gambit二维喷射管网格划分
离心泵全流场分析教程(一)---Gambit网格划分与边界设置

离心泵全流场分析教程(一)---Gambit 网格划分与边界设置Gambit 是fluent 的一款前处理软件,可以生成Fluent 所需要的模型和网格文件。
Gambit 除了自身可以绘图之外,也可以导入各种通用格式的二维或三维图形,例如Iges、Parasolid、Step 等格式。
由于一般的三维绘图软件(UG、Pro/E、Catia、solidworks 等)功能都比较强大而且易用,所以建议先在三维软件里面做好曲面或实体,再转换成Gambit 可读入的格式,最后导入Gambit 进行网格划分。
本节教程就是基于以上思想进行的,使用的三维软件是Solidworks2010。
一、 导入实体文件打开Gambit 如图(1),点击Run → 进入Gambit 界面(如图2) → 点击File → 点击Import → 选择要导入的文件的格式(图3) → 点击Brose或直接输入文件所在的地址 (图4)→ 在Filter 下面输入文件存放的根目录(图5) → 点击Filter(图6) → 找到文件后点击Accept → 点击Accept → 导入的文件如图(7)→ 点击solver → 选择fluent5/6,如图(8)(1)m ue rxi aoC FD(2)(3) (4)m ue r xi a oC FD(5) (6)(7)(8)m ue r xi aoC FD二、曲面合并从导入文件可以看到实体有许多小面,而这些小面会影响到网格的划分,所以在网格划分之前要把那些小面合并到一起,还有一些狭长的面。
如图(9)(9)由于导入的实体是从装配图转化过来的,所以图形分了三部分,划分网格也要分三次进行,在划分网格是可以把不需要划分的部分隐藏起来,这样也有利于边界条件的设置。
隐藏实体的步骤如下:点击右下角的显示图标,会出现对话框如下对话框,如图(10)。
点击Volumes 后面的白框,白框变黄色,Volumes 前面的小框变红色。
第三章 GAMBIT网格划分基础-1

3.1.4 生成体网格 对于三维流动问题,必须生成三维实体网格。Gambit 提 供五种体网格的生成方法。 1、映射网格
对于六面体结构,可以使用映射网格方法直接生成六面体网格。
对于较为复杂的几何形体,必须在划分网格前将其分割为若干个 六面体结构。
2、子映射网格
Gambit 软件的子映射网格划分技术同样适用于体网格。也就是
视图和视图控制面板
Gambit 中可显示四个视图,以便于建立三维
模型。同时我们也可以只显示一个视图。视图 的坐标轴由视图控制面板来决定。图3.2.2 显 示的是视图控制面板。 视图控制面板中的命令可分为两个部分,上面 的一排四个图标表示的是四个视图,当激活视 图图标时,视图控制面板中下方十个命令才会 作用于该视图。
3、自由网格
对于拓扑形状较为复杂的面,可以生成自由网格,用户可以选择
合适的网格类型(三角形或四边)。
3.1.3 边界层网格 CFD 计算对计算网格有特殊的要求,一是考虑到近壁粘 性效应采用较密的贴体网格,二是网格的疏密程度与流场 参数的变化梯度大体一致。 对于面网格,可以设置平行于给定边的边界层网格,可以 指定第二层与第一层的间距比,及总的层数。 对于体网格,也可以设置垂直于壁面方向的边界层,从而 可以划分出高质量的贴体网格。而其它通用的CAE 前处 理器主要是根据结构强度分析的需要而设计的,在结构分 析中不存在边界层问题,因而采用这种工具生成的网格难 以满足CFD 计算要求,而Gambit 软件解决了这个特殊要 求。
第三章 GAMBIT网格划分基础
曹双华 主讲 07/04
结构网格和非结构网格的区别
结构网格就是在一定区域内的网格点可以用统一 的编号,比如三维的网格点可以用连续i,j,k唯 一标志并且可以表达相互之间的位置关系,比较 节约存储空间,利于编程计算,但对复杂流场的 适应性较差。 非结构网格一般是每个单独的网格单元都有独立 的编号,并且最后要附加一个全场的总编号来确 定每个单独网格之间的关系,占用的存储空间较 大,编程比较麻烦,但是对复杂流场的适应性较 好。
拉伐尔喷管流动分析(gambit划分网格,fluent数值模拟)

喷管流动分析
一、分析目的
通过流体力学模拟软件,对喷管内的气体流动进行分析,得到其中的流场及激波情况
二、分析过程
(一)、模型建立及网格划分
1、首先在gambit中通过各关键点坐标画出模型
2、对各条线进行划分。
其中对左右两侧的线段采用一定的网格大小改变比例,以使近壁面网格加密;对上下表面分三段进行划分,以使网格均匀垂直
3、对整个面进行划分,如下图所示
4、网格质量分析如下图。
所有网格质量都在0.64以下(0为质量最好,1,为最差,一般要求网格质量都在0.75以下)
(二)fluent模拟
1、将上一步得到的网格文件导入,并设置显示方式
2、使用基于压力的求解器
3、设置使用的模型,包括能量模型与粘流模型。
下图为粘流模型的设置,使用k-omega双方程模型,以更好地模拟近壁面情况。
4、根据文献中的资料设置气体参数
5、设置边界条件,入口为30个大气压,3200K,出口设置为从0.5至1.5个大气压不等
6、设置计算方法
7、设置计算参数
8、设置监视器,以观察计算过程中的收敛情况
9、初始化并计算
10、从Graphics and Animations和Plots中得出结果图像
三、分析结果
1、压力云图
2、速度云图
3、马赫数
(1)出口0.9atm
(2)出口1.1atm
(3)出口2atm。
第二章 Gambit划分网格

1)应用分级设定的边
2)分级方案
3)网格节点步长(间隔数目) 4)边网格划分选项
线网格划分
2)分级方案 Gambit 提供了以下类型的边网格划分分级方案:
• • • • • •
•
Successive Ratio First Length Last Length First Last Ratio Last First Ratio Exponent Bi-exponent Bell Shaped
非对称格式,产生的分级 形式不需要关于边的中心对称
对称格式,限制关于边 中心对称的分级类型
•
线网格划分
• 狭长型网格长宽比不要超过5; • 燃烧反应的区域网格尽量细化。
3、面网格划分
进行一个面网格划分,用户必须 设定以下参数:
1)要网格划分的面
2)网格划分的形式 3)网格节点的间距 4)面网格划分选项
体网格光顺化
• Smooth Volume Meshes 在一个或多个体积上光顺化网格节点。 1、选择要光顺化的体积; 2、光顺化方案 L-W Lapiacian:使每个节点 周围单元平均边长; Equipotential:使节点周围单元体积相等。
体网格划分技巧
• 首先画线网格和部分面网格; • 尽量采用五面体和六面体网格,以控制网 格数量; • 复杂结构考虑分块画网格,避免把所有几 何组合成一个整体;
平整面网格
Smooth Faces Meshes命令 将调整一个或者多个面网格节点的位置 用户需设定以下参数: 1)要平整的网格面 2)平整方式 L-W Laplalian :在每个节点周围使用单元的平均变长(趋向平 均单元 边长)
Centroid Area :平衡相邻单元的面积
GAMBIT网格划分 教程详细版

MESH
-每 EDGE
立釐s键 E量钮釐s
-每 MESH EDGES
a) 而键附ft-首釐ft-那首附那题 E温
必 度拉
必 度拉
边) 而键附ft-首釐ft-那首附那题 EB框
那)
温pp首y
量) 置at附o 釐)
度密必拉
跟)
联长隐ft
定
过)
App首y 定
度-把定
如
定
4板 定 度定 必定 您定 4定
度-把板
定
定 定
定 定
把定
G首o过跟首 点ont鼠o首
板GA立演的能 定
4定
联状种状点能 素网状联状能 点类算现的G节网A能的类算 度-描定
定
度-描板
描定
定
跟)
检
过)
定
操定 G首o过跟首 点ont鼠o首
类网的状算能 立类熟状种
定
如 点鼠鉴跟t 网鉴跟首 演鼠隐速题
定
量) 点鼠鉴跟t 网鉴跟首 演鼠隐速题
如GA立演的能
鉴) 点鉴nt鉴鼠鉴量 定
f)
点鉴nt鉴鼠鉴量
g) App首y定
菜隐量t长 菜隐量t长
定
度-您板
度0如熟鉴pt长 定
描如略鉴隐g长t
vo首u骤鉴定度 定
度-您板
(
)
必板
定
跟)
点网状A能 范类种节立状
过) 点网状A能状 网状A种 点藐种的算熟状网
e)
Apply
Copy Translate
0 12 0
f)
FIT TO WINDOW
g)
h) Global
i)
Apply
Gambit基础教程

第二章前处理软件-Gambit网格划分基础第一节网格生成技术网格生成是CFD计算的一个关键步骤,当物体外形复杂程度较大时,网格生成技术将起到至关重要的作用。
网格可分为两大类:结构网格和非结构网格。
一、结构网格生成技术过去普遍采用的是结构网格。
所谓结构网格就是网格拓扑相当于矩形域内均匀网格的网格。
为了便于处理物面边界条件,常要求结构网格具有贴体性质,即通过坐标变换,使物体的几何边界成为坐标面(线)。
现有的结构网格的生成方法基本上可分为以下四大类:1、代数生成方法。
其特点是根据边界上规定的网格点位置(或者附加一些参考点位置),用插值方法确定所有其它网格点的位置。
它具有简便灵活、计算速度快的突出优点,但对复杂的几何形状往往难以找到合适的插值函数。
2、保角变换方法。
它能生成完全正交的贴体网格,计算机时也少,但局限于二维情况,且对物体形状往往有很大限制。
3、偏微分方程方法。
其特点是通过求解偏微分方程的边值问题来确定区域内网格点分布。
它具有较大的适应性,且生成的网格质量很好,特别是椭圆型方程生成的网格通常是光滑和均匀变化的,同时调和函数的极值性质保证了网格生成时物理空间和计算空间之间的一一对应关系,但网格较密时,一般需要较长的计算时间。
4、变分原理方法。
在这类方法中,将生成网格所希望满足的要求表示成某个目标函数(泛函)取极值。
这种方法常用于生成自适应网格,因为可以比较方便地将自适应网格的要求用某个变分原理来表示,然后再导出和该变分原理相应的偏微分方程,即Euler 方程。
采用结构网格总的优点是可以方便准确地处理边界条件,计算精度高,并且可以采用许多高效隐式算法和多重网格法,计算效率也较高。
缺点是对复杂外形的网格生成较难,甚至难以实现;即使生成多块结构网格,块与块之间的界面处理又十分复杂,因而在使用上受到限制。
二、非结构网格生成技术为了灵活方便地数值模拟绕复杂外形的流动,在20世纪80年代末人们提出了采用非结构网格的技术手段,现已成为研究的热点之一。
第三章:gambit划分网格——(第三节)面网格划分

顶点类型
为了能够用 Quad-Map 方案划分网格,面必须描绘出一个逻辑的矩形(此判据的例外情 况见下面部分的“注一”。)。为了描绘出一个逻辑的矩形,一个面必须包括四个端点类型(END TYPE)的顶点,同时其它所有的面上的顶点必须指定为侧边类型(SIDE TYPE)的顶点。
Quad-Map 网格划分方案(meshing scheme)
当对一个面采用 Quad-Map 网格划分方案,GAMBIT 采用规则的四边形面网格元素对 面进行网格划分,如图 3-22 所示:
图 3-22:Quad-Map 面网格划分方案(scheme)-网格例子
本文由 wyxpuma 提供,不足之处欢迎指正
图 3-23 画出了四个平面,其中两个可以采用(Quad)Map 方案划分网格,另两个则 不行。图(a)和(c)是可以的,因为每个平面中都有四个端点类型的顶点(End type vertex), 而其它顶点为侧边类型的顶点(Side type vertex)。图(b)无法用 Map 方法,因为该平面只 包含了三个端点型顶点;图(d)也无法采用 Map 方法,因为该平面上的某个顶点被指定为 反向型(Reversal)顶点。
创建或删除面与面间的硬链接
将网格化的边转化为拓扑的边,将面沿着由网 格节点定义的边界进行分割
在图形窗口中显示网格信息,概述面网格质量 信息
删除存面上在的网格节点 以及(或者)元素
3.3.1 对面进行网格划分
“Mesh Face”命令可用来对模型中的一个或多个截面创建网格。当对面划分网格时, GAMBIT 根据当前指定的(划分网格)参数在面上创建网格节点。 要对一个面划分网格,需要确定以下(划分网格)参数
Gambit网格划分的一点技巧(二)---分块网格

如图(2)采用四面体网格,网格大小同样是 10,网格数大约为 6044。而当采
o 用大小为 20 的四面体网格时,网格数就少了很多,为 771,但是网格对实体的 muerxia 逼近性就显得很差。也就是说相同数量的网格,六面体的可以分出更细致的单元。
点1
点1
CFD
图(34)
图(35)
图(36)
o 点击面命令 → 选择多边面命令,如图(37) → 依次选择上面创建的四个点,如
a 图(38) → 点击体命令 → 选择扫掠面命令,如图(38)。
muerxi 多边面
扫掠面
图(37)
图(37)
图(38)
选择要扫掠 Define 的面 → 在 Path 后面选择 Vector(向量),如图(39) →
图(66)
图(67)
CF 至此分块网格的一些技巧和命令的应用分享到这里。总结分块网格,有几个
问题是大家要注意的:第一,在划分网格之前要清楚知道想要怎样的分块,就是 要在哪里把实体分割,分割成怎样的形状,这样的形状适合于什么形状的网格。
图(1)
图(2)
从图(3)的分解图我们也可以看出来,一个六面体可以分解出六个四
面体。
1
如图(3)
D 对于网格质量来说,一般规则的模型用六面体网格是要比四面体网格好。如 CF 图(4)、(5),六面体网格的 EquiAngle Skew 和 EquiSize Skew 都在 0.4 以
内。四面体网格的话 EquiAngle Skew 和 EquiSize Skew 都在 0.8 以内。如图 (6)、(7)。
Gambit体网格划分

GAMBIT 网格划分第四节体网格划分FEBRUARY 26, 20144.4 体网格划分命令(Volume Meshing Commands)在Mesh/Volume 子面板中有(subpad)以下命令下文描述了以上列出的各命令的功能和操作4.4.1 为体划分网格(Mesh Volumes )Mesh Volumes 命令允许你为一个或多个体创建网格。
当你为一个体划分网格时,GAMBIT 会根据当前设定的参数在整个体中创建网格节点。
要mesh 一个体,需要设定以下参数•待划分网格的体•网格划分方案(Meshing scheme )•网格节点间距(Mesh node spacing )•网格划分选项(Meshing options )指定体(Specifying the Volume)GAMBIT 允许你在网格划分操作中指定任何体,但是,何种网格划分方案(meshing scheme)能应用于这个体,则决定于体的拓扑特性、形状,以及体的面上的顶点的类型。
指定网格划分方案(Specifying the Meshing Scheme)指定网格划分方案需要设定以下两个参数•元素(Elements)•类型(Type)Elements参数用于定义(应用于该体的)体网格元素的形状;Type 参数定义网格划分算法,因此也决定了体中所有网格元素的模式。
下文将介绍上面列出的参数的功能,以及它们对体网格产生的效果。
指定方案元素(Specifying Scheme Elements)GAMBIT 允许你指定下表列出的任何一个体网格Elements(元素)选项以上列出的每个Elements 选项都有一套特定的Type(类型)选项(一个或多个)相对应(见下)指定方案类型(Specifying Scheme Type)GAMBIT 提供以下体网格划分的Type 选项正如上文提到的,每个Elements选项都有一套特定的Type(类型)选项(一个或多个)相对应。
GAMBIT 网格划分基础

第二篇预处理技术第三章 GAMBIT网格划分基础GAMBIT软件是Fluent 公司提供的前处理器软件,它包含功能较强的几何建模能力和强大的网格划分工具,可以划分出包含边界层等CFD特殊要求的高质量的网格。
GAMBIT 可以生成FLUENT6、FLUENT5.5、FIDAP、POLYFLOW等求解器所需要的网格。
使用Gambit 软件,将可大大缩短用户在CFD应用过程中建立几何模型和流场以及划分网格所需要的时间。
用户可以直接使用Gambit软件建立复杂的实体模型,也可以从主流的CAD/CAE系统中直接读入数据。
Gambit软件高度自动化,可生成包括结构和非结构化的网格,也可以生成多种类型组成的混合网格。
如果你熟练掌握了GAMBIT, 那么在CFD应用中你将如虎添翼。
让我们赶紧进入GAMBIT的学习吧。
3.1 对连续场的离散化处理现阶段对非定常(完全)N-S方程的直接数值求解往往受到计算机运行速度和内存大小的限制尚不现实,而且工程上对瞬时流场也不感兴趣,因此在实际应用中一般是从简化的数学模型出发,并要在简化模型的复杂程度和可处理的几何外形的复杂程度之间作出某种权衡,要求对模型的合适程度和计算的可行性(物理上和几何上)作出判断。
目前计算流体力学完全可以模拟具有复杂几何外形的简单物理问题或者模拟具有简单几何外形的复杂物理问题,而不能完全模拟既具有几何复杂性又具有物理复杂性的问题,对此仍在进一步发展中。
完全N-S方程按时间平均并按从高到低的层次可简化成雷诺平均N-S方程、边界层方程、无粘非线性方程(如Euler方程、位势方程、跨音速小扰动方程)、无粘线性方程(如Lap1ace方程)等。
从数值求解上述控制方程的进程来看,20世纪60年代解决了无粘线性方程的求解,已能用无粘线性方程模拟相当复杂外形的小攻角绕流,并有大量的实用软件;20世纪70年代主要集中于无粘非线性全位势方程和Eu1er方程的求解,已能用于模拟许多复杂外形的亚、跨、超音速绕流;20世纪80年代较集中于求解雷诺平均N-S方程及其它近似的N-S方程,着重解决定常问题,已取得了丰硕的成果,并趋于成熟;20世纪90年代开始了非定常粘性流场模拟的新局面,并且它已逐渐成为计算流体力学的发展主流。
最新GAMBIT软件网格的划分

G A M B I T软件网格的划分模型的网格划分当用户点击Operation工具框中的Mesh命令按钮时,GAMBIT将打开Mesh 子工具框。
Mesh子工具框包含的命令按钮允许用户对于包括边界层、边、面、体积和组进行网格划分操作。
与每个Mesh子工具框命令设置相关的图标如下。
图标命令设置Boundary LayerEdgeFaceVolumeGroup本章以下部分将详细说明与上面列举的每个命令按钮相关的命令。
3.1 边界层3.1.1 概述边界层确定在与边和/或者面紧邻的区域的网格节点的步长。
它们用于初步控制网格密度从而控制相交区域计算模型中有效信息的数量。
示例作为边界层应用的一个示例,考虑包括一个代表流体流过管内的圆柱的计算模型。
在正常环境下,很可能在紧靠管道壁面的区域内流体速度梯度很大,而靠近管路中心很小。
通过对壁面加入一个边界层,用户可以增大靠近壁面区域的网格密度并减小靠近圆柱中心的网格密度——从而获得表征两个区域的足够的信息而不过分的增大模型中网格节点的总数。
一般参数要确定一个边界层,用户必须设定以下信息:•边界层附着的边或者面•确定边界层方向的面或者体积•第一列网格单元的高度•确定接下来每一列单元高度的扩大因子•确定边界层厚度的总列数用户还可以设定生成过渡边界层——也就是说,边界层的网格节点类型随着每个后续层而变化。
如果用户设定了这样一个边界层,用户必须同时设定以下信息:•边界层过渡类型•过度的列数3.1.2 边界层命令以下命令在Mesh/Boundary Layer子工具框中有效。
图标命令详细说明Create Boundary Layer建立附着于一条边或者一个面上的边界层Modify Boundary Layer更改一个现有边界层的定义Modify Boundary LayerLabel更改边界层标签Summarize BoundaryLayers在图形窗口中显示现有边界层Delete BoundaryLayers删除边界层生成边界层Create Boundary Layer命令允许用户在一条边或者一个面附近定义网格节点步长。
Gambit体网格划分

Gambit体⽹格划分GAMBIT ⽹格划分第四节体⽹格划分FEBRUARY 26, 20144.4 体⽹格划分命令(Volume Meshing Commands)在Mesh/Volume ⼦⾯板中有(subpad)以下命令下⽂描述了以上列出的各命令的功能和操作4.4.1 为体划分⽹格(Mesh Volumes )Mesh Volumes 命令允许你为⼀个或多个体创建⽹格。
当你为⼀个体划分⽹格时,GAMBIT 会根据当前设定的参数在整个体中创建⽹格节点。
要mesh ⼀个体,需要设定以下参数待划分⽹格的体⽹格划分⽅案(Meshing scheme )⽹格节点间距(Mesh node spacing )⽹格划分选项(Meshing options )指定体(Specifying the Volume)GAMBIT 允许你在⽹格划分操作中指定任何体,但是,何种⽹格划分⽅案(meshing scheme)能应⽤于这个体,则决定于体的拓扑特性、形状,以及体的⾯上的顶点的类型。
指定⽹格划分⽅案(Specifying the Meshing Scheme)指定⽹格划分⽅案需要设定以下两个参数元素(Elements)类型(Type)Elements参数⽤于定义(应⽤于该体的)体⽹格元素的形状;Type 参数定义⽹格划分算法,因此也决定了体中所有⽹格元素的模式。
下⽂将介绍上⾯列出的参数的功能,以及它们对体⽹格产⽣的效果。
指定⽅案元素(Specifying Scheme Elements)GAMBIT 允许你指定下表列出的任何⼀个体⽹格Elements(元素)选项以上列出的每个Elements 选项都有⼀套特定的Type(类型)选项(⼀个或多个)相对应(见下)指定⽅案类型(Specifying Scheme Type)GAMBIT 提供以下体⽹格划分的Type 选项正如上⽂提到的,每个Elements选项都有⼀套特定的Type(类型)选项(⼀个或多个)相对应。
二维圆筒燃烧器网格划分(Gambit)

一、创建几何实体[1]
创建机会实体的方法比较简单,这里不做详述。
最终几何实体如图:
二、对实体进行网格划分
划分网格的方法视频里面讲的比较清楚,这里着重说一下虚线、虚面的问题。
虚线、虚面的意思是,这些线、面并不实际存在,只是为了划分网格的需要划分出的。
同时也必须注意到,实面用虚线切割所得到的面也是虚面。
本例采用先线后面的方法,将原模型划分为四边形结构化网格(Quad Map)。
由于没有FLUENT的实例,对网格划分处有所疑问,如图:
网格有四块,在这里并不知道,四块网格的具体作用,这里就不做具体讨论,留予以后解决。
三、创建边界条件并输出网格
比较简单,略。
这里只需注意各种边界条件所适用的范围,根据其进行边界条件的选择。
[1] 李鹏飞,徐敏义,王飞飞.精通CFD工程仿真与案例实战:FLUENT GAMBIT ICEM CFD Tecplot[M]. 北京,人民邮电出版社,2011:242-246。
gambit网格划分祥解

Gambit介绍网格的划分使用Gambit软件,首先要启动Gambit,在Dos下输入Gambit <filemane>,文件名如果已经存在,要加上参数-old。
一.Gambit的操作界面如图1所示,Gambit用户界面可分为7个部分,分别为:菜单栏、视图、命令面板、命令显示窗、命令解释窗、命令输入窗和视图控制面板。
文件栏文件栏位于操作界面的上方,其最常用的功能就是File命令下的New、Open、Save、Save as和Export等命令。
这些命令的使用和一般的软件一样。
Gambit可识别的文件后缀为.dbs,而要将Gambit中建立的网格模型调入Fluent使用,则需要将其输出为.msh文件(file/export)。
视图和视图控制面板Gambit中可显示四个视图,以便于建立三维模型。
同时我们也可以只显示一个视图。
视图的坐标轴由视图控制面板来决定。
图2显示的是视图控制面板。
图2 视图控制面板视图控制面板中的命令可分为两个部分,上面的一排四个图标表示的是四个视图,当激活视图图标时,视图控制面板中下方十个命令才会作用于该视图。
视图控制面板中常用的命令有:全图显示、选择显示视图、选择视图坐标、选择显示项目、渲染方式。
同时,我们还可以使用鼠标来控制视图中的模型显示。
其中按住左键拖曳鼠标可以旋转视图,按住中键拖动鼠标则可以在视图中移动物体,按住右键上下拖动鼠标可以缩放视图中的物体。
命令面板命令面板是Gambit的核心部分,通过命令面板上的命令图标,我们可以完成绝大部分网格划分的工作。
图3显示的就是Gambit的命令面板。
图3 Gambit的命令面板从命令面板中我们就可以看出,网格划分的工作可分为三个步骤:一是建立模型,二是划分网格,三是定义边界。
这三个部分分别对应着Operation区域中的前三个命令按钮Geometry(几何体)、mesh(网格)和Zones(区域)。
Operation中的第四个命令按钮Tools 则是用来定义视图中的坐标系统,一般取默认值。
GAMBIT网格划分

详细说明
Hex
指定网格仅仅包含六面体网格单元
Hex/Wedge
指定网格主要有六面体网格单元组成但是也包括在适当地位置的楔形网格
Tet/Hybird
指定网格主要由四面体网格构成但是在适当的位置可以包含六面体、锥形和楔形网格单元
GAMBIT提供了以下体网格划分Type选项
选项
详细说明
Map
生成一般六面体结构化网格单元
TGrid
√
Stairstep
√
Submap
将一个不可图示的面分成可图示区域并在每个区域生成结构化网格单元网格
Pave
生成非结构化网格单元网格
Tri Primitive
将一个二侧面分成二个四边形区域并在每个区Байду номын сангаас生成可图示的网格
Wedge Primitive
在楔形面的尖部生成二角形网格单元并从尖部向外生成放射状网格
GAMBIT提供了以下面网格划分Type选项
Submap
将一个不可图示化体积分割成可图示化区域并在每个区域生成六面体结构化网格单元
Tet Primitive
将一个四个侧面的体积分成四个六面体区域并在每个区域生成可图示化网格
Cooper
扫描整个体积的指定的源面的网格节点类型
Tet/Hybird
指定该网格主要包含四面体网格单元但是在合适的位置也可以包含六面体、锥体和楔形单元
Stairstep
生成普通六面体网格和一个与原是提及形状近似的平滑的体积
体网格划分Elements和Type选项之间的关系如下表。(其中:“√”表示允许组合)
Elements选项
Type选项
Hex
Hex/Wedge
拉伐尔喷管流动分析(gambit划分网格,fluent数值模拟)

喷管流动分析
一、分析目的
通过流体力学模拟软件,对喷管内的气体流动进行分析,得到其中的流场及激波情况
二、分析过程
(一)、模型建立及网格划分
1、首先在gambit中通过各关键点坐标画出模型
2、对各条线进行划分。
其中对左右两侧的线段采用一定的网格大小改变比例,以使近壁面网格加密;对上下表面分三段进行划分,以使网格均匀垂直
3、对整个面进行划分,如下图所示
4、网格质量分析如下图。
所有网格质量都在0.64以下(0为质量最好,1,为最差,一般要求网格质量都在0.75以下)
(二)fluent模拟
1、将上一步得到的网格文件导入,并设置显示方式
2、使用基于压力的求解器
3、设置使用的模型,包括能量模型与粘流模型。
下图为粘流模型的设置,使用k-omega双方程模型,以更好地模拟近壁面情况。
4、根据文献中的资料设置气体参数
5、设置边界条件,入口为30个大气压,3200K,出口设置为从0.5至1.5个大气压不等
6、设置计算方法
7、设置计算参数
8、设置监视器,以观察计算过程中的收敛情况
9、初始化并计算
10、从Graphics and Animations和Plots中得出结果图像
三、分析结果
1、压力云图
2、速度云图
3、马赫数
(1)出口0.9atm
(2)出口1.1atm
(3)出口2atm。
gambit网格划分祥解

Gambit介绍网格的划分使用Gambit软件,首先要启动Gambit,在Dos下输入Gambit <>,文件名如果已经存在,要加上参数-old。
一.Gambit的操作界面如图1所示,Gambit用户界面可分为7个部分,分别为:菜单栏、视图、命令面板、命令显示窗、命令解释窗、命令输入窗和视图控制面板。
文件栏文件栏位于操作界面的上方,其最常用的功能就是File命令下的New、Open、Save、Save as和Export等命令。
这些命令的使用和一般的软件一样。
Gambit可识别的文件后缀为.dbs,而要将Gambit中建立的网格模型调入Fluent使用,则需要将其输出为.msh文件()。
视图和视图控制面板Gambit中可显示四个视图,以便于建立三维模型。
同时我们也可以只显示一个视图。
视图的坐标轴由视图控制面板来决定。
图2显示的是视图控制面板。
图2 视图控制面板视图控制面板中的命令可分为两个部分,上面的一排四个图标表示的是四个视图,当激活视图图标时,视图控制面板中下方十个命令才会作用于该视图。
视图控制面板中常用的命令有:全图显示、选择显示视图、选择视图坐标、选择显示项目、渲染方式。
同时,我们还可以使用鼠标来控制视图中的模型显示。
其中按住左键拖曳鼠标可以旋转视图,按住中键拖动鼠标则可以在视图中移动物体,按住右键上下拖动鼠标可以缩放视图中的物体。
命令面板命令面板是Gambit的核心部分,通过命令面板上的命令图标,我们可以完成绝大部分网格划分的工作。
图3显示的就是Gambit的命令面板。
图3 Gambit的命令面板从命令面板中我们就可以看出,网格划分的工作可分为三个步骤:一是建立模型,二是划分网格,三是定义边界。
这三个部分分别对应着Operation区域中的前三个命令按钮Geometry(几何体)、mesh(网格)和Zones(区域)。
Operation中的第四个命令按钮Tools 则是用来定义视图中的坐标系统,一般取默认值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
MODELING A MIXING ELBOW (2-D)2. MODELING A MIXING ELBOW (2-D)In this tutorial, you will use GAMBIT to create the geometry for a mixing elbow and then generate a mesh. The mixing elbow configuration is encountered in piping systems in power plants and process industries. It is often important to predict the flow field and temperature field in the neighborhood of the mixing region in order to properly design the location of inlet pipes.In this tutorial you will learn how to:•Create vertices using a grid system•Create arcs by selecting the center of curvature and the endpoints of the arc•Create straight edges between vertices•Split an arc using a vertex point•Create faces from edges•Specify the distribution of nodes on an edge•Create structured meshes on faces•Set boundary types•Prepare the mesh to be read into FLUENT 4•Export a mesh2.1 PrerequisitesThis tutorial assumes that you have worked through Tutorial 1 and you are consequently familiar with the GAMBIT interface.© Fluent Inc., Mar-06 2-1Problem Description MODELING A MIXING ELBOW (2-D)2.2 Problem DescriptionThe problem to be considered is shown schematically in Figure 2-1. A cold fluid enters through the large pipe and a warmer fluid enters through the small pipe. The two fluids mix in the elbow.Figure 2-1: Problem specification2-2 © Fluent Inc., Mar-06MODELING A MIXING ELBOW (2-D) Strategy2.3 StrategyIn this tutorial, you will build a 2-D mesh using a “bottom-up” approach (in contrast to the “top-down” approach used in Tutorial 1). The “bottom-up” approach means that you will first create some vertices, connect the vertices to create edges, and connect the edges to make faces (in 3-D, you would stitch the faces together to create volumes). While this process by its very nature requires more steps, the result is, just as in Tutorial 1, a valid geometry that can be used to generate the mesh.The mesh created in this tutorial is intended for use in FLUENT 4, so it must be a single block, structured mesh. However, this mesh can also be used in any of the other Fluent solvers. This type of mesh is sometimes called a mapped mesh, because each grid point has a unique I, J, K index. In order to meet this criterion, certain additional steps must be performed in GAMBIT and are illustrated in this tutorial. After creating the straight edges and arcs that comprise the geometry, you will create two faces: one for the main flow passage (the elbow) and one for the smaller inlet duct. The mesh is generated for the larger face using the Map scheme; this requires that the number of grid nodes be equal on opposite edges of the face. You will force GAMBIT to use the Map scheme to mesh the smaller face as well.Several other features are also demonstrated in this tutorial:•Using a background grid and “snap-to-grid” to quickly create a set of vertices.•Using “pick lists” as an alternative to mouse clicks for picking entities.•Specifying a non-uniform distribution of nodes on an edge.•Setting boundary types.•Exporting a mesh for a particular Fluent solver (FLUENT 4 in this case).© Fluent Inc., Mar-06 2-3Procedure MODELING A MIXING ELBOW (2-D)2.4 ProcedureStart GAMBIT.Step 1: Select a Solver1.Choose the solver you will use to run your CFD calculation by selecting the followingfrom the main menu bar:Solver →FLUENT 4This selects the FLUENT 4 solver as the one to be used for the CFD calculation.The choice of a solver dictates the options available in various forms (for example, the boundary types available in the Specify Boundary Types form). The solver currently selected is indicated at the top of the GAMBIT GUI.2-4 © Fluent Inc., Mar-06MODELING A MIXING ELBOW (2-D) Procedure © Fluent Inc., Mar-06 2-5 Step 2: Create the Initial Vertices1. Create vertices to define the outline of the large pipe of the mixing elbow.TOOLS →COORDINATE SYSTEM →DISPLAY GRIDThis command sequence opens the Display Gridform.a) Check to ensure that Visibility is selected.This ensures that the background grid will be visible when it is created.b) Select X (the default) to the right of Axis .c) Enter a Minimum value of –32, a Maximum value of 32, and an Increment of 16. d) Click the Update list button.Procedure MODELING A MIXING ELBOW (2-D) This creates a background grid with four cells in the x direction and enters thex coordinates in the XY_plane X Values list.e)Select Y to the right of Axis.f)Enter a Minimum value of –32, a Maximum value of 32, and an Increment of 16.g)Click the Update list button.This creates a background grid with four cells in the y direction and enters they coordinates in the XY_plane Y Values list.h)Check that Snap is selected under Options.The vertices you create later in this step will be “snapped” to points on thegrid where the grid lines intersect.i)Select Lines (the default) to the right of Grid.The grid will be displayed using lines rather than points.j)Click Apply.GAMBIT creates a four-by-four grid in the graphics window. To see thewhole grid, you must zoom out the display (see Figure 2-2). You can zoom outthe display by pressing and holding down the right mouse button while movingthe cursor vertically upward in the graphics window.2-6 © Fluent Inc., Mar-06MODELING A MIXING ELBOW (2-D) Procedure© Fluent Inc., Mar-062-7Figure 2-2: Four-by-four grid to be used for creating vertices NOTE: You cannot use the FIT TO WINDOWcommand button (located on the Global Control toolpad) to zoom out the display because GAMBIT does not treat the grid as a model component to be fit within the graphics window.k) Ctrl -right-click the nine grid points shown in Figure 2-3.“Ctrl -right-click” indicates that you should hold down the Ctrl key on the keyboard and click on the point at which the vertex is to be created using the right mouse button.You can use the UNDOcommand buttonif you create any of the verticesincorrectly.Procedure MODELING A MIXING ELBOW (2-D)2-8 © Fluent Inc., Mar-06 A DC BF GE H IFigure 2-3: Create vertices at grid pointsl) Unselect the Visibility check box in the Display Grid form and click Apply .The grid will be removed from the graphics window and you will be able to clearly see the nine vertices created, as shown in Figure 2-4.MODELING A MIXING ELBOW (2-D) Procedure© Fluent Inc., Mar-062-9Figure 2-4: Vertices for the main pipeProcedure MODELING A MIXING ELBOW (2-D) 2-10 © Fluent Inc., Mar-06 Step 3: Create Arcs for the Bend of the Mixing Elbow1. Create an arc by selecting the following command buttons in order:GEOMETRY →EDGE →CREATE EDGERThis command sequence opens the Create Circular Arcform.a) Retain the default Method .Notice that the Center list box is yellow in the Create Circular Arc form at this point. The yellow color indicates that this is the active field in the form, and any vertex selected will be entered into this box on the form.b) Shift -left-click the vertex in the center of the graphics window (vertex E in Figure2-5).The selected vertex will appear red in the graphics window and its name will appear in the Center list box under Vertices in the form.D B F GEFigure 2-5: Vertices used to create arcsc)Left-click in the list box to the right of End-Points to accept the selection of vertexE and make the End-Points list box active.!Alternatively, you could continue to hold down the Shift key and click the right mouse button in the graphics window to accept the selection of thevertex and move the focus to the End-Points list box.Note that the End-Points list box is now yellow—that is, this is now the activelist box, and any vertex selected will be entered in this box.d)Shift-left-click the vertex to the right of the center vertex in the graphics window(vertex F in Figure 2-5).The vertex will turn red.e)Select the vertex directly below the one in the center of the graphics window(vertex D in Figure 2-5).f)Click Apply to accept the selected vertices and create the arc.© Fluent Inc., Mar-06 2-112-12 © Fluent Inc., Mar-062. Repeat the above steps to create a second arc. The center of the arc is the vertex in thecenter of the graphics window (vertex E in Figure 2-5). The endpoints of the arc are the vertices to the right and below the center vertex that have not yet been selected(vertices G and B, respectively, in Figure 2-5). The arcs are shown in Figure 2-6.Figure 2-6: Vertices and arcsStep 4: Create Straight Edges 1.Create straight edges for the large pipe.GEOMETRY →EDGE →CREATE EDGERThis command sequence opens the Create Straight Edgeform.a)Shift -left-click the left endpoint of the smaller arc (vertex D in Figure 2-7).A DCB F G H IFigure 2-7: Vertices used to create straight edgesb)Shift-left-click the vertices marked C, A, and B in Figure 2-7, in order.© Fluent Inc., Mar-06 2-132-14 © Fluent Inc., Mar-06c) Click Apply to accept the selection of the vertices.Three straight edges are drawn between the vertices.d) Shift -left-click the vertices marked F, H, I, and G in Figure 2-7, in order.e) Click Apply to accept the selection of the vertices.The graphics window with the arcs and straight edges is shown in Figure 2-8.Figure 2-8: Arcs and edgesStep 5: Create the Small Pipe for the Mixing ElbowIn this step, you will create vertices on the outer radius of the bend of the mixing elbow and split the large arc into three smaller arcs. Next, you will create vertices for the inlet of the small pipe. Finally, you will create the straight edges for the small pipe.1.Create vertices on the outer radius of the bend, and split the large arc into threesections.GEOMETRY →EDGE →SPLIT/MERGE EDGESThis command sequence opens the Split Edgeform.a)Select the large arc as the edge to split by using the Edge pick list.Note that you could select the edge in the graphics window; a pick listprovides an alternate way of picking an element.i.Left-click the black arrow to the right of the Edge list box in the Split Edgeform.© Fluent Inc., Mar-06 2-15This action opens the Edge List form. There are two types of pick-listforms: Single and Multiple. In a Single pick-list form, only one entity canbe selected at a time. In a Multiple pick-list form, you can select multipleentities.ii.Select edge.2 under Available in the Edge List form.!Note that the Available names may be different in your geometry,depending on the order in which you created the edges.iii.Click the −−−> button to pick edge.2.edge.2 will be moved from the Available list to the Picked list. The large arcis the edge that should be selected and shown in red in the graphicswindow.iv.Close the Edge List form.This method of selecting an entity can be used as an alternative to Shift-left-click in the graphics window. See the GAMBIT User’s Guide formore information on pick lists.2-16 © Fluent Inc., Mar-06b)Select Real connected (the default) under Type in the Split Edge form.You should select this option because the edge you selected is real geometry,not virtual geometry, and because you want the two edges created by the splitto share the vertex created when GAMBIT does the split. See the GAMBITModeling Guide for more information on real and virtual geometry.c)Select Point (the default) to the right of Split With.You will split the edge by creating a point on the edge and then using thispoint to split the edge.d)Select Cylindrical from the Type option menu.You can now use cylindrical coordinates to specify where GAMBIT shouldsplit the edge.e)Input a value of –39.93 degrees next to t under Local.This is the angle between the horizontal direction and the position of the right-hand side of the opening of the small pipe on the bend of the mixing elbow, asshown in Figure 2-1.f)Click Apply.The large arc is split into two smaller arcs and a vertex is created.g)Use the Edge List form (or Shift-left-click in the graphics window) to select thelarger of the two arcs just created (edge.9).h)Input a value of –50.07 degrees next to t under Local.This is the angle between the horizontal direction and the position of the left-hand side of the opening of the small pipe on the bend of the mixing elbow (-90° + 39.93°), as shown in Figure 2-1.i)Click Apply.The arc is split into two parts and a second vertex is created on the bend ofthe mixing elbow, as shown in Figure 2-9.© Fluent Inc., Mar-06 2-172-18© Fluent Inc., Mar-06Figure 2-9: Vertices created on outer radius of mixing elbow bend2. Create points at the small inlet.GEOMETRY →VERTEX →MOVE/COPY VERTICESThis command sequence opens the Move / Copy Vertices form.© Fluent Inc., Mar-062-19a) Select the second vertex created on the bend of the mixing elbow.b) Select Copy under Vertices in the Move / Copy Vertices form.c) Select Translate (the default) under Operation .d) Enter the translation vector (0, -12, 0) under Global to create the new vertex at aposition 12 units below the vertex you selected.The inlet is 12 units below the second point created on the outer radius of the bend.Note that GAMBIT automatically fills in the values under Local as you enter values under Global .e) Click Apply .2-20 © Fluent Inc., Mar-06 f) Click the FIT TO WINDOWcommand button at the top left of the GlobalControl toolpad to scale the model to fit into the graphics window.g) Select the vertex just created in the graphics window.h) Enter the translation vector (4, 0, 0) under Global in the Move / Copy Vertices formto create the new vertex at a position 4 units to the right of the vertex you selected. i) Click Apply .The vertices are shown in Figure 2-10.Figure 2-10: Vertices to define the small pipe3. Create straight edges for the small pipe.GEOMETRY →EDGE →CREATE EDGEThis command sequence opens the Create Straight Edge form.© Fluent Inc., Mar-062-21a) Create straight edges for the small pipe by selecting the vertices marked K, L, M, and J in Figure 2-11, in order, and accepting the selection. K JMLFigure 2-11: Vertices to be used to create small pipeThe small pipe is shown (with the large pipe) in Figure 2-12.2-22© Fluent Inc., Mar-06Figure 2-12: Completed small pipeStep 6: Create Faces From Edges 1.Create a face for the large pipe.GEOMETRY →FACE →FORM FACEThis command sequence opens the Create Face From Wireframeform.a)Shift-left-click each edge of the large pipe, in turn, to form a continuous loop.!The large pipe is created from the 10 edges shown in Figure 2-13. If you select an incorrect edge, click Reset in the Create Face From Wireframe formto unselect all edges, and then reselect the correct edges.© Fluent Inc., Mar-06 2-232-24© Fluent Inc., Mar-06Figure 2-13: Edges used to create face for large pipeNote that the edges must form a continuous loop, but they can be selected in any order. An alternative method to select several edges is to Shift -left-drag a box around the edges. The box does not have to completely enclose the edges; it only needs to enclose a portion of an edge to select it. The edges will be selected when you release the mouse button.b) Click Apply to accept the selected edges and create a face.The edges of the face will turn blue.2. Create a face for the small pipe by selecting the four edges shown in Figure 2-14 andthen accepting the selected edges.© Fluent Inc., Mar-062-25Figure 2-14: Edges used to create face for small pipeStep 7: Specify the Node DistributionThe next step is to define the grid density on the edges of the geometry. You will accomplish this graphically by selecting an edge, assigning the number of nodes, and specifying the distribution of nodes along the edge.1.Specify the node density on the inlet and outlet of the large pipe.MESH →EDGE →MESH EDGESThis command sequence opens the Mesh Edgesform.a)Shift-left-click the edge marked EA in Figure 2-15.2-26 © Fluent Inc., Mar-06© Fluent Inc., Mar-06 2-27 EAED ECEG EH EIEJ EBEFEEFigure 2-15: Edges to be meshedThe edge will change color and an arrow and several circles will appear on the edge.b) Shift -left-click the edge marked EB in Figure 2-15.c) Check that Apply is selected to the right of Grading in the Mesh Edges form andthat Successive Ratio is selected in the Type option menu.The Successive Ratio option sets the ratio of distances between consecutive points on the edge equal to the specified Ratio .d) Enter 1.25 in the text entry box to the right of Ratio .Alternatively, you can slide the Ratio slider box (the small, gray rectangle with a vertical line in its center that is located on the slider bar) until 1.25 is displayed in the Ratio text box.2-28 © Fluent Inc., Mar-06e) Select the Double sided check box under Grading .If you specify a Double sided grading on an edge, the element intervals are graded in two directions from a starting point on the edge. GAMBIT determines the starting point such that the intervals on either side of the point are approximately the same length.Note that Ratio changes to Ratio 1 and Ratio 2 when you select the Double sided check box. In addition, the value you entered for Ratio is automatically entered into both the Ratio 1 and the Ratio 2 text entry boxes.f) Select Interval count from the option menu under Spacing and enter a value of 10 inthe text entry box. Check that Apply is selected to the right of Spacing .GAMBIT will create 10 intervals on the edge.g) Click the Apply button at the bottom of the form. Figure 2-16 shows the mesh on the inlet and outlet edges of the large pipe. EAED ECEG EH EIEJ EFEE EBFigure 2-16: Edge meshing on inlet and outlet of large pipe© Fluent Inc., Mar-06 2-29 2. Mesh the four straight edges of the large pipe.a) Select the edges marked EC, ED, EE, and EF in Figure 2-16.b) Check that Apply is selected to the right of Grading in the Mesh Edges form andclick the Default button to the right of Grading .GAMBIT will unselect the Double sided check box and set the Ratio to 1.c) Check that Apply is selected to the right of Spacing and select Interval count fromthe option menu.d) Enter a value of 15 in the text entry box below Spacing and click the Apply buttonat the bottom of the form. Figure 2-17 shows the mesh on the straight edges of the large pipe. EAED ECEG EH EIEJ EFEE EBFigure 2-17: Mesh on the straight edges of the large pipe3.Mesh the edge connecting the two pipes.a)Select the edge marked EG in Figure 2-17.b)Check that Apply is selected to the right of Grading in the Mesh Edges form andenter a value of 1 for the Ratio.c)Check that Apply is selected to the right of Spacing, select Interval count from theoption menu, and enter a value of 6 in the text entry box below Spacing.d)Click the Apply button at the bottom of the form.4.Mesh the two edges on the outer radius of the bend of the mixing elbow.a)Select the edge marked EH in Figure 2-17. The arrow should point towards thesmall pipe. Shift-middle-click the edge to reverse the direction of the arrow if necessary.!The arrow is small and you may have to zoom into the edge to see it. It is located near the center of the edge.b)Select the edge marked EI in Figure 2-17. The arrow should point towards thesmall pipe. Shift-middle-click the edge to reverse the direction of the arrow if necessary.c)Check that Apply is selected to the right of Grading in the Mesh Edges form andenter a value of 0.9 for the Ratio.d)Check that Apply is selected to the right of Spacing, select Interval count from theoption menu, and enter a value of 12 in the text entry box below Spacing.e)Click the Apply button at the bottom of the form.The mesh on the two edges on the outer radius of the bend is shown in Figure2-18.2-30 © Fluent Inc., Mar-06© Fluent Inc., Mar-06 2-31 EAED ECEG EH EIEJ EFEE EBFigure 2-18: Mesh on outer bend of pipe5. Set the grading for the inner bend of the mixing elbow.a) Select the edge marked EJ in Figure 2-18.b) Check that Apply is selected to the right of Grading in the Mesh Edges form andenter a value of 0.85 for the Ratio .c) Select the Double sided check box.d) Unselect the Apply check box to the right of Spacing .You will not set a spacing on this edge, instead you will let GAMBIT calculate the spacing for you when it meshes the face. You will mesh the face using a mapped mesh, so the number of nodes on the inner bend of the mixing elbow must equal the number of nodes on the outer bend, and GAMBIT will determine the correct number of nodes for you automatically.2-32© Fluent Inc., Mar-06e) Unselect the Mesh check box under Options and click the Apply button at thebottom of the form.You unselected the Mesh check box because at this point you do not want to mesh the edge; you only want to apply the Grading to the edge. GAMBIT will mesh the edge using the specified Grading when it meshes the large pipe of the mixing elbow in the next step.Figure 2-19 shows the edge meshing for the mixing elbow geometry.© Fluent Inc., Mar-062-33Figure 2-19: Edge meshing for the mixing elbowStep 8: Create Structured Meshes on Faces 1.Create a structured mesh for the large pipe.MESH →FACE →MESH FACESThis command sequence opens the Mesh Facesform.a)Shift-left-click the large pipe in the graphics window.Note that four of the vertices on this face are marked with an “E” in thegraphics window; they are End vertices. Therefore, GAMBIT will select theMap Type of Scheme in the Mesh Faces form. See the GAMBIT ModelingGuide for more information on Map meshing.b)Click the Apply button at the bottom of the form.GAMBIT will ignore the Interval size of 1 under Spacing, because the mappedmeshing scheme is being used and the existing edge meshing fully determinesthe mesh on all edges.2-34 © Fluent Inc., Mar-06© Fluent Inc., Mar-06 2-35 Notice that GAMBIT calculates the number of nodes on the inner bend of the mixing elbow and displays these nodes before creating the mesh on the face.The face will be meshed as shown in Figure 2-20.Figure 2-20: Structured mesh on the large pipe of the mixing elbow2. Mesh the small pipe of the mixing elbow.a) Select the small pipe in the graphics window.You will force GAMBIT to use the Map scheme to mesh the smaller face.b) In the Mesh Faces form, select Quad from the Elements option menu underScheme and Map from the option menu to the right of Type .This is an example of “enforced mapping”, where GAMBIT automatically modifies the face vertex type on the face to satisfy the chosen meshing scheme. See the GAMBIT Modeling Guide for more information on face vertex types.c) Retain the default Interval size of 1 under Spacing and click the Apply button at thebottom of the form.The structured mesh for the entire elbow is shown in Figure 2-21.2-36© Fluent Inc., Mar-06Figure 2-21: Structured mesh for the mixing elbowStep 9: Set Boundary Types1.Remove the mesh from the display before you set the boundary types.This makes it easier to see the edges and faces of the geometry. The mesh is not deleted, just removed from the graphics window.a)Click the SPECIFY DISPLAY ATTRIBUTEScommand button at the bottom of the Global Control toolpad.b)Select the Off radio button to the right of Mesh near the bottom of the form.c)Click Apply and close the form.2.Set boundary types for the mixing elbow.ZONES →SPECIFY BOUNDARY TYPESThis command sequence opens the Specify Boundary Types form.© Fluent Inc., Mar-06 2-372-38© Fluent Inc., Mar-06Note that FLUENT 4 is shown as the chosen solver at the top of the form. The Specify Boundary Types form displays different Type s depending on the solver selected.a) Define two inflow boundaries.i. Enter the name inflow1 in the Name text entry box.If you do not specify a name, GAMBIT will give the boundary a defaultname based on what you select in the Type and Entity lists.ii. Select INFLOW in the Type option menu.iii.Change the Entity to Edges by selecting Edges in the option menu below Entity.iv.Shift-left-click the main inflow for the mixing elbow in the graphics window (marked EA in Figure 2-22) and click Apply to accept the selection.EBEAEKFigure 2-22: Boundary types for edges of mixing elbowThis edge will be set as an inflow boundary.v.Enter inflow2 in the Name text entry box.vi.Check that INFLOW is still selected in the Type option menu and select the edge marked EK in Figure 2-22 (the inlet for the small pipe). Click Apply to acceptthe selection of the edge.b)Define an outflow boundary.i.Enter outflow in the Name text entry box.ii.Change the Type to OUTFLOW by selecting OUTFLOW in the option menu below Type.iii.Select the main outflow for the mixing elbow (the edge marked EB in Figure 2-22) and click Apply to accept the selection.© Fluent Inc., Mar-06 2-392-40 © Fluent Inc., Mar-06 The inflow and outflow boundaries for the mixing elbow are shown in Figure 2-23. (NOTE: To display the boundary types in the graphics window, select the Show labels options on the Specify Boundary Typesform.)Figure 2-23: Inflow and outflow boundaries for the mixing elbowNote that you could also specify the remaining outer edges of the mixing elbow as wall boundaries. This is not necessary, however, because when GAMBIT saves a mesh, any edges (in 2-D) on which you have not specified a boundary type will be written out as wall boundaries by default. In addition, when GAMBIT writes a mesh, any faces (in 2-D) on which you have not specified a continuum type will be written as FLUID by default. This means that you do not need to specify a continuum type in the Specify Continuum Types form for this tutorial.MODELING A MIXING ELBOW (2-D) Procedure © Fluent Inc., Mar-06 2-41 Step 10: Export the Mesh and Save the Session1. Export a mesh file for the mixing elbow.File → Export → Mesh…This command sequence opens the Export Mesh File form. Note that the File Type is Structured FLUENT 4 Grid.a) Enter the File Name for the file to be exported (2delbow.GRD ).b) Click Accept .The file will be written to your working directory.2. Save the GAMBIT session and exit GAMBIT.File → ExitGAMBIT will ask you whether you wish to save the current session before youexit.Click Yes to save the current session and exit GAMBIT.Summary MODELING A MIXING ELBOW (2-D)2.5 SummaryThis tutorial shows you how to generate a 2-D mesh using the “bottom-up” approach. Since the mesh is to be used in FLUENT 4, it was generated in a single block, structured fashion. Several other features that are commonly used for 2-D mesh generation were also demonstrated, including entering vertices using a background grid, creating straight edges and arcs, and specifying node distributions on individual edges. As compared to Tutorial 1, which omitted some details, all steps required to create a mesh ready to read into the solver were covered, including how to set boundary types, choose a specific Fluent solver, and finally write out the mesh file.2-42 © Fluent Inc., Mar-06。