高频电子线路Matlab仿真实验

合集下载

Matlab电气仿真实验

Matlab电气仿真实验

Matlab电气仿真实验指导老师:学生姓名:爸爸专业班级:电气工程机器自动化1班学号:******本课程设计的目的:1、掌握Matlab/Simulink中SimPowerSystems 工具箱的基本建模方法;2、掌握Matlab/Simulink 电气仿真的基本步骤;3、利用Matlab/Simulink 在基本电路与磁路、电力电子技术、电气传动等方面的仿真设计。

实验一设计任务1:单相桥式整流加LC滤波电路,电源为220V,50Hz, 整流电路输入为24V,负载为10Ω阻性负载,滤波电感L=100mH,滤波电容C=200uF。

实验步骤: 在matlab_simulink中选取相应的器件如图连接。

注意事项: 将scope中的“limit data point to the last”选项应该去掉。

参数选择:交流电源幅值:220*sqrt(2),频率:50HZ。

变压器参数S=200V A,变比:220V/24V。

电感:100mH;电容:200uF;电阻:10欧。

实验结论:Diode3电压电流如图所示虚线显示的为电流I 是仙显示的电压U。

当diode3导通时其减压接近为0,其电流有值。

当diode3不导通时其电流值为0,功率二极管承受反向电压。

而电流图像上出现波动是因为电感L的值不是无穷大,会受频率电压幅值的影响所以如图所示。

Diode4电压电流如图所示:虚线显示的为电流I 是仙显示的电压U。

当diode3导通时其减压接近为0,其电流有值。

当diode4不导通时其电流值为0,功率二极管承受反向电压。

而电流图像上出现波动是因为电感L的值不是无穷大,会受频率电压幅值的影响所以如图所示。

上述两图中diode3与diode4两个功率二极管的电压电流在相位上差120°,因为正版周期二极管diode1和diode4同时导通diode2和diode3受反向压降。

当为π是diode2和diode3同时导通而diode1和diode4关断承受反向电压。

高频仿真实验指导书

高频仿真实验指导书

电子电路调试与应用高频仿真实验指导书卢敦陆编写广东科学技术职业学院机电工程学院二OO八年九月高频仿真实验一LC串并联谐振回路的特性分析一、实验目的1.理解LC串并联调谐回路的谐振特性;3.掌握谐振回路特性参数的计算和测量方法二、实验过程和数据分析(一)LC串联调谐回路的谐振特性1.打开multisim2001软件,创建如下所示的电路图:2.若要求以上回路的谐振频率为1MHZ,那么回路电感L= uH,3.谐振时回路的阻抗最(大或小),阻抗R=4.回路的品质因数Q=ωL/R1= 。

5.通频带理论值BW= ,实际测量值BW= 。

6.请画出谐振特性曲线。

(即对3点作交流分析,如下图)(二)LC并联调谐回路的谐振特性1.打开multisim2001软件,创建如下所示的电路图:2.若要求以上回路的谐振频率为30MHZ,那么回路电容C= PF。

3.谐振时回路的阻抗最(大或小),阻抗R= 。

4.回路的品质因数Q= R1/ωL = 。

5.通频带理论值BW= ,实际测量值BW= 。

6.请画出谐振特性曲线(即对4点作交流分析,如下图所示)。

高频仿真实验二单调谐振回路小信号高频放大器一、实验目的1.复习multisim2001的使用方法2.了解单调谐回路小信号高频放大器的工作原理和调谐方法3.学习测量单调谐回路小信号高频放大器的带宽二、实验过程和数据分析1.打开multisim2001软件,创建如下所示的电路图:2.分析三极管的直流工作点,其中Vb= V,V e= V ,Vc= V。

3.用示波器观察输出信号的幅度,V omax= V,放大倍数Avmax= 。

4.调节可变电容C6的容量,观察输出信号幅度的变化,当增大或减小C6时,输出信号幅度变(大或小)了。

5.用波特图仪确定放大器的带宽。

如下图所示:移动红色指针,当放大器的放大增益下将3dB时,记录低端频率FL= MHZ,FH= MHZ,带宽BW=FH-FL= MHZ。

高频电路Multisim仿真实验二 高频功率放大仿真

高频电路Multisim仿真实验二 高频功率放大仿真

实验二 高频功率放大器一、高频功率放大器原理仿真,电路如图所示:(Q1选用元件Transistors 中的 BJT_NPN_VIRTUAL)图2.1 高频功率放大器原理图1、集电极电流ic(1)设输入信号的振幅为0.7V ,利用瞬态分析对高频功率放大器进行分析设置。

要设置起始时间与终止时间,和输出变量。

(2)将输入信号的振幅修改为1V ,用同样的设置,观察i c 的波形。

(提示:单击simulate 菜单中中analyses 选项下的transient analysis...命令,在弹出的对话框中设置。

在设置起始时间与终止时间不能过大,影响仿真速度。

例如设起始时间为0.03s ,终止时间设置为0.030005s 。

在output variables 页中设置输出节点变量时选择vv3#branch 即可)(3)根据原理图中的元件参数,计算负载中的选频网络的谐振频率ω0,以及该网络的品质因数Q L 。

根据各个电压值,计算此时的导通角θc 。

(提示根据余弦值查表得出)。

srad LCw /299.61012610200116120=⨯⨯⨯==-- =Cθ87.80378.0299.61263000=⨯==Lw R Q L2、线性输出(1)要求将输入信号V1的振幅调至1.414V。

注意:此时要改基极的反向偏置电压V2=1V,使功率管工作在临界状态。

同时为了提高选频能力,修改R1=30KΩ。

(2)正确连接示波器后,单击“仿真”按钮,观察输入与输出的波形;输入端波形:输出端波形:(3)读出输出电压的值并根据电路所给的参数值,计算输出功率P0,PD,ηC;输出电压:12V ;∑==RI V I P m c cm m c 21102121 0C cc D I V P = Dc P P 0=η二、 外部特性1、调谐特性,将负载选频网络中的电容C1修改为可变电容(400pF ),在电路中的输出端加一直流电流表。

当回路谐振时,记下电流表的读数,修改可变电容百分比,使回路处于失谐状态,通过示波器观察输出波形,并记下此时电流表的读数;谐振时,C=200pF ,此时电流为:-256.371输出波形为:将电容调为90%时,此时的电流为-256.389mA 。

matlab仿真实验报告

matlab仿真实验报告

matlab仿真实验报告Matlab仿真实验报告引言:Matlab是一种广泛应用于科学和工程领域的数值计算软件,它提供了强大的数学和图形处理功能,可用于解决各种实际问题。

本文将通过一个具体的Matlab 仿真实验来展示其在工程领域中的应用。

实验背景:本次实验的目标是通过Matlab仿真分析一个电路的性能。

该电路是一个简单的放大器电路,由一个输入电阻、一个输出电阻和一个放大倍数组成。

我们将通过Matlab对该电路进行仿真,以了解其放大性能。

实验步骤:1. 定义电路参数:首先,我们需要定义电路的各个参数,包括输入电阻、输出电阻和放大倍数。

这些参数将作为Matlab仿真的输入。

2. 构建电路模型:接下来,我们需要在Matlab中构建电路模型。

可以使用电路元件的模型来表示电路的行为,并使用Matlab的电路分析工具进行仿真。

3. 仿真分析:在电路模型构建完成后,我们可以通过Matlab进行仿真分析。

可以通过输入不同的信号波形,观察电路的输出响应,并计算放大倍数。

4. 结果可视化:为了更直观地观察仿真结果,我们可以使用Matlab的图形处理功能将仿真结果可视化。

可以绘制输入信号波形、输出信号波形和放大倍数的变化曲线图。

实验结果:通过仿真分析,我们得到了以下实验结果:1. 输入信号波形与输出信号波形的对比图:通过绘制输入信号波形和输出信号波形的变化曲线,我们可以观察到电路的放大效果。

可以看到输出信号的幅度大于输入信号,说明电路具有放大功能。

2. 放大倍数的计算结果:通过对输出信号和输入信号的幅度进行计算,我们可以得到电路的放大倍数。

通过比较不同输入信号幅度下的输出信号幅度,可以得到放大倍数的变化情况。

讨论与分析:通过对实验结果的讨论和分析,我们可以得出以下结论:1. 电路的放大性能:根据实验结果,我们可以评估电路的放大性能。

通过观察输出信号的幅度和输入信号的幅度之间的比值,可以判断电路的放大效果是否符合设计要求。

高频电子线路仿真实验的设计与实现

高频电子线路仿真实验的设计与实现

高频电子线路仿真实验的设计与实现高频电子线路仿真实验是一种重要的实验教学方法,它可以模拟各种高频电子器件的工作原理及性能,为学生提供一个全面的电子学习平台。

本文将介绍一种高频电子线路仿真实验的设计与实现。

一、实验目的本实验旨在让学生了解高频电子线路的基本概念、设计原理和仿真技术,加深学生对高频电子学科的理解,提高学生的实验能力和模拟能力。

二、实验设计1. 实验任务(1). 进行微波信号的电路设计和仿真。

(2). 利用Multisim对一些特定高频电路进行仿真,如微波带通滤波器、微波失谐器等。

(3). 进行实验测量,得到一些实验数据,并将仿真结果与实验结果进行对比分析。

2. 实验步骤(1). 了解微波电路的基本概念和出现条件。

(2). 电路元器件参数的测量及仿真。

(3). 利用Multisim二次开发包,编写自定义元器件并应用到微波电路设计中。

(4). 进行仿真,并分析其电路性能。

(5). 实验中使用网络分析仪测量实验数据,并与仿真数据进行对比分析。

三、实验流程1. 获取微波元器件的参数,并进行仿真。

2. 熟悉Multisim的仿真工具,建立仿真电路。

3. 对仿真电路进行微调,观察仿真结果,进行分析。

4. 制作实验电路,并进行实验测量。

5. 将实验数据与仿真结果进行对比分析,找出差异并进行解释。

四、实验工具1. Multisim仿真软件2. 网络分析仪3. 各种微波器件,如微波传输线、微波滤波器、微波功率放大器等。

五、实验结果通过网络分析仪测量实验数据,并与Multisim的仿真数据进行对比,得到了一些实验结果。

通过对实验数据和仿真数据的分析,学生可以深入了解微波电路的性能和设计原理,增强实验能力和仿真能力。

六、实验结论本实验通过对微波电路设计和仿真的研究,让学生了解到微波电路的基本原理和工作条件,掌握了Multisim仿真软件的使用,并能够对电路性能进行仿真分析。

通过对实验数据和仿真数据进行对比分析,学生能够进一步加深对微波电路的理解,增强实验能力和模拟能力。

高频仿真实验报告

高频仿真实验报告

实验报告实验课程:通信电子线路实验(软件部分)学生姓名:周倩文学号:6301712010专业班级:通信121班指导教师:雷向东老师、卢金平老师目录实验一仪器的操作使用实验二高频小信号调谐放大器实验三非线性丙类功率放大器实验实验四三点式正弦波振荡器实验五晶体振荡器设计实验六模拟乘法混频实验七二极管的双平衡混频器设计实验八集电极调幅实验实验九基极调幅电路设计实验十模拟乘法器调幅南昌大学实验报告学生姓名:周倩文学号:6301712010 专业班级:通信121班实验类型:□验证□综合□设计□创新实验日期: 2014-10-24 实验成绩:、实验三非线性丙类功放仿真设计(软件)一、实验目的1.了解丙类功率放大器的基本工作原理.掌握丙类放大器的调谐特性以及负载改变时的动态特性。

2.了解高频功率放大器丙类工作的物理过程以及当激励信号变化对功率放大器工作状态的影响。

3. 掌握丙类放大器的计算与设计方法。

二、实验内容1. 观察高频功率放大器丙类工作状态的现象.并分析其特点2. 测试丙类功放的调谐特性3. 测试丙类功放的负载特性4. 观察激励信号变化、负载变化对工作状态的影响三、实验基本原理放大器按照电流导通角θ的范围可分为甲类、乙类、丙类及丁类等不同类型。

功率放大器电流导通角越小.放大器的效率越高。

非线性丙类功率放大器的电流导通角小于90°.效率可达到80%.通常作为发射机末级功放以获得较大的输出功率和较高的效率。

特点:非线性丙类功率放大器通常用来放大窄带高频信号(信号的通带宽度只有其中心频率的1%或更小).基极偏置为负值.电流导通角小于90°.为了不失真地放大信号.它的负载必须是LC谐振回路。

在丙类谐振功放中.若将输入谐振回路调谐在输出信号频率n次谐波上.则可近似的认为.输出信号回路上仅有ic中的n次谐波分量产生的高频电压.而它的分量产生的电压均可忽略。

因而.在负载RL上得到了频率为输入信号频率n倍的输出信号功率。

MATLAB电路仿真实验报告

MATLAB电路仿真实验报告

武汉大学电气工程学院MATL AB电路仿真实验报告班级:0810学号:2008302540299姓名:李德澳2010年7月目录实验一直流电路(1) (3)实验二直流电路(2) (9)实验三正弦稳态 (18)实验四交流分析和网络函数 (27)实验五动态电路 (32)实验六频率响应 (44)实验一直流电路(1)一实验目的1 加深对直流电路的节点电压法和网孔电流法的理解2 学习使用MATLAB的矩阵运算的方法二实验示例1节点分析电路如图所示(见书本12页),求节点电压V1,V2,V3.根据电路图得到矩阵方程,根据矩阵方程使用matlab命令为Y =0.1500 -0.1000 -0.0500-0.1000 0.1450 -0.0250-0.0500 -0.0250 0.0750节点v1,v2和v3:v =404.2857350.0000412.85712 回路分析电路如图所示(见书本13页),使用解析分析得到同过电阻RB的电流,另外求10V电压源的输出功率。

分析电路得到节点方程,根据节点方程得到矩阵方程,根据矩阵方程,使用matlab的命令为z=[40,-10,-30;-10,30,-5;-30,-5,65];v=[10,0,0]';I=inv(z)*v;IRB=I(3)-I(2);fprintf('the current through R is %8.3f Amps \n',IRB)ps=I(1)*10;fprintf('the power supplied by 10v source is %8.4fwatts\n',ps)结果为:the current through R is 0.037 Ampsthe power supplied by 10V source is 4.7531 watts三实验内容1 根据书本15页电路图,求解电阻电路,已知:R1=2Ω,R2=6Ω,R3=12Ω,R4=8Ω,R5=12Ω,R6=4Ω,R7=2Ω(1)如果Us=10V,求i3,u4,u7(2)如果U4=4V,求Us,i3,i7使用matlab命令为clear% 初始化阻抗矩阵Z=[20 -12 0;-12 32 -12;0 -12 18];% 初始化电压矩阵V=[10 0 0]';% 解答回路电流I=inv(Z)*V;% I3的计算I3=I(1)-I(2);fprintf('the current I3 is %8.2f Amps\n',I3) % U4的计算U4=8*I(2);fprintf('the voltage U4 is %8.2f Vmps\n',U4) % U7的计算U7=2*I(3);fprintf('the voltage U7 is %8.2f Vmps\n',U7)结果the current I3 is 0.36 Amps the voltage U4 is 2.86 Vmps the voltage U7 is 0.48 Vmpsclear% 初始化矩阵XX=[20 -1 0;-12 0 -12;0 0 18];% 初始化矩阵YY=[6 -16 6]';% 进行解答A=inv(X)*Y;% 计算各要求量Us=A(2)I3=A(1)-0.5I7=A(3)结果Us = 14.0000I3 = 0.5000I7 =0.33332 求解电路里的电压如图1-4(书本16页),求解V1,V2,V3,V4,V5 使用matlab命令为clear% 初始化节点电压方程矩阵Z=[0.725 -0.125 -0.1 -5 -1.25;-0.1 -0.2 0.55 0 0;-0.125 0.325 -0.2 0 1.25;1 0 -1 -1 0;0 0.2 -0.2 0 1];I=[0 6 5 0 0]';% 解答节点电压U1,U3,U4与Vb,IaA=inv(Z)*I;% 最终各电压计算V1=A(1)V2=A(1)-10*A(5)V3=A(2)V4=A(3)V5=24结果V1 =117.4792V2 = 299.7708V3 =193.9375V4 =102.7917V5 = 243 如图1-5(书本16页),已知R1=R2=R3=4Ω,R4=2Ω,控制常数k1=0.5,k2=4,is=2A,求i1和i2.使用matlab命令为clear% 初始化节点电压方程矩阵Z=[0.5 -0.25 0 -0.5;-0.25 1 -1 0.5;0 0.5 0 -1;1 -1 -4 0];I=[2 0 0 0]';% 解答节点电压V1,V2及电流I1,I2A=inv(Z)*I;% 计算未知数V1=A(1)V2=A(2)I1=A(3)I2=A(4)结果如下:V1 =6V2 =2I1 = 1I2 =1实验二直流电路(2)一实验目的1 加深多戴维南定律,等效变换等的了解2 进一步了解matlab在直流电路中的作用二实验示例如图所示(图见书本17页2-1),分析并使用matlab命令求解为clear,format compactR1=4;R2=2;R3=4;R4=8;is1=2;is2=0.5;a11=1/R1+1/R4;a12=-1/R1;a13=-1/R4; a21=-1/R1;a22=1/R1+1/R2+1/R3;a23=-1/R3;a31=-1/R4;a32=-1/R3;a33=1/R3+1/R4;A=[a11,a12,a13;a21,a22,a23;a31,a32,a33];B=[1,1,0;0,0,0;0,-1,1];X1=A\B*[is1;is2;0];uoc=X1(3);X2=A\B*[0;0;1];Req=X2(3);RL=Req;P=uoc^2*RL/(Req+RL)^2;RL=0:10,p=(RL*uoc./(Req+RL)).*uoc./(Req+RL), figure(1),plot(RL,p),gridfor k=1:21ia(k)=(k-1)*0.1;X=A\B*[is1;is2;ia(k)];u(k)=X(3);endfigure(2),plot(ia,u,'x'),gridc=polyfit(ia,u,1);%ua=c(2)*ia=c(1) , 用拟合函数术,c(1),c(2)uoc=c(1),Req=c(2)RL =0 1 2 3 4 5 6 7 8 9 10p =Columns 1 through 70 0.6944 1.0204 1.1719 1.23461.2500 1.2397Columns 8 through 111.2153 1.1834 1.1480 1.1111A .功率随负载变化曲线01234567891000.20.40.60.811.21.4B.电路对负载的输出特性00.20.40.60.81 1.2 1.4 1.6 1.82三实验内容1 图见书本19页2-3,当RL从0改变到50kΩ,校验RL为10kΩ的时候的最大功率损耗使用matlab命令为clear% 定义电压源和电阻值Us=10;Rs=10000;RL=0:20000;p=(Us^2.*RL)./(RL+Rs).^2;plot(RL,p);输出结果为-3x 104Maximum power occur at 10000.00hmsMaximum power dissipation is 0.0025Watts2 在图示电路里(书本20页2-4),当R1取0,2,4,6,10,18,24,42,90和186Ω时,求RL的电压UL,电流IL和RL消耗的功率。

电力电子的matlab仿真实验指导书(改)

电力电子的matlab仿真实验指导书(改)

“电力电子”仿真实验指导书MATLAB仿真实验主要是在simulink环境下的进行的。

Simulink是运行在MATLAB环境下,用于建模、仿真和分析动态系统的软件包。

它支持连续、离散及两者混合的线性和非线性系统。

由于它具有直观、方便、灵活的特点,已经在学术界、工业界的建模及动态系统仿真领域中得到广泛的应用。

Simulink提供的图形用户界面可使用鼠标的拖放操作来创建模型。

Simulink本身包含sources、sinks、Discrete、math、Nonlinear和continuous 等模块库。

实验主要使用Sinks、Sources、Signals & System和Power System Blockset这四个模块库中的一些模块搭建电力电子课程中的典型电路进行仿真。

在搭建成功的电路中使用scope显示模块显示仿真的波形、验证电路原理分析结果。

这些典型电路包括:1)单相半波可控整流电路(阻性负载和阻感负载)2)单相全控桥式整流电路(阻性负载和阻感负载)3)三相全控桥式整流电路(双窄脉冲阻性负载和双窄脉冲阻感负载)4)降压斩波电路、升压斩波电路5)三相半波逆变电路、三相全波逆变电路。

一、matlab、simulink基本操作多数学生在做这个实验是时候可能是第一次使用matlab中的simulink来仿真,因此下面首先介绍一下实验中要掌握得的一些基本操作(编写试验指导书时所使用的matlab6.1版本)。

若实验过程中使用matlab的版本不同这些基本操作可能会略有不同。

图0-1 matlab启动界面matlab的启动界面如图0-1所示,点击matlab左上方快捷键就可以进入simulink程序界面(在界面右侧的Command Window中输入simulink命令回车或者在Launch Pad窗口中点击simulink子菜单中Library Browser都可以进入simulink程序界面)如图0-2所示。

高频电路仿真实验指导.总结

高频电路仿真实验指导.总结

信息工程与自动化学院高频电路实验指导书(MATLAB系统仿真部分)编写:陈家福2010年9月8日目录实验一、MATLAB仿真基本操作综合实验实验二、AM调制与解调实验实验三、DSB调制与解调实验实验四、SSB调制与解调实验实验五、FM调制与解调实验实验六、混频器(变频器)仿真实验实验七、PLL锁相环仿真实验实验八、基于PLL的频率合成器仿真实验编写说明随着电子技术领域中信息化、数字化进程的快速发展和计算机技术的普适应用,传统硬件实验的局限性和众多缺点已经开始突显出来,过去靠硬件完成的电路功能,现在大部都可由软件来实现了。

虚拟仪器和软件无线电已经正在取代传统硬件设备。

现在,只要能用数学描述的任何事件、过程、信号和功能电路,都可以通过传感转换技术、DSP技术和计算机技术来实现。

计算机仿真就是实现这个过程的不可缺失的重要的前期阶段。

特别是需要配置贵重仪器或大量仪器参与的各种系统性实验,用传统方法操作的复杂程度高、成本也高,在规模化办学条件下几乎不可能满足实际需要。

这种情况下计算机仿真实验的优越性就显现出来了,像是任意多踪数字存储示波、频谱分析、逻辑分析和复杂系统分析实验等,几乎必须由计算机仿真来完成。

计算机仿真技术的应用能力已经成为高级工程技术人员必须具备的重要的工程素质之一。

综上所述,适当引入计算机仿真实验,已经成为高校实践教学环节的重要补充。

为此,我们在《高频电子线路》(或称《通信电子线路》、也称《非线性电子线路》)的实验教学中进行尝试,选择了一些对实验仪器设备硬件配置要求较高的一定数量的与高频电路相关的仿真实验。

由于经验缺乏,若有不足,敬请各位师生指教。

通信工程实验室陈家福2011年10月实验一、MATLAB仿真基本操作综合实验一、实验目的:认识学习基于MATLAB仿真的M文件程序实现与Simulink仿真工具箱仿真模块调用实现的两种基本方法;通过实验学习掌握各类仿真仪器设备的参数设置和操作使用方法。

高频电子线路仿真实验的设计与实现

高频电子线路仿真实验的设计与实现

高频电子线路仿真实验的设计与实现随着科技的不断发展,高频电子领域的相关技术也在不断更新,因此,针对高频电子线路的仿真实验也变得越来越重要。

本文从设计与实现两个方面,介绍了一种高频电子线路仿真实验的实现方法。

设计在设计上,需要首先确定实验的研究对象和目标,以及实验的具体流程。

例如,我们可以以单片机为研究对象,通过仿真实验来探究单片机在高频电子领域的响应特性。

同时,我们还需要确定实验的具体流程,包括搭建电路、获取数据和分析数据等环节。

具体来说,设计高频电子线路仿真实验可以分为以下几个步骤:1.确定实验的目的和研究对象2.选择仿真软件和模型,比如SPICE、Agilent ADS等3.搭建电路,输入电源、放大器等模块,并设置相应参数4.获取数据,如波形图、频谱图等5.分析数据,比如输出结果、误差分析等实现在实现上,需要注意以下几个方面:1.仿真软件与硬件平台的匹配不同的仿真软件可能有不同的限制和参数设置。

因此,在选择仿真软件时,需要考虑其与实际硬件平台的兼容性,并在实际操作前做好必要的参数调整。

2.搭建电路在搭建电路时,需要确保连接的正确性和稳定性,保证实验能够顺利进行。

同时,也需要注重电路设计的合理性和性能优化,从而提高实验的准确性和稳定性。

3.数据分析与处理实验结束后,需要对获取的数据进行分析和处理,以了解电路的性能和优化策略。

同时,还需要注重错误分析和误差校正,提高实验数据的可靠性和准确性。

总结在实施高频电子线路仿真实验时,需要考虑实验设计和实现两个方面。

在设计方面,需要确定实验的目的和研究对象,并选择合适的仿真软件和模型;在实现方面,则需要注意软硬件之间的匹配、电路设计和数据处理等问题。

总的来说,实现高频电子线路仿真实验需要综合应用理论和实践知识,保证实验的准确和有效性。

高频仿真实验报告(实验二)

高频仿真实验报告(实验二)

高频仿真实验报告(实验二)吴佳芮电信六班1190一.电感三端式正弦波振荡器的仿真(一)题目要求图的仿真要求:1)至5)(二)电路原理电感三点式振荡器该振荡器又称为哈特莱振荡器。

类似于电容三点式振荡器的分析方式,也可以求得电感三点式振荡器的振幅起振条件和振荡频率,区别在于这里以自耦变压器代替了电容耦合。

(三)仿真电路(四)仿真结果、图形1.直流工作点2.示波器数字频率计=10nF时二.电容三端式正弦波振荡器的仿真(一).题目要求图的仿真要求:1)至4)(二)仿真电路(三)仿真结果、图形1.静态工作点2.虚拟示波器和数字频率计=20pF时C3=200pF时4.当R3阻值增大,振荡器的输出波形转变幅度大,频率不稳定,当R3阻值减小,振荡器的输出波形转变幅度小,频率稳定。

原因:反馈系数与回路电容有关,若是用改变回路电容的方式来改变振荡频率,必将改变反馈系数,从而影响起振。

三.克拉泼振荡器的仿真(一)题目要求图的仿真要求:1)至3)(二)仿真电路(三)仿真结果、图形1.直流工作点2.虚拟示波器和数字频率计3.接入C2a接入C2b四.西勒振荡器的仿真(一)题目要求图的仿真要求:1)至3)(二)仿真电路(三)仿真结果、图形1.虚拟示波器和数字频率计2.接C2接C33.C4=0时C4=33pF时(四)碰到的问题和解决方式测试克拉泼振荡器和西勒振荡器的波形和震荡频率时,开始一直得不到正确的数值,经检查后发现,书上的电路没有加隔直电容,在输出端增加隔直电容后出现正确数据。

电力电子MatLab仿真学习例子

电力电子MatLab仿真学习例子

前言MATLAB的简介MATLAB是一种适用于工程应用的各领域分析设计与复杂计算的科学计算软件,由美国Mathworks公司于1984年正式推出,1988年退出3.X(DOS)版本,19992年推出4.X(Windows)版本;19997年腿5.1(Windows)版本,2000年下半年,Mathworks公司推出了他们的最新产品MATLAB6.0(R12)试用版,并于2001年初推出了正式版。

随着版本的升级,内容不断扩充,功能更加强大。

近几年来,Mathworks公司将推出MATLAB语言运用于系统仿真和实时运行等方面,取得了很多成绩,更扩大了它的应用前景。

MATLAB已成为美国和其他发达国家大学教学和科学研究中最常见而且必不可少的工具。

MATLAB是“矩阵实验室”(Matrix Laboratory)的缩写,它是一种以矩阵运算为基础的交互式程序语言,着重针对科学计算、工程计算和绘图的需要。

在MATLAB中,每个变量代表一个矩阵,可以有n*m个元素,每个元素都被看做复数摸索有的运算都对矩阵和复数有效,输入算式立即可得结果,无需编译。

MATLAB强大而简易的做图功能,能根据输入数据自动确定坐标绘图,能自定义多种坐标系(极坐标系、对数坐标系等),讷讷感绘制三维坐标中的曲线和曲面,可设置不同的颜色、线形、视角等。

如果数据齐全,MATLAB通常只需要一条命令即可做图,功能丰富,可扩展性强。

MATLAB软件包括基本部分和专业扩展部分,基本部分包括矩阵的运算和各种变换、代数和超越方程的求解、数据处理和傅立叶变换及数值积分风,可以满足大学理工科学生的计算需要,扩展部分称为工具箱,它实际上使用MATLAB的基本语句编成的各种子程序集,用于解决某一方面的问题,或实现某一类的新算法。

现在已经有控制系统、信号处理、图象处理、系统辨识、模糊集合、神经元网络及小波分析等多种工具箱,并且向公式推倒、系统仿真和实时运行等领域发展。

高频电路实验及Multisim仿真.(DOC)

高频电路实验及Multisim仿真.(DOC)

1、根据电路中选频网络参数值,计算该电路的谐振频率3 P2、通过仿真,观察示波器中的输入输出波形,计算电压增益Vc 1 544 V I =356.708uV, V 。

=1.544mV, A v o4.325V I 0.357实验一高频小信号放大器单调谐高频小信号放大器VcR410k0 C2 «IFCL .luF图1.1高频小信号放大器W p1 CL________ 1 ________、200 1042 580 10^ 二 2.936rad /sA J 0。

输入波形:输出波形:3、利用软件中的波特图仪观察通频带,并计算矩形系数4、改变信号源的频率(信号源幅值不变),通过示波器或着万用表测量输出电压的有效值,计算出输出电压的振幅值,完成下列表,并汇出f~A v相应的图,根据图粗略计算出通频带5、在电路的输入端加入谐振频率的2、4、6次谐波,通过示波器观察图形,体会该电路的选频作用。

、下图为双调谐高频小信号放大器1、通过示波器观察输入输出波形,并计算出电压增益 A/0 输入端波形:1_Lvi.^12VClnhFR1 15knC2 IO11Fhill C4 它 luH 颈吓知D:-50%p 1uH -20pF; ;keyn| ■50%:-20pF \Key=CM%--:5 Q% :HF100pF2M2222AR2 LR3 G56.2kD >1liQ ^tODtiF ::::::::XSC1输出端波形:V1=19.512mV V0=200.912mV Av0=V0/V 仁10.197 2、利用软件中的波特图仪观察通频带,并计算矩形系数。

Tttrie CS>3O.aoiiix 3O.OO2m 3C.OO3m 30.004111 3O.OO5ITI实验二 高频功率放大器的 BJT_NPN_VIRTUAL)图2.1 高频功率放大器原理图1、集电极电流ic(1)设输入信号的振幅为0.7V ,利用瞬态分析对高频功率放大器进行分析 设置。

基于MATLAB的电路模型仿真应用实验指导书

基于MATLAB的电路模型仿真应用实验指导书

基于MATLAB的电路模型仿真应用实验报告系别:物理与信息技术系专业:电子信息科学与技术年级:09级姓名:学号:基于MATLAB的电路模型仿真应用实验指导书一、实验目的1、掌握采用M文件及SIMULINK对电路进行仿真的方法。

2、熟悉POWERSYSTEM BLOCKSET 模块集的调用、设置方法。

3.进一步熟悉M脚本文件编写的方法和技巧。

二、实验原理1、通过M文件实现电路仿真的一般仿真步骤为:(1)分析仿真对象——电路;(2)确定仿真思路——电路分析的方法;(2)建立仿真模型——方程;(3)根据模型编写出仿真程序;(3)运行后得到仿真结果。

2、采用SIMULINK仿真模型进行电路仿真可以根据电路图利用SIMULINK中已有的电子元件模型直接搭建仿真模块,仿真运行得到结果。

通过SIMULINK仿真模型实现仿真为仿真者带来不少便利,它免除了仿真者在使用M文件实现电路仿真时需要进行理论分析的繁重负担,能更快更直接地得到所需的最后仿真结果。

但当需要对仿真模型进行一定理论分析时,MATLAB的M 语言编程就有了更大用武之地。

它可以更令灵活地反映仿真者研究电路的思路,可更加灵活地将自身想法在仿真环境中加以验证,促进理论分析的发展。

因此,可根据自己的实际需要,进行相应的选择:采用SINMULIN模块搭建电路模型实现仿真非常直观高效,对迫切需要得到仿真结果的用户非常适用;当用户需要深刻理解及深入研究理论的用户来说,则选择编写M文件的方式进行仿真。

注意:本节实验的电路SINMULINK仿真原理,本节实验主要是应用提供的电路仿真元件搭建仿真模型,类似于传统仿真软件PSPICE的电路仿真方法。

采用SIMULINK进行电路仿真时元器件模型主要位于仿真模型窗口中SimPowerSystems节点下。

其中本次实验可能用到的模块如下:“DC Voltage Source” 模块:位于SimPowerSystems 节点下的“Electrical Sources”模块库中,代表一个理想的直流电压源;●“Series RLC Branch” 模块:位于SimPowerSystems 节点下的“Elements”模块库内,代表一条串联RLC 支路。

高频电路实验及Multisim仿真

高频电路实验及Multisim仿真

实验一 高频小信号放大器一、单调谐高频小信号放大器图 高频小信号放大器1、根据电路中选频网络参数值,计算该电路的谐振频率ωp ;s rad CLw p /936.2105801020011612=⨯⨯⨯==--2、通过仿真,观察示波器中的输入输出波形,计算电压增益A v0。

,708.356uV V I = ,544.1mV V O = ===357.0544.10I O v V V A 输入波形:输出波形:3、利用软件中的波特图仪观察通频带,并计算矩形系数。

4、改变信号源的频率(信号源幅值不变),通过示波器或着万用表测量输出电压的有效值,计算出输出电压的振幅值,完成下列表,并汇出f~A相应的图,v根据图粗略计算出通频带。

f0(KHz6575165265365465106516652265286534654065 )U0(mv)A V5、在电路的输入端加入谐振频率的2、4、6次谐波,通过示波器观察图形,体会该电路的选频作用。

二、下图为双调谐高频小信号放大器图双调谐高频小信号放大器1、通过示波器观察输入输出波形,并计算出电压增益Av0输入端波形:输出端波形:V1= V0= Av0=V0/V1=2、利用软件中的波特图仪观察通频带,并计算矩形系数。

实验二高频功率放大器一、高频功率放大器原理仿真,电路如图所示:(Q1选用元件Transistors中的 BJT_NPN_VIRTUAL)图高频功率放大器原理图1、集电极电流ic(1)设输入信号的振幅为,利用瞬态分析对高频功率放大器进行分析设置。

要设置起始时间与终止时间,和输出变量。

(2)将输入信号的振幅修改为1V,用同样的设置,观察i的波形。

c(提示:单击simulate菜单中中analyses选项下的transient analysis...命令,在弹出的对话框中设置。

在设置起始时间与终止时间不能过大,影响仿真速度。

例如设起始时间为,终止时间设置为。

在output variables 页中设置输出节点变量时选择vv3#branch即可)(3)根据原理图中的元件参数,计算负载中的选频网络的谐振频率ω0,以及该网络的品质因数Q L 。

高频仿真实验指导讲解

高频仿真实验指导讲解

实验一、Multism(EWB)电子设计与仿真软件的使用一、实验目的1.熟悉Multism(EWB)电子设计与仿真软件界面。

2.熟悉编辑电子线路原理图的方法与技巧。

3.熟悉选择仪器仪表的方法以及它们的使用方法与技巧。

4.熟悉仿真时如何根据分析结果改变电路参数,从而掌握一边仿真一边优化电路的技巧。

二、仪器设备1.硬件:微机2.软件: Multisim(EWB)三、仿真软件使用方法1.取元件元件由基本零件列中取出。

如电阻R 均可按取之,电容可按取之电感可按取之;电池及接地符号取自电源/信号源零件列,可按取之;电压表,电流表取自指示零件列,可按取之;示波器取自指示零件列,可按取之信号源取自指示零件列,可按取之在元件列中,有些按钮可以自定义值,如电阻2 .电路仿真选好元件和仪表,接好电路,即可开始仿真。

双击电源符号,在Voltage 中改变电源值,双击示波器,得到相关结果。

四、具体仿真步骤1.仿真电路待仿真电路为丙类高频谐振功率放大器,电路如图一所示。

电路采用选频网络作为负载回路,调节C可使回路谐振在输入信号频率上。

为了实现丙类工作,基极偏置电压VBB应设置在功率管的截止区内。

2.建立电路仿真系统打开仿真软件MULTISIM(EWB),在工作区中建立丙类高频谐振功率放大器电路仿真系统(RC为一个小电阻,为的是观察集电极电流波形),如图二所示。

3.调谐VCC=12V,RL=10Kohm,VBB=-1V,输入信号Vi的幅值Vb=10mv,频率f=10.7MHz时,调节电容C,使输出信号幅值最大,这时回路谐振在输入信号频率上。

图一4.测量放大器的性能指标(1)VCC=12V,RL=10KΩ,VBB=0V,输入信号幅值改变时输出功率和总效率的变化情况a) 直流工作点的确定利用多用表XMM1、XMM2、XMM3分别测量功率管的射极、集电极、基极电压,判断是否丙类工作。

b)输出功率和总效率的测量在输入端加入频率为10.7MHz的信号Vi,输出端接上示波器监视输出电压波形。

MATLAB电路仿真实验设计报告

MATLAB电路仿真实验设计报告

(封面)XXXXXXX学院MATLAB电路仿真实验设计报告题目:院(系):专业班级:学生姓名:指导老师:时间:年月日实验一:直流电路一、实验目的:1、加深对直流电路的节点电压法和网孔电流法的理解。

2、学习Matlab矩阵运算的方法。

二、预习要求:1.复习基尔霍夫KCL和KVL方程以及直流电路的相关内容。

2.熟悉前面有关矩阵运算的内容。

3.实验内容:三、实验内容:1.电阻电路的计算如图,已知:R1=2,R2=6,R3=12,R4=8,R5=12,R6=4,R7=2.(1)如Us=10V,求i3,u4,u7;(2)如U4=4V,求Us,i3,i7.解:(1)编写的程序如下:Z=[20 -12 0;12 -32 12;0 12 -18];V=[-10 0 0];I=inv(Z)*V;I3=I(a)-I(b);U4=-Ib*8;U7=-I(c)*2;fprintf('the curret I3 is %8.3f Amps \n',I3)fprintf('U4,U7: \n')实验运行结果:U4 =2.8571U7 =0.4762the curret I3 is -0.357 Amps(2)编写的程序如下:R1=2;R2=6;R3=12;R4=8;R5=12;R6=4;R7=2;U4=4;ib=U4/R4;%初始化矩阵A和向量CA=[1/(R1+R2+R3) -1 0;R3/(R1+R2+R3) 0 R5;1 -(R1+R2) -(R6+R7)];C=[ib U4+ib*(R3+R5) U4+ib*(R1+R2)]';%解答回路未知待求量B=inv(A)*C;%未知量的表达Us=B(1)i3=B(2)i7=B(3)i7=B(3)实验运行结果:Us =13.3333i3 =0.1667i7 = 0.66672.求解电路里的电压,例如V1,V2,···V5.解:编写的程序如下:Y=[-1/10 0 -1/5 11/20 0;0 0 0 0 1;0 -1/8 13/40 -1/5 0;-1 1 -2 2 0;-171/40 0 1/8 93/20 0];I=[6 24 5 0 0]';U=inv(Y)*I;fprintf('U(1) is %8.4f \n',U(1))fprintf('U(2) is %8.4f \n',U(2))fprintf('U(3) is %8.4f \n',U(3))fprintf('U(4) is %8.4f \n',U(4))fprintf('U(5) is %8.4f \n',U(5))实验运行结果:U(1) is 117.4792U(2) is 299.7708U(3) is 193.9375U(4) is 102.7917U(5) is 24.00003.如图,已知R1=R2=R3=4,R4=2,控制常数k1=0.5,k2=4,is=2,求i1和i2.解:编写的程序如下:R1=4;R2=4;R3=4;R4=2;K1=0.5;K2=4;is=2;A=[1/R1+1/R2-K1/R2 K1/R2-1/R2;-(1/R1+K2/R2*R3) 1/R2+1/R3+1/R4+K1/R4+K2/R2*R3];I=[is 0]';U=inv(A)*I;i1=(U(1)-U(2))/R2i2=U(2)/R4实验运行结果:Y=[1 -1;1 -5];I=[4;0];V=inv(Y)*I;I1=[V(1)-V(2)]/4;fprintf('I1 is %8.0f Amps \n',I1);fprintf('I2 is %8.0f Amps \n',I2);I1 is 1 AmpsI2 is 1 Amps实验二:直流电路(2)1、实验目的:1、加深对戴维南定律,等效变换的了解。

实验一 高频电路仿真实验

实验一  高频电路仿真实验

实验一高频电路仿真实验
一、实验目的
(1)学习Multisim 8仿真软件的使用方法。

(2)学习Multisim 8中虚拟仪器的使用方法。

(3)理解LC并联谐振回路的基本特征。

二、实验内容及要求
1.创建实验电路
在电路窗口中新建如图4.5.5所示的电路。

图4.5.1
2.谐振回路的调谐
估算谐振频率为f0=1.59Mhz
调节信号发生器,使谐振频率为f0=1.59Mhz,U spp=2V。

在表4.5.1记录下谐振频率f0和输出的峰-峰值U opp。

3.幅频特性的测量
f L0.1到f H0.1
4,幅频特性曲线和相频特性曲线的观测
从波特图仪上分析LC谐振回路的宽带和矩形系数
5.仿真实验小结
(1)根据小4.5.1做出幅频特性曲线,并用波特图仪观察到的幅频特性作比较。

(2)综述LC谐振回路在高频电子线路中的应用。

三、谐振回路的交流分析。

高频电子线路Matlab仿真实验

高频电子线路Matlab仿真实验

高频电子线路Matlab 仿真实验要求1. 仿真题目(1) 线性频谱搬移电路仿真根据线性频谱搬移原理,仿真普通调幅波。

基本要求:载波频率为8kHz ,调制信号频率为400Hz ,调幅度为0.3;画出调制信号、载波信号、已调信号波形,以及对应的频谱图。

扩展要求1:根据你的学号更改相应参数和代码完成仿真上述仿真;载波频率改为学号的后5位,调制信号改为学号后3位,调幅度设为最后1位/10。

(学号中为0的全部替换为1,例如学号2010101014,则载波为11114Hz ,调制信号频率为114,调幅度为0.4)。

扩展要求2:根据扩展要求1的条件,仿真设计相应滤波器,并获取DSB-SC 和SSB 的信号和频谱。

(2) 调频信号仿真根据调频原理,仿真调频波。

基本要求:载波频率为30KHz ,调制信号为1KHz ,调频灵敏度32310f k π=⨯⨯,仿真调制信号,瞬时角频率,瞬时相位偏移的波形。

扩展要求:调制信号改为1KHz 的方波,其它条件不变,完成上述仿真。

2. 说明(1) 仿真的基本要求每位同学都要完成,并且记入实验基本成绩。

(2) 扩展要求可以选择完成。

1.0>> ma = 0.3;>> omega_c = 2 * pi * 8000;>> omega = 2 * pi * 400;>> t = 0 : 5 / 400 / 1000 : 5 / 400;>> u_cm = 1;>> fc = cos(omega_c * t);>> fa = cos(omega * t);>> u_am = u_cm * (1 + fa).* fc;>> U_c =fft(fc,1024);>> U_o =fft(fa,1024);>> U_am =fft(u_am, 1024);>> figure(1);>> subplot(321);plot(t, fa, 'k');title('调制信号');grid;axis([0 2/400 -1.5 1.5]);>> subplot(323);plot(t, fc, 'k');title('高频载波');grid;axis([0 2/400 -1.5 1.5]);>> subplot(325);plot(t, u_am, 'k');title('已调信号');grid;axis([0 2/400 -3 3]);>> fs = 5000;>> w1 = (0:511)/512*(fs/2)/1000;>> subplot(322);plot(w1, abs([U_am(1:512)']),'k');title('调制信号频谱');grid;axis([0 0.7 0 500]); >> subplot(324);plot(w1, abs([U_c(1:512)']),'k');title('高频载波频谱');grid;axis([0 0.7 0 500]); >> subplot(326);plot(w1, abs([U_am(1:512)']),'k');title('已调信号频谱');grid;axis([0 0.7 0 500]);1.1>> ma = 0.8;>> omega_c = 2 * pi * 11138;>> omega = 2 * pi * 138;>> t = 0 : 5 / 400 / 1000 : 5 / 400;>> u_cm = 1;>> fc = cos(omega_c * t);>> fa = cos(omega * t);>> u_am = u_cm * (1 + fa).* fc;>> U_c =fft(fc,1024);>> U_o =fft(fa,1024);>> U_am =fft(u_am, 1024);>> figure(1);>> subplot(321);plot(t, fa, 'k');title('调制信号');grid;axis([0 2/400 -1.5 1.5]);>> subplot(323);plot(t, fc, 'k');title('高频载波');grid;axis([0 2/400 -1.5 1.5]);>> subplot(325);plot(t, u_am, 'k');title('已调信号');grid;axis([0 2/400 -3 3]);>> fs = 5000;>> w1 = (0:511)/512*(fs/2)/1000;>> subplot(322);plot(w1, abs([U_am(1:512)']),'k');title('调制信号频谱');grid;axis([0 0.7 0 500]); >> subplot(324);plot(w1, abs([U_c(1:512)']),'k');title('高频载波频谱');grid;axis([0 0.7 0 500]); >> subplot(326);plot(w1, abs([U_am(1:512)']),'k');title('已调信号频谱');grid;axis([0 0.7 0 500]);2>> kf = 2 * pi * 3000;>> omega_c = 2 * pi * 30000;>> omega = 2 * pi * 1000;>> t = -4*pi/omega : 1/30000/100 : 4*pi/omega;>> fx = cos(omega * t);>> dOmega = omega_c + kf * cos(omega * t);>> dFi = kf /(omega) * sin(omega * t);>> Ucm = 1;>> Ufm = Ucm * cos(omega_c * t + dFi);>> subplot(411);plot(t, fx, 'k');title('u_{\Omega}(t)');grid;axis([0 4*pi/omega -1.5 1.5]);>> subplot(412);plot(t, dOmega, 'k');title('\Omega(t)');grid;axis([0 4*pi/omega omega_c-1.1*kf omega_c+1.1*kf]);>> subplot(413);plot(t, dFi, 'k');title('\Delta\phi(t)');grid;axis([0 4*pi/omega -4 4]);>> subplot(414);plot(t, Ufm, 'k');title('u_{FM}(t)');grid;axis([0 4*pi/omega -1.5 1.5]);2.1kf = 2 * pi * 3000;omega_c = 2 * pi * 30000;omega = 2 * pi * 1000;t = -4*pi/omega : 1/30000/100 : 4*pi/omega;fx = square(omega * t);dOmega = omega_c + kf * fx;temp = sawtooth(omega * t, 0.5);dFi = kf /(omega) * temp;Ucm = 1;Ufm = Ucm * cos(omega_c * t + dFi);subplot(411);plot(t, fx, 'k');title('u_{\Omega}(t)');grid;axis([0 4*pi/omega -1.5 1.5]);subplot(412);plot(t, dOmega, 'k');title('\Omega(t)');grid;axis([0 4*pi/omega omega_c-1.1*kf omega_c+1.1*kf]);subplot(413);plot(t, dFi, 'k');title('\Delta\phi(t)');grid;axis([0 4*pi/omega -4 4]);subplot(414);plot(t, Ufm, 'k');title('u_{FM}(t)');grid;axis([04*pi/omega -1.5 1.5]);。

MATLAB仿真在通信与电子工程中的应用第4章 电子线路仿真试验

MATLAB仿真在通信与电子工程中的应用第4章 电子线路仿真试验

图4-12图4-12使能电路内部功能展示图 (左图对应图4-11中下面的功能块,右图对应图4-11中上面的 功能块)
第4章 电子线路仿真试验 经过门控功能块以后的信号与未处理的信号,在 Mux(合路器)中合并后,经Sum(加法器)并和
Constant(常数源)中的[02]矢量相加,在垂直方向
第4章 电子线路仿真试验
第4章 电子线路仿真试验
4.1 信号合并
4.2 微积分
4.3 触发器 4.4 分频器 4.5 使能开关 4.6 编程开关
4.7 移位寄存器
4.8 整流电路 4.9 驻波演示 4.10 超外差式接收机
第4章 电子线路仿真试验
4.1 信号合并
图4-1所示是信号合并的仿真系统框图,图中正弦 信号和锯齿波发生器产生的信号通过两个交替打开的 门控电路,在信号合并(叠加)模块Merge中合成为一 路信号,并在示波器中显示。在仿真系统中采用方波 信号发生器的输出作为门控信号。图4-2所示是信号合 并的仿真结果。
表4-8~表4-11分别给出了触发电路仿真系统中各个
模块的主要参数。
第4章 电子线路仿真试验 表4-8 SignalGenerator(信号发生器)的主要参数
第4章 电子线路仿真试验
表4-9 SineWave(正弦信号发生器)的主要参数
第4章 电子线路仿真试验
表4-10 Scope(示波器)的主要参数
Countdirection(计数方向)中Up(增加)表示加法计 数,Down(减少)表示减法计数器。当Countsize(计
数长度)设定为8bit、16bit、32bit时,分频比分别
为28、216、232。
第4章 电子线路仿真试验
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高频电子线路Matlab 仿真实验要求1. 仿真题目(1) 线性频谱搬移电路仿真根据线性频谱搬移原理,仿真普通调幅波。

基本要求:载波频率为8kHz ,调制信号频率为400Hz ,调幅度为0.3;画出调制信号、载波信号、已调信号波形,以及对应的频谱图。

扩展要求1:根据你的学号更改相应参数和代码完成仿真上述仿真;载波频率改为学号的后5位,调制信号改为学号后3位,调幅度设为最后1位/10。

(学号中为0的全部替换为1,例如学号2010101014,则载波为11114Hz ,调制信号频率为114,调幅度为0.4)。

扩展要求2:根据扩展要求1的条件,仿真设计相应滤波器,并获取DSB-SC 和SSB 的信号和频谱。

(2) 调频信号仿真根据调频原理,仿真调频波。

基本要求:载波频率为30KHz ,调制信号为1KHz ,调频灵敏度32310f k π=⨯⨯,仿真调制信号,瞬时角频率,瞬时相位偏移的波形。

扩展要求:调制信号改为1KHz 的方波,其它条件不变,完成上述仿真。

2. 说明(1) 仿真的基本要求每位同学都要完成,并且记入实验基本成绩。

(2) 扩展要求可以选择完成。

1.0>> ma = 0.3;>> omega_c = 2 * pi * 8000;>> omega = 2 * pi * 400;>> t = 0 : 5 / 400 / 1000 : 5 / 400;>> u_cm = 1;>> fc = cos(omega_c * t);>> fa = cos(omega * t);>> u_am = u_cm * (1 + fa).* fc;>> U_c =fft(fc,1024);>> U_o =fft(fa,1024);>> U_am =fft(u_am, 1024);>> figure(1);>> subplot(321);plot(t, fa, 'k');title('调制信号');grid;axis([0 2/400 -1.5 1.5]);>> subplot(323);plot(t, fc, 'k');title('高频载波');grid;axis([0 2/400 -1.5 1.5]);>> subplot(325);plot(t, u_am, 'k');title('已调信号');grid;axis([0 2/400 -3 3]);>> fs = 5000;>> w1 = (0:511)/512*(fs/2)/1000;>> subplot(322);plot(w1, abs([U_am(1:512)']),'k');title('调制信号频谱');grid;axis([0 0.7 0 500]); >> subplot(324);plot(w1, abs([U_c(1:512)']),'k');title('高频载波频谱');grid;axis([0 0.7 0 500]); >> subplot(326);plot(w1, abs([U_am(1:512)']),'k');title('已调信号频谱');grid;axis([0 0.7 0 500]);1.1>> ma = 0.8;>> omega_c = 2 * pi * 11138;>> omega = 2 * pi * 138;>> t = 0 : 5 / 400 / 1000 : 5 / 400;>> u_cm = 1;>> fc = cos(omega_c * t);>> fa = cos(omega * t);>> u_am = u_cm * (1 + fa).* fc;>> U_c =fft(fc,1024);>> U_o =fft(fa,1024);>> U_am =fft(u_am, 1024);>> figure(1);>> subplot(321);plot(t, fa, 'k');title('调制信号');grid;axis([0 2/400 -1.5 1.5]);>> subplot(323);plot(t, fc, 'k');title('高频载波');grid;axis([0 2/400 -1.5 1.5]);>> subplot(325);plot(t, u_am, 'k');title('已调信号');grid;axis([0 2/400 -3 3]);>> fs = 5000;>> w1 = (0:511)/512*(fs/2)/1000;>> subplot(322);plot(w1, abs([U_am(1:512)']),'k');title('调制信号频谱');grid;axis([0 0.7 0 500]); >> subplot(324);plot(w1, abs([U_c(1:512)']),'k');title('高频载波频谱');grid;axis([0 0.7 0 500]); >> subplot(326);plot(w1, abs([U_am(1:512)']),'k');title('已调信号频谱');grid;axis([0 0.7 0 500]);2>> kf = 2 * pi * 3000;>> omega_c = 2 * pi * 30000;>> omega = 2 * pi * 1000;>> t = -4*pi/omega : 1/30000/100 : 4*pi/omega;>> fx = cos(omega * t);>> dOmega = omega_c + kf * cos(omega * t);>> dFi = kf /(omega) * sin(omega * t);>> Ucm = 1;>> Ufm = Ucm * cos(omega_c * t + dFi);>> subplot(411);plot(t, fx, 'k');title('u_{\Omega}(t)');grid;axis([0 4*pi/omega -1.5 1.5]);>> subplot(412);plot(t, dOmega, 'k');title('\Omega(t)');grid;axis([0 4*pi/omega omega_c-1.1*kf omega_c+1.1*kf]);>> subplot(413);plot(t, dFi, 'k');title('\Delta\phi(t)');grid;axis([0 4*pi/omega -4 4]);>> subplot(414);plot(t, Ufm, 'k');title('u_{FM}(t)');grid;axis([0 4*pi/omega -1.5 1.5]);2.1kf = 2 * pi * 3000;omega_c = 2 * pi * 30000;omega = 2 * pi * 1000;t = -4*pi/omega : 1/30000/100 : 4*pi/omega;fx = square(omega * t);dOmega = omega_c + kf * fx;temp = sawtooth(omega * t, 0.5);dFi = kf /(omega) * temp;Ucm = 1;Ufm = Ucm * cos(omega_c * t + dFi);subplot(411);plot(t, fx, 'k');title('u_{\Omega}(t)');grid;axis([0 4*pi/omega -1.5 1.5]);subplot(412);plot(t, dOmega, 'k');title('\Omega(t)');grid;axis([0 4*pi/omega omega_c-1.1*kf omega_c+1.1*kf]);subplot(413);plot(t, dFi, 'k');title('\Delta\phi(t)');grid;axis([0 4*pi/omega -4 4]);subplot(414);plot(t, Ufm, 'k');title('u_{FM}(t)');grid;axis([04*pi/omega -1.5 1.5]);。

相关文档
最新文档