反比例函数的意义
《反比例函数意义》教案设计
![《反比例函数意义》教案设计](https://img.taocdn.com/s3/m/220f5352b207e87101f69e3143323968011cf417.png)
表达反比例函数的概念,并引导学生发现自变量
x 的取值范围是不等于 0 的一切实数.
设计意图: 使学生从上述不同的数学关系式中的基本特征, 发展学生用数学语言描述反比例函数的能力, 抽象出反比例函数的方法.
体会从实际问题中
4.分析例题 , 培养能力 例 1 已知 y 是 x 的反比函数,并且当 x= 2 时, y=6. ( 1)写出 y 关于 x 的函数解析式 .
( 2)当 x= 4 时,求 y 的值 . 师生活动:教师提出问题,学生思考、交流,解答问题.教师引导学生理解“
y是 x的
反比函数” 这句话的意义, 总结得出求反比例函数解析式的方法, 正确用反比例函数解析式
解决问题.
设计意图:使学生会根据已知条件求反比例函数的解析式,进一步熟悉函数值的求法
.
例 2 已知 与 成反比例,并且当
数的概念,知道自变量和对应函数成反比例的特征. 达成目标( 2)的标志是:能根据问题中的变量关系
,确定反比例函数的解析式.
三、教学问题诊断分析
学生已经学习过了一次函数、二次函数、 分式等预备知识,对函数的图象、 性质和特征
具有了一定的认知能力. 再加上小学已经学习过的反比例关系, 学生对反比例函数的引入不 会感到突然. 在对实际问题和数学问题进行分析过程中, 需加强对函数概念的理解: 对于自
如:“蹒跚”、“探”、“爬”、“攀”、“缩”、“微倾”等词语中体会父爱。
C、从父亲的衣着上来体会、父子衣服的对比 ( 他给儿子做了紫毛大衣 ) 及营造的氛围和
心情 ( 悲凉、沉重 ) ,帮助学生分析特定背景 ( 祖母去世、父亲赋闲、变卖典质、还了亏空、
借钱办丧等等 ) 。
教师总结:作者刻画的这个背影,是自己终生难忘的父亲的背影,
反比例函数意义和性质
![反比例函数意义和性质](https://img.taocdn.com/s3/m/66212f7df111f18583d05ae7.png)
分析:12因式..设 把为就可解已y求是出析知x常式条数的反件k比的y代例值函入数kx ,解所析以设式y。 kx ,再把 x=2 和 y=6 代入上 3.解方程,求待定系数k 4.还原解析式
同学们,求函数解 析式有一种特定的
y= 1_2_ =3.
4
练一练
1.已知y与x成反比例关系,当x=-2时,y=4,
则此函数解析式为
y=-
8_
x
,当x=4时,
y= -2
2.已知y与x 2 成反比例关系,且当x=3时,y=4. (1)求y与x之间的函数解析式; (2)当x=-2时y的值。
解:(1)设此解析式为y=
把x=34,=y_=K9_4代入得,
第二十六章 反比例函数
26.1 反比例函数的意义
创设情境,导入新知:
复习回忆:1、什么是函数? 2、我们学习了那些函 数? 它们的一般形式是怎 样的?
探究 思考
(1)京沪线铁路全程为1463km,某次列车的平均速度v(单位:km/h) 随此次列车的全程运行时间t(单位:h)的变化而变化。
函数关系式为: v 1463 t
已知函数 y 6x m3是关于x的反比例
函数,求m值。
解:∵m-3= -1 ∴ m=2
变式1 已知函数 y m 1
xm
是关于x
的反比例函数,求m值。
解: ∵ m 1 0
m 1
∴
m 1 m 1
∴ m=-1
试一试
y是x的反比例函数,你能根据下表中的有关信息: 待
换成的每张面值为 x(元)
50
10
5
人教版九年级数学下册第二十六章26.1.1反比例函数k的几何意义教学设计
![人教版九年级数学下册第二十六章26.1.1反比例函数k的几何意义教学设计](https://img.taocdn.com/s3/m/413babbb9a89680203d8ce2f0066f5335a8167ae.png)
教师讲解:“大家总结得很好。反比例函数是我们学习函数的重要部分,希望大家能够掌握其定义、性质和几何意义,并在实际问题中灵活运用。”
五、作业布置
为了巩固学生对反比例函数知识的掌握,提高学生的应用能力和思维能力,特布置以下作业:
1.基础知识巩固:
(1)根据反比例函数的定义,求出以下函数的表达式,并说明k的几何意义:y=3/x、y=-2/x、y=5/|x|。
作业要求:
1.学生在完成作业时,要认真思考,规范解答,注意细节。
2.对于实践应用题,要求学生结合反比例函数的性质和几何意义,分析问题,列出方程,并求解。
3.拓展提高题要求学生独立思考,尝试不同的解题方法,锻炼数学思维能力。
4.思考题要求学生在理解反比例函数的基础上,深入思考,形成自己的见解。
2.教学策略:
(1)情境创设:以生活实例或有趣的故事引入反比例函数的学习,激发学生的学习兴趣;
(2)任务驱动:设置具有挑战性的任务,引导学生主动探究反比例函数的性质和应用;
(3)分层教学:针对不同学生的学习需求,设计难易适度的练习题,使每个学生都能在原有基础上得到提高;
(4)反馈与评价:及时关注学生的学习进度,给予有效的反馈和激励,提高学生的学习积极性。
教师提问:“同学们,我们之前学习了正比例函数和一次函数,谁能来说说它们的特点和性质?”
2.创设情境:通过生活中的实例,如物体在反比例力作用下的运动轨迹,引出反比例函数的概念。
教师讲解:“在生活中,我们经常会遇到一些与反比例关系相关的问题。比如,当物体受到一个与速度成反比的阻力时,它的运动轨迹是怎样的呢?这就涉及到我们今天要学习的反比例函数。”
人教版九年级数学下册第二十六章26.1.1反比例函数k的几何意义教学设计
反比例函数几何意义公式
![反比例函数几何意义公式](https://img.taocdn.com/s3/m/5e5106c382d049649b6648d7c1c708a1284a0ad6.png)
反比例函数几何意义公式摘要:1.反比例函数的定义和几何意义2.反比例函数的几何意义公式3.反比例函数图形与系数的关系4.反比例函数在实际生活中的应用5.总结正文:在我们学习数学的时候,反比例函数是一个重要的知识点。
它不仅具有丰富的理论意义,还在实际生活中有着广泛的应用。
本文将介绍反比例函数的几何意义公式,以及反比例函数图形与系数的关系,帮助大家更好地理解和应用反比例函数。
首先,我们来回顾一下反比例函数的定义。
反比例函数是指形如y = k/x (其中k为常数,x≠0)的函数。
在这个定义中,x和y分别代表自变量和因变量,k为比例系数。
那么,反比例函数的几何意义是什么呢?反比例函数的几何意义在于,它表示了平面上一点到原点的距离与该点到另一固定点的距离的比值。
换句话说,反比例函数描述了平面上一点与原点及另一固定点之间距离的比例关系。
接下来,我们来看一下反比例函数的几何意义公式。
设点P(x,y)到原点O的距离为PO,到固定点A的距离为PA,那么反比例函数的几何意义公式可以表示为:PO / PA = k其中k为反比例函数的比例系数。
根据这个公式,我们可以看出反比例函数图形的几何意义:在平面直角坐标系中,点P(x,y)与原点O和固定点A 的距离比例为k。
反比例函数图形与系数的关系也非常明显。
当k>0时,反比例函数图形为第一、三象限;当k<0时,反比例函数图形为第二、四象限。
此外,反比例函数图形的分支数量与k有关。
当k>1时,反比例函数图形有两个分支;当0<k<1时,反比例函数图形有四个分支;当k=1时,反比例函数图形为一个点;当k<0时,反比例函数图形无分支。
最后,我们来看一下反比例函数在实际生活中的应用。
反比例函数在实际生活中有很多应用,比如物理中的电磁学、力学等领域,经济学中的成本与收益分析等。
通过了解反比例函数的几何意义和公式,我们可以更好地解决实际问题。
总之,反比例函数是一个既有理论意义又有实际应用的数学知识点。
《反比例函数的意义》学情分析
![《反比例函数的意义》学情分析](https://img.taocdn.com/s3/m/6241d800b42acfc789eb172ded630b1c59ee9bd6.png)
《反比例函数的意义》学情分析方案一、学情分析目的学情分析就是通过分析了解学生在学习方面有何特点、学习方法怎样、习惯怎样、兴趣如何,成绩如何等。
学生是学习的主体,教师只有全面了解学生,充分关注学生需求,才能使教师的教更有效地服务于学生的学。
1. 分析学生的原有的知识和技能。
学习新内容之前原有知识和技能等方面的准备水平是学生学习新知识和形成新能力的必要条件,很大程度上决定了教学的成效。
例如了解学生已经具备了哪些知识与技能以推导出还没有掌握的知识与技能有哪些;哪些知识是通过努力自己能学会的;哪些知识是需要在教师点拨和引导下才能学会;怎样的引导更符合学生的认知水平等等。
2. 分析学生的心里需求。
试想,一个对学习缺乏兴趣的学生,怎么可能主动参与学习?一个不能主动参与的学生,又如何去体验和感受?所以学情分析必须充分关注学生的心理需求,注重激发学生的内在学习动机,这对促进学生的进步和发展具有同等重要的作用。
苏霍姆林斯基就曾认为,教师应尽可能深入地了解每个学生的精神世界。
学生的发展和成长是智力因素和非智力因素共同作用的结果,学生的心里需求就是非智力因素之一,它是学情的重要组成部分。
3.分析学生的“可能”,进行全面的预测。
新课程倡导以科学探究为主的多样化学习方式,增加了教学过程中的不确定因素,这不仅为课堂教学的精彩生动提高了广阔的空间,而且对课堂教学的预设提出了更高的要求。
因此,要尽可能对学生在学习过程中的各种“可能”进行准确全面的预测,同时精心做好应对相关“可能”的预案分析,以便在遇到突发情况时能做出合理的处置和有效的引导。
4. 分析教学理念在新课标的指导下,我坚持“以生为本、以学定教”的教学理念,力求为学生创设快乐、自主、开放的学习环境,让学生在融洽的课堂氛围中自主学习、自主创造的空间。
在学习过程中,还重视学习方法的指导,充分体现“教师是学生学习的引导者”这一课改新理念。
5. 分析教学方法树立以“以学生发展为本”“以学定教”“教为学服务”的思想,同时注重运用合作探究的教学方法,发展学生的思维,提高个性化表达能力,尊重学生的独特感受与体验。
26反比例函数的意义
![26反比例函数的意义](https://img.taocdn.com/s3/m/748a516759fb770bf78a6529647d27284a733759.png)
26反比例函数的意义反比例函数是一种特殊的函数,其表达式为y=k/x,其中k为常数,并且x不等于0。
反比例函数的图像是一个双曲线的形态,其特点是当x趋近于无穷大或无穷小时,y趋近于0。
在此篇文章中,我们将讨论反比例函数的意义及其应用。
一、什么是反比例函数?在数学中,反比例函数是一种表达式为y=k/x的函数,其中k是常数,且x不等于0。
其中k可以是正数、负数或零。
从表达式可以看出,反比例函数的特点是当x趋近于无穷大或无穷小时,y趋近于0。
换句话说,当x的取值较大时,y的取值较小;而当x的取值较小时,y的取值较大。
这也意味着x和y是成反比例关系的,即x越大,y越小;x越小,y越大。
反比例函数的图像是一条双曲线,对称于y轴和x轴的交点(0,0)是它的渐近线。
1.实际应用中的意义反比例函数在实际应用中有着广泛的意义。
例如:(1)速度与时间:当一个物体以恒定的速度移动时,它所花费的时间与它行驶的距离成反比例关系。
这可以用反比例函数来表示,其中y代表时间,x代表距离。
这意味着当距离增加时,所需的时间减少;当距离减少时,所需的时间增加。
(2)电阻与电流:根据欧姆定律,电阻和电流成反比例关系。
这意味着当电阻增加时,通过电路的电流减少;当电阻减少时,电流增加。
(3)人口密度与土地面积:在城市规划中,人口密度与土地面积成反比例关系。
这意味着当土地面积较小时,人口密度较大;而当土地面积较大时,人口密度较小。
(4)声音强度与距离:根据声学原理,声音强度与距离成反比例关系。
这意味着当距离声源增加时,声音强度减小;当距离减小时,声音强度增加。
2.图像上的意义反比例函数的图像是一条双曲线,它有一些特定的意义:(1)渐近线:双曲线的两条渐近线是x轴和y轴。
当x或y趋近于无穷大时,函数值趋近于0,因此双曲线的两条渐近线分别是y=0和x=0。
(2)对称轴:双曲线的对称轴是y=x。
这意味着当函数图像在对称轴一侧上升时,在另一侧下降。
反比例函数的意义及性质
![反比例函数的意义及性质](https://img.taocdn.com/s3/m/5cf0fb2cf6ec4afe04a1b0717fd5360cba1a8dc4.png)
#O5
#2022
在物理学中的应用
电流与电阻的关系
01
在电路中,电流与电阻成反比关系,即当电阻增大时,电流减小;反之,当电阻减小时,电流增大。这一规律在电子设备、电力系统和电路分析等领域有着广泛的应用。
声学中的声压级
02
在声学中,声压级与距离声源的距离成反比关系。这意味着随着距离声源的距离增加,声压级会减小。这一规律在噪声控制、音响设计和声音传播等领域具有实际意义。
反比例函数在现实生活中的应用
物理学中的电阻定律 当导体的长度和截面积一定时,其电阻与电阻率成反比,即 R = k/S,其中 R 是电阻,S 是截面积,k 是电阻率。 经济生活中的供需关系 在一定条件下,商品的需求量与价格成反比,即需求量 = k/价格,其中 k 是常数。 化学中的反应速率 在一定条件下,化学反应的速率与反应物的浓度成反比,即速率 = k/浓度,其中 k 是常数。
生物种群数量变化
感谢您的观看
THANKS FOR
WATCHING
反比例函数的图像
#O2
#2022
反比例函数的图像特点
无限接近x轴和y轴
反比例函数的图像位于x轴和y轴的两侧,随着x的增大或减小,y的值会无限接近于0,但永远不会等于0。
双曲线形状
反比例函数的图像是双曲线,其形状取决于比例系数k的正负。当k>0时,图像位于第一、三象限;当k<0时,图像位于第二、四象限。
渐近线
反比例函数的图像有两条渐近线,分别是x轴和y轴。
反比例函数图像的绘制方法
确定k的值 描点 连线 验证 首先需要确定比例系数k的值,根据k的正负确定图像所在的象限。 在坐标系上选取一些特定的x值,计算对应的y值,并描出对应的点。 使用平滑的曲线将这些点连接起来,形成反比例函数的图像。 通过代入一些已知的x值来验证所绘制的图像是否准确。
反比例函数的意义说课稿
![反比例函数的意义说课稿](https://img.taocdn.com/s3/m/6455a1cd2cc58bd63186bd40.png)
《反比例函数的意义》说课稿尊敬的各位老师:大家好!今天我要说课的题目是《反比例函数的意义》。
《反比例函数的意义》是人教版年八级下册第十七章第一节的内容,共分为三个课时,今天我要说的是第一课时。
运用新课标理念,我将从以下五个方面进行说课:教材分析教法学法分析教学过程设计板书设计教学反思教材分析首先先进行教材分析,它分为三个方面:1、教材的作用与地位函数本身就是数学学习的重要内容,而反比例函数是在继平面直角坐标系和一次函数学习的基础上,再次进入函数范畴学习的又一类新的函数。
它是初中阶段三大函数之一,是最基本、最初步的函数。
在此之前,学生已经学习过反比例关系和分式的知识,为本节课的学习打下了良好的基础。
通过本节课的学习,又为以后更高层次函数的学习作好了铺垫,为以后处理函数、方程、不等式间的关系奠定了基础。
因此,本节课在知识结构上呈现了承前启后的重要作用。
2、教学目标教学目标是教学的出发点和归宿。
根据新课程的要求,考虑到学生的认知规律和心理特点,结合本课特点,我特制定教学目标如下:知识与技能 1、理解反比例函数的意义。
2、能够根据已知条件确定反比例函数的表达式。
数学思考让学生经历从实际问题中抽象出反比例函数模型的过程,体会反比例函数来源于实际.解决问题能从实际问题中抽象出反比例函数并确定其表达式..情感与态度 1、经历反比例函数的形成过程,使学生体验函数是描述变量间对应关系的重要数学模型。
2、通过反比例函数的学习,培养学生合作交流意识和探索能力.3、教学重难点重点理解反比例函数的意义,确定反比例函数表达式。
难点理解反比例函数的内涵。
教法学法分析众所周知,教学就是教师的教和学生的学,教法促进学法的形成,学法促进教法的发展。
教法选择讲解与引导探究相结合的教学方法。
学法指导由于初中学生维持有意注意时间,一般在10―20分钟,通过听、看、做、交谈相结合获得的知识保持率最高,所以我指导学生在课堂上要注意听、仔细看、勤动手,多交流用心想教学手段多媒体与黑板相结合教学过程设计数学教学是数学活动的教学,是师生之间,生生之间交往互动、共同发展的过程。
反比例函数的意义
![反比例函数的意义](https://img.taocdn.com/s3/m/0d694f29b94ae45c3b3567ec102de2bd9605de94.png)
反比例函数的意义
反比例函数是一种数学函数,其定义为:对于一个变量x,如果存在一个常数k,使得当x取任意非零实数a时,另一变量y都满足关系式y = k/x (k≠0),那么我们就称y是x 的反比例函数,其中k称为反比例系数。
反比例函数的图像通常为两条双曲线,它们分别位于第一和第三象限以及第二和第四象限。
反比例函数的图像也称为双曲线的两支。
在每一象限内,随着x的增大,y的值会无限接近于0,但永远不会等于0。
反比例函数在数学和物理中有广泛的应用。
例如,在电学中,电流与电阻之间的关系就是反比例关系,因为当电压一定时,电流与电阻成反比。
在经济学中,反比例关系也经常出现,例如在分析总收入与平均收入的关系时。
反比例函数的概念虽然抽象,但在实际生活中却有着广泛的应用。
理解反比例函数的意义和应用,有助于我们更好地理解和分析各种实际问题。
同时,反比例函数的图像和性质也为我们提供了一种分析和解决问题的新工具。
反比例函数历史意义
![反比例函数历史意义](https://img.taocdn.com/s3/m/61392c1fbf23482fb4daa58da0116c175e0e1e76.png)
反比例函数历史意义
反比例函数是一种常见的数学函数,在数学和科学领域发挥了重要的作用。
它的历史意义可以追溯到古希腊时期。
最早提出反比例的概念的是古希腊数学家泰勒斯。
他观察到某些物理量的变化趋势与其相关量的变化趋势呈现出相反的关系。
这种关系被后来的数学家称为反比例。
反比例函数的公式可以表示为y = k/x,其中k为常数。
反比例函数在科学研究中具有广泛的应用。
例如,在物理学领域,牛顿第二定律描述了物体的加速度与施加在它身上的力成反比例关系。
在经济学中,按比例变化的两个变量之间的关系往往是反比例的,例如,成本与产量之间的关系可用反比例函数来描述。
除了在科学和经济领域的应用外,反比例函数在工程学和实践中也是非常有用的。
例如,在电路设计中,电流与电阻之间的关系可以用反比例函数来表示。
在医学中,药物浓度与药物效力之间的关系常常可以用反比例函数来描述。
反比例函数的历史意义在于它提供了一种描述变量之间关系的
方法,尤其是那些呈现出相反趋势的关系。
它的应用范围广泛,不
仅被数学家和科学家使用,还被应用于各个领域的实际问题解决中。
总之,反比例函数在数学和科学领域具有重要的历史意义。
它
提供了一种有效地描述变量之间反比关系的方法,并在物理学、经
济学、工程学和医学等领域发挥着重要的作用。
反比例函数K的几何意义
![反比例函数K的几何意义](https://img.taocdn.com/s3/m/25df6a17b4daa58da1114a31.png)
【山东·全国考题回访】
1.(2014·济南中考)如图,△OAC和△BAD都是等
如图,过y轴正半轴上的任意一点P,作x轴 的平行线,分别与反比例函数y=-4/x和 y=2/x交于点A和点B,若点C是x轴上任意一 点,连接AC、BC,则△ABC的面积为
点B,D在反比例函数y=b/x(b<0)的图象上,
AB∥CD∥x轴,AB,CD在x轴的两侧,AB=3,CD=2,
AB与CD的距离为5,则a-b的值是
则S△OBC=
1·(-x)·22y=6.解得k=xy=-6. 2
答案:-6
如图,直线l⊥x轴于点P,且与反比例函数 y1=k1/x(x>0)及y2=k2/x(x>0)的图像分别交于点A, B,连接OA,OB,已知△OAB的面积为3,则k1-k2 的值等于( )
如图△P1OA1,△P2A1A2是等腰直角三角形,点P1, P2在函数y=4/x(x>0)的图象上,斜边OA1,A1A2 都在x轴上,则点A2的坐标是______.
答案:6
(1)直接写出B、C、D三点的坐标;
(2)若将矩形向下平移,矩形的两个顶点恰好同 时落在反比例函数的图象上,猜想是哪两个点, 并求矩形的平移距离和反比例函数的解析式.
(1)∵四边形ABCD是矩形,平行于x轴,且AB=2,AD=4, 点A的坐标为(2,6). ∴AB=CD=2,AD=BC=4, ∴B(2,4),C(6,4),D(6,6);
腰直角三角形,∠ACO=∠ADB=90°,反比例函数 y= k 在第一象限的图象经过点B,若OA2-AB2=12, 则kx的值为_______.
专题12 反比例函数比例系数k的几何意义(解析版)
![专题12 反比例函数比例系数k的几何意义(解析版)](https://img.taocdn.com/s3/m/06c8eda4294ac850ad02de80d4d8d15abe230044.png)
1专题12 反比例函数比例系数k 的几何意义知识对接考点一、反比例函数比例系数k 的几何意义(1)意义:从反比例函数y =(k≠0)图象上任意一点向x 轴和y 轴作垂线,垂线与坐标轴所围成的矩形面积为|k|,以该点、一个垂足和原点为顶点的三角形的面积为1/2|k|. (2)常见的面积类型:失分点警示已知相关面积,求反比例函数的表达式,注意若函数图象在第二、四象限,则k <0. 例:已知反比例函数图象上任一点作坐标轴的垂线所围成矩形为3,则该反比例函数解析式为:3y x =或3y x =-专项训练一、单选题1.如图,已知反比例函数2y x=-的图像上有一点P ,过点P 作PA x ⊥轴,垂足为点A ,则POA的面积是( )A .2B .1C .1-D .12【答案】B 【分析】设(),P x y ,则POA 的面积是1122x y xy ••=,再结合2y x=-即可求解.【详解】解:设(),P x y ,则POA 的面积是1122x y xy ••=,∵2y x=-∵22xy =-=∵POA 的面积是1212⨯=.故选:B . 【点睛】本题考查了反比例函数与图形的面积计算,解题的关键是熟练运用数形结合的思想. 2.如图,在平面直角坐标系中,A ,B 是反比例函数ky x=在第一象限的图象上的两点,且其横坐标分别为1,4,若AOB 的面积为54,则k 的值为()A .23B .1C .2D .154【答案】A 【分析】过点A 作AC y ⊥轴,过点B 作BD x ⊥轴,反向延长AC BD 、交于点E ,利用割补法表示出AOB 的面积,即可求解. 【详解】解:过点A 作AC y ⊥轴,过点B 作BD x ⊥轴,反向延长AC BD 、交于点E ,如下图:则四边形ODEC 为矩形3点AB 、的横坐标分别为1,4, 则(1,)(4,)4kA kB 、,(0,)(4,0)(4,)C kDE k 、、11154143224244AOBAOCOBDABEODEC k k SS SSSk k k ⎛⎫=---=-⨯⨯-⨯⨯-⨯⨯-= ⎪⎝⎭矩形解得23k = 故选A【点睛】此题考查了反比例函数的有关性质,涉及了割补法求解三角形面积,熟练掌握反比例函数的有关性质是解题的关键.3.若图中反比例函数的表达式均为4y x=,则阴影面积为4的有( )A .1个B .2个C .3个D .4个【答案】B 【分析】根据反比例函数比例系数k 的几何意义,反比例函数的性质以及三角形的面积公式,分别求出四个图形中阴影部分的面积,即可求解. 【详解】解:图1中,阴影面积为xy =4; 图2中,阴影面积为12xy =12×4=2; 图3中,阴影面积为2×12xy =2×12×4=4; 图4中,阴影面积为4×12xy =4×12×4=8; 则阴影面积为4的有2个. 故选:B . 【点睛】本题考查了反比例函数ky x=中k 的几何意义,即过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积为|k |,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k 的几何意义.也考查了反比例函数的对称性,三角形的面积.4.如图,点A 是反比例函数4y x=-图象上的一个动点,过点A 作AB ∵x 轴,AC ∵y 轴,垂足分别为B ,C ,则矩形ABOC 的面积为( )A .-4B .2C .4D .8【答案】C 【分析】根据反比函数的几何意义,可得矩形ABOC 的面积等于比例系数的绝对值,即可求解. 【详解】解:∵点A 是反比例函数4y x=-图象上的一个动点,过点A 作AB ∵x 轴,AC ∵y 轴,∵矩形ABOC 的面积44-= . 故选:C . 【点睛】本题主要考查了反比函数的几何意义,熟练掌握本题主要考查了反比例函数()0ky k x=≠ 中k 的几何意义,即过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积等于k 是解题的关键.5.如图,等腰ABC 中,5AB AC ==,8BC =,点B 在y 轴上,//BC x 轴,反比例函数ky x=(0k >,0x >)的图象经过点A ,交BC 于点D .若AB BD =,则k 的值为( )5A .60B .48C .36D .20【答案】A 【分析】过A 作AE ∵BC 于E 交x 轴于F ,则AF ∵y 轴,根据矩形的性质得到EF =OB ,根据勾股定理得到3AE =,设OB =a ,则A (4,3),(5,)a D a +,即可得到4(3)5k a a =+=,解方程求得a 的值,即可得到D 的坐标,进而求得k 的值. 【详解】解:过A 作AE ∵BC 于E 交x 轴于F , ∵5AB AC ==,8BC =, ∵142BE BC ==,∵3AE ==, 设OB =a , ∵BD =AB =5, ∵A (4,3),(5,)a D a +, ∵反比例函数ky x=(0k >,0x >)的图象经过点A ,交BC 于点D . ∵4(3)5k a a =+=, 解得:a =12, ∵51260k =⨯=, 故选择:A .【点睛】本题考查了反比例函数图象上点的坐标特征,等腰三角形的性质,勾股定理,表示出点的坐标是解题的关键.6.在平面直角从标系中,30°的直角三角尺直角顶点与坐标原点重合,双曲线11ky x =(x >0),经过点B ,双曲线22k y x=(x <0),经过点C ,则12k k =( )A .﹣3B .3 C.D【答案】A 【分析】作AM ∵x 轴于M ,BN ∵x 轴于N ,由反比例函数系数k 的几何意义得到k 1=2S ∵AOM ,k 2=﹣2S ∵BON,解直角三角形求得o tan 30OB OA =∵AOM ∵∵OBN ,得到2=3AOM BOMSOA SOB ⎛⎫= ⎪⎝⎭进而得到123k k =-. 【详解】作AM ∵x 轴于M ,BN ∵x 轴于N , ∵S ∵AOM =12|k 1|,S ∵BON =12|k 2|,∵k 1>0,k 2<0,∵k 1=2S ∵AOM ,k 2=﹣2S∵BON , 在Rt ∵AOB 中,∵BAO =30°,7∵o tan 30OB OA = ∵∵AOM +∵BON =90°=∵AOM +∵OAM , ∵∵OAM =∵BON , ∵∵AMO =∵ONB =90°, ∵∵AOM ∵∵OBN ,∵2=3AOM BOMS OA S OB ⎛⎫= ⎪⎝⎭, ∵12232AOMBOMk S k S ==--, 故选A .【点睛】本题主要考查了反比例函数比例系数k 的几何意义,相似三角形的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解. 7.如图,A 、B 是双曲线y =kx图象上的两点,过A 点作AC ∵x 轴于点C ,交OB 于点D ,BD =2OD ,且ADO 的面积为8,则DCO 的面积为( )A .12B .1C .32D .2【答案】B 【分析】过点B 作BH x ⊥轴于点H ,根据反比例函数比例系数k 的几何意义,即可得到ADO △的面积与梯形CDBH 的面积相等,再根据DCO BOH △∽△,即可求得DCO 的面积.【详解】解:过点B作BH∵x轴于点H,∵AC∵x轴于点C,∵AOC的面积与BOH的面积相等,∵ADO的面积与梯形CDBH的面积相等,∵ADO的面积为8,∵梯形CDBH的面积为8,∵DC//BH,∵DOC∵BOH,∵BD=2OD,∵DOC与BOH的相似比为1:3,∵DOC与BOH的面积比为1:9,设DCO的面积比为x,则x:(x+8)=1:9,解得:x=1,故选:B.【点睛】本题考查了反比例函数比例系数k的几何意义,三角形的相似及相似的性质,得到ADO△的面积与梯形CDBH的面积相等和DOC BOH∽是解决本题的关键.8.如图,平行于y轴的直线l分别与反比例函数kyx=(x>0)和1yx=-(x>0)的图象交于M、N两点,点P是y轴上一动点,若∵PMN的面积为2,则k的值为()A.2B.3C.4D.5【答案】B9【分析】由题意易得点M 到y 轴的距离即为∵PMN 以MN 为底的高,点M 、N 的横坐标相等,设点1,,,k M a N a a a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,则有11k k MN a a a +⎛⎫=--= ⎪⎝⎭,进而根据三角形面积公式可求解.【详解】解:由平行于y 轴的直线l 分别与反比例函数k y x =(x >0)和1y x=-(x >0)的图象交于M 、N 两点,可得:点M 到y 轴的距离即为∵PMN 以MN 为底的高,点M 、N 的横坐标相等,设点1,,,k M a N a a a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,∵11k k MN a a a+⎛⎫=--= ⎪⎝⎭, ∵∵PMN 的面积为2, ∵111222PMNk SMN a a a+=⋅=⨯⨯=, 解得:3k =; 故选B . 【点睛】本题主要考查反比例函数与几何的综合,熟练掌握反比例函数与几何的综合是解题的关键. 9.如图,过x 轴正半轴上的任意一点P ,作y 轴的平行线,分别与反比例函数y 3=x(x >0)和y 6=x-(x >0)的图象交于B 、A 两点.若点C 是y 轴上任意一点,则∵ABC 的面积为( )A .3B .6C .9D .92【答案】D 【分析】设P (a ,0),由直线APB 与y 轴平行,得到A 和B 的横坐标都为a ,将x =a 代入反比例函数y 6x-=和y 3x =中,分别表示出A 和B 的纵坐标,进而由AP +BP 表示出AB ,三角形ABC的面积12⨯=AB×P的横坐标,求出即可.【详解】解:设P(a,0),a>0,则A和B的横坐标都为a,将x=a代入反比例函数y6x=-中得:y6a=-,故A(a,6a-);将x=a代入反比例函数y3x=中得:y3a=,故B(a,3a),∵AB=AP+BP639a a a+==,则S∵ABC12=AB•x P19922aa=⨯⨯=,故选D.【点睛】本题主要考查反比例函数图象k的几何意义,解决本题的关键是要熟练掌握反比例函数k的几何意义.10.如图.在平面直角坐标系中,∵AOB的面积为278,BA垂直x轴于点A,OB与双曲线y=kx相交于点C,且BC∵OC=1∵2,则k的值为()A.﹣3B.﹣94C.3D.92【答案】A【分析】过C作CD∵x轴于D,可得∵DOC∵∵AOB,根据相似三角形的性质求出S∵DOC,由反比例11函数系数k 的几何意义即可求得k . 【详解】解:过C 作CD ∵x 轴于D ,∵BC OC=12, ∵OCOB =23, ∵BA ∵x 轴, ∵CD ∵AB , ∵∵DOC ∵∵AOB , ∵DOC AOB S S ∆∆=(OC OB )2=(23)2=49, ∵S ∵AOB =278, ∵S ∵DOC =49S ∵AOB =49×278=32,∵双曲线y =kx在第二象限,∵k =﹣2×32=﹣3,故选:A . 【点睛】本题主要考查了反比例函数系数k 的几何意义,相似三角形的性质和判定,根据相似三角形的性质和判定求出S ∵DOC 是解决问题的关键. 二、填空题11.如图,平面直角坐标系中,O 是坐标原点,点A 是反比例函数()0ky k x=≠图象上的一点,过点A 分别作AM x ⊥轴于点M ,AN y ⊥轴于点N .若四边形AMON 的面积为12,则k 的值是__________.【答案】-12【分析】根据反比例函数的比例系数k的几何意义得到12k=,然后根据反比例函数的性质确定k的值.【详解】解:四边形AMON的面积为12,12k∴=,反比例函数图象在二四象限,k∴<,12k∴=-,故答案为:12-.【点睛】本题考查了反比例函数函数k的几何意义:在反比例函数kyx=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值||k.12.如图,在反比例函数3yx=的图象上有一动点A,连接AO并延长交图象的另一支于点B,在第二象限内有一点C,满足AC=BC,当点A运动时,点C始终在函数kyx=的图象上运动,tan∵CAB=2,则k的值为_____【答案】﹣12【分析】连接OC,过点A作AE∵x轴于点E,过点C作CF∵y轴于点F,通过角的计算找出∵AOE=∵COF,结合“∵AEO=90°,∵CFO=90°”可得出∵AOE∵∵COF,根据相似三角形的性质得出比例式,再由tan∵CAB=2,可得出CF•OF的值,进而得到k的值.【详解】如图,连接OC,过点A作AE∵x轴于点E,过点C作CF∵y轴于点F.∵由直线AB与反比例函数3yx=的对称性可知A、B点关于O点对称,∵AO=BO.又∵AC=BC,∵CO∵AB.∵∵AOE+∵AOF=90°,∵AOF+∵COF=90°,∵∵AOE=∵COF.又∵∵AEO=90°,∵CFO=90°,∵∵AOE∵∵COF,∵AE OE AO CF OF CO==,∵tan∵CABOCOA==2,∵CF=2AE,OF=2OE.又∵AE•OE=3,CF•OF=|k|,∵|k|=CF•OF=2AE×2OE=4AE×OE=12,∵k=±12.∵点C在第二象限,∵k=﹣12.故答案为:﹣12.13【点睛】本题考查了反比例函数图象上点的坐标特征、反比例函数的性质以及相似三角形的判定及性质,锐角三角函数,解答本题的关键是求出CF•OF=12.解答该题型题目时,巧妙的利用了相似三角形的性质找出对应边的比例,再结合反比例函数图象上点的坐标特征找出结论.13.如图,点P在反比例函数4yx=-的图像上,过点P作PA x⊥轴于点A,则POA的面积是_______.【答案】2【分析】设出点P的坐标,∵OAP的面积等于点P的横纵坐标的积的一半,把相关数值代入即可.【详解】解:设点P的坐标为(x,y).∵P(x,y)在反比例函数4yx=-的图象上,∵4 xy=-,∵122POAS xy==,故答案为:2.【点睛】题考查了反比例函数比例系数k的几何意义:在反比例函数ky=x图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.14.如图所示,反比例函数kyx=(0k≠,0x>)的图像经过矩形OABC的对角线AC的中15点D .若矩形OABC 的面积为8,则k 的值为________.【答案】2 【分析】过点D 作DE ∵OA 于点E ,由矩形的性质可知:S ∵AOC =12S 矩形OABC =4,从而可求出∵ODE 的面积,利用反比例函数中k 的几何意义即可求出k 的值. 【详解】如图,过点D 作DE OA ⊥于点E ,设,k D m m ⎛⎫ ⎪⎝⎭,则OE m =,k DE m=, ∵点D 是矩形OABC 的对角线AC 的中点, ∵2OA m =,2k OC m=, ∵矩形OABC 的面积为8, ∵228kOA OC m m⋅=⋅=, ∵2k =, 故答案为:k =2.【点睛】本题考查了反比例函数系数k 的几何意义,解题的关键是求出矩形的面积. 15.如图,点A 与点B 分别在函数11(0)k y k x=>与220)k y k x =<(的图象上,线段AB 的中点M 在y 轴上.若∵AOB 的面积为3,则12k k -的值是___.【答案】6【分析】设A(a,b),B(-a,d),代入双曲线得到k1=ab,k2=-ad,根据三角形的面积公式求出ab+ad=6,即可得出答案.【详解】解:作AC∵x轴于C,BD∵x轴于D,∵AC∵BD∵y轴,∵M是AB的中点,∵OC=OD,设A(a,b),B(-a,d),代入得:k1=ab,k2=-ad,∵S∵AOB=3,∵111()23 222b d a ab ad+--=,∵ab+ad=6,∵k1-k2=6,故答案为:6.【点睛】本题主要考查对反比例函数系数的几何意义,反比例函数图象上点的坐标特征,三角形的面积等知识点的理解和掌握,能求出ab+ad=6是解此题的关键.三、解答题16.如图,一次函数122y x=-的图象分别交x轴、y轴于A、B,P为AB上一点且PC为17AOB 的中位线,PC 的延长线交反比例函数ky x=(0k >)的图象于点Q ,32OQCS =.(1)求A 点和B 点的坐标; (2)求k 的值和Q 点的坐标.【答案】(1)A (4,0),B (0,-2);(2)3k =,Q 的坐标为(2 ,32).【分析】(1)因为一次函数y =12x -2的图象分别交x 轴,y 轴于A ,B ,所以当y =0时,可求出A 的横坐标,当x =0时可求出B 的纵坐标,从而可得解.(2)因为三角形OQC 的面积是Q 点的横纵坐标乘积的一半,且等于32,所以可求出k 的值,PC 为中位线,可求出C 的横坐标,也是Q 的横坐标,代入反比例函数可求出纵坐标. 【详解】解:(1)设A 点的坐标为(a ,0),B 点坐标为(0,b ), 分别代入y =12x -2,解方程得a =4,b =-2, ∵A (4,0),B (0,-2); (2)∵PC 是∵AOB 的中位线, ∵PC ∵x 轴,即QC ∵OC , 又Q 在反比例函数ky x=的图象上, ∵2S ∵OQC =k ,∵k =2×32=3,∵PC 是∵AOB 的中位线, ∵C (2,0), 可设Q (2,q )∵Q 在反比例函数ky x=的图象上, ∵q =32,∵点Q 的坐标为(2 ,32).【点睛】本题考查反比例函数的综合运用,熟练掌握并应用反比例函数ky x=(0k >)中k 的几何意义是解题的关键.17.点O 为平面直角坐标系的原点,点A 、C 在反比例函数ay x=的图象上,点B 、D 在反比例函数by x=的图象上,且0a b >>.(1)若点A 的坐标为()6,4,点B 恰好为OA 的中点,过点A 作AN x ⊥轴于点N ,交b y x=的图象于点P . ∵请求出a 、b 的值; ∵试求OBP 的面积.(2)若////AB CD x 轴,32CD AB ==,AB 与CD 间的距离为6,试说明-a b 的值是否为某一固定值?如果是定值,试求出这个定值;若不是定值,请说明理由.【答案】(1)∵a =24,b =6∵92;(2)是定值为92.【分析】(1)∵把A ()6,4代入反比例函数ay x=即可求出a ,根据点B 为OA 的中点,求出B 点坐标,代入by x=即可求出b ;∵根据k 的几何意义求出∵AOP 的面积,再连接BP ,根据中线的性质即可求解;19(2)先分析,A C 分别位于a y x =的两个分支,,B D 分别位于 by x=的两个分支;再利用反比例函数系数k 的几何意义,表示S ∵AOB 和S ∵COD ,再根据三角形的面积公式,AB 与CD 之间的距离为6,即求出答案. 【详解】(1)∵把A ()6,4代入反比例函数ay x=,得a =6×4=24 ∵点B 为OA 的中点, ∵B (3,2)把B (3,2)代入反比例函数by x=,得b =3×2=6 ∵∵S ∵AOP = S ∵AON -S ∵NOP = 1122a b -=9 ∵B 点是OA 的中点, ∵BP 是∵AOP 的中线∵OBP 的面积=12×9=92;(2)如图,当,A C 在a y x =的第一象限的图像上时,,B D 在by x=的第一象限的图像上时////AB CD x 轴,32CD AB ==,∴AOBS=1122AOM BOM S S a b -=-△△, COD S =△1122CON DON S S a b -=-△△∴COD S =△AOBS1=2AOB S AB OM ⨯△,12COD S CD ON =⨯△OM ON ∴=则点A 与点C 重合,点B 与点D 重合 即AB 与CD 间的距离为0,,A C ∴分别位于a y x =的两个分支,,B D 分别位于 by x=的两个分支; 如图,延长AB 、CD 交y 轴于点E 、F ,∵点A 、C 在反比例函数a y x =的图象上,点B 、D 在反比例函数by x=的图象上,a >b >0,////AB CD x 轴,∵AB 与CD 间的距离为6, ∵OE +OF =6 ∵S ∵AOE =12a =12a =S ∵COF ,S ∵BOE =12b =12b =S ∵DOF ,∵S ∵AOB =S ∵AOE −S ∵BOE =12a −12b =12AB •OE =34OE ,S ∵COD =S ∵COF −S ∵DOF =12a −12b =12CD •OF =34OF ,∵S ∵AOB +S ∵COD =a −b =34OE +34OF =34(OE +OF )=92.92a b ∴-=. 【点睛】本题考查反比例函数图象上点的坐标特征以及反比例函数系数k 的几何意义,理解反比例函数系数k 的几何意义是正确解答的关键.18.如图,点C 在反比例函数y 1=x 的图象上,CA ∵y 轴,交反比例函数y 3=x 的图象于点A ,CB ∵x 轴,交反比例函数y 3=x的图象于点B ,连结AB 、OA 和OB ,已知CA =2,则∵ABO的面积为__.【答案】4【分析】设A(a,3a),则C(a,1a),根据题意求得a=1,从而求得A(1,3),C(1,1),进一步求得B(3,1),然后作BE∵x轴于E,延长AC交x轴于D,根据S∵ABO=S∵AOD+S梯形ABED ﹣S∵BOE和反比例函数系数k的几何意义得出S∵ABO=S梯形ABED,即可求得结果.【详解】解:设A(a,3a),则C(a,1a),∵CA=2,∵31a a-=2,解得a=1,∵A(1,3),C(1,1),∵B(3,1),作BE∵x轴于E,延长AC交x轴于D,∵S∵ABO=S∵AOD+S梯形ABED﹣S∵BOE,S∵AOD=S∵BOE32 =,∵S∵ABO=S梯形ABED12=(1+3)(3﹣1)=4;故答案为:4.【点睛】本题考查了反比例函数系数k的几何意义和三角形的面积,得出S∵ABO=S梯形ABED是解题的关键.19.如图是反比例函数2yx=与反比例函数在第一象限中的图象,点P是4yx=图象上一动21点, P A ∵X 轴于点A ,交函数2y x =图象于点C ,PB ∵Y 轴于点B ,交函数 2y x=图象于点D ,点D 的横坐标为a .(1)用字母a 表示点P 的坐标; (2)求四边形ODPC 的面积;(3)连接DC 交X 轴于点E ,连接DA 、PE ,求证:四边形DAEP 是平行四边形. 【答案】(1)P (2a ,2a);(2)2;(3)见解析【分析】(1)先求出点D 的纵坐标得到点P 的纵坐标,代入解析式即可得到点P 的横坐标; (2)利用矩形的面积计算公式及反比例函数k 值的几何意义,利用OBD OAC OAPB S S S ∆∆--四边形,即可求出答案;(3)证明∵DPC ∵∵EAC ,即可得到结论. 【详解】解:(1)∵点D 的横坐标为a ,且点D 在函数2y x=图象上, ∵点D 的纵坐标2y a=, 又PB ∵y 轴,且点P 在4y x=图象上, ∵点P 的纵坐标2y a=, ∵点P 的横坐标为x =2a , ∵P (2a ,2a);23(2)∵224OAPB S a a =⨯=四边形,ΔΔ1212OBD OAC S S a a==⨯⨯=, ∵D C 422O P S =-=四边形;(3)∵P A ∵x 轴于点A ,交函数2y x=图象于点C , ∵点C 的坐标为(2a ,1a), 又P (2a ,2a),∵PC =CA =1a, ∵DP ∵AE ,∵∵PDE =∵DEA ,∵DP A =∵P AE , ∵∵DPC ∵∵EAC , ∵DP =AE ,∵四边形DAEP 是平行四边形. 【点睛】此题考查反比例函数的性质,反比例函数图象与几何图形,平行四边形的判定定理,反比例函数k 值的几何意义,熟练掌握反比例函数的性质及计算方法是解题的关键.20.如图,点A (﹣2,y 1)、B (﹣6,y 2)在反比例函数y =kx(k <0)的图象上,AC ∵x轴,BD ∵y 轴,垂足分别为C 、D ,AC 与BD 相交于点E .(1)根据图象直接写出y 1、y 2的大小关系,并通过计算加以验证;(2)结合以上信息,从∵四边形OCED 的面积为2,∵BE =2AE 这两个条件中任选一个作为补充条件,求k 的值.你选择的条件是 (只填序号). 【答案】(1)12y y >,见解析;(2)见解析,∵(也可以选择∵) 【分析】(1)观察函数的图象即可作出判断,再根据A 、B 两点在反比例函数图象上,把两点的坐标代入后作差比较即可;(2)若选择条件∵,由面积的值及OC 的长度,可得OD 的长度,从而可得点B 的坐标,把此点坐标代入函数解析式中,即可求得k ;若选择条件∵,由DB =6及OC =2,可得BE 的长度,从而可得AE 长度,此长度即为A 、B 两点纵坐标的差,(1)所求得的差即可求得k . 【详解】(1)由于图象从左往右是上升的,即自变量增大,函数值也随之增大,故12y y >; 当x =-6时,26ky =-;当x =-2时,12k y =- ∵12263k k ky y -=-+=-,k <0∵120y y -> 即12y y > (2)选择条件∵∵AC ∵x 轴,BD ∵y 轴,OC ∵OD ∵四边形OCED 是矩形 ∵OD ∙OC =2 ∵OC =2 ∵OD =1 即21y =∵点B 的坐标为(-6,1)把点B 的坐标代入y =kx中,得k =-6若选择条件∵,即BE =2AE ∵AC ∵x 轴,BD ∵y 轴,OC ∵OD ∵四边形OCED 是矩形 ∵DE =OC ,CE =OD ∵OC =2,DB =6 ∵BE =DB -DE =DB -OC =4 ∵122AE BE == ∵AE =AC -CE =AC -OD =12y y - 即122y y -=由(1)知:1223ky y -=-= ∵k =-6 【点睛】本题考查了反比例函数的图象和性质、矩形的判定与性质、大小比较,熟练掌握反比例函数的图象与性质是解决本题的关键.2521.如图,一次函数()20y kx k k =-≠的图象与反比例函数1(10)m y m x-=-≠的图象交于点C ,与x 轴交于点A ,过点C 作CB y ⊥轴,垂足为B ,若3ABC S =△.(1)求点A 的坐标及m 的值;(2)若AB = 【答案】(1)(2,0),m =-5;(2)2455y x -=+【分析】(1)在直线y =kx +k 中令y =0可求得A 点坐标;连接CO ,得OBCABCS S==3,根据反比例函数比例系数的几何意义,即可求解;(2)利用勾股定理求出OB =2,设C (b ,2),代入反比例函数,求出C 点坐标,再利用待定系数法,即可求解. 【详解】解:(1)在()20y kx k k =-≠中,令y =0可得02kx k =-,解得x =2, ∵A 点坐标为(2,0);连接CO , ∵CB ∵y 轴, ∵CB ∵x 轴,∵OBCABCSS==3,∵点C 在反比例函数1(10)m y m x-=-≠的图象上, ∵126BOCm S-==,∵反比例函数1(10)m y m x-=-≠的图象在二、四象限, ∵16m -=-,即:m =-5; (2)∵点A (2,0), ∵OA =2,又∵AB =∵在Rt AOB 中,OB 2=,∵CB ∵y 轴, ∵设C (b ,2), ∵62b-=,即b =-3,即C (-3,2), 把C (-3,2)代入2y kx k =-,得:232k k =--,解得:k =25-,∵一次函数的解析式为:2455y x -=+.【点睛】本题主要考查待定系数法求函数解析式及函数图象的交点坐标,掌握两函数图象的交点坐标满足两函数解析式是解题的关键,注意反比例函数y =kx中k 的几何意义的应用. 22.如图,过C 点的直线y =﹣12x ﹣2与x 轴,y 轴分别交于点A ,B 两点,且BC =AB ,过点C 作CH ∵x 轴,垂足为点H ,交反比例函数y =kx(x >0)的图象于点D ,连接OD ,∵ODH 的面积为627(1)求k 值和点D 的坐标;(2)如图,连接BD ,OC ,点E 在直线y =﹣12x ﹣2上,且位于第二象限内,若∵BDE 的面积是∵OCD 面积的2倍,求点E 的坐标.【答案】(1)12k =,点 D 坐标为(4,3);(2)点E 的坐标为(-8,2) 【分析】(1)结合反比例函数k 的几何意义即可求解k 值;由⊥CH x 轴可知//CH y 轴,利用平行线分线段成比例即可求解D 点坐标;(2)//CH y 可知OCD ∆和BCD ∆的面积相等,由函数图像可知BDE ∆、BCD ∆、CED ∆的面积关系,再结合题意2BDE OCD S S ∆∆=,即可求CD 边上高的关系,故作EF CD ⊥,垂足为F ,即可求解E 点横坐标,最后由E 点在直线AB 上即可求解. 【详解】解∵(1)设点 D 坐标为(m ,n ), 由题意得116,1222OH DH mn mn ⋅==∴=.∵点 D 在ky x=的图象上,12k mn ∴==. ∵直线122y x =--的图象与x 轴交于点A ,∵点A 的坐标为(-4,0). ∵CH ⊥x 轴,CH //y 轴. 1.4AO ABOH AO OH BC∴==∴==. ∴点D 在反比例函数12y x=的图象上, ∴点 D 坐标为(4,3)(2)由(1)知CDy 轴,BCD OCD S S ∴=△△.2,3BDE OCD EDC BCD S S S S =∴=△△△△.过点E 作EF ⊥CD ,垂足为点 F ,交y 轴于点M , 1111,,32222EDCBCDSCD EF S CD OH CD EF CD OH =⋅=⋅∴⋅=⨯⋅.312.8EF OH EM ∴==∴=.∵点 E 的横坐标为-8.∵点E 在直线122y x =--上,∵点E 的坐标为(-8,2).【点睛】本题考查一次函数与反比例函数的综合运用、三角形面积问题、k 的几何意义,属于中档难度的综合题型.解题的关键是掌握一次函数与反比例函数的相关性质和数形结合思想. 23.如图,直线l 分别交x 轴,y 轴于A 、B 两点,交反比例函数(0)ky k x=≠的图象于P 、Q 两点.若2AB BP =,且AOB 的面积为4(1)求k 的值;(2)当点P 的横坐标为1-时,求POQ △的面积. 【答案】(1)-6;(2)8 【分析】(1)过P 作PE 垂直于x 轴,垂足为E ,证明ABO APE ∽.根据相似三角形的性质可得2AO OE =,49ABO APESS=,由此可得9APES =,3PEOS=.再由反比例函数比例系数k 的几何意义即可求得k 值.(2)先求得(1,6)P -,(0,4)B ,再利用待定系数法求得直线PB 的解析式为24y x=-+.与反29比例函数的解析式联立方程组,解方程组求得(3,2)Q -.再根据PO POQO BQ BS SS=+即可求解. 【详解】(1)过P 作PE 垂直于x 轴,垂足为E ,∵PE//BO , ∵ABO APE ∽. ∵2AB BP =,4AOB S =△,∵2AO OE =,22439ABO APESS ⎛⎫== ⎪⎝⎭, ∵9APES=,3PEDS=.∵1||32k =⨯,||6k =,即6k =-. (2)由(1)知6y x-=,∵(1,6)P -. ∵2AB PB =,∵2PBOS=,∵||4BO =,(0,4)B .设直线PB 的解析式为y kx b =+,将点(1,6)P -、(0,4)B 代入y kx b =+,得64k bb =-+⎧⎨=⎩.解得24k b =-⎧⎨=⎩.∵直线PB 的解析式为24y x =-+.联立方程组624y x y x -⎧=⎪⎨⎪=-+⎩,解得13x =,21x =-, ∵(3,2)Q -.∵()1||2POQQOBPOB Q P SSSOB x x =+=⨯-14482=⨯⨯=.【点睛】本题是一次函数与反比例函数的综合题,熟练运用反比例函数比例系数k 的几何意义是解决问题的关键.。
反比例函数的意义学情分析
![反比例函数的意义学情分析](https://img.taocdn.com/s3/m/868e9f935fbfc77da269b1b0.png)
课题名称
反比例函数的意义
科目
数学
年级
九年级
教ቤተ መጻሕፍቲ ባይዱ时间
1课时(40分钟)
学习者分析
学生小六学过“反比例”,在七年级学过“平面直角坐标系”,在八年级学过一次函数,九年级上册中学习了二次函数,在此基础上学反比例函数有一定经验基础,为这里学习奠定很好基础。
教学目标
一、情感态度与价值观
1.经历反比例函数的学习形成过程,提高学习数学的积极性。
2.培养学生合作意识和创新能力。
二、过程与方法
1.经历两个变量之间相互依存的讨论,培养学生辩证唯物主义观点。
2.经历抽象数学概念的过程,培养学生抽象思维的能力。
三、知识与技能
1. 理解反比例函数的意义。
2. 能根据条件确定反比例函数的解析式。
教学重点、难点
1. 理解反比例函数的意义,确定反比例函数的解析式
2. 反比例函数解析式的确定
教学资源
1.教师自制的多媒体课件。
2.上课环境为多媒体大屏幕环境。
《反比例函数意义》学习心得体会
![《反比例函数意义》学习心得体会](https://img.taocdn.com/s3/m/c62b874417fc700abb68a98271fe910ef12dae09.png)
《反比例函数意义》学习心得体会
学习反比例函数的意义是为了理解和应用这类函数在实际问题中的作用和特点。
在实
际生活中,许多问题都可以用反比例函数来描述,因此理解反比例函数可以帮助我们
解决实际问题。
学习反比例函数的过程中,我了解到反比例函数的图像呈现出的特点是一个双曲线,
其图像与直线x=0、y=0和y=x的交点均为对称点,对于y=k/x型的反比例函数,当
x趋近于0时,y的值会趋近于正无穷大;当x趋近于正无穷大时,y的值会趋近于0。
这些特点让我对反比例函数的图像有了更深刻的理解。
反比例函数在实际问题中的应用非常广泛,例如人体肌肉的力量和关节的运动速度、
邮箱里的信件数量和放信员的速度等等。
通过学习反比例函数,我可以计算出两个变
量之间的关系,根据其中一个变量的大小来推断另一个变量的大小。
除此之外,反比例函数还有许多重要的应用,如电阻和电流的关系、放大器的电压放
大倍数、天平的平衡关系等等。
通过学习反比例函数,我不仅可以理解这些应用在实
际中的意义,还可以应用反比例函数的性质来解决与这些应用相关的问题。
总的来说,学习反比例函数的意义在于帮助我们理解和应用这类函数的特点和性质,
从而解决实际问题并且扩展数学知识。
反比例函数在实际中的广泛应用使得学习反比
例函数成为了我们日常生活中的必备技能之一。
反比例函数的应用举例及实际意义
![反比例函数的应用举例及实际意义](https://img.taocdn.com/s3/m/dbfc18c0951ea76e58fafab069dc5022aaea466c.png)
反比例函数的应用举例及实际意义反比例函数的应用举例及实际意义2023年,反比例函数已经成为了不可缺少的数学工具之一。
从自然科学到社会科学,从经济学到医学,都有着广泛的应用。
反比例函数的实际意义不仅在于解决目前面临的许多问题,同时也为未来的科学研究带来了巨大的潜力和发展空间。
接下来,本文将通过实例阐述反比例函数的应用及其实际意义。
1. 反比例函数在自然科学中的应用反比例函数在自然科学中有着广泛的应用,尤其是在物理学和化学领域。
例如,牛顿第二定律是运动学中的重要概念,它指出运动对象的加速度与所受的力成反比例关系。
这个定律可以表示为:F = ma其中,F是物体所受的力,m是物体的质量,a是物体的加速度。
由此可以得出,加速度与质量成反比例关系。
因此,反比例函数可以用来描述牛顿第二定律的关系。
在化学领域中,反比例函数也有着重要的应用。
例如,当溶液浓度变化时,反应速率的变化可以通过反比例函数来描述。
这种反应速率与浓度的反比例关系被称为“速率方程”,它是现代化学研究的重要基础概念之一。
2. 反比例函数在社会科学中的应用反比例函数在社会科学中的应用也非常广泛。
在经济学中,经济学家常用反比例函数来描述价格弹性和需求弹性。
例如,当商品价格下降时,价格弹性和需求弹性成反比例关系,即价格弹性愈大,需求弹性愈小。
此外,在管理学、市场营销、社会学和心理学领域,反比例函数也有着广泛的应用。
例如,管理学中的知名学者Fayol提出了“建立权力原则”,其中包括“管理单位的规模越大,管理层级的数量就越多,这种数量与管理效率呈反比例关系”。
这一原则指导了现代企业的组织架构和管理模式,成为企业管理领域的重要标志。
3. 反比例函数在医学中的应用反比例函数在医学中也有着重要的应用。
例如,药物代谢速率与药物浓度成反比例关系,这在药物的临床应用中非常重要。
当药物的浓度达到一定水平时,药物的代谢速率就会降低,这意味着需要调整剂量以保持药物在安全范围内的有效浓度。
第六章反比例函数及反比例函数k的几何意义专题训练北师大版2024—2025学年九年级上册
![第六章反比例函数及反比例函数k的几何意义专题训练北师大版2024—2025学年九年级上册](https://img.taocdn.com/s3/m/23d6af6a53ea551810a6f524ccbff121dc36c57c.png)
第六章反比例函数及反比例函数k的几何意义专题训练北师大版2024—2025学年九年级上册反比例函数比例系数k的几何意义(1)意义:从反比例函数y=(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|,以该点、一个垂足和原点为顶点的三角形的面积为1/2|k|.(2)常见的面积类型:例1.如图,点P是反比例函数y=(k≠0)的图象上任意一点,过点P作PM⊥x轴,垂足为M,若△POM的面积等于3,则k的值等于()A.﹣6B.6C.﹣3D.3变式1.如图,在▱AOBC中,对角线AB、OC交于点E,双曲线经过A、E两点,若▱AOBC的面积为18,则k的值是()A.5B.6C.7D.8变式2.如图,平行于x轴的直线与函数y=(k1>0,x>0),y=(k2>0,x>0)的图象分别相交于A,B两点,点A在点B的右侧,C为x轴上的一个动点.若△ABC的面积为4,则k1﹣k2的值为()A.8B.﹣8C.4D.﹣4变式3.如图,点P是反比例函数图象上的一点,PF⊥x轴于F点,且Rt△POF面积为4.则k的值为()A.8B.﹣8C.﹣4D.4变式4.如图,点M是反比例函数y=(x<0)图象上一点,MN⊥y 轴于点N.若P为x轴上的一个动点,则△MNP的面积为()A.2B.4C.6D.无法确定变式5.如图,点P是双曲线C:y=(x>0)上的一点,过点P作x轴的垂线交直线AB:y=x﹣2于点Q,连接OP,OQ,当点P在曲线C上运动,且点P在Q上方时,△POQ面积的最大值为()A.2B.3C.4D.6变式6.如图,已知点A为反比例函数y=(x<0)的图象上一点,过点A作AB⊥y轴,垂足为B,若△OAB的面积为3,则k的值为()A.3B.﹣3C.6D.﹣6变式7.关于x的反比例函数y=的图象如图,A、P为该图象上的点,且关于原点成中心对称.△P AB中,PB∥y轴,AB∥x轴,PB 与AB相交于点B.若△P AB的面积大于12,则关于x的方程(a ﹣1)x2﹣x+=0的根的情况是()A.2个不相等的实数根B.2个相等的实数根C.1个实数根D.无实数根变式8.如图,两个反比例函数y1=和y2=在第一象限内的图象分别是C1和C2,设点P在C1上,P A⊥x轴于点A,交C2于点B,则△POB的面积为()A.4B.2C.1D.6变式9.如图,若反比例函数的图象经过点A,AB⊥x轴于点B,C点是y轴上一点,且△ABC的面积4,则k的值为()A.﹣8B.﹣4C.4D.8变式10.如图,反比例函数的图象经过矩形OABC的边AB的中点D,若矩形OABC的面积为6,则k的值为()A.﹣3B.3C.﹣6D.6变式11.如图,点A是反比例函数的图象上的一点,过点A作AB ⊥x轴,垂足为B.点C为y轴上的一点,连接AC,BC.若△ABC 的面积为3,则k的值是()A.3B.﹣6C.6D.﹣3变式12.下面四个图中反比例函数的表达式均为,则阴影部分的图形的面积为3的有()A.1个B.2个C.3个D.4个变式13.如图,将一块含30°角的三角板AOB按如图所示摆放在平面直角坐标系中,∠B=60°,∠BAO=90°,△AOB的面积为4,BO与x轴的夹角为30°,若反比例函数的图象经过点A,则k的值为()A.3B.C.6D.9变式14.如图1,在△OAB中,∠AOB=45°,点B的坐标为,点A在反比例函数的图象上,设△OAB的面积为S1;如图2,在△ABC中,AB=AC,BC在x轴上,且OB:BC=1:2,点A在反比例函数的图象上,设△ABC的面积为S2,则S1+S2的值为()A.B.5C.D.变式15.如图,已知四边形OABC是矩形,边OA在x轴上,边OC在y轴上,双曲线过OB的中点E,且与边BC交于点D,若△DOE的面积为7.5,则k的值是()A.5B.10C.15D.变式16.如图,点A是反比例函数y=(x>0)图象上的一点,AB垂直于x轴,垂足为B,△OAB的面积为8.若点P(a,4)也在此函数的图象上,则a的值是()A.2B.﹣2C.4D.﹣4变式17.如图,在平面直角坐标系xOy中,点A、B分别在y、x 轴上,BC⊥x轴,点M、N分别在线段BC、AC上,BM=CM,NC=2AN,反比例函数y=(x>0)的图象经过M、N两点,P为x轴正半轴上一点,且OP:BP=1:4,△APN的面积为3,则k的值为()A.B.C.D.变式18.如图,在平面直角坐标系中,平行四边形ABCD与y轴分别交于E、F两点,对角线BD在x轴上,反比例函数的图象过点A并交AD于点G,连接DF.若BE:AE=1:2,AG:GD=3:2,且△FCD的面积为,则k的值是()A.B.3C.D.5变式19.如图,平面直角坐标系中,矩形OABC的边与函数y=(x>0)图象交于E,F两点,且F是BC的中点,则四边形ACFE的面积等于()A.4B.6C.8D.不能确定例2.如图,矩形OABC的顶点A,C分别在x轴、y轴的正半轴上,它的对角线OB与函数的图象相交于点D,且,若矩形OABC的面积为24,则k的值是.变式1.如图,已知在平面直角坐标系xOy中,点P是▱ABCO对角线OB的中点,反比例函数的图象经过点A,点P.若▱ABCO的面积为30,且y轴将▱ABCO的面积分为1:3,则k的值为.变式2.如图,在平面直角坐标系xOy中,点A,B都在反比例函数y=(x>0)的图象上,延长AB交y轴于点C,过点A作AD⊥y轴于点D,连接BD并延长,交x轴于点E,连接CE.若AB=2BC,△BCE的面积是4.5,则k的值为.变式3.如图,在平面直角坐标系xOy中,等腰Rt△OAB,∠B=90°,点A在x轴正半轴上,点B在第一象限内,反比例函数y=的图象与AB交于点C,连接OC,若BC=2AC,△OBC的面积为6,则k的值为.变式4.如图,在平面直角坐标系中,C,A分别为x轴、y轴正半轴上的点,以OA,OC为边,在第一象限内作矩形OABC,且S矩形OABC=8,将矩形OABC翻折,使点B与原点O重合,折痕为MN,点C的对应点C'落在第四象限,过M点的反比例函数y=(k ≠0)的图象恰好过MN的中点,则点C'的坐标为.变式5.如图,在平面直角坐标系中,点A、C在y轴上,且,点B(﹣2,0)在x轴上,将△ABC绕点A逆时针旋转90°后得到△AB'C′,线段AB′与双曲线交于点D,连接B′C、C′C,当点D为AB′中点,且S△B'CC′=6时,则k的值是.变式6.如图,在△AOB中,OC平分∠AOB,=,反比例函数y=(k<0)图象经过点A、C两点,点B在x轴上,若△AOB的面积为9,则k的值为.变式7.如图,点A,B,C,D是菱形的四个顶点,其中点A,D在反比例函数y=(m>0,x>0)的图象上,点B,C在反比例函数y=(n<0)的图象上,且点B,C关于原点成中心对称,点A,C的横坐标相等,则的值为;过点A作AE∥x轴交反比例函数y=(n<0)的图象于点E,连结ED并延长交x轴于点F,连结OD.若S△DOF=7,则m的值为.变式8.如图,A(a,b)、B(﹣a,﹣b)是反比例函数y=的图象上的两点,分别过点A、B作y轴的平行线,与反比例函数y=的图象交于点C、D,若四边形ACBD的面积是8,则m、n之间的关系是.变式9.如图,平面直角坐标系xOy中,Rt△ABO的斜边BO在x轴正半轴上,OB=5,反比例函数y=(x>0)的图象过点A,与AB边交于点C,且AC=3BC,则a的值为,射线OA,射线OC分别交反比例函数y=(b>a>0)的图象于点D,E,连接DE,DC,若△DEC的面积为45,则b的值为.变式10.如图,点A、B在反比例函数y=(x>0)的图象上,延长AB交x轴于C点,若△AOC的面积是12,且点B是AC的中点,则k=.变式11.如图,菱形ABCD中,∠ABC=120°,顶点A,C在双曲线上,顶点B,D在双曲线上,且BD经过点O.若k1+k2=2,则菱形ABCD面积的最小值是.变式12.如图,在平面直角坐标系xOy中,正方形ABCD的顶点A、C恰好落在双曲线上,且点O在AC上,AD交x轴于点E.①当A点坐标为(1,m)时,D点的坐标为;②当CE平分∠ACD时,正方形ABCD的面积为.例3.如图,O为坐标原点,点A(﹣1,5)和点B(m,﹣1)均在反比例函数图象上(1)求m,k的值;(2)当x满足什么条件时,﹣x+4>﹣;(3)P为y轴上一点,若△ABP的面积是△ABO面积的2倍,直接写出点P的坐标.变式1.已知点A(a,ma+2)、B(b,mb+2)是反比例函数y=图象上的两个点,且a>0,b<0,m>0.(1)求证:a+b=﹣;(2)若OA2+OB2=2a2+2b2,求m的值;(3)若S△OAB=3S△OCD,求km的值.变式2.如图,双曲线y=上的一点A(m,n),其中n>m>0,过点A作AB⊥x轴于点B,连接OA.(1)已知△AOB的面积是3,求k的值;(2)将△AOB绕点A逆时针旋转90°得到△ACD,且点O的对应点C恰好落在该双曲线上,求的值.。
17.1.1反比例函数的意义
![17.1.1反比例函数的意义](https://img.taocdn.com/s3/m/190fb12e192e45361066f530.png)
k y 函数 (k≠0)中,自变量x的取值范围是不为0的一切实数。 x
④某住宅小区要种植一个面积为1000m2的矩形草坪,草坪的 长y(单位:m)随宽x(单位:m)的变化而变化。 1000 函数关系式为:y ,此时x可以取-100吗?为什么? x 注意:在实际问题中,自变量的取值还需考虑它的实际意义。
m≠-1 m+1≠0 y是x的反比例函数,比例系数为k(k≠0)
k y= x -1 y=kx
{
{
x
xy=k
例题欣赏
例1、已知y是x的反比例函数,当x=2时,y=6. (1)写出y与x的函数关系式; (2)求当x=4时y的值.
k y = 解:(1)设 x ,因为当 x=2 时y=6,所以有
已知y是xk 的反比例函数,当x=3时,y=-8. 解得 k=12 6 = 式,并指出各是什么函数:
步行课堂
2、下列关系式中的y是x的反比例函数吗?如果是,比例 系数k是多少?
( 1) y= 4 x
1 (2)y=- 2x
(3)y=1-x
m2 2
k x 3 、当 m 取什么值时,函数 是 2 x的 y ( m 1 ) x 关系式 xy+4=0 中 y 是 x 的反比例函数吗 ? 若是, y= -1 (6) y=x ( 5 ) y = 2k+3 1 、如果函数 为反比例函数,那么 k= , 记住 (4 ) xy=1 x m-7 2 6 . 2 、已知函数 y=3x 是反比例函数 ,则 m = ___ 1 反比例函数? 比例系数 k等于多少?若不是,请说明理由。 y 这些 此时函数的解析式为 . m=±1 2 x m -2=-1 1 分析 : -1 解得 形式 ( 8 ) y = -1 (7) y=x 即:m=1
反比例函数k 的几何意义
![反比例函数k 的几何意义](https://img.taocdn.com/s3/m/46c569b4900ef12d2af90242a8956bec0975a5c3.png)
反比例函数k 的几何意义全文共四篇示例,供读者参考第一篇示例:反比例函数是一种常见的函数形式,它在数学中起着重要的作用。
在数学中,反比例函数通常表示为y = k/x,其中k是一个常数。
在本文中,我们将探讨反比例函数k的几何意义,以便更好地理解它在数学中的应用。
让我们来看看反比例函数y = k/x的图像是什么样子的。
当k大于0时,函数图像呈现出一种特殊的形状,即一条从第一象限经过原点的曲线。
这种曲线被称为双曲线。
双曲线在数学中有着广泛的应用,例如在物理学和工程学中,它往往用来描述两个量之间呈反比例关系的情况。
在几何意义上,反比例函数k的值可以理解为曲线在坐标系中的形态和性质。
当k越大时,曲线越扁平,即曲线的曲率越小。
反之,当k 越小时,曲线越尖锐,曲率越大。
反比例函数k的值可以用来描述曲线的形状和性质。
反比例函数k的几何意义还可以从另一个角度来理解。
在数学中,函数y = k/x表示了两个变量之间的反比例关系。
当x增大时,y的值会减小。
这表明两个变量之间存在一种相反变化的关系。
在几何上,这种反比例关系可以理解为一种“交换”的关系,即当一个变量增大时,另一个变量会减小,反之亦然。
反比例函数k在数学中具有重要的几何意义。
它不仅可以描述曲线的形状和性质,还可以揭示两个变量之间的反比例关系。
通过深入研究反比例函数k的几何意义,我们可以更好地理解它在数学中的应用,并丰富我们对数学的认识和理解。
【文章字数不足,如有需要可继续添加内容】。
第二篇示例:反比例函数是数学中常见的一类函数,其数学表达式为y = k/x,其中k为一个常数且k≠0。
反比例函数在数学中有很多重要的应用,尤其是在几何中具有重要的意义。
我们来看反比例函数在几何中的基本性质。
对于反比例函数y =k/x,我们可以通过绘制其图像来直观地理解其性质。
当x取正值时,y 的值随着x的增大而减小;当x取负值时,y的值随着x的增大而增加。
这说明反比例函数是一个非对称的函数,它在坐标系中的图像呈现出一种特殊的形态。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
26.1.1反比例函数的意义
【学习目标】
1、经历抽象反比例函数概念的过程,体会反比例函数的含义,理解反比
例函数的概念。
2、理解反比例函数的意义,根据题目条件会求对应量的值,能用待定系
数法求反比例函数关系。
3、让学生经历在实际问题中探索数量关系的过程,养成用数学思维方式
解决实际问题的习惯,体会数学在解决实际问题中的作用。
【学习重点】理解反比例函数的意义,确定反比例函数的解析式。
【学习难点】反比例函数的解析式的确定。
【学法指导】自主、合作、探究。