的同时,也使产
经济学基础第四章 生产理论
wSwICwH.tUhAeNmeTgIaAllNerYyI.coUmNIVERSITY
第三节 两种生产要素的最优利用
特点: 1、等产量线是一条向右下方倾斜的线,其斜
率为负值。 2、在同一平面图上,可以有无数条等产量线。
同一条等量线代表相同的产量,不同的等产量线 代表不同的产量水平。离原点越远的等产量线所 代表的产量水平越高,离原点越近的等产量线所 代表的产量水平越低。
3、在同一平面图上,任意两条等产量线不能 相交。
L B2 B B1
第三节 两种生产要素的最优利用
M = L ·PL+ k ·Pk
K = C/Pk-PL/P·KL 等成本线的斜率为-PL/PK
设:M=600元,PL=2元,Pk=1元
K
600 B
400
CE
200
A
wSwICwH.tUhAeNmeTgIaAllNerYyI.coUmNIVERSITY
第四章 生产理论
重点掌握:
1、边际产量递减规律 2、总产量、平均产量、边际产量的关系与 一种生产要素的最优投入 3、规模经济与企业最适规模
4
wSwICwH.tUhAeNmeTgIaAllNerYyI.coUmNIVERSITY
第四章 生产理论
生产者利润最大化的实现涉及这样三个问题: (1)投入的生产要素与产量的关系。 (2)成本与收益的关系。 (3)市场问题
T2
ⅡT3 C Ⅲ T4
BT1
TP
K
然平均产量一样是先增加后减少, 但是平均产量下降的时间早于总产
2Q
量下降的时间1F源自E• 边际产量与平均产量之间的关系:
微观经济学第四章生产理论
3. 总产量与平均产量的关系
根据平均产量的定义,总产量曲线上任一点与原点连 线的斜率就是平均产量。从图4-1可以看出,总产量曲线 上的B点和原点的连线的斜率最大,所以此时平均产量达 到最大,相应的劳动投入量为L2。
4. 平均产量与边际产量的关系
当边际产量大于平均产量时,平均产量是递增的;当 边际产量小于平均产量时,平均产量是递减的;而在边际 产量等于平均产量时,平均产量达到最大值。边际产量和 平均产量之间的这种关系对任何函数都存在。在图4-1中, 可以看出,总产量曲线上的B点与原点的连线正好是B点处 的切线,即在劳动投入量为L2时,边际产量等于平均产量, 平均产量达到最大值。
二、 等成本线
等成本线也称厂商预算线,是指在既定成本及既定生 产要素价格条件下,生产者可以购买到的最大数量的两 种生产要素的各种不同数量组合的轨迹。等成本线表示 厂商对两种生产要素的购买不能超出其总成本的限制。
设厂商给定的总成本为C,劳动的价格或工资率为w ,资本的价格为r,那么厂商购买的劳动L和资本K两种生 产要素的数量满足下面的方程:
在对生产者行为进行分析时,假定所有厂商都知道相 应产品的生产函数,因此他们总能达到技术上高效率的产 量。这是因为,一方面以盈利为目的的厂商总在寻求达到 最大产量的途径;另一方面,做不到这点的厂商难免会在 竞争中被淘汰。
三、 几种常见的生产函数
1. 固定投入比例的生产函数
任何生产过程中的各种生产要素投入数量之间都存 在一定的比例关系。固定投入比例生产函数也被称为里 昂惕夫生产函数,是指在每一个产量水平上任何一对要 素投入量之间的比例都是固定的生产函数。假定生产过 程中只使用劳动和资本两种要素,则固定投入比例生产 函数的通常形式为
在理解边际报酬递减规律时应注意以下几点: (1) 边际报酬递减是以技术水平不变和其他 要素投入量不变为前提的。 (2) 边际报酬递减是以可变要素投入量超过 一定限度为前提的。 (3) 边际报酬递减规律假定所增加的生产要 素是同质的,不存在技术性与非技术性要素的区别。
《西方经济学》第四章 生产理论
1/
42
100 120 130 130 122 110 94.29 80
140 150 130 90 50 0 -20
9
图4-1 总产量曲线
图4-2 平均产量、 边际产量曲线
10
劳动分工的优越性表明,由两个人(或 多个人)分别专门干两项(或多项)不同的工 作,所产生的生产力要高于由一个人干两项 (或多项)工作所产生的生产力。 所谓边际报酬递减规律(the law of diminishing marginal return)是指,在其他投 入不变的情况下,当变动要素投入量增加到 一定数量后,继续增加变动要素的投入会引 起该要素边际报酬递减。这里的边际报酬是 指边际产量。
12
图4-3 一种要素可变的产量 曲线及生产阶段划分
13
三、生产阶段的划分
• 根据总产量、平均产量、边际产量的变化, 我们把生产划分为三个阶段:Ⅰ、Ⅱ、Ⅲ。 在图4-3中,当劳动投入从0增加到L2时,平 均产量从0到最大,这一阶段为生产阶段Ⅰ。 当劳动投入从L2增加到L3时,边际产量从正 的值减少到0,总产量增加到最大值,这一 阶段为生产阶段Ⅱ。当劳动投入增加到大 于L3后,边际产量为负的值,总产量随劳动 投入的增加而下降,这一阶段为生产阶段 Ⅲ。
第四章 生产理论
第一节 第二节 第三节 第四节 第五节 生产函数 一种变动投入要素的生产函数 两种变动投入要素的生产函数 最优投入组合 规模报酬
第一节 生产函数
一、固定投入与变动投入 二、生产函数 三、技术系数
2
一、固定投入与变动投入
• 固定投入是指当市场条件的变化要求产出变化 时,其投入量不能立即随之变化的投入。工厂 的厂房、设备等投入在一定时期内是不变的。 农业中土地的投入是不变的。 • 变动投入是指当市场条件的变化要求产出变化 时,其投入量能很快随之变化的投入。工业生 产中所投入的原材料、燃料等投入在短时期内 与产量一起变化。农产品生产中,种子、化肥 等投入在一定时期内也与产量一起变化。 • 短期内,至少有一种投入是固定投入。而在长 期内,所有的投入都是变动投入。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章生产理论学习目标学习完本章后,你应该能够:●简述生产函数的内涵;●区分生产的短期与长期;●掌握边际收益递减规律和边际技术替代规律;●掌握一种和两种生产要素技术系数可变时的合理投入;●掌握两种生产要素技术系数不变时的规模经济问题。
从本章开始研究生产者即厂商行为。
我们假定,任何生产者(厂商)都是具有完全理性的经济人。
他们生产经营的目的是实现利润的最大化。
这一目标涉及三个问题:第一,投入的生产要素与产量的关系,即如何在生产要素既定时使产量最大,或产量既定时使投入的生产要素为最少。
这就是如何使用各种生产要素。
第二,成本与收益的关系。
要使利润最大化,就是要使扣除成本后的收益达到最大化。
这就要进行成本——收益分析,并确定一个利润最大化的原则。
第三,市场问题。
市场有各种结构,即竞争与垄断的程度不同。
当厂商处于不同的市场上时,应该如何确定自己产品的产量与价格。
我们分三章分别介绍这三个问题。
本章的生产理论要说明如何合理地投入生产要素,并从中得出若干生产规律。
4.1 生产与生产函数4.1.1 生产与生产函数1.生产与生产要素生产是对各种生产要素进行组合以制成产品的行为。
在市场经济中,厂商从事生产经营活动就是从要素市场上购买生产要素(劳动力、机器、原材料等),经过生产过程,生产出产品或劳务,在产品市场上出售,供消费者消费或供其他生产者再加工,以赚取利润。
所以,生产也就是把投入变为产出的过程。
生产要素是指生产中所使用的各种资源,即劳动、资本、土地与企业家才能。
生产也是这四种生产要素结合的过程,产品则是其共同作用的结果。
劳动是指劳动力所提供的服务,可以为体力劳动和脑力劳动。
劳动力是指劳动者的能力,由劳动者提供,劳动者的数量和质量是生产发展的重要因素。
资本是指生产中所使用的资金。
它包括两种形式:有形的物质资本和无形的人力资本。
前者指在生产中使用的厂房、机器、设备、原料等资本品;后者是指在劳动者身上的身体、文化、技术状态以及信誉、商标、专利等。
在生产理论中指的主要是前一种物质资本。
土地是指生产中所使用的各种自然资源,是在自然界所存在的,如土地、水、自然状态的矿藏、森林等。
企业家才能是指企业家对整个生产过程的组织与管理工作,包括经营能力、组织能力、管理能力、创新能力。
企业家根据市场预测,有效地配置上述生产要素从事生产经营,以追求最大利润。
经济学家特别强调企业家才能,认为把劳动、土地、资本组织起来,使之演出有声有色生产经营话剧的正是企业家才能。
2.生产函数(1)定义生产函数是指在技术水平不变的情况下,一定时期内生产要素的数量与某种组合和它所能生产出来的最大产量之间依存关系的函数。
它是反映生产过程中投入和产出之间的技术数量关系的一个概念。
(2)生产函数的表达方法以Q代表总产量,L、K、M、E……等分别代表投入到生产过程中的劳动、资本、土地、企业家的才能等生产要素的数量,则生产函数的一般形式可表示为:KNLf)EQ=(,,,,为了分析方便,通常把土地作为固定的,企业家才能因难以估算,所以,生产函数可以简化为:fQ=(式4—1)L),(K(式4—1)式表明,在一定时期一定技术水平时,生产Q的产量,需要一定数量的劳动与资本的组合。
同样,(式4—1)式也表明,在劳动与资本的数量与组合已知时,就可以推算出最大的产量。
补充说明 柯布——道格拉斯生产函数上世纪1928年,美国数学学家C ·柯布与经济学家P ·道格拦斯根据1899——1922年之间美国的劳动和资本这两种生产要素对产量影响的历史统计资料,提出了这一时期美国的生产函数,该生产函数的一般形式为:αα-=1K AL Q上式就是经济学中著名的“柯布——道格拉斯生产函数”。
式中:Q 代表产量,L 和K 分别代表劳动和资本的投入量,A 和α为常数,其中10<<α。
α和α-1分别表示劳动和资本在生产中的相对重要性,α为劳动贡献在总产量中所占的份额,α-1为资本贡献在总产量中所占的份额。
在柯布——道格拉斯生产函数中,当劳动量与资本量同时增加λ倍时,上式则为:Q K AL K L A λλλλαααα==--11)()(所以,产量也增加了λ倍,因此,柯布——道格拉斯生产函数为线性齐次生产函数。
柯布和道格拉斯对美国这一时期有关统计资料的结算,得出A值为1.01, 值为0.75或3/4。
代入上式表明,这一期间美国,在资本投入量固定不变时,劳动投入量每增加1%,产量将增加1%的3/4即0.75%;当劳动投入量固定不变时,资本投入量每增加1%,产量将增加工厂%的1/4即0.25%。
这就是说,劳动和资本对总产量的贡献的比例是3:1。
西方经济学家认为,这个比例同劳动收入——工资和资本收入——利息在国民收入所占的比重大致一样,后者也是3:1。
4.1.2 短期与长期微观经济学的生产理论可以分为短期生产理论和长期生产理论。
如何区分短期生产和长期生产呢?短期指生产者来不及调整全部生产要素的数量,至少有一种生产要素的数量是固定不变的时间周期。
长期指生产者可以调整全部生产要素的数量的时间周期。
相应地,在短期内,生产要素投入可以区分为不变投入和可变投入;生产者在短期内无法进行数量调整地那部分要素投入是不变要素投入。
例如,及其设备、厂房等。
生产者在短期内可以进行数量调整的那部分要素投入是可变要素投入。
例如,劳动、原材料、燃料等。
在长期,生产者可以调整全部的要素投入。
例如,生产者根据企业的经营状况,可以缩小或扩大生产规模,甚至还可以加入或退出一个行业的生产。
由于在长期所有的要素投入量都是可变的,因而也就不存在可变要素投入和不变要素投入的区分。
在这里,短期和长期的划分是以生产者能否变动全部要素投入的数量作为标准的。
对于不同的产品生产,短期和长期的界限规定是不相同的。
譬如,变动一个大型钢铁厂的规模可能需要三年的时间,而变动一个豆腐作坊的规模可能仅需一个月的时间。
即前者的短期和长期的划分界线为3年,而后者仅为1个月。
微观经济学通常以一种可变要素的生产函数考察短期生产理论,以两种可变生产要素的生产函数考察长期生产理论。
我们在以后两节分别介绍短期生产理论和长期生产理论。
4.1.3 技术系数技术系数就是指为生产一定量某种产品所需要的各种生产要素的配合比例。
在不同行业的生产中,各种生产要素的配合比例是不同的。
例如,在柯布——道格拉斯生产函数中,劳动和资本的配合比例为3:1,这就是它的技术系数。
技术系数一般有两种素型:一是固定技术系数,二是可变技术系数。
如果生产某种产品所需要的各种生产要素的配合比例是固定不变的,这种技术系数就称为固定技术系数。
例如,柯布——道格拉斯生产函数中L与K的配合比例是L:K=3:1,当劳动L增加一倍为6时,资本K的数量也必须增加一倍,即为L与K 的配合比例不变,这就是固定技术系数。
这样的生产函数就称为固定比例生产函数。
如果生产某种产品所需要的各种生产要素的配合比例是可以改变的,这种技术系数就称为可变技术系数。
与此相对应的生产函数就称为可变比例生产函数。
一般而言,技术系数是可变的。
例如,在农业生产中,既可以多用劳动,少用土地进行集约式生产,也可以少用劳动,多用土地进行粗放式生产。
在工业生产中也有多投入劳动少投入资本的劳动密集型技术和多投入资本入投入劳动的资本密集型技术之分。
在生产理论中研究的主要是技术系数可变的情况。
4.2 短期生产函数--边际收益递减规律与一种生产要素的合理投入经济学中,在短期内固定不变的生产要素通常是指资本。
这是因为资本形成需要一定的时间间隔,因此本节以只有一种生产要素可变的情形为例考察短期的生产函数。
为了分析投入的生产要素与产量之间的关系,可以假定厂商处于生产的短期,仅只使用劳动与资本两种投入,且资本的投入量保持不变。
此时厂商的短期生产函数是指在资本要素固定不变,劳动要素可以变动的条件下,投入与产出之间的函数关系。
一般可表示为:fQ (式4—2)L,)(K上式中,K表示资本量不变,这时的产量只取决于劳动量L。
因此,生产函数也可以记为:fQ=(式4—3)(L)根据(式4—3),我们就可以在假定资本量不变的情况下,分析劳动量投入的增加对产量的影响,以及劳动量投入多少最合理。
4.2.1 总产量、平均产量和边际产量1.定义经济学中,产量的概念是指实物量,而不是指产值。
根据一种可变生产要素的投入与相应产量之间的对应关系,经济学上通常使用的产量概念有三个。
现以劳动要素为例说明这些概念。
总产量(记作TP),是指在资本投入量既定条件下由可变要素劳动投入所生产的产量总和。
表达式为:TP=(式4—4)f)(L平均产量(记作AP),是指平均每个单位劳动所生产的产量。
表达式为:=(式4—5)AP/LTP边际产量(记作MP),是指每增加一单位劳动投入量所增加的产量。
表达式为:L∆=/(式4—6)TPMP∆需要指出,上述定义并不局限于劳动,一种可变生产要素也可以是资本或其它。
根据上述关系可以做出表4—1:表4—1 各产量概念相互之间的关系2.总产量、平均产量和边际产量的关系由表4—1的数据可做出图4—1。
在图4—1中,以劳动量OL为横轴,产量TP、AP、MP为纵轴,可以做出总产量曲线TP,平均产量曲线AP和边际产量曲线MP。
根据这个图,我们可以看出总产量、平均产量和边际产量之间的关系有这样几个特点:(1)在资本投入量不变的情况下,随着劳动投入量增加到C时,最初AP曲线、MP曲线都上升,并且MP曲线达到最高峰D点,这时TP曲线以递增的增长率上升。
(2)当劳动投入量增加到A时,MP曲线由最高峰D点开始下降,这导致TP曲线以递减的增长率上升。
并MP曲线与AP曲线交于AP曲线的最高点E点,相交前,AP是递增的,且MP>AP;相交后,AP是递减的,且MP<AP;只是在相交时,才有MP=AP。
(3)当劳动投入继续增加到B之前,TP曲线仍以递减的增长率上升,在MP曲线与OL轴相交于B点处,即MP=0,此时TP曲线达到其最高点。
当劳动投入量超过B时,MP<O,则TP曲线开始下降。
从以上TP曲线、AP曲线、MP 曲线都是先上升而后下降的特征看,正是反映了边际收益递减规律作用的结果。
4.2.2 边际收益递减规律1.定义边际收益递减规律又称收益递减规律,是指在技术水平不变的条件下,当把一种可变的生产要素投入到一种或几种不变的生产要素中时,最初这种生产要素的增加会使产量增加,但当它的增加超过一定限度时,所带来的产量增加量是递减的,最终还会使产量绝对减少。
有用的经济学:边际收益递减边际收益递减规律在经济学中意义重大。
以农业为例,当我们增加劳动后产出会大大增加——田地更加精耕细作,更整齐的灌溉沟渠,装束更鲜艳的稻草人。
但是,增加的劳动带来的产出却越来越少。