用SPSS做logistic回归分析解读
Spss软件之logistic回归分析
…
n
0
1
Xn01
X n02
…
1
0
X n11
X n12
…
2
0
Xn21
X n22
…
Xk X 10k X 11 k X 12k
X iMk
X n0k X n1 k X n2k
M
0
XnM1
XnM2
…
X nMk
Conditional logistic regression
用Pi表示第i层在一组危险因素作用下发病的概率, 条 件 logistic 模型可表示为
n
L
1
i1 1
M
k exp
j (X itj X i0 j )
t 1
j1
可以看出,条件logistic 回归分析只估计了表示危 险因素作用的βj值,表示匹配组效应的常数项βi0 则被自动地消去了。
Conditional logistic regression
对上述条件似然函数L取自然对数后,用非线性 迭代法求出参数的估计值bi及其标准误Sbi。回归 系数的假设检验及分析方法与非条件logistic回归 完全相同。
c1 1, c0 0,
Xj
1, 暴露
0,非暴露
ORj exp( j )
Logistic regression analysis
0,
ORj
1
无作用
ORj exp( j ), j >0, ORj 1 危险因子
0, ORj 1 保护因子
二、模型的参数估计
在logistic回归模型中,回归系数的估计通常用最大 似然法(MLE)。其基本思想是先建立一个样本 的似然函数,求似然函数达到最大值时参数的取 值,即为参数的极大似然估计值。
spss二元logistic回归分析结果解读
spss二元logistic回归分析结果解读二元logistic回归分析是一种重要的统计学方法,可以用来对事件发生与否、违约与否等二元变量进行分析,以及把其他自变量与二元变量之间的关系分析出来。
本文将从回归分析的背景、过程、模型分析和结果解释几个方面来论述SPSS二元logistic回归分析结果解读。
一、回归分析的背景二元logistic回归分析是对事件发生状况,如违约情况,是否能够通过自变量的影响而产生波动的状况,比如客户的反应、经济形势以及其他因素。
二元logistic回归分析用于分析违约行为是否与客户的特征有关,以及查看违约行为的发生率随着潜在因素的变化而如何变化。
二、二元logistic回归分析的过程二元logistic回归分析的过程是以自变量对变量(或响应变量)变化来提出研究假设,然后使用这种假设来拟合回归模型,从而评估自变量对变量的影响,并预测其变化。
在SPSS软件中,二元logistic回归分析的过程包括:(1)确定自变量;(2)建立模型;(3)检验模型;(4)分析单个自变量;(5)结果解释。
三、模型分析通过二元logistic回归可以计算回归系数,用于分析自变量对事件发生与否的影响,也可以通过回归系数求出奇异值,来度量回归系数的统计显著性,也即模型拟合度。
SPSS二元logistic回归分析结果输出有两个主要部分,一部分是转换的参数分析,一部分是基础的参数分析。
其中,转换的参数分析中,可以看到回归系数、Odds Ratio以及它们的差异显著性,也可以构建Odds Ratio曲线,来查看自变量的整体影响;基础的参数分析中,可以看到Deviance、Cox & Snell R2以及Nagelkerke R2,来检验模型的拟合度。
结果解释在SPSS二元logistic回归分析结果解释中,可以从回归系数和Odds ratio、Deviance、Cox & Snell R2以及Nagelkerke R2几个方面来解释模型的结果。
spss二元logistic回归分析结果解读
spss二元logistic回归分析结果解读二元logistic回归分析是一种被广泛应用于多元研究中的统计分析方法,它可以帮助研究者了解因变量与自变量之间的关系,探索如何调节自变量,以达到改变因变量的目的。
本文主要就二元logistic回归分析结果如何解释进行讨论,旨在帮助读者更好地理解并解读此类分析结果。
一、二元logistic回归分析概述二元logistic回归分析是一种常见的回归分析模型,它可以用来预测一个特定的结果,或者说一个事件的发生可能性,以及它的发生概率有多大。
它比较适合于研究两个变量之间的关系,一个变量是被解释变量,另一个变量是解释变量,被解释变量只有两种可能的结果,比如两个不同的类别。
二元logistic回归分析的基本思想是利用自变量来预测因变量,它通过计算自变量之间的相关性,来预测因变量的发生可能性,比如我们可以利用自变量,如性别、年龄等,来预测一个人是否会患上某种疾病。
二元logistic回归分析结果分析二元logistic回归分析的结果可以分为三类,分别是系数、截距和拟合指数。
1、系数系数指的是每个自变量变化时,因变量变化的程度,系数的正负可以表示因变量变化的方向,正数表示因变量随自变量变化而增大,负数表示因变量随自变量变化而减小。
系数的大小可以表示因变量变化的幅度,数值越大,表明因变量变化的越明显。
2、截距截距表示自变量为0时因变量的值,即任何自变量都不存在的情况下,因变量的值。
它的大小可以反映因变量变化的数量级,它的正负可以表示因变量变化的方向,正数表示因变量变化而增大,负数表示因变量变化而减小。
3、拟合指数拟合指数是一种衡量模型准确度的指标,其数值越大,表明模型越准确。
一般来说,当拟合指数大于0.6时,可以认为模型较准确。
三、典型二元logistic回归分析结果解读1、系数如果某个自变量的系数为正,表示随着自变量增加,因变量也随之增加;如果系数为负,表示随着自变量增加,因变量会减小。
利用SPSS进行Logistic回归分析
6
研究生地理数学方法(实习)
Part 2 统计分析软件 SPSS
图 8-1-9 样品处理摘要
2. Dependent Variable Encoding(因变量编码)。这是很重要的信息,告诉我们对不同城 市化水平地区的分类编码结果(图 8-1-10)。我们开始根据全国各地区的平均结果 45.41 分 为两类:大于等于 45.41 的地区用 Yes 表示,否则用 No 表示。现在,图 8-1-10 显示,Yes 用 0 表示,No 用 1 表示。也就是说,在这次 SPSS 分析过程中,0 代表城市化水平高于平均 值的状态,1 代表城市化水平低于平均值的状态。记住这个分类。
§8.1 二值 logistic 回归
8.1.1 数据准备和选项设置
我们研究 2005 年影响中国各地区城市化水平的经济地理因素。城市化水平用城镇人口 比重表征,影响因素包括人均 GDP、第二产业产值比重、第三产业产值比重以及地理位置。 地理位置为名义变量,中国各地区被分别划分到三大地带:东部地带、中部地带和西部地带。 我们用各地区的地带分类代表地理位置。
Classification Tablea,b
Predicted
Observed
Step 0 城市化
Yes
No
Overall Percentage
a. Constant is included in the model.
b. The cut value is .500
城市化
Yes 0
No 11
0
20
3
研究生地理数学方法(实习)
Part 2 统计分析软件 SPSS
图 8-1-5 Logistic 回归分析的初步设置 接下来进行如下 4 项设置: ⒈ 设置 Categorical(分类)选项:定义分类变量(图 8-1-6)。 将中部调入 Categorical Covariates(分类协变量)列表框,其余选项取默认值即可。完 成后,点击 Continue 继续。
spss logistic回归分析
Log
P 1− P
= 1.358 −1.832x1
−
2.140x3
应用Logistic回归分析时的注意事项
1. Logistic回归是乘法模型,这一点,在结果解释时需 要慎重。
对于自变量(X1,X2),OR12=EXP(β1+β2)=OR1×OR2
例:某研究调查胃癌发病的危险因素,得到“有不良饮食习 惯”相对于“无不良饮食习惯”的OR=2.6, “喜吃卤食和盐渍 食物”相对于“不吃卤食和盐渍食物”的OR=2.4。那么根据 Logistic回归,“有不良饮食习惯且喜吃卤食和盐渍食物”相 对于“无不良饮食习惯且不吃卤食和盐渍食物”的 OR=2.6×2.4=6.24,得出此结论时需要考虑:从专业知识上 是否合理?
另法:将X1、X3指定为分类变量。
另法:将X1、X3指定为分类变量。
注:变量编码发生 了变化:0→ 0.5, 1→ -0.5
与前述结果相比,X1与X3的回归系数符号发生了变化,结果解释有 所不同:病情不严重组相对于严重组,OR=4.928(病情不严重的 患者,其治愈的概率是病情严重的患者的4.928倍);新疗法组相对 于旧疗法组, OR=9.707, (接受新疗法的患者,其治愈的概率是 接受旧疗法的患者的9.707倍)。 注:对于二分类变量,可以当作连续变量处理,也可以指定为 分类变量,但要注意结果解释。
2. 通常情况下,自变量为二分类变量时,可以当作连续变 量进入模型(常用0、1或者1、2赋值),也可以通过 “categorical”来指定哑变量。但是,对多分类变量应该 通过“categorical”来指定哑变量,而不宜直接作为连续 变量处理。
多元线性回归分析与Logistic回归分析都是实际工作中 常用的方法,用于影响因素分析时,多元线性回归的因 变量是连续变量,而Logistic回归的因变量是分类变 量;两种方法的自变量可为连续变量或分类变量,当为 分类变量时,均需相应的哑变量(二分类变量例外)。
spss的logistic分析教程
Logistic回归主要分为三类,一种是因变量为二分类得logistic回归,这种回归叫做二项logistic回归,一种是因变量为无序多分类得logistic回归,比如倾向于选择哪种产品,这种回归叫做多项logistic回归。
还有一种是因变量为有序多分类的logistic回归,比如病重的程度是高,中,低呀等等,这种回归也叫累积logistic回归,或者序次logistic回归。
二值logistic回归:选择分析——回归——二元logistic,打开主面板,因变量勾选你的二分类变量,这个没有什么疑问,然后看下边写着一个协变量。
有没有很奇怪什么叫做协变量?在二元logistic回归里边可以认为协变量类似于自变量,或者就是自变量。
把你的自变量选到协变量的框框里边。
细心的朋友会发现,在指向协变量的那个箭头下边,还有一个小小的按钮,标着a*b,这个按钮的作用是用来选择交互项的。
我们知道,有时候两个变量合在一起会产生新的效应,比如年龄和结婚次数综合在一起,会对健康程度有一个新的影响,这时候,我们就认为两者有交互效应。
那么我们为了模型的准确,就把这个交互效应也选到模型里去。
我们在右边的那个框框里选择变量a,按住ctrl,在选择变量b,那么我们就同时选住这两个变量了,然后点那个a*b的按钮,这样,一个新的名字很长的变量就出现在协变量的框框里了,就是我们的交互作用的变量。
然后在下边有一个方法的下拉菜单。
默认的是进入,就是强迫所有选择的变量都进入到模型里边。
除去进入法以外,还有三种向前法,三种向后法。
一般默认进入就可以了,如果做出来的模型有变量的p值不合格,就用其他方法在做。
再下边的选择变量则是用来选择你的个案的。
一般也不用管它。
选好主面板以后,单击分类(右上角),打开分类对话框。
在这个对话框里边,左边的协变量的框框里边有你选好的自变量,右边写着分类协变量的框框则是空白的。
你要把协变量里边的字符型变量和分类变量选到分类协变量里边去(系统会自动生成哑变量来方便分析,什么事哑变量具体参照前文)。
利用SPSS进行logistic回归分析(二元、多项)
线性回归是很重要的一种回归方法,但是线性回归只适用于因变量为连续型变量的情况,那如果因变量为分类变量呢?比方说我们想预测某个病人会不会痊愈,顾客会不会购买产品,等等,这时候我们就要用到logistic回归分析了。
Logistic回归主要分为三类,一种是因变量为二分类得logistic回归,这种回归叫做二项logistic回归,一种是因变量为无序多分类得logistic回归,比如倾向于选择哪种产品,这种回归叫做多项logistic回归。
还有一种是因变量为有序多分类的logistic回归,比如病重的程度是高,中,低呀等等,这种回归也叫累积logistic回归,或者序次logistic回归。
二值logistic回归:选择分析——回归——二元logistic,打开主面板,因变量勾选你的二分类变量,这个没有什么疑问,然后看下边写着一个协变量。
有没有很奇怪什么叫做协变量?在二元logistic回归里边可以认为协变量类似于自变量,或者就是自变量。
把你的自变量选到协变量的框框里边。
细心的朋友会发现,在指向协变量的那个箭头下边,还有一个小小的按钮,标着a*b,这个按钮的作用是用来选择交互项的。
我们知道,有时候两个变量合在一起会产生新的效应,比如年龄和结婚次数综合在一起,会对健康程度有一个新的影响,这时候,我们就认为两者有交互效应。
那么我们为了模型的准确,就把这个交互效应也选到模型里去。
我们在右边的那个框框里选择变量a,按住ctrl,在选择变量b,那么我们就同时选住这两个变量了,然后点那个a*b的按钮,这样,一个新的名字很长的变量就出现在协变量的框框里了,就是我们的交互作用的变量。
然后在下边有一个方法的下拉菜单。
默认的是进入,就是强迫所有选择的变量都进入到模型里边。
除去进入法以外,还有三种向前法,三种向后法。
一般默认进入就可以了,如果做出来的模型有变量的p值不合格,就用其他方法在做。
再下边的选择变量则是用来选择你的个案的。
spsslogistic回归分析结果解读
spsslogistic回归分析结果解读
本文分析了使用SPSS Logistic回归分析的结果,以了解不同变量之间
是否存在潜在关系。
Logistic回归是一种用于预测调查中的变量组合能够预测调查的结果的
机器学习技术。
在这种情况下,我们使用Logistic回归来预测一个变量
(假设为购买行为)和其他变量(价格,品牌认知度等)之间的关系。
特别是,我们可以评估价格是否是客户决定购买商品的重要影响因素。
SPSS Logistic回归分析的结果表明,在本例中,我们发现价格是一个
重要的影响因素。
我们看到,价格的变化程度会影响客户购买商品的可能性:客户可能更愿意购买相对较低的价格,而对于较高的价格则更不可能购买。
此外,品牌认知度也会影响客户是否愿意购买:客户对品牌认知度越高,购
买概率越高。
这可能是因为客户更倾向于信任已经熟悉的品牌而忽略未熟悉
的品牌,或者可能是因为客户更了解该品牌的商品及其优缺点,因此可以作
出的更明智的购买决策。
因此,本次分析表明,价格和品牌认知度在客户决定购买商品时都有重
要的影响。
商家应考虑这些因素,以确保它们的产品在客户面前具有足够的
吸引力和优势,使其愿意购买。
spss二元logistic回归分析结果解读
spss的二元logistic回归
SPSS(Statistical Product and Service Solutions)是一款数据统计与分析软件。
SPSS软件可以提供全面高级的统计分析,方便易用可快速操作,可缩小数据科学与数据理解之间的差距;在具体的应用方向方面,SPSS提供了高级统计分析、大量机器学习算法、文本分析等功能,具备开源可扩展性,可与大数据的集成,并能够无缝部署到应用程序中。
Logistic回归:主要用于因变量为分类变量(如疾病的缓解、不缓解,评比中的好、中、差等)的回归分析,自变量可以为分类变量,也可以为连续变量。
变量为二分类的称为二项logistic回归,因变量为多分类的称为多元logistic回归。
Odds:称为比值、比数,是指某事件发生的可能性(概率)与不发生的可能性(概率)之比。
OR(OddsRatio):比值比,优势比。
二元logistic回归是研究二分类反应变量和多个解释变量间回归关系的统计学分析方法。
详解利用SPSS进行Logistic_回归分析
第8 章利用SPSS 进行Logistic 回归分析现实中的很多现象可以划分为两种可能,或者归结为两种状态,这两种状态分别用0和1 表示。
如果我们采用多个因素对0-1 表示的某种现象进行因果关系解释,就可能应用到logistic 回归。
Logistic 回归分为二值logistic 回归和多值logistic 回归两类。
首先用实例讲述二值logistic 回归,然后进一步说明多值logistic 回归。
在阅读这部分内容之前,最好先看看有关SPSS 软件操作技术的教科书。
§8.1 二值logistic 回归8.1.1 数据准备和选项设置我们研究2005 年影响中国各地区城市化水平的经济地理因素。
城市化水平用城镇人口比重表征,影响因素包括人均GDP、第二产业产值比重、第三产业产值比重以及地理位置。
地理位置为名义变量,中国各地区被分别划分到三大地带:东部地带、中部地带和西部地带。
我们用各地区的地带分类代表地理位置。
第一步:整理原始数据。
这些数据不妨录入Excel 中。
数据整理内容包括两个方面:一是对各地区按照三大地带的分类结果赋值,用0、1 表示,二是将城镇人口比重转换逻辑值,变量名称为“城市化”。
以各地区2005 年城镇人口比重的平均值45.41%为临界值,凡是城镇人口比重大于等于45.41%的地区,逻辑值用Yes 表示,否则用No 表示(图8-1-1)图8-1-1 原始数据(Excel 中,局部)将数据拷贝或者导入SPSS 的数据窗口(Data View)中(图8-1-2)。
图8-1-2 中国31 个地区的数据(SPSS 中,局部)第二步:打开“聚类分析”对话框。
沿着主菜单的“Analyze→Regression→Binary Logistic K”的路径(图8-1-3)打开二值Logistic 回归分析选项框(图8-1-4)。
图8-1-3 打开二值Logistic 回归分析对话框的路径对数据进行多次拟合试验,结果表明,像二产比重、三产比重等对城市化水平影响不显著。
logistic回归模型 SPSS例析
Logistic 回归Logistic 回归是多元回归分析的拓展,其因变量不是连续的变量;在logistic 分析中,因变量是分类的变量;logistic 和probit 回归皆为定性回归方程的一种;他们的特点就在于回归因变量的离散型而非连续型。
Logistic 回归又分为binary 和multinominal 两类;1、Logistic 回归原理Logistic 回归Logistic 回归模型描述的是概率P 与协变量12,.......k x x x 之间的关系,考虑到P 的取值在0----1之间,为此要首先把Plogistic 变换为()ln()1pf p p=-,使得它的取值在+∞-∞到之间,然后建立logistic 回归模型P=p(Y=1)()ln()1pf p p=-=011+......k k x x βββ++011011+......+......1k kk kx x x x e p eββββββ++++⇒=+Logistic 回归模型的数据结构观察值个数 取1的观察值个数 取0的观察值个数 协变量12,.......k x x x 的值 N1 r1 n1-ri ……………………… N2 r2 n2-r2 ………………………. . . . . . . . .Nt rt nt-rt ………………………. 根据数据,得到参数0 1....k βββ的似然函数011011011+ (1)+......+......1()()11k ki i ik k k kx x r n r t i x x x x e e eβββββββββ++-=++++∏++使用迭代算法可以求得0 1....k βββ的极大似然估计。
2、含名义数据的logistic 模型婚姻状况是名义数据,分为四种情形:未婚、有配偶、丧偶、离婚;在建立logistic 模型时,定义变量M1、M2、M3,使得(M1=1,M2=0,M3=0)表示未婚; (M1=0,M2=1,M3=0)表示有配偶 (M1=0,M2=0,M3=1)表示丧偶 (M1=-1,M2=-1,M3=-1)表示离婚 也可以将三变量定义为(M1=1,M2=0,M3=0)表示未婚; (M1=0,M2=1,M3=0)表示有配偶 (M1=0,M2=0,M3=1)表示丧偶 (M1=0,M2=0,M3=0)表示离婚 一般来说,只要矩阵[]1111122213331444a b c a b c a b c a b c非奇异,可以定义(M1=a1,M2=b1,M3=c1)表示未婚; (M1=a2,M2=b2,M3=c2)表示有配偶 (M1=a3,M2=b3,M3=c3)表示丧偶 (M1=a4,M2=b4,M3=c4)表示离婚3、含有有序数据的logistic 回归文化程度是有序的定性变量,他有一个顺序,由低到高为文盲、小学、中学、高中、中专;大学。
利用SPSS进行Logistic回归分析
第8章利用SPSS进行Logistic回归分析现实中的很多现象可以划分为两种可能,或者归结为两种状态,这两种状态分别用0和1表示。
如果我们采用多个因素对0-1表示的某种现象进行因果关系解释,就可能应用到logistic回归。
Logistic回归分为二值logistic回归和多值logistic回归两类。
首先用实例讲述二值logistic回归,然后进一步说明多值logistic回归。
在阅读这部分内容之前,最好先看看有关SPSS软件操作技术的教科书。
§8.1 二值logistic回归8.1.1 数据准备和选项设置我们研究2005年影响中国各地区城市化水平的经济地理因素。
城市化水平用城镇人口比重表征,影响因素包括人均GDP、第二产业产值比重、第三产业产值比重以及地理位置。
地理位置为名义变量,中国各地区被分别划分到三大地带:东部地带、中部地带和西部地带。
我们用各地区的地带分类代表地理位置。
第一步:整理原始数据。
这些数据不妨录入Excel中。
数据整理内容包括两个方面:一是对各地区按照三大地带的分类结果赋值,用0、1表示,二是将城镇人口比重转换逻辑值,变量名称为“城市化”。
以各地区2005年城镇人口比重的平均值45.41%为临界值,凡是城镇人口比重大于等于45.41%的地区,逻辑值用Yes表示,否则用No表示(图8-1-1)。
图8-1-1 原始数据(Excel中,局部)将数据拷贝或者导入SPSS的数据窗口(Data View)中(图8-1-2)。
图8-1-2 中国31个地区的数据(SPSS中,局部)第二步:打开“聚类分析”对话框。
沿着主菜单的“Analyze→Regression→Binary Logistic K”的路径(图8-1-3)打开二值Logistic回归分析选项框(图8-1-4)。
图8-1-3 打开二值Logistic回归分析对话框的路径对数据进行多次拟合试验,结果表明,像二产比重、三产比重等对城市化水平影响不显著。
二元logistic回归spss结果解读
二元logistic回归spss结果解读
性。
二元logistic回归是一种用于分析二元变量之间关系的统计方法,它可以用来检验一个变量是否对另一个变量有影响。
SPSS是一款统计分析软件,它可以帮助我们进行二元logistic回归分析,并输出结果。
二元logistic回归的结果解读主要包括以下几个方面:
1.模型拟合度:模型拟合度指标可以反映模型的拟合程度,如果拟合度较高,说明模型拟合数据较好,可以用来预测。
2.回归系数:回归系数可以反映自变量对因变量的影响程度,如果系数较大,说明自变量对因变量的影响较大,反之亦然。
3.显著性检验:显著性检验可以检验回归系数是否显著,如果显著性检验的p值小于0.05,说明回归系数显著,反之亦然。
4.拟合优度检验:拟合优度检验可以检验模型的拟合优度,如果拟合优度检验的p值小于0.05,说明模型拟合优度较高,反之亦然。
通过以上几个方面的解读,我们可以更好地理解二元logistic回归的结果,从而更好地分析变量之间的关系。
手把手教你SPSS二分类Logistic回归分析
手把手教你SPSS二分类Logistic回归分析本教程手把手教您用SPSS做Logistic回归分析,目录如下:一、数据格式二、对数据的分析理解三、SPSS做Logistic回归分析操作步骤3.1 线性关系检验假设3.2 多重共线检验假设3.3 离群值、杠杆点和强影响点的识别3.4 Logistic回归分析四、SPSS计算结果的解释五、结果结论的撰写一、数据格式某研究者想了解年龄、性别、BMI和总胆固醇(TC)预测患心脏病(CVD)的能力,招募了100例研究对象,记录了年龄(age)、性别(gender)、BMI,测量血中总胆固醇水平(TC),并评估研究对象目前是否患有心脏病(CVD)。
部分数据如图1。
二、对问题分析使用Logistic模型前,需判断是否满足以下7项假设。
假设1:因变量(结局)是二分类变量。
假设2:有至少1个自变量,自变量可以是连续变量,也可以是分类变量。
假设3:每条观测间相互独立。
分类变量(包括因变量和自变量)的分类必须全面且每一个分类间互斥。
假设4:最小样本量要求为自变量数目的15倍,但一些研究者认为样本量应达到自变量数目的50倍。
假设5:连续的自变量与因变量的logit转换值之间存在线性关系。
假设6:自变量之间无多重共线性。
假设7:没有明显的离群点、杠杆点和强影响点。
假设1-4取决于研究设计和数据类型,本研究数据满足假设1-4。
那么应该如何检验假设5-7,并进行Logistic回归呢?三、SPSS操作3.1 检验假设5:连续的自变量与因变量的logit转换值之间存在线性关系。
连续的自变量与因变量的logit转换值之间是否存在线性关系,可以通过多种方法检验。
这里主要介绍Box-Tidwell方法,即将连续自变量与其自然对数值的交互项纳入回归方程。
本研究中,连续的自变量包括age、BMI、TC。
使用Box-Tidwell 方法时,需要先计算age、BMI、TC的自然对数值,并命名为ln_age、ln_BMI、ln_TC。
应用SPSS软件进行多分类Logistic回归分析
应用SPSS软件进行多分类Logistic回归分析应用SPSS软件进行多分类Logistic回归分析一、简介Logistic回归是一种常用的统计分析方法,在很多领域中都有广泛的应用。
它主要用于预测一个分类变量的可能性或概率,例如判断一个疾病的患病风险、判断学生成绩的优劣、预测金融市场的涨跌等。
本文将介绍如何使用SPSS软件进行多分类Logistic回归分析,并以一个具体案例来说明其应用。
二、SPSS软件介绍SPSS软件是统计分析的常用工具之一,它具有友好的用户界面和丰富的分析功能。
在进行Logistic回归分析时,SPSS可以帮助我们进行数据处理、模型建立、模型拟合、模型评估等步骤,并输出详细的分析结果。
三、案例描述我们假设有一份数据集,包含了500个样本和5个自变量,要根据这些自变量对样本进行多分类。
自变量包括性别、年龄、教育水平、收入和职业。
而多分类的目标变量是购买冰淇淋的偏好,包括三个分类:喜欢巧克力口味、喜欢草莓口味和喜欢香草口味。
四、数据处理首先,我们需要对数据进行处理。
SPSS可以读取各种文件格式,如Excel、CSV等。
我们将数据导入SPSS后,可以进行缺失值处理、异常值处理等预处理步骤。
这些步骤是为了保证后续的分析结果的准确性和可靠性。
五、模型建立在SPSS中,我们可以使用多分类Logistic回归模型进行建模。
它采用最大似然估计方法来估计模型参数,以便进行分类预测。
我们需要将自变量和目标变量进行指定,SPSS会自动计算出各个自变量对目标变量的系数和统计学意义。
六、模型拟合在模型拟合阶段,SPSS会对模型进行拟合优度的检验,包括卡方拟合优度检验、Hosmer-Lemeshow检验等。
这些检验可以帮助我们评估模型的拟合程度和可靠性。
如果模型的拟合程度不好,我们可以对模型进行进一步调整和改进。
七、模型评估在模型评估阶段,SPSS提供了一系列的统计指标和图表,用于评估多分类Logistic回归模型的性能。
用SPSS做logistic回归分析解读
如何用SPSS做logistic回归分析解读————————————————————————————————作者:————————————————————————————————日期:如何用spss17.0进行二元和多元logistic回归分析一、二元logistic回归分析二元logistic回归分析的前提为因变量是可以转化为0、1的二分变量,如:死亡或者生存,男性或者女性,有或无,Yes或No,是或否的情况。
下面以医学中不同类型脑梗塞与年龄和性别之间的相互关系来进行二元logistic回归分析。
(一)数据准备和SPSS选项设置第一步,原始数据的转化:如图1-1所示,其中脑梗塞可以分为ICAS、ECAS和NCAS三种,但现在我们仅考虑性别和年龄与ICAS的关系,因此将分组数据ICAS、ECAS和NCAS转化为1、0分类,是ICAS赋值为1,否赋值为0。
年龄为数值变量,可直接输入到spss中,而性别需要转化为(1、0)分类变量输入到spss当中,假设男性为1,女性为0,但在后续分析中系统会将1,0置换(下面还会介绍),因此为方便期间我们这里先将男女赋值置换,即男性为“0”,女性为“1”。
图1-1第二步:打开“二值Logistic 回归分析”对话框:沿着主菜单的“分析(Analyze)→回归(Regression)→二元logistic (Binary Logistic)”的路径(图1-2)打开二值Logistic 回归分析选项框(图1-3)。
如图1-3左侧对话框中有许多变量,但在单因素方差分析中与ICAS 显著相关的为性别、年龄、有无高血压,有无糖尿病等(P<0.05),因此我们这里选择以性别和年龄为例进行分析。
在图1-3中,因为我们要分析性别和年龄与ICAS的相关程度,因此将ICAS选入因变量(Dependent)中,而将性别和年龄选入协变量(Covariates)框中,在协变量下方的“方法(Method)”一栏中,共有七个选项。
如何用SPSS做logistic回归分析
如何用spss17.0进行二元和多元logis tic回归分析一、二元logis tic回归分析二元logis tic回归分析的前提为因变量是可以转化为0、1的二分变量,如:死亡或者生存,男性或者女性,有或无,Yes或No,是或否的情况。
下面以医学中不同类型脑梗塞与年龄和性别之间的相互关系来进行二元logist ic回归分析。
(一)数据准备和SP SS选项设置第一步,原始数据的转化:如图1-1所示,其中脑梗塞可以分为ICAS、ECAS和NC AS三种,但现在我们仅考虑性别和年龄与ICAS的关系,因此将分组数据ICAS、ECAS和NC AS转化为1、0分类,是ICAS赋值为1,否赋值为0。
年龄为数值变量,可直接输入到s pss中,而性别需要转化为(1、0)分类变量输入到spss当中,假设男性为1,女性为0,但在后续分析中系统会将1,0置换(下面还会介绍),因此为方便期间我们这里先将男女赋值置换,即男性为“0”,女性为“1”。
图1-1第二步:打开“二值Logis tic 回归分析”对话框:沿着主菜单的“分析(Analyze)→回归(Regress ion)→二元logis tic (BinaryLogisti c)”的路径(图1-2)打开二值Log istic回归分析选项框(图1-3)。
如图1-3左侧对话框中有许多变量,但在单因素方差分析中与IC AS 显著相关的为性别、年龄、有无高血压,有无糖尿病等(P<0.05),因此我们这里选择以性别和年龄为例进行分析。
在图1-3中,因为我们要分析性别和年龄与ICAS的相关程度,因此将ICAS选入因变量(Depende nt)中,而将性别和年龄选入协变量(Covaria tes)框中,在协变量下方的“方法(Method)”一栏中,共有七个选项。
利用SPSS进行Logistic回归分析
利用SPSS进行Logistic回归分析第8章利用SPSS进行Logistic回归分析现实中的很多现象可以划分为两种可能,或者归结为两种状态,这两种状态分别用0和1表示。
如果我们采用多个因素对0-1表示的某种现象进行因果关系解释,就可能应用到logistic回归。
Logistic回归分为二值logistic回归和多值logistic回归两类。
首先用实例讲述二值logistic回归,然后进一步说明多值logistic回归。
在阅读这部分内容之前,最好先看看有关SPSS软件操作技术的教科书。
§8.1 二值logistic回归8.1.1 数据准备和选项设置我们研究2005年影响中国各地区城市化水平的经济地理因素。
城市化水平用城镇人口比重表征,影响因素包括人均GDP、第二产业产值比重、第三产业产值比重以及地理位置。
地理位置为名义变量,中国各地区被分别划分到三大地带:东部地带、中部地带和西部地带。
我们用各地区的地带分类代表地理位置。
第一步:整理原始数据。
这些数据不妨录入Excel中。
数据整理内容包括两个方面:一是对各地区按照三大地带的分类结果赋值,用0、1表示,二是将城镇人口比重转换逻辑值,变量名称为“城市化”。
以各地区2005年城镇人口比重的平均值45.41%为临界值,凡是城镇人口比重大于等于45.41%的地区,逻辑值用Yes表示,否则用No表示(图8-1-1)。
图8-1-1 原始数据(Excel中,局部)将数据拷贝或者导入SPSS的数据窗口(Data View)中(图8-1-2)。
图8-1-2 中国31个地区的数据(SPSS中,局部)第二步:打开“聚类分析”对话框。
沿着主菜单的“Analyze→Regression→Binary LogisticK”的路径(图8-1-3)打开二值Logistic回归分析选项框(图8-1-4)。
图8-1-3 打开二值Logistic回归分析对话框的路径对数据进行多次拟合试验,结果表明,像二产比重、三产比重等对城市化水平影响不显著。
SPSS数据分析—多分类Logistic回归模型
前面我们说过二分类Logistic回归模型,但分类变量并不只是二分类一种,还有多分类,本次我们介绍当因变量为多分类时的Logistic回归模型。
多分类Logistic回归模型又分为有序多分类Logistic回归模型和无序多分类Logistic回归模型一、有序多分类Logistic回归模型有序多分类Logistic回归模型拟合的基本方法是拟合因变量水平数-1个Logistic回归模型,也称为累积多分类Logit模型,实际上就是将因变量依次分割成两个等级,对这两个等级建立二分类Logistic回归模型,无论模型的分割点在什么位置,所拟合的这n-1个回归模型的自变量系数均保持不变,改变的只有常数项,这也是累积多分类Logit模型的前提条件,也称为平行线检验。
累积多分类Logit模型的常数项是负数,和二分类Logistic回归模型的常数项符号相反下面看一个例子现在想分析人们的工作满意度,选取了一些相关变量,数据如下从数据中,可见因变量满意度satis有三个水平,因此考虑拟合有序多分类Logistic回归模型分析—回归—有序二、无序多分类Logistic回归模型前面讲的有序分类Logistic回归模型,前提为因变量为有序多分类,但是当因变量为无序多分类或者不满足平行线假定时,就需要使用无序多分类Logistic 回归模型。
无序多分类Logistic回归模型也是拟合因变量水平数-1个广义Logit模型,不同的是它需要先定义某一个水平为参照水平,其余水平和其进行对比,SPSS默认取水平最大者为参照水平。
例,通过一组数据,希望分析出不同背景人的投票倾向图中可见因变量pres92为无序多分类变量,有三个水平,考虑使用无序多分类Logistic回归模型分析—回归—多项Logistic。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如何用SPSS做logistic回归分析解读————————————————————————————————作者:————————————————————————————————日期:如何用spss17.0进行二元和多元logistic回归分析一、二元logistic回归分析二元logistic回归分析的前提为因变量是可以转化为0、1的二分变量,如:死亡或者生存,男性或者女性,有或无,Yes或No,是或否的情况。
下面以医学中不同类型脑梗塞与年龄和性别之间的相互关系来进行二元logistic回归分析。
(一)数据准备和SPSS选项设置第一步,原始数据的转化:如图1-1所示,其中脑梗塞可以分为ICAS、ECAS和NCAS三种,但现在我们仅考虑性别和年龄与ICAS的关系,因此将分组数据ICAS、ECAS和NCAS转化为1、0分类,是ICAS赋值为1,否赋值为0。
年龄为数值变量,可直接输入到spss中,而性别需要转化为(1、0)分类变量输入到spss当中,假设男性为1,女性为0,但在后续分析中系统会将1,0置换(下面还会介绍),因此为方便期间我们这里先将男女赋值置换,即男性为“0”,女性为“1”。
图1-1第二步:打开“二值Logistic 回归分析”对话框:沿着主菜单的“分析(Analyze)→回归(Regression)→二元logistic (Binary Logistic)”的路径(图1-2)打开二值Logistic 回归分析选项框(图1-3)。
如图1-3左侧对话框中有许多变量,但在单因素方差分析中与ICAS 显著相关的为性别、年龄、有无高血压,有无糖尿病等(P<0.05),因此我们这里选择以性别和年龄为例进行分析。
在图1-3中,因为我们要分析性别和年龄与ICAS的相关程度,因此将ICAS选入因变量(Dependent)中,而将性别和年龄选入协变量(Covariates)框中,在协变量下方的“方法(Method)”一栏中,共有七个选项。
采用第一种方法,即系统默认的强迫回归方法(进入“Enter”)。
接下来我们将对分类(Categorical),保存(Save),选项(Options)按照如图1-4、1-5、1-6中所示进行设置。
在“分类”对话框中,因为性别为二分类变量,因此将其选入分类协变量中,参考类别为在分析中是以最小数值“0(第一个)”作为参考,还是将最大数值“1(最后一个)”作为参考,这里我们选择第一个“0”作为参考。
在“存放”选项框中是指将不将数据输出到编辑显示区中。
在“选项”对话框中要勾选如图几项,其中“exp(B)的CI(X)”一定要勾选,这个就是输出的OR和CI值,后面的95%为系统默认,不需要更改。
另外在“选项”对话框中,“输出”一栏中,系统默认为“在每个步骤中”,这里更改为“在最后一个步骤中”,即:输出结果将仅仅给出最终结果,而省略每一步的计算过程。
由于我们采用强迫回归,逐步回归概率选项可以不管此外还有一个选项需要说明。
一是分类临界值(Classification cutoff ),默认值为0.5,即按四舍五入的原则将概率预测值化为0 或者1。
如果将数值改为0.6,则大于等于0.6 的概率值才表示为1,否则为0。
其情况余依此类推。
二是最大迭代值(Maximum Iterations),规定系统运算的迭代次数,默认值为20 次,为安全起见,我们将迭代次数增加到50。
原因是,有时迭代次数太少,计算结果不能真正收敛。
三是模型中包括常数项(Include constant in model),即模型中保留截距。
除了迭代次数之外,其余两个选项均采用系统默认值。
完成后,点击各项中“继续(Continue)”按钮。
返回图1-3,单击“确定”按钮。
(二)结果解读其他结果参照文章《利用SPSS进行Logistic回归分析》中解读,这里重点将两点:第一,分类变量编码(图1-7),由于这里包括性别分类变量,而我们对性别赋值为1和0,但在spss中系统会默认把我们的数值进行置换,即1→参数编码0,0→参数编码1,而最终输出结果是以1来计算的,而0为参考数据。
所以这也就是为什么我么之前要对研究组男性的赋值进行置换了。
如果男性为1那么spss中最终输出的将是女性的分析结果。
图1-7第二,最终输出数据(图1-8)在该结果中,Exp(B)即为文献中提及的OR值,而EXP(B)的95%C.I.即为文献中提及的CI值。
其中Exp(B)表示某因素(自变量)内该类别是其相应参考类别具有某种倾向性的倍数。
而有的文献中提到的Crode OR和Adjust OR则分别为单因素优势率(Crode odds ratio)和多因素优势率(Adjust odds ratio),即仅对性别单个变量的单因素分析或者对性别和年龄等多个变量进行多因素分析后所得到的不同结果。
CI则为可信区间(Confidence interval)。
Sig.即我们常说的P值,P<0.05为显著(无效假说不成立,具有统计学意义),P>0.05为不显著(无效假说成立,不具有统计学意义)。
二、多项(多元、多分类、Multinomial)logistic回归分析前面讲的二元logistic回归分析仅适合因变量Y只有两种取值(二分类)的情况,当Y具有两种以上的取值时,就要用多项logistic回归(M utinomial Logistic Regression)分析了。
这种分析不仅可以用于医疗领域,也可以用于社会学、经济学、农业研究等多个领域。
如不同阶段(初一、初二、初三)学生视力下降程度,不同龋齿情况(轻度、中度、重度)下与刷牙、饮食、年龄的关系等。
下面我们以图1-2中,对apoba1(ApoB/AI)项中数值做四分位数后,将病人的ApoB/AI的比值划分为低、较低、中、高四个分位后利用多项logistic回归分析其与ICAS之间的相互关系。
首先来做四分位数,很多人在做四分位数的时候都是自己算出来的,其实在SPSS里面给出了做四分位数的程度即分析(Aanlyze)→描述统计(Descriptive Statistics)→频率(Frequencies)。
打如图2-1开频率对话框。
将我们要分析的数值变量Apoba1选入到变量对话框中。
选择统计量,按照图2-2中勾选四分位数选项,其他选项按照自己需要勾选,然后点击图2-1中的确定按钮,开始运算。
在图2-3中可以读取我们的四分位数第4/7页值。
图中百分数表示的是对该变量做的四分位数的百分比,25表示前2 5%的,50表示前50%的,75表示前75%的。
每一项对应的后面数值即为相应的四分位数,如0.5904,即为前25%的个体与后75%个体的分位数。
按照如上方法得出ApoB/AI的比率后我们可以把该比值划分为四个区间,即当ApoB/AI的比率<0.5904为低、当0.5904≤ApoB/AI的比率≤0.88时为较低、当0.89≤ApoB/AI的比率≤1.0886时为中,当ApoB/AI 的比率>1.0886时为高。
然后将这一划分如图1-1中“四分位数”一项用分类数值表示即1代表低,2代表较低,3代表中,4代表高。
这里还要强调的是我们要研究其与ICAS之间的相互关系,那么我们需要将其设为二分类变量,即是ICAS的情况为1,否则为0,但多项logistic回归分析也会将1,0置换,所以我们需要在这里将我们需要研究的情况置换为0,然后将其他置换为1。
下面就可以进行多项logistic回归分析了。
如图2-4打开多项logistic回归分析对话框(图2-5)。
如图2-5所示,在”因变量”中选入刚才我们输入的四分位数分类变量,在因子中输入分类变量ICAS(这里一定是分类变量,可以是一个也可以是多个),在“协变量”中输入数值变量如年龄(这里一定是数值变量,可以是一个也可以是多个),但因本次没有对年龄进行分析,仅对ICAS进行了单因素分析,所以我们把年龄移出协变量选项。
在SPSS中对因变量的定义是,如果因变量Y有J个值(即Y有J 类),以其中一个类别作为参考类别,其他类别都同他相比较生成J-1个冗余的Logit变换模型,而作为参考类别的其模型中所有系数均为0。
在SPSS中可以对所选因变量的参考类别进行设置,如图2-5在因变量对话框下有一“参考类别”选项。
点击后会弹出图2-6对话框。
在该对话框中我们选中设定,输入数值1,这代表我们以分类数值1所代表的类别作为参考类别,即最低数值作为参考类别。
单击继续。
当然也可以选择“第一类别”和“最后类别”,入选中分别表示以最低数值或最高数值作为参考类别。
其他设置与二元Logistic分析相似,将我们要输出的项勾选即可,点击图2-5中确定,输出数据。
输出数据基本与二元Logistic分析相似,我们重点讲下最后一项“参考估计”,如图2-7所示,其中参考类别为ICAS=1的分类情况,而其中的ICAS=0分为2、3、4三种,分别给出了ICAS=0时的数值。
而其中Exp(B)(即OR值)表示某因素(自变量)内该类别是其相应参考类别具有某种倾向性的倍数。
如Exp(B)=2.235时,即表示在较轻这一类别下ICAS患者数为其他类别(ECAS和NCAS)的2.235倍。
这里面的显著水平即为P值。
这里要强调的是,一些文献中在输出数据的时候经常会给出“Referen t(参考)”项,这里的Referent,即为我们这里所选的参考类别1,因为1作为参考类别,所以其所有数值为0,即无数据输出。
因此在文中需标注其为Referent。
读书的好处1、行万里路,读万卷书。
2、书山有路勤为径,学海无涯苦作舟。
3、读书破万卷,下笔如有神。
4、我所学到的任何有价值的知识都是由自学中得来的。
——达尔文5、少壮不努力,老大徒悲伤。
6、黑发不知勤学早,白首方悔读书迟。
——颜真卿7、宝剑锋从磨砺出,梅花香自苦寒来。
8、读书要三到:心到、眼到、口到9、玉不琢、不成器,人不学、不知义。
10、一日无书,百事荒废。
——陈寿11、书是人类进步的阶梯。
12、一日不读口生,一日不写手生。
13、我扑在书上,就像饥饿的人扑在面包上。
——高尔基14、书到用时方恨少、事非经过不知难。
——陆游15、读一本好书,就如同和一个高尚的人在交谈——歌德16、读一切好书,就是和许多高尚的人谈话。
——笛卡儿17、学习永远不晚。
——高尔基18、少而好学,如日出之阳;壮而好学,如日中之光;志而好学,如炳烛之光。
——刘向19、学而不思则惘,思而不学则殆。
——孔子20、读书给人以快乐、给人以光彩、给人以才干。
——培根。