人教版数学七年级下册期中数学试卷及答案(2).doc

合集下载

人教版七年级下册数学期中考试试题(含答案)

人教版七年级下册数学期中考试试题(含答案)

人教版七年级下册数学期中考试试卷一、单选题1.下列各式中正确的是A2=±B 3=-C2=D =2.下列说法正确的是A .3是分数B .227是无理数C .π-3.14是有理数D .3是有理数3.如图,象棋盘上,若“将”位于点(3,﹣2),“车”位于点(﹣1,﹣2),则“马”位于A .(1,3)B .(5,3)C .(6,1)D .(8,2)4.如图,直线12l l //,直角三角板的直角顶点C 在直线1l 上,一锐角顶点B 在直线2l 上,若0135∠=,则2∠的度数是A .65B .55C .45D .355.如图,△ABC 沿BC 方向平移得到△DEF ,已知BC=7,EC=4,那么平移的距离为A .2B .3C .5D .76.下列说法正确的个数有()①同位角相等;②过一点有且只有一条直线与已知直线垂直;③过一点有且只有一条直线与已知直线平行;④不重合的三条直线a、b、c,若//a b,//b c,则//a c.A.1个B.2个C.3个D.4个7.点P为直线l外一点,点A,B在直线l上,若5cmPA=,7cmPB=,则点P到直线l的距离()A.等于5cm B.小于5cm C.不大于5cm D.等于6cm 8.如图,下列条件中,不能判定//AB CD的是()A.180∠+∠=︒B.BAC ACDD BAD∠=∠C.CAD ACB∠=∠∠=∠D.B DCE9.如图,这是小明学校周边环境的示意图,以学校为参照点,儿童公园,图书市场分别距离学校500m、700m,若以(南偏西30°,500)来表示儿童公园的位置,则图书市场的位置应表示为()A.(700,南偏东45︒)B.(南偏东45︒,700)C.(700,北偏东45︒)D.(北偏东45︒,700)10.在平面直角坐标系中,一个智能机器人接到的指令是:从原点O出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点1A,第二次移动到点2A……,第n次移动到点n A,A的坐标是()则点2021A .()1010,0B .()1010,1C .()1011,0D .()1011,1二、填空题11325-3-.(填“>”“<”或“=”)12.根据如表回答下列问题:x 23.123.223.323.423.523.623.723.823.92x 533.61538.24542.89547.56552.25556.96561.69566.44571.21满足23.623.7n <<的整数n 有________个.13.在平面直角坐标系的第四象限内有一点M ,到x 轴的距离为4,到y 轴的距离为5,则点M 的坐标为_____.14.如图,四边形ABCD 各个顶点的坐标分别为()2,8-、()11,6-、()14,0-、()0,0,则四边形ABCD 的面积是_______.15.如图所示,//AB CD ,EC CD ⊥.若28BEC ∠=︒,则ABE ∠的度数为_______.三、解答题16.(12-(2)求下列式子中x 的值:()229x -=17.根据要求,画图并回答问题:(1)如图,点P 在AOC ∠的边OA 上.①过点P 画OA 的垂线交OC 于B ;②过点P 作直线//PM OC ;(2)表示点О到直线PB 的距离的线段是__________;(3)直接写出所作图中与O ∠互余的角(可以表示出来的角).18.在平面直角坐标系xOy 中,点A 的坐标为()0,4,线段MN 的位置如图所示,其中点M 的坐标为()3,1--,点N 的坐标为()3,2-.(1)将线段MN 平移得到线段AB ,其中点M 的对应点为A ,点N 的对应点为B .点M 平移到点A 的过程可以是:先向__________平移______个单位长度,再向__________平移__________个单位长度;②点B 的坐标为___________.(2)在(1)的条件下,若点C 的坐标为()4,1,连接AC ,BC ,求ABC ∆的面积.19.如图,已知∠1=∠2,∠3=∠4,∠5=∠A ,试说明:BE ∥CF .完善下面的解答过程,并填写理由或数学式:解:∵∠3=∠4(已知)∴AE ∥()∴∠EDC=∠5()∵∠5=∠A (已知)∴∠EDC=()∴DC ∥AB ()∴∠5+∠ABC=180°()即∠5+∠2+∠3=180°∵∠1=∠2(已知)∴∠5+∠1+∠3=180°()即∠BCF+∠3=180°∴BE ∥CF ().20.如图,直线AB 、CD 相交于O 点,∠AOC 与∠AOD 的度数比为4:5,OE ⊥AB ,OF 平分∠DOB ,求∠EOF 的度数.21.(1)计算下列各式的值:=____________________;;通过计算上面各式的值,你发现:对于任意有理数a=__________.(2)利用所得结论解决问题:若有理数a、b在数轴上对应的点的位置如图所示,化简:a b-.22.如图1,AB∥CD,E是射线FD上的一点,∠ABC=140°,∠CDF=40°(1)试说明BC∥EF;(2)若∠BAE=110°,连接BD,如图2.若BD∥AE,则BD是否平分∠ABC,请说明理由.23.将一副三角板中的两个直角顶点C叠放在一起(如图1),其中30∠=︒,A∠=︒,4560B∠=∠=︒.D E(1)若112∠的度数;BCD∠=︒,求ACE(2)试猜想BCD∠的数量关系,请说明理由;∠与ACE(3)若三角板ABC保持不动,绕顶点C转动三角板DCE,在转动过程中,试探究BCD∠等于多少度时,//CD AB?请你直接写出答案.参考答案1.D 2.D 3.C 4.B 5.B 6.A 7.C 8.C 9.D 10.B 11.>【详解】解:因为-25>-27,3-,故答案为:>.12.5【详解】解:∵23.62=556.96,23.72=561.69,∴556.96561.69n <<∴满足23.623.7<<的整数n 有5个,故答案为:5.13.()5,4-【详解】解:∵点M 在第四象限,∴点M 的横坐标为正,纵坐标为负,∵点M 到x 轴的距离为4,到y 轴的距离为5,∴点M 的坐标为()5,4-,故答案为:()5,4-.14.80【详解】解:(1)如图所示:过点A 作AE ⊥x 轴于点E ,过点B 作BF ⊥x 轴于点F ,则四边形ABCD 的面积=12×(14-11)×6+12×(6+8)×(11-2)+12×2×8,=9+63+8,=80;故答案为:80.15.118︒【详解】解:过点E 作EG ∥AB ,则EG ∥CD ,由平行线的性质可得∠GEC =90°,所以∠GEB =90°-28°=62°,因为EG ∥AB ,所以∠ABE =180°-62°=118°.故答案为:118°.16.(1)63(2)1x =-或5【详解】解:(1()238127232---93232=--+63=-;(2)∵()229x -=,∴23x -=±,∴1x =-或5.【详解】解:(1)如图所示,(2)∵OP ⊥PB∴线段OP 的长为点O 到直线PB 的距离故答案为:OP .(3)∵OP ⊥PB ∴∠OPB =90゜∴∠O +∠PBO =90゜即与O ∠互余的角为PBO ∠∵PM ∥OC ∴∠BPM =∠PBO∴∠O +∠BPM =90゜即与O ∠互余的角为BPM∠∴与O ∠互余的角为PBO ∠,BPM ∠.18.(1)①右,3,上,5(或上,5,右,3均可以);②()6,3;(2)7【分析】(1)①由点M 及其对应点的A 的坐标可得平移的方向和距离,即可;②根据①可得点N 的对应点B 的坐标;(2)割补法求解可得.【详解】解:(1)①∵点A 的坐标为()0,4,点M 的坐标为()3,1--,∴点M 移到点A 的过程可以是:先向右平移3个单位长度,再向上平移5个单位长度;也可以是:先向上平移5个单位长度,再向右平移3个单位长度;②由①得:将N (3,-2)先向右平移3个单位长度,再向上平移5个单位长度所得的坐标是(6,3),∴点B 的坐标为(6,3);(2)如图,过点C 作CF y ⊥于点F ,过点B 作BE CF ⊥交FC 延长线于点E ,过点A 作AD y ⊥轴交EB 的延长线于点D ,则四边形AFED 是矩形,∴3AF =,4CF =,2CE =,2BE =,1BD =,6AD =,∴矩形AFED ABC Rt AFC Rt BCE Rt ABDS S S S S =--- 111634322617222=⨯-⨯⨯-⨯⨯-⨯⨯=.19.答案见解析.【详解】试题分析:根据平行线的判定与性质,灵活判断同位角、内错角、同旁内角,逐步可求解.试题解析:解:∵3=4∠∠(已知)∴AE ∥BC (内错角相等,两直线平行)∴5EDC ∠=∠(两直线平行,内错角相等)∵5=A ∠∠(已知)∴EDC ∠=A ∠(等量代换)∴DC ∥AB (同位角相等,两直线平行)∴05180ABC ∠+∠=(两直线平行,同旁内角互补)即0523180∠+∠+∠=∵1=2∠∠(已知)∴0513180∠+∠+∠=(等量代换)即03180BCF ∠+∠=∴BE ∥CF (同旁内角互补,两直线平行).20.50°.【详解】解:设∠AOC =4x ,则∠AOD =5x ,∵∠AOC +∠AOD =180°,∴4x +5x =180°,解得x =20°,∴∠AOC =4x =80°,∴∠BOD =∠AOC =80°,∵OE ⊥AB ,∴∠BOE =90°,∴∠DOE =∠BOE ﹣∠BOD =10°,又∵OF 平分∠DOB ,∴∠DOF =12∠BOD =40°,∴∠EOF =∠EOD +∠DOF =10°+40°=50°.21.(1)4;13;0;3;5;1;a 或()()00a a a a ⎧≥⎪⎨-<⎪⎩;(2)a b-+【详解】(1)4;13;0;3;5;1;a 或()()00a a a a ⎧≥⎪⎨-<⎪⎩(2)解:由数轴知:21a -<<-,01b <<,∴0a b +<,0a b -<,a b -()()a b a b a b =-++--a b =-+.22.(1)见解析;(2)见解析.【详解】(1)证明:∵AB ∥CD ,∴∠ABC+∠BCD =180°,∵∠ABC =140°,∴∠BCD =40°,∵∠CDF =40°,∴∠BCD =∠CDF ,∴BC ∥EF .(2)解:结论:BD 平分∠ABC .理由:∵AE ∥BD ,∴∠BAE+∠ABD =180°,∵∠BAE =110°,∴∠ABD =70°,∵∠ABC =140°,∴∠ABD =∠DBC =70°,∴BD 平分∠ABC .23.(1)68°;(2)180BCD ACE ∠+∠=︒,理由见解析;(3)当120BCD ∠=︒或60︒时,//CD AB .【详解】解:(1)∵90BCA ECD ∠=∠=︒,112BCD ∠=︒∴1129022DCA BCD BCA ∠=∠-∠=︒-︒=︒.∴902268ACE ECD DCA ∠=∠-∠=-︒=︒.(2)180BCD ACE ∠+∠=︒,理由如下:∵90BCD ACB ACD ACD ∠=∠+∠=︒+∠,90ACE DCE ACD ACD ∠=∠-∠=︒-∠,∴180BCD ACE ∠+∠=︒.(3)当120BCD ∠=︒或60︒时,//CD AB .如图2,根据同旁内角互补,两直线平行,当180B BCD ∠+∠=︒时,//CD AB ,此时180BCD ∠=︒-18060120B ∠=︒-︒=︒;如图3,根据内错角相等,两直线平行,当60B BCD ∠=∠=︒时,//CD AB .。

人教版七年级下册数学期中考试试题及答案

人教版七年级下册数学期中考试试题及答案

4 27.如图,表示的点在数轴上表示时,所在哪两个字母之间()人教版七年级下册数学期中考试试卷2020 年 4 月一、单选题1. 下列各图中,∠1 与∠2 是对顶角的是()2.的平方根是( )A .2B .C .±2D .±3. 在下列所给出坐标的点中,在第二象限的是A .(2,3)B .(﹣2,3)C .(﹣2,﹣3)D .(2,﹣3)4. 在实数7 π,, 3 -8 , 0,-1.414, ,,0.1010010001 中,无理数有()A .2 个222B .3 个C .4 个D .5 个5. 如图所示,点E 在 AC 的延长线上,下列条件中能判断 AB / /CD ( )A .∠3 = ∠4 C . ∠D = ∠DCE 6.下列命题是假命题的是( )A .对顶角相等C .平行于同一条直线的两直线平行B .∠1 = ∠2 D . ∠D + ∠ACD = 180︒B .两直线平行,同旁内角相等D .同位角相等,两直线平行A .C 与 DB .A 与 BC .A 与 CD .B 与 C8. 点P 位于x 轴下方,y 轴左侧,距离x 轴 4 个单位长度,距离y 轴 2 个单位长度,那么点 P 的坐标是( )A .(4,2)B .(-2,-4)C .(-4,-2)D .(2,4)2536 A . B .C .D .9.在平面直角坐标系中,线段CF 是由线段AB 平移得到的;点A(-1,4)的对应点为C (4,1);则点B(a,b)的对应点F的坐标为()A.(a+3,b+5)B.(a+5,b+3)C.(a-5,b+3)D.(a+5,b-3)10.如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠1=35°,则∠2 的度数()A.10°B.25°C.30°D.35°二、填空题7 x11.若整数x 满足|x|≤3,则使为整数的x的值是(只需填一个).12.如图,直线AB,CD,EF 交于点O,OG 平分∠BOF,且CD⊥EF,∠AOE=70°,则∠DOG=.13.把9 的平方根和立方根按从小到大的顺序排列为.14.如图,在平面直角坐标系中,一动点从原点O 出发,按向上,向右,向下,向右的方向不断地移动,每移动一个单位,得到点A(0,1),A(1,1),A(1,0),A(2,0),…1 2 3 4(n 为自然数)的坐标为(用n 表示)那么点A4n+1三、解答题15.计算:100 (1) +(2) - 2 -16. 求下列各式中x 的值:(1)2x 2=4;(2)64x 3 + 27=017. 如图,直线a ∥b ,点B 在直线上b 上,且 AB ⊥BC ,∠1=55°,求∠2 的度数.18. 完成下面的证明:如图,点E 在直线 DF 上,点B 在直线 AC 上,若∠AGB=∠EHF ,∠C=∠D . 求证:∠A=∠F.证明:∵∠AGB=∠EHF ∠AGB=(对顶角相等)∴∠EHF=∠DGF ∴DB ∥EC∴∠=∠DBA又∵∠C=∠D3 -83 (-2)27 2∴∠DBA=∠D ∴DF ∥ ∴∠A=∠F.19. 已知 5a+2 的立方根是 3,3a+b-l 的算术平方根是 4,c 是 整数部分.(1) 求 a ,b ,c 的值; (2) 求 a+b+c 的平方根.20. 如图,直线AB 是某天然气公司的主输气管道,点C 、D 是在 AB 异侧的两个小区,现在主输气管道上寻找支管道连接点,向两个小区铺设管道道. 有以下两个方案:方案一:只取一个连接点 P ,使得像两个小区铺设的支管道总长度最短,在图中标出点 P 的 位置,保留画图痕迹;方案二:取两个连接点M 和 N ,使得点M 到 C 小区铺设的支管道最短,使得点N 到 D 小区铺设的管道最短. 短在途中标出M 、N 的位置,保留画图痕迹;设方案一中铺设的支管道总长度为L 1 为L ,方案二中铺设的支管道总长度为为L 2,则L 1与L 2 的大小关系为: L 1 L (填“> ”、“< ”或)理由是 .21. 如图,这是某市部分简图,为了确定各建筑物的位置:(1)请你以火车站为原点建立平面直角坐标系. (2)写出市场的坐标为;超市的坐标为 .1(3 )请将体育场为A、宾馆为C 和火车站为B 看作三点用线段连起来,得ABC ,然后将此三角形向下平移4 个单位长度,画出平移后的 A B C,并求出其面积.1 1 122.如图,长方形OABC 中,O 为直角坐标系的原点,A、C 两点的坐标分别为(6,0),(0,10),点B在第一象限内.(1)写出点B 的坐标,并求长方形OABC 的周长;(2)若有过点C 的直线CD 把长方形OABC 的周长分成3:5 两部分,D 为直线CD 与长方形的边的交点,求点D 的坐标.23.如图1,已知射线CB∥OA,∠C=∠OAB,(1)求证:AB∥OC ;(2)如图2,E、F 在CB 上,且满足∠FOB=∠AOB,OE 平分∠COF.①当∠C=100°时,求∠EOB 的度数.②若平行移动AB,那么∠OBC:∠OFC 的值是否随之发生变化?若变化,找出变化规律;若不变,求出这个比值.4 4 2 4 2 4参考答案1.C 【解析】依据对角的定义进行判断即可.【详解】解:∵互为对顶角的两个角的两边互为反向延长线,∴A 中∠1 和∠2 是邻补角,C 中的∠1 和∠2 是对顶角. 故选:C . 【点睛】本题主要考查的是邻补角、对顶角的定义,熟练掌握相关概念是解题的关键. 2.D 【解析】先化简 ,然后再根据平方根的定义求解即可.【详解】∵ =2,2 的平方根是± ,∴ 的平方根是± .故选 D . 【点睛】本题考查了平方根的定义以及算术平方根,先把 正确化简是解题的关键,本题比较容易出错. 3.B 【解析】根据第二象限内点的坐标符号(-,+)进行判断即可. 4.A 【解析】6 共 解:无理数有: 5,π 22 个.故选A .点睛:本题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π, ,0.8080080008…(每两个8 之间依次多 1 个 0)等形式.5.B 【解析】判断两直线平行,主要利用同位角相等,同旁内角互补,内错角相等【详解】A 项,∠3 与∠4 是直线 BD 与 AC 的内错角,所以不满足.B 项,∠1 与∠2 是直线 AB 与CD 的内错角,所以∠1=∠2,可以得到 AB//CD ,选 B 项.C 项∠D 与∠DCE 是直线 BD 与 AE 的内错角,所以不满足.D 项,∠D 与∠ACD 是直线 BD 与 AE 的同旁内角,所以不满足. 【点睛】本题主要考查平行线的判定法则,同时也考查学生对于同位角,内错角,同旁内角的掌握情况. 6.B 【解析】解:A .对顶角相等是真命题,故本选项正确,不符合题意; B .两直线平行,同旁内角互补,故本选项错误,符合题意; C .平行于同一条直线的两条直线平行是真命题,故本选项正确,不符合题意; D .同位角相等,两直线平行是真命题,故本选项正确,不符合题意. 故选B . 7.A 【解析】考点:估算无理数的大小;实数与数轴. 8.B 【解析】解:∵点 P 位于 x 轴下方,y 轴左侧,∴点 P 在第三象限;试题分析:由 6.25<7<9 可得 2.5< 和 D 两个字母之间.故答案选A . <3,所以表示 的点在数轴上表示时,所在C∵距离y 轴2 个单位长度,∴点P 的横坐标为﹣2;∵距离x 轴4 个单位长度,∴点P 的纵坐标为﹣4;∴点P的坐标为(﹣2,﹣4).故选B.9.D【解析】解:平移中,对应点的对应坐标的差相等,设F(x,y).根据题意得:4﹣(﹣1)=x﹣a;1﹣4=y﹣b,解得:x=a+5,y=b-3;故F的坐标为(a+5,b-3).故选D.点睛:本题考查了点坐标的平移变换,关键是要懂得左右平移点的纵坐标不变,而上下平移时点的横坐标不变.平移中,对应点的对应坐标的差相等.10.B【解析】【分析】延长AB 交CF 于E,求出∠ABC,根据三角形外角性质求出∠AEC,根据平行线性质得出∠2=∠AEC,代入求出即可.【详解】如图,延长AB 交CF 于E,∵∠ACB=90°,∠A=30°,∴∠ABC=60°,∵∠1=35°,∴∠AEC=∠ABC﹣∠1=25°,∵GH∥EF,∴∠2=∠AEC=25°,故选B.【点睛】考查了三角形的内角和定理,三角形外角性质,平行线性质的应用,解题时注意:两直线平行,内错角相等.7 - x 3 9 11.﹣2(答案不唯一) 【解析】试题分析:∵|x|≤3,∴﹣3≤x≤3.∵x 为整数,∴x=﹣3,﹣2,﹣1,0,1,2,3.分别代入 可知,只有 x=﹣2,3 时 为整数.∴使 为整数的x 的值是﹣2 或 3(填写一个即可).12.55°. 【解析】【分析】首先根据对顶角相等可得∠BOF=70°,再根据角平分线的性质可得∠GOF=35°,然后再算出 ∠DOF=90°,进而可以根据角的和差关系算出∠DOG 的度数. 【详解】∵∠AOE=70°,∴∠BOF=70°, ∵OG 平分∠BOF , ∴∠GOF=35°, ∵CD ⊥EF , ∴∠DOF=90°,∴∠DOG=90°﹣35°=55°, 故答案是:55°. 【点睛】考查了角的计算,关键是掌握对顶角相等,垂直定义,角平分线的性质.13.﹣3< <3.【解析】【分析】先分别得到 3 的平方根和立方根,然后比较大小. 【详解】∵9 的平方根为﹣3,3,7 - x 7 - x3 93 93 933325 9139 的立方根为,∴把9 的平方根和立方根按从小到大的顺序排列为﹣3<<3.故答案是:﹣3<<3.【点睛】考查了平方根、立方根、有理数大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数越小.14.(2n,1)【解析】试题分析:根据图形分别求出n=1、2、3 时对应的点A4n+1的坐标,然后根据变化规律写出即可:由图可知,n=1时,4×1+1=5,点A(2,1),n=2时,4×2+1=9,点A(4,1),n=3时,4×3+1=13,点A(6,1),∴点A4n+1(2n,1).15.(1)8;(2)-.【解析】【分析】(1)直接利用算术平方根以及立方根的性质分别化简得出答案;(2)直接利用绝对值以及二次根式的性质化简得出答案.【详解】解:(1)原式=10+(﹣2)=8;(2)原式=2﹣﹣2=﹣.【点睛】考查了实数运算,解题关键是正确化简各数.316.(1)x=±;(2)x=-42 【解析】试题分析:(1)先求出x 2 的值,再根据平方根的定义解答; (2) 先求出 x 3 的值,再根据立方根的定义解答.试题解析:(1)解:方程两边都除以2 得:x 2=2,∴x =± ; 27 3(2)移项、方程两边都除以 64 得:x 3= - 64 17.35°【解析】解:,∴x = - 4.∵AB ⊥BC ,∴∠ABC=90°,∴∠1+∠3=90°,∵∠1=55°,∴∠3=35°,∵a ∥b ,∴∠2=∠3=35°.18.∠DGF 同位角相等,两直线平行 C 两直线平行,同位角相等 AC 内错角相等,两直线平行两直线平行,内错角相等【解析】【分析】根据对顶角相等推知∠EHF=∠DGF ,从而证得两直线 DB//EC ;然后由平行线的性质得到 ∠DBA=∠D ,即可根据平行线的判定定理,推知两直线 DF//AC ;最后由平行线的性质, 证得∠A=∠F .【详解】∠AGB = ∠EHF ,13 ∠ AGB = ∠ DGF( 对顶角相等) ,∴∠EHF = ∠DGF ,∴DB / /EC( 同位角相等,两直线平行) ,∴∠ C = ∠ DBA( 两直线平行,同位角相等) ,又 ∠C = ∠D ,∴∠ DBA = ∠ D ,∴DF / /AC( 内错角相等,两直线平行) ,∴∠ A = ∠ F( 两直线平行,内错角相等) .故答案为∠ DGF ;同位角相等,两直线平行;C ;两直线平行,同位角相等;AC ;内错角相等,两直线平行;两直线平行,内错角相等.【点睛】本题考查了平行线的判定与性质.解答此题的关键是注意平行线的性质和判定定理的综合运用.19.(1)a=5,b=2,c=3.(2)3a-b+c 的平方根是±4.【解析】试题分析:利用立方根的意义、算术平方根的意义、无理数的估算方法,求出 a 、b 、c 的值,代入代数式求出值后,进一步求得平方根即可.试题解析:解:(1)∵5a +2 的立方根是3,3a +b ﹣1 的算术平方根是 4,∴5a +2=27,3a +b﹣1=16,∴a =5,b =2.∵c 是 的整数部分,∴c =3;(2)当 a =5,b =2,c =3 时,3a ﹣b +c =16,3a ﹣b +c 的平方根是±4.点睛:本题考查了立方根的意义、算术平方根的意义、无理数的估算方法、平方根的意义、代数式求值等知识点,读懂题意,掌握解答顺序,正确计算即可. 20.(1)答案见解析;(2)>;垂线段最短.【解析】【分析】根据题目要求直接连接 CD ,以及分别过 C ,D 向 AB 最垂线即可,利用直角三角形中斜边大于直角边进而得出答案即可.【详解】1 2解:如图所示:∵在 Rt △ CMP 和 Rt △ PND 中,CP >CM ,PD >DN ,∴CP +PD >CM +DN ,∴L >L .理由是垂线段最短故答案为:>;垂线段最短.21.(1)图形见解析;(2)超市(2,﹣3);(3)三角形A′B′C′的面积是 7. 【解析】分析:(1)以火车站为原点建立直角坐标系即可;(2) 根据平面直角坐标系写出点的坐标即可;(3) 根据题目要求画出三角形,利用矩形面积减去四周多余三角形的面积即可. 详解:(1)如图所示:(2)市场坐标(4,3),超市坐标(2,-3);(3)如图所示:1 1 1 △ A 1B 1C 1 的面积=3×6-2 ×2×2- 2 ×4×3- 2×6×1=7. 点睛:此题主要考查了作图,平移,坐标确定位置,以及求三角形的面积,关键是正确画出图形.22.(1)点 B 的坐标为(6,10),长方形 OABC 的周长为 32;(2)点D 的坐标为(2,0) 【解析】试题分析:(1)由A 、C 的坐标得到 OA ,OC 的长.由长方形的性质得到 BC ,AB 的长,从而得到点 B 的坐标和长方形OABC 的周长;(2)由CD 把长方形OABC 的周长分为3:5 两部分,得到被分成的两部分的长分别为12 和20.然后分两种情况讨论:①当点 D 在AB 上时,②当点 D 在OA 上时.试题解析:解:(1)∵A(6,0),C(0,10),∴OA=6,OC=10.∵四边形OABC是长方形,∴BC=OA=6,AB=OC=10,∴点B的坐标为(6,10).∵OC=10,OA=6,∴长方形OABC 的周长为:2×(6+10)=32.(2)∵CD 把长方形OABC 的周长分为3:5 两部分,∴被分成的两部分的长分别为12 和20.①当点D在AB上时,如图,AD=20-10-6=4,所以点D的坐标为(6,4).②当点D在OA上时,如图,OD=12-10=2,所以点D的坐标为(2,0).23.(1)见解析;(2)①35°,②∠OBC:∠OFC的值不发生变化,∠OBC:∠OFC=1:2【解析】【分析】(1)由平行线的性质得到∠C+∠COA=180°,再由∠C=∠OAB,得到∠OAB+∠COA=180°,根据同旁内角互补,两直线平行即可得到结论;(2)①先求出∠COA 的度数,由∠FOB=∠AOB,OE 平分∠COF,即可得到结论;②∠OBC:∠OFC 的值不发生变化.由平行线的性质可得∠OBC=∠BOA,∠OFC=∠FOA.由FOB=∠AOB,得到∠OFC=2∠OBC,从而得出结论.【详解】解:(1)∵CB∥OA,∴∠C+∠COA=180°.∵∠C=∠OAB,∴∠OAB+∠COA=180°,∴AB∥OC;(2)①∠COA=180°-∠C=70°.∵∠FOB=∠AOB,OE 平分∠COF,∴∠FOB+∠EOF=(∠AOF+∠COF)=∠COA=35°;②∠OBC:∠OFC 的值不发生变化.∵CB∥OA,∴∠OBC=∠BOA,∠OFC=∠FOA.∵∠FOB=∠AOB,∴∠FOA=2∠BOA,∴∠OFC=2∠OBC,∴∠OBC:∠OFC=1:2.【点睛】本题考查了平行线的性质,角平分线的定义,熟记各性质并准确识图理清图中各角度之间的关系是解题的关键.。

人教版数学七年级下册《期中考试试卷》(含答案)

人教版数学七年级下册《期中考试试卷》(含答案)
A. (﹣1,﹣3)B. (3,1)C. (1,3)D. (﹣3,﹣1)
【答案】D
【解析】
分析】
直接利用已知点坐标建立平面直角坐标系,进而得出答案.
【详解】解:如图所示:邮局位置的点的坐标是(﹣3,﹣1).
故选:D.
【点睛】本题主要考查了坐标确定位置,正确建立平面直角坐标系是解题关键.
8.如图,直线CE∥DF,∠CAB=125°,∠ABD=85°,则∠ECA+∠BDF=( )
(1)求点A、B、C、D的坐标;
(2)在x轴上是否存在点P,使三角形PBC的面积等于平行四边形ABDC的面积?若存在,求出点P的坐标;若不存在,请说明理由;
(3)如图(2),点E在y轴的负半轴上,且∠BAE=∠DCB.求证:AE∥BC.
答案与解析
一.选择题(共8小题)
1.下列实数中,属于无理数的是( )
【解析】
【分析】
命题由题设和结论两部分组成,通常写成“如果…那么…”的形式.“如果”后面接题设,“那么”后面接结论.
【详解】命题可以改写为:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.
【点睛】任何一个命题都可以写成“如果…那么…”的形式.“如果”后面接题设,“那么”后面接结论.在改写过程中,不能简单地把题设部分、结论部分分别塞在“如果”、“那么”后面,要适当增减词语,保证句子通顺而不改变原意.
A.30°B.35°C.36°D.40°
【答案】A
【解析】
【分析】
首先由直线 ,根据两直线平行,同旁内角互补,求得 ,然后由 , ,利用三角形外角的性质,求得答案.
【详解】如图,∵CE∥DF,
∴∠CEA+∠F=180°,
∵∠CAB=125°,∠ABD=85°,

人教版七年级数学下学期期中测试卷含答案

人教版七年级数学下学期期中测试卷含答案

七年级数学下学期期中测试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1、两条直线的位置关系有()A、相交、垂直B、相交、平行C、垂直、平行D、相交、垂直、平行2、如图所示,是一个“七”字形,与∠1是同位角的是()A、∠2B、∠3C、∠4D、∠53、经过一点A画已知直线a的平行线,能画()A、0条B、1条C、2条D、不能确定4、如图4,下列条件中,不能判断直线a//b的是()A、∠1=∠3B、∠2=∠3C、∠4=∠5D、∠2+∠4=180°5、下列图形中有稳定性的是()A.正方形 B.长方形 C.直角三角形 D.平行四边形6、一个正数x的平方根是2a-3与5-a,则x的值是()。

A.64B.36C.81D.497、如图,已知:∠1=∠2,∠3=∠4,∠A=80°,则∠BOC等于()A、95°B、120°C、130°D、无法确定8、若a*=1.1062,b*=0.947是经过舍入后作为的近似值,问a*+b*有几位有效数字?()A、4B、5C、6D、79、下列说法正确的是()A、符号相反的数互为相反数B、符号相反绝对值相等的数互为相反数C、绝对值相等的数互为相反数D、符号相反的数互为倒数10、在平面直角坐标系中,已知点A(-4,0)、B(0,2),现将线段AB向右平移,使A 与坐标原点0重合,则B平移后的坐标是()。

A.(0,-2)B.(4,2)C.(4,4)D.(2,4)二、填空题(本大题共7小题,每小题4分,共28分)11、用科学记数法表示9349000(保留2个有效数字)为________________.12、如图1直线AB,CD,EF相交与点O,图中∠AOE的对顶角是_________,∠COF的补角是__________。

13、如图2,要把池中的水引到D处,可过C点引CD⊥AB于D,然后沿CD开渠,可使所开渠道最短,试说明设计的依据:______________________________14、多项式4x²+4mx+36是一个完全平方式,则m=_____________.15、如图,AC平分∠BAD,∠DAC=∠DCA,填空:因为AC平分∠BAD,所以∠DAC= _______,又因为∠DAC=∠DCA,所以∠DCA= _______,所以AB∥_______。

人教版数学七年级下册《期中检测试卷》含答案解析

人教版数学七年级下册《期中检测试卷》含答案解析

人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题1.9的算术平方根是( )A. 3B. 3C. ±3D. ±3 2.-2,4,2,3.14,327-,5π,这6个数中,无理数共有( ) A. 4个 B. 3个C. 2个D. 1个 3.平面直角坐标中,点M(-2,3)在( )A. 第一象限B. 第二象限C. 第三象限 D. 第四象限 4.如图所示的车标,可以看作由“基本图案”经过平移得到的是( )A. B. C. D. 5.如图,直线a ,b 相交于点O ,若∠1等于45°,则∠2等于( )A. 45°B. 135°C. 115°D. 55°6.如图,将三角板的直角顶点放在直尺的一边上,若∠1=65°,则∠2的度数为( )A. 10°B. 15°C. 25°D. 35°7.课间操时,小华、小军和小刚的位置如图所示,如果小华的位置用(0,0)表示,小军的位置用(2,1)表示,那么小刚的位置可以表示为( )A. (5,4)B. (4,5)C. (3,4)D. (4,3)8.将点A(1,﹣1)向上平移2个单位后,再向左平移3个单位,得到点B ,则点B 的坐标为( )A. (2,1)B. (﹣2,﹣1)C. (﹣2,1)D. (2,﹣1)9.如图,直线a ,b 被直线c 所截,下列说法正确的是( )A. 当∠1=∠2时,a ∥bB. 当a ∥b 时,∠1=∠2C. 当a ∥b 时,∠1+∠2=90°D. 当a ∥b 时,∠1+∠2=180°10.如图,已知直线AB CD ,相交于点,OE AB ⊥,28EOC ∠=︒,则∠BOD 的度数为( )A. 28°B. 52°C. 62°D. 118°11.若|x |=3,y 是4的算术平方根,且|y ﹣x |=x ﹣y ,则x +y 的值是( )A. 5B. ﹣5C. 1D. ﹣112.下列命题中正确的有( )①相等的角是对顶角; ②在同一平面内,若a ∥b ,b ∥c ,则a ∥c ;③同旁内角互补; ④互为邻补角的两角的角平分线互相垂直.A. 4个B. 1个C. 2个D. 3个13.已知A (a ,0)和B 点(0,10)两点,且AB 与坐标轴围成的三角形的面积等于20,则a 的值为( )A. 2B. 4C. 0或4D. 4或﹣414.如图,在平面直角坐标系中A (3,0),B (0,4),AB =5,P 是线段AB 上一个动点,则OP 的最小值是()A. 245B. 125C. 4D. 3 二、填空题 15.将“对顶角相等”改写为“如果...那么...”的形式,可写为__________.16.已知x ,y 为实数,且3x -+(y +2)2=0,则y x =___.17.实数,在数轴上的位置如图所示,请化简:222()a b a b ---18.点P (2a ,2﹣3a )是第二象限内的一个点,且点P 到两坐标轴的距离之和为12,则点P 的坐标是__.三、解答题19.计算:(1)239118()162+--;(2)122332----+-. 20.解方程:(1)2(1)9x -=;(2)32(1)54x -+=.21.已知4a-11的平方根是,3a+b-1的算木平方根是1,c 是20的整数部分.(1)求a ,b ,c 的値;(2)求2a-b+c 的立方根.22.完成下列推理说明:如图,已知∠B +∠BCD =180°,∠B =∠D .求证:∠E =∠DFE .证明:∵∠B +∠BCD =180°( ),∴AB ∥CD ( )∴∠B = ( )又∵∠B=∠D( 已知),∴∠=∠( 等量代换)∴AD∥BE( )∴∠E=∠DFE( )23.如图,已知∠ABC=∠ADC,BF,DE分别平分∠ABC与∠ADC,∠1=∠3,试说明:AB∥DC24.如图,AD∥BC,∠EAD=∠C.(1)试判断AE与CD的位置关系,并说明理由;(2)若∠FEC=∠BAE,∠EFC=50°,求∠B的度数.25.在正方形网格中,每个小正方形的边长都为1个单位长度,△ABC的三个顶点的位置如图所示,现将△ABC 平移后得△DEF,使点A的对应点为点D,点B的对应点为点E.(1)画出△DEF;(2)连接AD、BE,则线段AD与BE的关系是;(3)求△DEF的面积.26.如图,长方形OABC中,O为平面直角坐标系的原点,A点的坐标为(4,0),C点的坐标为(0,6),点B在第一象限内,点P从原点O出发,以每秒2个单位长度的速度沿着O﹣A﹣B﹣C﹣O的路线移动(即沿长方形移动一周).(1)写出B点的坐标;(2)当点P移动3秒时,求三角形OAP的面积;(3)在移动过程中,当点P到x轴距离为4个单位长度时,求点P移动时间.答案与解析一、选择题1.9的算术平方根是( )A. 3B.C. ±3 [答案]A[解析][分析]根据算术平方根定义即可得到结果.[详解]解:∵32=9∴9的算术平方根是3,故选:A.[点睛]本题考查了算术平方根的定义,掌握算术平方根的定义是解题的关键.2.在-2,3.14,5π,这6个数中,无理数共有( ) A. 4个B. 3个C. 2个D. 1个 [答案]C[解析]-22=, 3.14, 3=-是有理数;,5π是无理数; 故选C.点睛:本题考查了无理数的识别,无限不循环小数叫无理数,无理数通常有以下三种形式,①开方开不尽的数,等;②圆周率π;③构造的无限不循环小数,如2.01001000100001⋅⋅⋅ (0的个数一次多一个). 3.在平面直角坐标中,点M(-2,3)在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 [答案]B[解析]∵−2<0,3>0,∴(−2,3)在第二象限,故选B.4.如图所示的车标,可以看作由“基本图案”经过平移得到的是( )A. B. C. D.[答案]B[解析][分析]根据平移的概念:在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移,即可选出答案.[详解]解:根据平移概念,观察图形可知图案B通过平移后可以得到.故选B.[点睛]本题主要考查了图形的平移,在平面内,把一个图形整体沿某一的方向移动,学生混淆图形的平移与旋转或翻转,而误选.5.如图,直线a,b相交于点O,若∠1等于45°,则∠2等于()A 45° B. 135° C. 115° D. 55°[答案]B[解析][分析]根据互为邻补角的两个角的和等于180°列式计算即可得解.[详解]解:由图可知,∠1与∠2互为邻补角,∴∠2=180°-∠1=180°-45°=135°.故选:B.[点睛]本题考查了邻补角的定义,是基础题,熟记概念并准确识图是解题的关键6.如图,将三角板的直角顶点放在直尺的一边上,若∠1=65°,则∠2的度数为()A. 10°B. 15°C. 25°D. 35°[答案]C[解析][分析]由两直线平行,同位角相等,可求得∠3的度数,然后求得∠2的度数.[详解]如图,∵∠1=65°∴∠3=∠1=65°,∴∠2=90°−65°=25°.故选:C.[点睛]考查平行线的性质,掌握两直线平行,同位角相等是解题的关键.7.课间操时,小华、小军和小刚的位置如图所示,如果小华的位置用(0,0)表示,小军的位置用(2,1)表示,那么小刚的位置可以表示为( )A. (5,4)B. (4,5)C. (3,4)D. (4,3)[答案]D[解析][分析]根据已知两点的坐标确定平面直角坐标系,然后确定其它各点的坐标即可解答.[详解]如果小华的位置用(0,0)表示,小军的位置用(2,1)表示,如图所示就是以小华为原点的平面直角坐标系的第一象限,所以小刚的位置为(4,3).故选D.[点睛]本题利用平面直角坐标系表示点的位置,关键是由已知条件正确确定坐标轴的位置.8.将点A(1,﹣1)向上平移2个单位后,再向左平移3个单位,得到点B,则点B的坐标为( )A. (2,1)B. (﹣2,﹣1)C. (﹣2,1)D. (2,﹣1)[答案]C[解析]分析:让A点的横坐标减3,纵坐标加2即为点B的坐标.详解:由题中平移规律可知:点B的横坐标为1-3=-2;纵坐标为-1+2=1,∴点B的坐标是(-2,1).故选C点睛:本题考查了坐标与图形变化-平移,平移变换是中考的常考点,平移中点的变化规律是:左右移动改变点的横坐标,左减右加;上下移动改变点的纵坐标,下减上加.9.如图,直线a,b被直线c所截,下列说法正确的是( )A. 当∠1=∠2时,a∥bB. 当a∥b时,∠1=∠2C. 当a∥b时,∠1+∠2=90°D. 当a∥b时,∠1+∠2=180°[答案]D[解析][分析]根据平行线的性质,两直线平行,同旁内角互补以及对顶角的性质即可判断.[详解]解:∠1=∠2时,∠2=∠3,同旁内角相等,a∥b不一定成立,选项A错误;当a ∥b 时,∠2+∠3=180°,而∠1=∠3,则∠1+∠2=180°,故D 正确.故选D .[点睛]此题考查平行线的性质,解题关键在于掌握其性质定义.10.如图,已知直线AB CD ,相交于点,OE AB ⊥,28EOC ∠=︒,则∠BOD 的度数为( )A. 28°B. 52°C. 62°D. 118°[答案]D[解析] 分析:利用互余和互补的概念,可求得∠BOD 的大小.详解:因为OE AB ⊥,28EOC ∠=︒,所以∠COB =62°,所以∠BOD=180°-62°=118°. 故选D.点睛:辨析互余互补:(1)相加等于90°的两角称作互为余角.(2)相加等于180°的两个角互为补角.11.若|x |=3,y 是4的算术平方根,且|y ﹣x |=x ﹣y ,则x +y 的值是( )A. 5B. ﹣5C. 1D. ﹣1 [答案]A[解析]分析]由|y ﹣x |=x ﹣y 知x ≥y ,再根据|x |=3,y 是4的算术平方根得出x 、y 的值,代入计算可得[详解]解:因为|y ﹣x |≥0,所以x ﹣y ≥0,即x ≥y .由|x |=3,y 是4的算术平方根可知x =3、y =2.则x+y=5,故选A.[点睛]此题考查算术平方根,解题关键在于掌握运算法则.12.下列命题中正确的有()①相等的角是对顶角;②在同一平面内,若a∥b,b∥c,则a∥c;③同旁内角互补;④互为邻补角的两角的角平分线互相垂直.A. 4个B. 1个C. 2个D. 3个[答案]C[解析][分析]根据对顶角的性质、平行公理、平行线的判定定理和垂直的定义对各个选项进行判断即可.[详解]解:相等的角不一定是对顶角,①错误;在同一平面内,若a∥b,b∥c,则a∥c,②正确;同旁内角不一定互补,③错误;互为邻补角的两角的角平分线互相垂直,④正确,故选:C.[点睛]本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.13.已知A(a,0)和B点(0,10)两点,且AB与坐标轴围成的三角形的面积等于20,则a的值为( )A. 2B. 4C. 0或4D. 4或﹣4[答案]D[解析][分析]根据点A、B的坐标可找出OA、OB的长度,再根据三角形的面积公式即可得出关于a的含绝对值符号的一元一次方程,解之即可得出结论.[详解]∵A(a,0),B(0,10),∴OA=|a|,OB=10,∴S△AOB=12OA•OB=12•10|a|=20,解得:a=±4.故选D.[点睛]本题考查了坐标与图形性质,根据三角形的面积公式列出关于a的含绝对值符号的一元一次方程是解题的关键.14.如图,在平面直角坐标系中A(3,0),B(0,4),AB=5,P是线段AB上的一个动点,则OP的最小值是( )A. 245B.125C. 4D. 3[答案]B[解析][分析]利用等面积法求得OP的最小值.[详解]解:当OP⊥AB时,OP的值最小.∵A(3,0),B(0,4),∴OB=4,OA=3.∴12OA•OB=12AB•OP.∴OP=341255 OA OBAB⨯==.故选B.[点睛]此题考查坐标与图形,解题关键在于利用三角形面积公式进行计算.二、填空题15.将“对顶角相等”改写为“如果...那么...”的形式,可写为__________.[答案]如果两个角互为对顶角,那么这两个角相等[解析][分析]根据命题的形式解答即可.[详解]将“对顶角相等”改写为“如果...那么...”的形式,可写为如果两个角互为对顶角,那么这两个角相等,故答案为:如果两个角互为对顶角,那么这两个角相等.[点睛]此题考查命题的形式,可写成用关联词“如果...那么...”连接的形式,准确确定命题中的题设和结论是解题的关键.16.已知x ,y 为实数,且3x -+(y +2)2=0,则y x =___.[答案]-8[解析][分析]直接利用非负数的性质得出x ,y 的值,进而得出答案.[详解]解:∵3x -+(y+2)2=0,∴x-3=0,y+2=0,解得x=3,y=-2,故y x =(-2)3=-8.故答案为:-8.[点睛]此题主要考查了非负数的性质,根据几个非负数的和等于0,则每一个式子都等于0进行列式是解题的关键.17.实数,在数轴上的位置如图所示,请化简:222()a b a b -[答案]0[解析][分析]先判断a ,b ,a-b 的符号,再根据二次根式的性质化简即可.[详解]解:由数轴可知0a <,0b >,∴0a b -<,222()a b a b -||||||a b a b =---()0a b a b =--+-=.[点睛]本题考查了利用数轴比较实数的大小,二次根式的性质与化简,熟练掌握二次根式的性质是解答本题的关键.18.点P (2a ,2﹣3a )是第二象限内的一个点,且点P 到两坐标轴的距离之和为12,则点P 的坐标是__.[答案](-4,8)[解析][分析]根据第二象限内点的横坐标是负数,纵坐标是正数列出方程求出a ,即可得解.[详解]解:∵点P (2a ,2-3a )是第二象限内的一个点,且P 到两坐标轴的距离之和为12,∴-2a+2-3a=12,解得a=-2,∴2a=-4,2-3a=8,∴点P 的坐标为(-4,8).故答案为:(-4,8).[点睛]本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).三、解答题19.计算:(121()2;(2)1-+[答案](1)-1;(2[解析][分析](1)首先化简二次根式,再计算加减即可;(2)首先根据绝对值的性质计算,再计算加减即可.[详解]解:(121()2+124- 51=244-- =-1(2)1-[点睛]此题主要考查了二次根式的加减和绝对值的性质,关键是掌握二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变,对于含有绝对值的运算先去掉绝对值符号再运算.20.解方程:(1)2(1)9x -=;(2)32(1)54x -+=.[答案](1)4x =或2x =-;(2)4x =-[解析][分析](1)根据平方形式开方运算,即可解答;(2)根据等式的性质,可化成立方的形式,根据开方运算,可得答案.[详解]解:(1)2(1)9x -=则:13x -=±当13x -=时,4x =当13x -=-时,2x =-综上所述,4x =或2x =-(2)32(1)54x -+= 3(1)-27x +=13x +=-4x =-[点睛]本题考查了平方根和立方根,能够先化成平方和立方的形式,再进行开方运算是解题的关键.21.已知4a-11的平方根是,3a+b-1的算木平方根是1,c 的整数部分.(1)求a ,b ,c 的値;(2)求2a-b+c 的立方根.[答案](1)a=5,b=-13,c=4;(2)3.[解析][分析](1)根据题意可得:4a-1l=9,3a+b-1=1,c=4,求解即可;(2)代入数值,根据立方根的性质求解.[详解]解:(1)∵4a-1l 的平方根是.∴4a-1l=9∴a=5∵3a+b-1的算木平方根是1∴3a+b-1=l∴b=-13;∵c 是20的整数部分,4<20<5∴c=4(2)333225(13)4273a b c -+=⨯--+==[点睛]本题考查平方根、算术平方根和立方根的运算,熟练掌握运算法则是解题关键.22.完成下列推理说明: 如图,已知∠B +∠BCD =180°,∠B =∠D .求证:∠E =∠DFE .证明:∵∠B +∠BCD =180°( ),∴AB ∥CD ( ) ∴∠B = ( )又∵∠B =∠D ( 已知 ),∴ ∠ = ∠ ( 等量代换 )∴AD ∥BE ( )∴∠E =∠DFE ( )[答案]详见解析[解析][分析]根据平行线的判定得出AB ∥CD ,根据平行线的性质得出∠B=∠DCE ,求出∠DCE=∠D ,根据平行线的判定得出AD ∥BE ,根据平行线的性质得出即可.[详解]证明:∵∠B+∠BCD=180°( 已知 ),∴AB ∥CD (同旁内角互补,两直线平行),∴∠B= ∠DCE (两直线平行,同位角相等 ),又∵∠B=∠D( 已知),∴∠ DCE = ∠ D ( 等量代换),∴AD∥BE(内错角相等,两直线平行),∴∠E=∠DFE(两直线平行,内错角相等),故答案为同旁内角互补,两直线平行,∠DCE,两直线平行,同位角相等;∴∠DCE;∠D;内错角相等,两直线平行;两直线平行,内错角相等.[点睛]本题考查了平行线的性质和判定的应用,能灵活运用定理进行推理是解此题的关键,注意:平行线的性质是:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然. 23.如图,已知∠ABC=∠ADC,BF,DE分别平分∠ABC与∠ADC,∠1=∠3,试说明:AB∥DC.[答案]证明见解析[解析]试题分析:先根据角平分线定义可证明∠1=∠2,进而利用平行线的判定方法得出答案.试题解析:证明:∵BF平分∠ABC,∴∠1=∠FBC.∵DE平分∠ADC,∴∠2=∠ADE.∵∠ABC=∠ADC,∴∠1+∠FBC=∠2+∠ADE,∴2∠1=2∠2,即∠1=∠2.又∵∠1=∠3,∴∠2=∠3,∴AB∥DC.24.如图,AD∥BC,∠EAD=∠C.(1)试判断AE与CD的位置关系,并说明理由;(2)若∠FEC=∠BAE,∠EFC=50°,求∠B的度数.[答案](1)AE∥CD,理由见解析;(2)50°[解析][分析](1)根据平行线的性质得出∠D+∠C=180°,求出∠EAD+∠D=180°,根据平行线的判定得出即可;(2)根据平行线的性质和三角形的外角性质求出即可.[详解]解:(1)AE∥CD,理由是:∵AD∥BC,∴∠D+∠C=180°,∵∠EAD=∠C,∴∠EAD+∠D=180°,∴AE∥CD;(2)∵AE∥CD,∠EFC=50°,∴∠AEF=∠EFC=50°,∵∠AEC=∠B+∠BAE=∠AEF+∠FEC,又∵∠FEC=∠BAE,∴∠B=∠AEF=50°.[点睛]此题考查平行线的判定与性质,三角形的外角性质,解题关键在于掌握判定定理.25.在正方形网格中,每个小正方形的边长都为1个单位长度,△ABC的三个顶点的位置如图所示,现将△ABC 平移后得△DEF,使点A的对应点为点D,点B的对应点为点E.(1)画出△DEF;(2)连接AD、BE,则线段AD与BE的关系是;(3)求△DEF的面积.[答案]⑴如图所示见解析;⑵平行且相等;⑶7 2[解析][分析](1)将点B、C均向右平移4格、向上平移1格,再顺次连接可得;(2)根据平移的性质可得;(3)割补法求解即可.[详解](1)如图所示,△DEF即为所求;(2)由图可知,线段AD与BE的关系是:平行且相等,(3)S△DEF=3×3-12×2×3-12×1×2-12×1×3=72.[点睛]本题考查了利用平移变换作图,平移的性质,熟练掌握网格结构,准确找出对应点的位置是解题的关键.26.如图,长方形OABC中,O为平面直角坐标系的原点,A点的坐标为(4,0),C点的坐标为(0,6),点B在第一象限内,点P从原点O出发,以每秒2个单位长度的速度沿着O﹣A﹣B﹣C﹣O的路线移动(即沿长方形移动一周).(1)写出B点的坐标;(2)当点P移动3秒时,求三角形OAP的面积;(3)在移动过程中,当点P到x轴距离为4个单位长度时,求点P移动的时间.[答案](1)(4,6);(2)4;(3)4秒或8秒[解析][分析](1)根据长方形的性质,易得B得坐标;(2)根据题意,P的运动速度与移动的时间,进而结合三角形的面积公式可得答案;(3)根据题意,当点P到x轴距离为5个单位长度时,有P在AB与OC上两种情况,分别求解可得答案.[详解]解:(1)根据长方形的性质,可得AB与y轴平行,BC与x轴平行;故B的坐标为(4,6);(2)∵A(4,0)、C(0,6),∴OA=4,OC=6.∵3×2=6>4,∴点P在线段AB上.∴P A=2.∴S△OAP=12OA×P A=12×4×2=4.(3)∵OC=AB=6>4,∴点P在AB上或OC上.当点P在AB上时,P A=4,此时点P移动路程为4+4=8,时间为12×8=4.当点P在OC上时,OP=4,此时点P移动路程为2(4+6)﹣4=16,时间为12×16=8.∴点P移动的时间为4秒或8秒.[点睛]此题考查长方形的性质,坐标与图形变化-平移,解题关键在于掌握平移的性质.。

人教版七年级数学下册期中达标测试卷含答案 (2)

人教版七年级数学下册期中达标测试卷含答案 (2)

人教版七年级数学下册期中达标测试卷一、选择题(每题3分,共30分)1.4的算术平方根是()A.±2 B. 2 C.±2 D.2 2.如图所示的四个图形中,∠1和∠2是同位角的是()A.②③B.①②③C.①②④D.①④3.下列实数:3,0,12,-2,0.35,其中最小的实数是()A.3 B.0 C.- 2 D.0.354.下列命题中,假命题是()A.若A(a,b)在x轴上,则B(b,a)在y轴上B.如果直线a,b,c满足a∥b,b∥c,那么a∥cC.两直线平行,同旁内角互补D.相等的两个角是对顶角5.若x轴上的点P到y轴的距离为3,则点P的坐标为()A.(3,0) B.(0,3)C.(3,0)或(-3,0) D.(0,3)或(0,-3)6.如图,小聪把一块含有60°角的直角三角板的两个顶点放在直尺的对边上.若∠1=25°,则∠2的度数是()A.25°B.30°C.35°D.60°(第6题)(第7题)(第8题) (第9题)7.如图是围棋棋盘的一部分,将它放置在某个平面直角坐标系中,若白棋②的坐标为(-3,-1),白棋④的坐标为(-2,-5),则黑棋①的坐标为()A.(-1,-4) B.(1,-4)C.(3,1) D.(-3,-1)8.如图,数轴上有A,B,C,D四点,根据图中各点的位置,所表示的数与5-11最接近的点是()A.A B.B C.C D.D9.如图,将长方形纸片ABCD沿BD折叠,得到三角形BC′D,C′D与AB交于点E.若∠1=35°,则∠2的度数为()A.20°B.30°C.35°D.55°10.如图,下列命题:①若∠1=∠2,则∠D=∠4;②若∠C=∠D,则∠4=∠C;③若∠A=∠F,则∠1=∠2;④若∠1=∠2,∠C=∠D,则∠A=∠F;⑤若∠C=∠D,∠A=∠F,则∠1=∠2.其中正确的个数为()A.1 B.2 C.3 D.4二、填空题(每题3分,共24分)11.在实数:8,0,364,1.010 010 001,4.2·1·,π,247中,无理数有________个.12.将点A(-2,-3)向右平移3个单位长度得到点B,则点B在第________象限.13.命题“平行于同一条直线的两条直线互相平行”的题设是_______________________________________________________,结论是______________________.14.若(2a+3)2+b-2=0,则a b=________.15.如图,直线a∥b,AC⊥AB,∠1=60°,则∠2的度数是________.(第15题)(第16题)(第18题) 16.如图所示,把图①中的圆A经过平移得到圆O(如图②),如果图①中圆A上一点P的坐标为(m,n),那么平移后在图②中的对应点P′的坐标为________________.17.用“*”表示一种新运算:对于任意正实数a,b,都有a*b=b+1.例如8*9=9+1=4,那么15*196=________,m*(m*16)=________.18.将杨辉三角中的每一个数都换成分数,得到一个如图所示的分数三角形,称为莱布尼茨三角形.若用有序实数对(m,n)表示第m行,从左到右第n个数,如(4,3)表示分数112,则(9,2)表示的分数是________.三、解答题(19~21题每题8分,22~24题每题10分,25题12分,共66分) 19.计算:(1)16+38-(-5)2;(2)(-2)3+|1-2|×(-1)2 021-3125.20.如图,已知EF∥AD,∠1=∠2.求证:∠DGA+∠BAC=180°.请将下列证明过程填写完整:证明:∵EF∥AD(已知),∴∠2=________(________________________________).又∵∠1=∠2(已知),∴∠1=∠3(________________).∴AB∥________(________________________________).∴∠DGA+∠BAC=180°(________________________________).21.如图,直线AB与CD相交于点O,EO⊥CD于点O,OF平分∠AOD,且∠BOE=50°.求∠COF的度数.22.如图,方格纸中每个小方格都是边长为1个单位长度的正方形,已知三角形ABC的顶点都在格点上,在建立平面直角坐标系后,A的坐标为(2,-4),B 的坐标为(5,-4),C的坐标为(4,-1).(1)画出三角形ABC;(2)求三角形ABC的面积;(3)若把三角形ABC向上平移2个单位长度,再向左平移4个单位长度得到三角形A′B′C′,在图中画出三角形A′B′C′,并写出B′的坐标.23.如图,在四边形ABCD中,∠D=100°,CA平分∠BCD,且∠ACB=40°,∠BAC=70°.(1)AD与BC平行吗?试写出推理过程.(2)若点E在线段BA的延长线上,求∠DAC和∠EAD的度数.24.观察等式:3+32=332,2+23=4×23,5+54=554,….(1)请用含n(n≥3,且n为整数)的式子表示出上述等式的规律:________________;(2)按上述规律,若10+ab=10a9,则a+b=________;(3)仿照上面内容,另编一个等式,验证你在(1)中得到的规律.25.如图,在长方形OABC中,O为平面直角坐标系的原点,点A的坐标为(a,0),点C的坐标为(0,b),且a,b满足a-4+|b-6|=0,点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O→C→B→A→O的路线移动.(1)a=________,b=________,点B的坐标为__________;(2)当点P移动4 s时,请指出点P的位置,并求出点P的坐标;(3)在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.答案一、1.D 2.C 3.C 4.D 5.C 6.C7.B8.D9.A点拨:∵∠1=35°,CD∥AB,∠C=90°,∴∠ABD=35°,∠DBC=55°.由折叠可得∠DBC′=∠DBC=55°,∴∠2=∠DBC′-∠DBA=55°-35°=20°. 10.C点拨:①因为∠1=∠3,所以若∠1=∠2,则∠3=∠2,则DB∥EC,则∠D=∠4,故①正确;②由∠C=∠D,并不能得到DF∥AC,则不能得到∠4=∠C,故②错误;③若∠A=∠F,则DF∥AC,并不能得到DB∥EC,则不能得到∠1=∠2,故③错误;④因为∠1=∠3,所以若∠1=∠2,则∠3=∠2,所以DB∥EC,所以∠4=∠D,又∠C=∠D,则∠4=∠C,所以DF∥AC,所以∠A=∠F,故④正确;⑤若∠A=∠F,则DF∥AC,所以∠4=∠C,又∠C=∠D,则∠4=∠D,所以DB∥EC,所以∠3=∠2,又∠1=∠3,则∠1=∠2,故⑤正确.所以正确的有3个.故选C.二、11.212.四13.两条直线平行于同一条直线;这两条直线平行14.3215.30°16.(m+2,n-1)17.15; 5+118.172点拨:观察题图可得以下规律:每行每个分数的分子都是1;每行第一个分数的分母为行数,第n(n为大于1的整数)行的第二个分数的分母为n(n-1).故(9,2)表示的分数为19×8=172.三、19.解:(1)原式=4+2-5=1;(2)原式=-8+(2-1)×(-1)-5=-8+1-2-5=-12- 2.20.∠3;两直线平行,同位角相等;等量代换;DG;内错角相等,两直线平行;两直线平行,同旁内角互补21.解:∵EO⊥CD,∴∠DOE=90°.∴∠BOD =∠DOE -∠BOE =90°-50°=40°.∴∠AOC =∠BOD =40°,∠AOD =140°.又∵OF 平分∠AOD ,∴∠AOF =12∠AOD =70°.∴∠COF =∠AOC +∠AOF =40°+70°=110°.22.解:(1)如图所示.(2)S 三角形ABC =12×3×3=92.(3)如图,B ′(1,-2).23.解:(1)AD ∥BC .推理过程如下:∵CA 平分∠BCD ,∠ACB =40°,∴∠BCD =2∠ACB =80°.∵∠D =100°,∴∠D +∠BCD =180°.∴AD ∥BC .(2)由(1)知AD ∥BC ,∴∠DAC =∠ACB =40°.∵∠BAC =70°,∴∠DAB =∠DAC +∠BAC =40°+70°=110°.∴∠EAD =180°-∠DAB =180°-110°=70°.24.解:(1)n +n n -1=n n n -1(2)10+9(3)11+1110=111110.(答案不唯一)25.解:(1)4;6;(4,6)(2)∵点P从原点出发,以每秒2个单位长度的速度沿着O→C→B→A→O的路线移动,OC=6,∴当点P移动4 s时,点P在线段CB上,离点C的距离为4×2-6=2.∴点P的坐标是(2,6).(3)由题意可得,在移动过程中,当点P到x轴的距离为5个单位长度时,存在两种情况:第一种情况,当点P在线段OC上时,点P移动的时间是5÷2=2.5(s);第二种情况,当点P在线段BA上时,点P移动的时间是(6+4+1)÷2=5.5(s).故在移动过程中,当点P到x轴的距离为5个单位长度时,点P移动的时间是2.5 s或5.5 s.。

2024年最新人教版初一数学(下册)期中考卷及答案(各版本)

2024年最新人教版初一数学(下册)期中考卷及答案(各版本)

2024年最新人教版初一数学(下册)期中考卷一、选择题(每题3分,共30分)1. 下列哪个数是正数?A. 3B. 0C. 1/2D. 1/22. 一个数的绝对值是它本身的数是?A. 正数B. 负数C. 零D. 正数和零3. 下列哪个数是分数?A. 0.5B. 3/4C. 0.333D. 14. 下列哪个数是无理数?A. 3B. 2/3C. √2D. 0.255. 下列哪个数是整数?A. 1/2B. 0.5C. 3D. 0.3336. 下列哪个数是正整数?A. 0B. 1C. 1D. 1/27. 下列哪个数是负整数?A. 0B. 1C. 1D. 1/28. 下列哪个数是奇数?A. 0B. 2C. 3D. 49. 下列哪个数是偶数?A. 1B. 2C. 3D. 410. 下列哪个数是质数?A. 0B. 1C. 2D. 4二、填空题(每题4分,共20分)1. 5的绝对值是______。

2. 2的相反数是______。

3. 3/4的倒数是______。

4. 5的平方是______。

5. 2的立方根是______。

三、解答题(每题10分,共50分)1. 解方程:2x 3 = 7。

2. 解不等式:3x + 4 > 11。

3. 解方程组:x + y = 5, x y = 1。

4. 解不等式组:x > 2, x < 5。

5. 计算下列表达式的值:(3 + 4) × (5 2) ÷ 2。

四、应用题(每题15分,共30分)1. 小明买了5本书,每本书的价格是8元。

他付了50元,应该找回多少元?2. 一个长方形的长是6厘米,宽是4厘米。

求这个长方形的面积。

五、附加题(每题10分,共20分)1. 证明:对于任意实数a,a的平方总是非负的。

2. 解析几何:在平面直角坐标系中,点A(2, 3),点B(5, 1)。

求线段AB的长度。

选择题答案:1. C2. D3. B4. C5. C6. C7. C8. C9. B10. C填空题答案:1. 52. 23. 4/34. 255. 1.2599210498948732(约等于1.26)解答题答案:1. x = 52. x > 33. x = 3, y = 24. 2 < x < 55. 13应用题答案:1. 找回的金额为10元。

最新人教版七年级下学期数学期中考试试卷(含参考答案)

最新人教版七年级下学期数学期中考试试卷(含参考答案)

最新人教版七年级下学期数学期中考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、下列数是无理数的有()A.B.﹣1C.0D.2、下列命题中是真命题的是()A.对顶角相等B.两点之间,直线最短C.同位角相等D.平面内有且只有一条直线与已知直线平行3、已知点P(﹣2,5),Q(n,5)且PQ=4,则n的值为()A.2B.2或4C.2或﹣6D.﹣64、星城长沙是湖南省省会城市,也是长江中游地区重要的中心城市,以下能准确表示长沙地理位置的是()A.在北京的西南方B.东经112.59°,北纬28.12°C.距离北京1478千米处D.东经112.59°5、如图,点E在BA的延长线上,能证明BE∥CD是()A.∠EAD=∠B B.∠BAD=∠ACDC.∠EAD=∠ACD D.∠EAC+∠ACD=180°6、已知方程2x m+1+3y2n﹣1=7是二元一次方程,则m,n的值分别为()A.﹣1,0B.﹣1,1C.0,1D.1,17、若是方程组的解,则a值为()A.1B.2C.3D.48、已知方程,用含x的代数式表示y,正确的是()A.B.C.D.9、明代数学家程大位著《算法统宗》一书中,记载了这样一道数学题:“八万三千短竹竿,将来要把笔头安,管三套五为期定,问君多少能完成?”用现代的话说就是:有83000根短竹,每根短竹可制成毛笔的笔管3个或笔套5个,怎样安排笔管和笔套的短竹的数量,使制成的1个笔管与1个笔套正好配套?设用于制作笔管的短竹数为x根,用于制作笔套的短竹数为y根,则可列方程组为()A.B.C.D.10、如图,在数轴上的对应点分别为C,B,点C是AB的中点,则点A表示的数是()A.﹣B.3﹣C.﹣3D.6﹣二、填空题(每小题3分,满分18分)11、在实数0,﹣1,﹣,π中,最小的是.12、在平面直角坐标系中,点(5,﹣6)到x轴的距离为.13、如图,将含30°角的直角三角板的直角顶点放在直尺的一边上,已知∠1=35°,则∠2的度数是.14、满足方程组的x,y互为相反数,则m=.15、如图,将长方形ABCD折叠,折痕为EF,BC的对应边B′C′与CD交于点M,若∠AEB′=30o,则∠DFE的度数为.16、已知关于x,y的二元一次方程组的解为,则关于x,y的方程组的解为.最新人教版七年级下学期数学期中考试试卷(答卷)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算:.18、已知某正数的两个不同的平方根是3a﹣14和a+2;b是的整数部分;(1)求2a+b的值;(2)求3a﹣2b的平方根.19、解关于x,y的方程组时,甲正确地解出,乙因为把c抄错了,误解为,求a,b,c的值.20、若关于x,y的方程组与方程组的解相同.(1)求两个方程组的相同解;(2)求(3a﹣b)2022的值.21、如图,D,E分别在△ABC的边AB,AC上,F在线段CD上,且∠1+∠2=180°,DE∥BC.(1)求证:∠3=∠B;(2)若DE平分∠ADC,∠2=3∠B,求∠1的度数.22、某校七年级400名学生到郊外参加植树活动,已知用2辆小客车和1辆大客车每次可运送学生85人,用3辆小客车和2辆大客车每次可运送学生150人.(1)每辆小客车和每辆大客车各能坐多少名学生?(2)若计划租小客车m辆,大客车n辆,一次送完,恰好每辆车都坐满且两种车都要租,请你设计出所有的租车方案.23、已知点P(2a﹣2,a+5),分别根据下列条件求出点P的坐标.(1)点P在y轴上;(2)点Q的坐标为(2,5),且直线PQ∥x轴;(3)点P到x轴的距离与到y轴的距离相等.24、如图1,在平面直角坐标系中,A(0,a),B(b,0),且(a﹣6)2+=0,过A,B两点分别作y轴,x轴的垂线交于C点.(1)求C点的坐标;(2)P,Q为两动点,P,Q同时出发,其中P从C出发,在线段CB,BO 上以2个单位长度每秒的速度沿着C→B→O运动,到达O点P停止运动;Q 从B点出发以1个单位长度每秒速度沿着线段BO向O点运动,到O点Q停止运动.设运动时间为t秒,当点P在线段BO上运动时,t取何值,P,Q,C三点构成的三角形面积为1?(3)如图2,连接AB,点M(m,n)在线段AB上,且m,n满足|m﹣n|=1 0,点N在y轴负半轴上,连接MN交x轴于K点,记M,B,K三点构成的三角形面积为S1,记N,O,K三点构成的三角形面积分别记为S2,若S1=S2,求N点的坐标.25、如图1,在长方形OABC中,O为平面直角坐标系的原点,OA=2,OC=4,点B在第一象限.(1)点B的坐标为;(2)如图2,点P是线段CB延长线上的点,连接AP,OP,则∠POC,∠A PO,∠P AB三个角满足的关系是什么?并说明理由;(3)在(2)的基础上,已知:∠P AB=20°,∠POC=50°,在第一象限内取一点F,连接OF,AF,满足∠P AB=2∠F AP,∠POC=2∠FOP,请直接写出的值.最新人教版七年级下学期数学期中考试试卷(答卷)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、-12、6 13、55°14、1 15、、75°16、三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、﹣3﹣18、(1)8 (2)a﹣2b的平方根为19、a=2.5,b=1,c=220、(1)(2)121、(1)略(2)72°22、(1)每辆小客车能坐20人,每辆大客车能坐45人(2)方案1:租用小客车11辆,大客车4辆;方案2:租用小客车2辆,大客车8辆23、(1)P(0,6)(2)P(﹣2,5)(3)P的坐标为(12,12)或(﹣12,﹣12)或(﹣4,4)或(4,﹣4)24、(1)C(﹣12,6)(2)t=或(3)N(0,﹣3)25、(1)B(4,2)(2)∠POC=∠APO+∠PAB的值为或2或(3)。

人教版七年级下册数学期中考试试题及答案

人教版七年级下册数学期中考试试题及答案

人教版七年级下册数学期中考试试卷一、单选题1.下列图形中,1∠与2∠互为邻补角的是()A .B .C .D .2.下列各数中22,,0.27π,有理数有()A .2个B .3个C .4个D .5个3.如图所示,因为AB ⊥l ,BC ⊥l ,B 为垂足,所以AB 和BC 重合,其理由是()A .两点确定一条直线B .在同一平面内,过一点有且只有一条直线与已知直线垂直C .过一点能作一条垂线D .垂线段最短4.在平面坐标系中,线段CF 是由线段AB 平移得到的;点(1,4)A -的对应点为(4,1)C ,则点(,)B a b 的对应点F 的坐标为()A .()3,3a b +-B .()5,3a b +-C .()5,3a b --D .()3,5a b ++5.已知点P 的坐标为()2,32a a ++,且点P 在y 轴上,则点P 坐标为()A .(0,4)P -B .(0,4)P C .(0,2)P -D .(0,6)P -6.已知下列命题:①相等的角是对顶角;②在同一平面内,若//a b ,//b c ,则//a c ;③同旁内角互补;④互为邻补角的两个角的角平分线互相垂直.其中,是真命题的有()A .0个B .1个C .2个D .3个7.若平面直角坐标系内的点M 在第二象限,且M 到x 轴的距离为1,到y 轴的距离为2,则点M 的坐标为()A .()2,1B .()2,1-C .()2,1-D .()1,2-8)A .3±B .3C .3-D .9.把一副三角板放在同一水平桌面上,摆放成如图所示的形状,使两个直角顶点重合,两条斜边平行,则∠1的度数是()A .45°B .60°C .75°D .82.5°10.如图,AB ⊥BC ,AE 平分∠BAD 交BC 于点E ,AE ⊥DE ,∠1+∠2=90°,M 、N 分别是BA 、CD 延长线上的点,∠EAM 和∠EDN 的平分线交于点F ,∠F 的度数为()A .120°B .135°C .150°D .不能确定11.实数,a b||a b +)A .2a -B .2b -C .2a b +D .2a b-12.如图,动点P 在平面直角坐标系中按图中箭头所示的方向运动,第1次从原点运动到点()1,1;第二次接着运动到点()2,0;第三次接着运动到点()3,2,按这样的运动规律,经过2019次运动后,动点P 的坐标为()A .()2019,0B .()2019,1C .()2019,2D .()2020,0二、填空题13.将命题“两直线平行,同位角相等”写成“如果…,那么…”的形式是________14.如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是()()--,那么“帅”的坐标是__________3,1,3,115.若一个数的立方根就是它本身,则这个数是________.16.若a ba b的值为____________<,且,a b17.如图,把一张平行四边形纸片ABCD沿BD对折,使点C落在点E处,BE与AD相交于点O,若∠DBC=15°,则∠BOD=______________.==,现对72进行如下操18.任何实数a,可用[]a表示不超过a的最大整数,如[4]4,[3]3作:72第一次8]=;第二次[8]2=;第三次[2]1=;这样对72只需进行3次操作后变为1,在进行这样3次操作后变为1的所有正整数中,最大的是___19.如图,直线a和b被直线c所截,∠1=110°,当∠2=_____时,直线a b成立三、解答题20.(1-2|x-=-(2)解方程:()3112521.(1)如图这是某市部分简图,为了确定各建筑物的位置:①请你以火车站为原点建立平面直角坐标系②写出体育场、宾馆的坐标;③图书馆的坐标为()-4,-3,请在图中标出图书馆的位置;(2)已知M=是3m +的算术平方根,N=n-2的立方根,试求M-N 的值;22.如图在平面直角坐标系中,已知(1,1)P ,过点P 分别向,x y 轴作垂线,垂足分别是,A B ;(1)点Q 在直线AP 上且与点P 的距离为2,则点Q 的坐标为__________(2)平移三角形ABP ,若顶点P 平移后的对应点(4,3)P ',画出平移后的三角形'''A B P .23.如图,//,AB CD EFG ∆的顶点,F G 分别落在直线,AB CD 上,CE 交AB 于点,H GE 平分FGD ∠,若90,20EFG EFH ︒︒∠=∠=,求EHB ∠的度数.24.如图,在平面直角坐标系中,,A B 坐标分别是(0,),(,)A a B b a ,且,a b 满足()23|5|0a b -+-=,现同时将点,A B 分别向下平移3个单位,再向左平移1个单位,分别得到点,A B 的对应点,C D ,连接,,AC BD AB .(1)求点,C D 的坐标及四边形ACDB 的面积ACDB S ;(2)在y 轴上是否存在一点M ,连接,MC MD ,使13MCD ACDB S S ∆=?若存在这样的点,求出点M 的坐标,若不存在,试说明理由.25.学着说理由:如图∠B =∠C ,AB ∥EF ,试说明:∠BGF =∠C证明:∵∠B =∠C ()∴AB ∥CD ()又∵AB ∥EF ()∴EF ∥CD ()∴∠BGF =∠C ()26.如图,EF ⊥BC 于点F ,∠1=∠2,DG ∥BA ,若∠2=40°,则∠BDG 是多少度?参考答案1.D2.C3.B4.B5.A6.C7.B8.D9.C10.B11.A【详解】解:0,,a b a b <<>0,a b ∴+<||a b a a b b+=+++()a a b b=--++a a b b=---+2.a =-故选A .12.C【详解】解:从图象可以发现,点P 的运动每4次位置循环一次.每循环一次向右移动四个单位.∴2019=4×504+3,当第504循环结束时,点P 位置在(2016,0),在此基础之上运动三次到(2019,2),故选:C .13.如果两条直线是平行线,那么同位角相等.【解析】一个命题都能写成“如果…那么…”的形式,如果后面是题设,那么后面是结论.【详解】“两直线平行,同位角相等”的条件是:“两直线平行”,结论为:“同位角相等”,∴写成“如果…,那么…”的形式为:“如果两条直线是平行线,那么同位角相等”,故答案为如果两条直线是平行线,那么同位角相等.14.()1,3--【解析】首先根据“相”和“兵”的坐标确定原点位置,然后建立坐标系,进而可得“帅”的坐标.【详解】解:建立平面直角坐标系,如图,“帅”的坐标为(-1,-3),故答案为:(-1,-3).15.±1,0【详解】∵13=1,(-1)3=-1,03=0,∴1的立方根是1,-1的立方根是-1,0的立方根是0,∴一个数的立方根就是它本身,则这个数是±1,0.故答案为±1,0.16.-1【详解】解:364049,<<67,∴6,7,a b ∴==1,a b ∴-=-故答案为: 1.-17.150︒【详解】如图,∵在平行四边形ABCD 中,AD ∥BC ,∴∠ODB=∠DBC=15°.又由折叠的性质知,∠EBD=∠CBD=15°,即∠OBD=15°,∴在△OBD 中,∠BOD=180°−∠OBD−∠ODB=150°,18.255【详解】解:9,3,1,⎡===⎣13,3,1,⎡===⎣15,3,1,===16,4,2,1,⎡⎡====⎣⎣需要进行4次操作后变为1,即只需进行3次操作后变为1的所有正整数中,最大的是255,故答案为255.19.70°【分析】根据平行的判定,要使直线a b 成立,则∠2=∠3,再根据∠1=110°,即可把∠2的度数求解出来.【详解】解:要使直线a b 成立,则∠2=∠3(同位角相等,两直线平行),∵∠1=110°,∴∠3=180°-∠1=180°-110°=70°,∴∠2=∠3=70°,故答案为:70°.20.(1)10(2)4x =-【详解】(1)原式=9(3)22+-++-10=(2)解:15x -=-4x =-21.(1)①见解析;②体育馆()4,3-;宾馆()2,2;③见解析;(2)2【详解】(1)①平面直角坐标系如图;②体育馆()4,3-;宾馆()2,2,③图书馆的位置见上图.(2)422433m m n -=⎧⎨-+=⎩ 63m n =⎧∴⎨=⎩3,1M N ∴==2M N ∴-=22.(1)12(1,1),(1,3)Q Q -;(2)见解析【详解】解:(1)∵点Q 在直线AP 上且与点P 的距离为2,AP ⊥x 轴,P (1,1),∴点Q 的坐标为(1,-1)或(1,3),故答案为:(1,-1)或(1,3);(2)如图所示,'(1,1),(4,3).P P ∴平移方式为先向右平移3个单位长度,再向上平移2个单位长度,按相同方式把,A B 作同样的平移得到''.A B ,顺次连接''',,A B P 得到三角形A′B′P′即为所求.【点睛】本题主要考查了利用平移变换作图,作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.23.55︒【详解】解:90,20EFG EFH ︒︒∠=∠= 70BFG ︒∴∠=//AB CD ,70FGC BFG ︒∴∠=∠=,110FGD ︒∴∠=因为GE 平分FGD ∠,55FGH ︒∴∠=,180705555FHG ︒︒︒∴∠=--=︒55EHB FHG ︒∴∠=∠=24.(1)(1,0),(4,0),C D -15.ACDB S =(2)在y 轴上存在点(0,2)M ,或(0,2)M -使13MCD ABDC S S ∆=【详解】解:(1)依题意得:3050a b -=⎧⎨-=⎩解得:35a b =⎧⎨=⎩(0,3),(5,3)A B ∴,将点,A B 分别向下平移3个单位,再向左平移1个单位,(1,0),(4,0),C D ∴-5315.ACDB S CD OA =∙=⨯=(2)假设在y 轴上存在点(0,)M y ,使13MCD ABDCS S ∆=11553MCD S ∆∴==,1552y ∴⨯⨯=,2y ∴=±,(0,2)M ∴或(0,2)-所以在y 轴上存在点(0,)M y ,使13MCD ABDC S S ∆=.25.【详解】证明:∵∠B =∠C (已知),∴AB ∥CD (内错角相等,两直线平行),又∵AB ∥EF (已知),∴EF ∥CD (平行于同一直线的两直线平行),∴∠BGF =∠C (两直线平行,同位角相等).26.130°【详解】解:∵∠1=∠2,∴EF∥AD,∵EF⊥BC,∴AD⊥BC,即∠ADB=90°,又∵DG∥BA,∠2=40°,∴∠ADG=∠2=40°,∴∠BDG=∠ADG+∠ADB=130°.。

2023-2024学年全国初中七年级下数学人教版期中考试试卷(含答案解析)

2023-2024学年全国初中七年级下数学人教版期中考试试卷(含答案解析)

20232024学年全国初中七年级下数学人教版期中考试试卷一、选择题(每题2分,共20分)1.下列各数中,是整数的是()A. 0.5B. 2C. 3/4D. 1.52.下列各数中,是负数的是()A. 0B. 3C. 2D. 1/23.下列各数中,是正数的是()A. 3B. 0C. 1/2D. 1.54.下列各数中,是正分数的是()A. 3/4B. 0C. 1/2D. 1.55.下列各数中,是负分数的是()A. 3/4B. 0C. 1/2D. 1.56.下列各数中,是正整数的是()A. 2B. 0C. 1/2D. 37.下列各数中,是负整数的是()A. 2B. 0C. 1/2D. 38.下列各数中,是正无理数的是()A. √2B. 0C. √3D. 1.59.下列各数中,是负无理数的是()A. √2B. 0C. √3D. 1.510.下列各数中,是分数的是()A. √2B. 0C. 3/4D. 1.5二、填空题(每题2分,共20分)1.若a是正数,b是负数,则a+b的值()2.若a是正数,b是负数,则ab的值()3.若a是正数,b是负数,则ab的值()4.若a是正数,b是负数,则a/b的值()5.若a是正数,b是负数,则a+b的绝对值()6.若a是正数,b是负数,则ab的绝对值()7.若a是正数,b是负数,则ab的绝对值()8.若a是正数,b是负数,则a/b的绝对值()9.若a是正数,b是负数,则a+b的平方()10.若a是正数,b是负数,则ab的平方()三、解答题(每题5分,共30分)1.解方程:3x5=2x+72.解方程:2x+3=5x43.解方程:4x3=2x+94.解方程:5x+4=3x85.解方程:6x5=4x+76.解方程:7x+6=5x9四、应用题(每题10分,共20分)1.某水果店有苹果和香蕉两种水果,苹果每斤5元,香蕉每斤3元。

小明想买3斤苹果和2斤香蕉,一共需要多少钱?2.某学校组织了一次运动会,参加跑步的学生有男生和女生两种,男生有20人,女生有15人。

期中模拟测试卷(二)七年级数学下学期期中期末满分必刷常考压轴题人教版

期中模拟测试卷(二)七年级数学下学期期中期末满分必刷常考压轴题人教版

七年级下册期中模拟测试(二)数学学科(考试时间:120分钟满分:120分)注意:本试卷分试题卷和答题卡(卷)两部分,答案一律填写在答题卡(卷)上,在试题卷上作答无效.一、选择题(共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑.)1.的算术平方根为()A.B.C.D.﹣【答案】C【解答】解:的算术平方根为.故选:C.2.在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是()A.B.C.D.【答案】D【解答】解:观察图形可知图案D通过平移后可以得到.故选:D.3.下列坐标中,是第二象限的坐标是()A.(1,﹣5)B.(﹣2,4)C.(﹣1,﹣5)D.(5,7)【答案】B【解答】解:A、(1,﹣5)在第四象限,故本选项不合题意;B、(﹣2,4)在第二象限,故本选项符合题意;C、(﹣1,﹣5)在第三象限,故本选项不合题意;D、(5,7)在第一象限,故本选项不合题意;故选:B.4.下列图形中,∠1与∠2是同位角的是()A.B.C.D.【答案】B【解答】解:A选项,∠1与∠2是对顶角,不是同位角,故该选项不符合题意;B选项,∠1与∠2是同位角,故该选项符合题意;C选项,∠1与∠2是内错角,不是同位角,故该选项不符合题意;D选项,∠1与∠2是同旁内角,不是同位角,故该选项不符合题意;故选:B.5.若点P在x轴的下方,y轴的左方,且到每条坐标轴的距离都是4,则点P的坐标为()A.(4,4)B.(﹣4,4)C.(﹣4,﹣4)D.(4,﹣4)【答案】C【解答】解:∵点P在x轴的下方y轴的左方,∴点P在第三象限,∵点P到每条坐标轴的距离都是4,∴点P的坐标为(﹣4,﹣4).故选:C.6.如图,把河AB中的水引到C,拟修水渠中最短的是()A.CM B.CN C.CP D.CQ【答案】C【解答】解:如图,CP⊥AB,垂足为P,在P处开水渠,则水渠最短.因为直线外一点与直线上各点连线的所有线段中,垂线段最短.故选:C.7.如图,下列条件:①∠1=∠3;②∠DAB=∠BCD;③∠ADC+∠BCD=180°;④∠2=∠4,其中能判定AB∥CD的有()A.1个B.2个C.4个D.3个【答案】A【解答】解:①由∠1=∠3可判定AD∥BC,不符合题意;②由∠DAB=∠BCD不能判定AB∥CD,不符合题意;③由∠ADC+∠BCD=180°可判定AD∥BC,不符合题意;④由∠2=∠4可判定AB∥CD,符合题意.故选:A.8.如图,小明从点O出发,先向西走40米,再向南走30米到达点M,如果点M的位置用(﹣40,﹣30)表示,那么(10,20)表示的位置是()A.点A B.点B C.点C D.点D【答案】B【解答】解:根据如图所建的坐标系,易知(10,20)表示的位置是点B,故选:B.9.下列说法中,正确的是()①两点之间的所有连线中,线段最短;②过一点有且只有一条直线与已知直线垂直;③平行于同一直线的两条直线互相平行;④直线外一点到这条直线的垂线段叫做点到直线的距离.A.①②B.①③C.①④D.②③【答案】B【解答】解:①两点之间的所有连线中,线段最短,说法正确;②在同一平面内,过一点有且只有一条直线与已知直线垂直,说法错误;③平行于同一直线的两条直线互相平行,说法正确;④直线外一点到这条直线的垂线段的长度叫做点到直线的距离,说法错误.故选:B.10.如图,将一块直角三角板DEF放置在锐角△ABC上,使得该三角板的两条直角边DE、DF恰好分别经过点B、C,若∠ABC+∠ACB=120°,则∠ABD+∠ACD的值为()A.60°B.50°C.40°D.30°【答案】D【解答】解:在△ABC中,∠ABC+∠ACB=120°,在△DBC中,∠BDC=90°,∴∠DBC+∠DCB=180°﹣90°=90°,∴∠ABD+∠ACD=120°﹣90°=30°.故选:D.11.一次数学活动中,检验两条纸带①、②的边线是否平行,小明和小丽采用两种不同的方法:小明对纸带①沿AB折叠,量得∠1=∠2=50°;小丽对纸带②沿GH折叠,发现GD与GC重合,HF与HE重合.则下列判断正确的是()A.纸带①的边线平行,纸带②的边线不平行B.纸带①、②的边线都平行C.纸带①的边线不平行,纸带②的边线平行D.纸带①、②的边线都不平行【答案】C【解答】解:如图①所示:∵∠1=∠2=50°,∴∠3=∠2=50°,∴∠4=∠5=180°﹣50°﹣50°=80°,∴∠2≠∠4,∴纸带①的边线不平行;如图②所示:∵GD与GC重合,HF与HE重合,∴∠CGH=∠DGH=90°,∠EHG=∠FHG=90°,∴∠CGH+∠EHG=180°,∴纸带②的边线平行.故选:C.12.如图,点A(1,0)第一次跳动至点A1(﹣1,1),第二次跳动至点A2(2,1),第三次跳动至点A3(﹣2,2),第四次跳动至点A4(3,2),…,依此规律跳动下去,点A第100次跳动至点A100的坐标是()A.(50,51)B.(51,50)C.(49,50)D.(50,49)【答案】B【解答】解:观察发现,第2次跳动至点的坐标是(2,1),第4次跳动至点的坐标是(3,2),第6次跳动至点的坐标是(4,3),第8次跳动至点的坐标是(5,4),…第2n次跳动至点的坐标是(n+1,n),∴第100次跳动至点的坐标是(51,50).故选:B二、填空题(本大题共6小题,每小题3分,共18分)13.5的平方根是.【答案】±【解答】解:∵(±)2=5,∴5的平方根是±.故答案为:±.14.如图,AB、CD相交于点O,OE是∠AOC的平分线,∠BOD=70°,∠EOF=65°,则∠AOF的度数为°.【答案】30【解答】解:∵∠BOD=70°,∴∠AOC=∠BOD=70°,∵OE是∠AOC的平分线,∴∠AOE=∠AOC=70°=35°,∵∠EOF=65°,∴∠AOF=65°﹣35°=30°,故答案为:30.15.已知≈4.496,≈14.22,则≈.【答案】44.96【解答】解:==10≈10×4.496=44.96,故答案为:44.96.16.如图,直线m∥n,将含有45°角的三角板ABC的直角顶点C放在直线n上,则∠1+∠2=.【答案】45°【解答】解:如图,过点A作l∥m,则∠1=∠3.又∵m∥n,∴l∥n,∴∠4=∠2,∴∠1+∠2=∠3+∠4=45°.故答案是:45°.17.如图所示,某住宅小区内有一长方形地块,想在长方形地块内修筑同样宽的两条”之”字路,余下部分绿化,道路的宽为2米,则绿化的面积为m2.【答案】540【解答】解:如图,把两条”之”字路平移到长方形地块ABCD的最上边和最左边,则余下部分EFGH是矩形.∵CF=32﹣2=30(米),CG=20﹣2=18(米),∴矩形EFCG的面积=30×18=540(平方米).答:绿化的面积为540m2.故答案为:540.18.在平面直角坐标系中,点P位于原点,第1秒钟向右移动1个单位,第2秒钟向上移动2个单位,第3秒钟向左移动3个单位,第4秒钟向下移动4个单位,第5秒钟向右移动5个单位,…依此类推,经过2021秒钟后,点P的坐标是.【答案】(1011,﹣1010)【解答】解:观察图形可知经过2017秒钟后,点P在第四象限的直线y=﹣x+1上,∵2021÷4=505余1,∴P2021的横坐标为1+2×505=1011,∴y=﹣1011+1=﹣1010,∴P(1011,﹣1010).故答案为(1011,﹣1010)三、解答题(本大题共8小题,共66分.解答题应写出文字说明,证明过程或演算步骤.)19.计算:+﹣(﹣1).【答案】1﹣【解答】解:+﹣(﹣1)=3﹣3﹣+1=1﹣20.已知正数m的两个不同平方根分别是2a﹣7和a+4,又b﹣7的立方根为﹣2.(1)求a和正数m及b的值;(2)求3a+2b的算术平方根.【答案】(1)a=1,m=25,b=﹣1 (2)1【解答】解:(1)∵正数m的两个不同平方根分别是2a﹣7和a+4,∴(2a﹣7)+(a+4)=0,∴a=1,2a﹣7=﹣5,∴m=25,∵b﹣7的立方根为﹣2,∴b﹣7=﹣8,∴b=﹣1,∴a=1,m=25,b=﹣1;(2)由(1)有a=1,b=﹣1,∴3a+2b=3×1+2×(﹣1)=1,∴3a+2b的算术平方根为1.21.补全下列题目的解题过程.如图,E点为DF上的点,B为AC上的点,∠1=∠2,∠C=∠D,求证DF∥AC.证明:∵∠1=∠2(已知),且∠2=∠3,∠1=∠4(),∴∠3=∠4(等量代换),∴DB∥(),∴∠C=∠ABD(),∵∠C=∠D(已知),∴∠D=∠ABD(),∴DF∥AC().【答案】对顶角相等;CE;内错角相等,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行.【解答】证明:∵∠1=∠2(已知),且∠2=∠3,∠1=∠4(对顶角相等),∴∠3=∠4(等量代换),∴DB∥CE(内错角相等,两直线平行),∴∠C=∠ABD(两直线平行,同位角相等),∵∠C=∠D(已知),∴∠D=∠ABD(等量代换),∴DF∥A C(内错角相等,两直线平行),故答案为:对顶角相等;CE;内错角相等,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行.22.如图,在平面直角坐标系中,三角形ABC的顶点都在网格点上,其中点C的坐标为(1,2).(1)点A的坐标是点B的坐标是.(2)画出将三角形ABC先向左平移2个单位长度,再向上平移1个单位长度所得到的三角形A'B'C'.请写出三角形A'B'C'的三个顶点坐标;(3)求三角形ABC的面积.【答案】(1)(2,﹣1);(4,3)(2)略(3)5【解答】解:(1)A(2,﹣1),B(4,3);故答案为(2,﹣1);(4,3);(2)如图,三角形A'B'C'为所作;A′(0,0),B′(2,4),C′(﹣1,3);(3)三角形ABC的面积=3×4﹣×3×1﹣×3×1﹣×2×4=5.23.已知点P(2m﹣4,m+4),解答下列问题:(1)若点P在y轴上,则点P的坐标为;(2)若点P的纵坐标比横坐标大7,求出点P坐标;(3)若点P在过A(2,3)点且与x轴平行的直线上,则AP的长为多少?【答案】(1)(0,6)(2) (﹣2,5)(3)8【解答】解:(1)令2m﹣4=0,解得m=2,所以P点的坐标为(0,6),故答案为:(0,6);(2)令m+4﹣(2m﹣4)=7,解得m=1,所以P点的坐标为(﹣2,5);(3)∵点P在过A(2,3)点且与x轴平行的直线上,∴m+4=3,解得m=﹣1.∴P点的坐标为(﹣6,3),∴AP=2+6=8.24.点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|,例如:数轴上表示﹣1与﹣2的两点间的距离=|﹣1﹣(﹣2)|=﹣1+2=1;而|x+2|=|x﹣(﹣2)|,所以|x+2|表示x与﹣2两点间的距离.利用数形结合思想回答下列问题:(1)数轴上表示﹣2和5两点之间的距离.(2)若数轴上表示点x的数满足|x﹣1|=3,那么x=.(3)若数轴上表示点x的数满足﹣4<x<2,则|x﹣2|+|x+4|=.【答案】(1)76(2)﹣2或4(3)6【解答】解:(1)根据题意知数轴上表示﹣2和5两点之间的距离为5﹣(﹣2)=7,故答案为:7;(2)∵|x﹣1|=3,即在数轴上到表示1和x的点的距离为3,∴x=﹣2或x=4,故答案为:﹣2或4;(3)∵|x﹣2|+|x+4|表示在数轴上表示x的点到﹣4和2的点的距离之和,且x位于﹣4到2之间,∴|x﹣2|+|x+4|=2﹣x+x+4=6,故答案为:6.25如图①.已知AM∥CN,点B为平面内一点,AB⊥BC于点B,过点B作BD⊥AM于点D,设∠BCN=α.(1)若α=30°,求∠ABD的度数;(2)如图②,若点E、F在DM上,连接BE、BF、CF,使得BE平分∠ABD、BF平分∠DBC,求∠EBF的度数;(3)如图③,在(2)问的条件下,若CF平分∠BCH,且∠BFC=3∠BCN,求∠EBC 的度数.【答案】(1)30°(2)45°(3)97.5°.【解答】解:(1)延长DB,交NC于点H,如图,∵AM∥CN,BD⊥AM,∴DH⊥NC.∴∠BHC=90°.∵∠BCN=α=30°,∴∠HBC=90°﹣∠BCN=60°.∵AB⊥BC,∴∠ABC=90°.∴∠ABD=180°﹣∠ABC﹣∠HBC=30°;(2)延长DB,交NC于点H,如图,∵AM∥CN,BD⊥AM,∴DH⊥NC.∴∠BHC=90°.∵∠BCN=α,∴∠HBC=90°﹣α.∵AB⊥BC,∴∠ABC=90°.∴∠ABD=180°﹣∠ABC﹣∠HBC=α.∵BE平分∠ABD,∴∠DBE=∠ABE=α.∵∠HBC=90°﹣α,∴∠DBC=180°﹣∠HBC=90°+α.∵BF平分∠DBC,∴∠DBF=∠CBF=∠DBC=45°+α.∴∠EBF=∠DBF﹣∠DBE=45°+α﹣α=45°;(3)∵∠BCN=α,∴∠HCB=180°﹣∠BCN=180°﹣α.∵CF平分∠BCH,∴∠BCF=∠HCF=∠HCB=90°﹣α.∵AM∥CN,∴∠DFC=∠HCF=90°﹣α.∵∠BFC=3∠BCN,∴∠BFC=3α.∴∠DFB=∠DFC﹣∠BFC=90°﹣α.由(2)知:∠DBF=45°+α.∵BD⊥AM,∴∠D=90°.∴∠DBF+∠DFB=90°.∴45°+α+90°﹣α=90°.解得:α=15°.∴∠FBC=∠DBF=45°+α=52.5°.∴∠EBC=∠FBC+∠EBF=52.5°+45°=97.5°.26.如图1,在平面直角坐标系中,点A,B的坐标分别是(﹣2,0),(4,0),现同时将点A、B分别向上平移2个单位长度,再向右平移2个单位长度,得到A,B的对应点C,D.连接AC、BD、CD.(1)写出点C,D的坐标并求出四边形ABDC的面积.(2)在x轴上是否存在一点E,使得△DEC的面积是△DEB面积的2倍?若存在,请求出点E的坐标;若不存在,请说明理由.(3)如图2,点F是直线BD上一个动点,连接FC、FO,当点F在直线BD上运动时,请直接写出∠OFC与∠FCD,∠FOB的数量关系.【答案】(1) 12(2)存在(3)当点F在线段BD上,∠OFC=∠FOB+∠FCD;;当点F在线段BD的延长线上,∠OFC=∠FOB﹣∠FCD.【解答】解:(1)∵点A,B的坐标分别是(﹣2,0),(4,0),现同时将点A、B分别向上平移2个单位长度,再向右平移2个单位长度得到A,B的对应点C,D,∴点C的坐标为(0,2),点D的坐标为(6,2);四边形ABDC的面积=2×(4+2)=12;(2)存在.设点E的坐标为(x,0),∵△DEC的面积是△DEB面积的2倍,∴×6×2=2××|4﹣x|×2,解得x=1或x=7,∴点E的坐标为(1,0)和(7,0);(3)当点F在线段BD上,作FM∥AB,如图1,∵MF∥AB,∴∠2=∠FOB,∵CD∥AB,∴CD∥MF,∴∠1=∠FCD,∴∠OFC=∠1+∠2=∠FOB+∠FCD;当点F在线段DB的延长线上,作FN∥AB,如图2,∵FN∥AB,∴∠NFO=∠FOB,∵CD∥AB,∴CD∥FN,∴∠NFC=∠FCD,∴∠OFC=∠NFC﹣∠NFO=∠FCD﹣∠FOB;同样得到当点F在线段BD的延长线上,得到∠OFC=∠FOB﹣∠FCD.。

人教版数学七年级下册《期中检测试卷》含答案

人教版数学七年级下册《期中检测试卷》含答案

人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(每小题3分,共30分) 1. 14 的平方根是 A. 12 B. 12± C. 12- D. 116± 2. 如图,A ,B ,C ,D 中的哪幅图案可以通过图案①平移得到( )A. B. C. D. 3. 在平面直角坐标系中,点(-2,5)所在的象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 4. 下列计算正确的是( )A. 9=±3B. 38-=﹣2C. 2(3)-=﹣3D. 235+=5. 在311.414283π-,,,,中,无理数的个数有( ) A. 1个B. 2个C. 3个D. 4个 6. 若230x y -++=,则的值为( ) A. -8 B. -6 C. 5 D. 67. 如图,点E 在BC 的延长线上,下列条件中不能判定AB ∥CD 的是( )A. ∠1=∠2B. ∠3=∠4 C ∠B =∠DCE D. ∠D +∠DAB =180°8. 20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,列方程组正确的是( )A 523220x y x y +=⎧⎨+=⎩B. 522320x y x y +=⎧⎨+=⎩ C 202352x y x y +=⎧⎨+=⎩ D. 203252x y x y +=⎧⎨+=⎩ 9. 如图,现将一块三角板含有60°角的顶点放在直尺的一边上,若∠1=2∠2,那么∠1的度数为( ).A. 50°;B. 60°;C. 70°;D. 80°.10. 如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序为(1,0)、(2,0)、(2,1)、(1,1)、(1,2)、(2,2)、……,根据这个规律,第2019个点的坐标为( )A. (45,10)B. (45,6)C. (45,22)D. (45,0)二、填空题(每小题3分,共18分) 11. 81的算术平方根是________,33128+ = ________. 12. 已知a ,b 为两个连续的整数,且a <57<b ,则a +b =___________.13. 点P(m−1,m+3)在平面直角坐标系的y 轴上,则P 点坐标为_______.14. 如图,直线AB ,CD 相交于点O ,OA 平分∠EOC ,∠EOD=120°,则∠BOD=__________°.15. 已知方程2x+y =3,用含x 的代数式表示y ,则y =______.16. 用“*”定义新运算:对于任意实数a b 、,都有2*2a b a b =+,如23*423422=⨯+=,那么3*2=__.三、解答下列各题:(共72分)17. 计算(1)31984-+-- (2)21(1)4x -= (3)()()222121-+--+ (4)()334375x -=- 18. 解方程:(1)3? 42x y x y -=⎧⎨+=⎩(2)10216x y x y +=⎧⎨+=⎩ 19. 如图,AD ∥BE ,∠1=∠2,求证:∠A =∠E .请完成解答过程:解:∵AD ∥BE (已知)∠A =∠______(_________________)又∵1=∠2(已知)∴AC ∥_____(________________)∴∠3=∠_____(两直线平行,内错角相等)∴∠A =∠E (_________)20. 若5a+1和a ﹣19是数m 的平方根.求a 和m 的值.21. 已知:△ABC 在直角坐标平面内,三个顶点的坐标分别为A (0,3),B (3,4),C (2,2)(正方形网格中每个小正方形的边长是一个单位长度)(1)画出△ABC 向下平移4个单位长度得到的△A 1B 1C 1;(2)求△A 1B 1C 1的面积.22. “鸡兔同笼”是我国古代著名的数学趣题之一.大约在1500年前成书的《孙子算经》中,就有关于“鸡兔同笼”的记载:“今有雏兔同笼,上有二十五头,下有七十六足,问雏兔各几何?”这四句话的意思是:有若干只鸡兔关在一个笼子里,从上面数,有25个头;从下面数,有76条腿,问笼中各有几只鸡和兔?23. 如图,∠1=80°,∠2=100°∠C=∠D.(1)判断AC与DF的位置关系,并说明理由;(2)若∠C比∠A大20°,求∠F的度数.24. 如图,已知∠ABC.点D为∠ABC的内部一点,请你再画一个∠DEF,使DE∥AB,EF∥BC,且DE交BC 边与点P(1)操作:画出满足题意的图形.(2)探究:根据所画图形猜想∠ABC与∠DEF有怎样的数量关系?并说明理由.25. 如图,平面直角坐标系中,ABCD为长方形,其中点A、C坐标分别为(﹣8,4)、(2,﹣8),且AD∥x轴,交y轴于M点,AB交x轴于N.(1)求B、D两点坐标和长方形ABCD的面积;(2)一动点P从A出发(不与A点重合),以12个单位/秒的速度沿AB向B点运动,在P点运动过程中,连接MP、OP,请直接写出∠AMP、∠MPO、∠PON之间的数量关系;(3)是否存在某一时刻t,使三角形AMP的面积等于长方形面积的13?若存在,求t的值并求此时点P的坐标;若不存在请说明理由.答案与解析一、选择题(每小题3分,共30分) 1. 14 的平方根是 A. 12 B. 12± C. 12- D. 116± [答案]B[解析][分析]根据平方根的定义求解. [详解]∵211()24±=, ∴14的平方根是12±. 故选B.[点睛]考查了平方根的概念,解题关键是熟记平方根的定义.2. 如图,A ,B ,C ,D 中的哪幅图案可以通过图案①平移得到( )A.B. C. D.[答案]D[解析][分析] 根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.[详解]通过图案①平移得到必须与图案①完全相同,角度也必须相同,观察图形可知D 可以通过图案①平移得到.故答案选:D.[点睛]本题考查的知识点是生活中的平移现象,解题的关键是熟练的掌握生活中的平移现象. 3. 在平面直角坐标系中,点(-2,5)所在的象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限[解析][分析]根据各象限内点P (a ,b )坐标特征:①第一象限:a >0,b >0;②第二象限:a <0,b >0;③第三象限:a <0,b <0;④第四象限:a >0,b <0进行判断即可.[详解]∵第二象限内点横坐标<0,纵坐标>0,∴点(-2,5)所在的象限是第二象限.故选B .[点睛]此题主要考查了平面内坐标点的特征,关键是熟记各象限内坐标点的特征.4. 下列计算正确的是( )3 2 3 =[答案]B[解析][分析]根据算术平方根与立方根的定义即可求出答案.[详解]解:(A )原式=3,故A 错误;(B )原式=﹣2,故B 正确;(C )3,故C 错误;(D ,故D 错误;故选B .[点睛]本题考查算术平方根与立方根,熟练掌握算术平方根与立方根的性质是解题关键.5. 在11.4143π,,,无理数的个数有( ) A. 1个B. 2个C. 3个D. 4个[答案]B[解析][分析] 无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.[详解]解:13,1.414,,和π这两个数是无理数.[点睛]本题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.6. 若230x y -++=,则的值为( ) A. -8B. -6C. 5D. 6[答案]B[解析][分析]根据非负数的性质列出方程求出x 、y 的值,代入所求代数式计算即可. [详解]根据题意得:2030x y -=⎧⎨+=⎩,解得:23x y =⎧⎨=-⎩,则xy =﹣6. 故选B .[点睛]本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.7. 如图,点E 在BC 的延长线上,下列条件中不能判定AB ∥CD 的是( )A. ∠1=∠2B. ∠3=∠4C. ∠B =∠DCED. ∠D +∠DAB =180°[答案]B[解析][分析] 结合图形根据平行线的判定定理对选项逐一判断即可求解.[详解]解:A. ∠1=∠2,根据内错角相等,两直线平行,得到AB ∥CD ,不合题意;B. ∠3=∠4,根据内错角相等,两直线平行,得到AD ∥BC ,符合题意;C. ∠B =∠DCE ,根据同位角相等,两直线平行,得到AB ∥CD ,不合题意;D. ∠D +∠DAB =180°,根据同旁内角互补,两直线平行,得到AB ∥CD ,不合题意.故选:B[点睛]本题考查了平行线的判定定理,熟练掌握平行线的判定定理是解题关键.8. 20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,列方程组正确的是( )A.523220x yx y+=⎧⎨+=⎩B.522320x yx y+=⎧⎨+=⎩C.202352x yx y+=⎧⎨+=⎩D.203252x yx y+=⎧⎨+=⎩[答案]D[解析]试题分析:要列方程(组),首先要根据题意找出存在的等量关系.本题等量关系为:①男女生共20人;②男女生共植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.据此列出方程组:20 3252 x yx y+=⎧⎨+=⎩.故选D.考点:由实际问题抽象出二元一次方程组.9. 如图,现将一块三角板含有60°角的顶点放在直尺的一边上,若∠1=2∠2,那么∠1的度数为( ).A. 50°;B. 60°;C. 70°;D. 80°.[答案]D[解析]分析:如下图,由平行线的性质可得∠3=∠2,结合∠1=2∠2,∠4=60°,∠1+∠4+∠3=180°即可求得∠1的度数. 详解:∵直尺相对的两边是平行的,∴∠3=∠2,∵∠1=2∠2,∴∠1=2∠3,∵∠1+∠4+∠3=180°,∠4=60°,∴3160180 2∠+=,∴∠1=80°.故选D.点睛:本题是一道考查平行线的性质和平角定义的题目,对于“两直线平行,同位角相等”和“平角的度数为180°”的正确应用是解题的关键.10. 如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序为(1,0)、(2,0)、(2,1)、(1,1)、(1,2)、(2,2)、……,根据这个规律,第2019个点的坐标为( )A. (45,10)B. (45,6)C. (45,22)D. (45,0)[答案]B[解析][分析]将其左侧相连,看作正方形边上的点.分析边上点的个数得出规律“边长为n的正方形边上有2n+1个点”,将边长为n的正方形边上点与内部点相加得出共有(n+1)2个点,由此规律结合图形的特点可以找出第2019个点的坐标.[详解]解:将其左侧相连,看作正方形边上的点,如图所示.边长为0的正方形,有1个点;边长为1的正方形,有3个点;边长为2的正方形,有5个点;…,∴边长为n的正方形有2n+1个点,∴边长为n的正方形边上与内部共有1+3+5+…+2n+1=(n+1)2个点.∵2019=45×45-6,结合图形即可得知第2019个点的坐标为(45,6).故选B.[点睛]本题考查了规律型中的点的坐标,解题的规律是找出“边长为n的正方形边上点与内部点相加得出共有(n+1)2个点”.本题属于中档题,有点难度,解决该题型题目时,补充完整图形,将其当成正方形边上的点来看待,本题的难点在于寻找第2019个点所在的正方形的边是平行于x轴的还是平行y轴的.二、填空题(每小题3分,共18分)11.= ________.[答案](1). 3 (2). 3 2[解析][分析]根据算术平方根和立方根的定义,分别进行计算,即可得到答案.[详解]9=,3;32==;故答案为:3;32.[点睛]本题考查了算术平方根和立方根,解题的关键是掌握定义进行计算.12. 已知a,b为两个连续的整数,且a<b,则a+b=___________.[答案]15[解析][分析]估算出在哪两个相邻的整数之间,即可求出a与b的值,然后代入a+b计算即可. [详解]∵72<57<82,∴<8,∴a=7,b=8,∴a+b=7+8=15.故答案为15.[点睛]此题主要考查了估算无理数的大小,注意首先估算被开方数在哪两个相邻的平方数之间,再估算该无理数在哪两个相邻的整数之间.现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.13. 点P(m−1,m+3)在平面直角坐标系的y轴上,则P点坐标为_______.[答案](0,4)[解析]分析:根据y轴上点的横坐标为0,可得m的值,根据m的值,可得点的坐标.详解:由P(m−1,m+3)在直角坐标系的y轴上,得m−1=0,解得m=1.m+3=4,P点坐标为()0,4.故答案为()0,4.点睛:考查平面直角坐标系轴的点的坐标特征,横坐标为零.14. 如图,直线AB,CD相交于点O,OA平分∠EOC,∠EOD=120°,则∠BOD=__________°.[答案]30°[解析][分析]先利用补角的定义求出∠EOC=60°,再根据角平分线的性质计算.[详解]解:∵∠EOD=120°,∴∠EOC=60°(邻补角定义).∵OA平分∠EOC,∴∠AOC=12∠EOC=30°(角平分线定义),∴∠BOD=30°(对顶角相等).故答案为:30.[点睛]本题考查由角平分线定义,结合补角的性质,易求该角的度数.15. 已知方程2x+y =3,用含x 的代数式表示y ,则y =______.[答案]32x -[解析][分析]把方程2x y 1-=写成用含x 的代数式表示y ,需要进行移项即得.[详解]解:移项得:y 32x =-,故答案为y 32x =-.[点睛]考查的是方程的基本运算技能:移项、合并同类项、系数化为1等,表示谁就该把谁放到等号的左边,其它的项移到另一边.16. 用“*”定义新运算:对于任意实数a b 、,都有2*2a b a b =+,如23*423422=⨯+=,那么3*2=__. [答案]8 [解析] 由题意得:3※2=2×(3)²+2=6+2=8,故答案为8. 三、解答下列各题:(共72分)17. 计算(1)31984-+-- (2)21(1)4x -= (3)()()222121-+--+ (4)()334375x -=- [答案](1)12 ;(2)x 1=32,x 2=12;(3)0;(4)x=-1. [解析][分析] (1)根据绝对值、立方根、算术平方根的定义进行计算,即可得到答案;(2)利用直接开平方法,即可得到x 的值;(3)由绝对值、算术平方根的定义进行计算,即可得到答案;(4)先化简,然后开立方,即可得到答案.[详解]解:(1) =13(2)2+--=12; (2)21(1)4x -= ∴112x -=±, ∴132x =,212x =; (3)11-=211+-=0;(4)()334375x -=-,∴()34125x -=-,∴45x -=-,∴1x =-;[点睛]本题考查了平方根、立方根,绝对值、以及算术平方根的运算法则,解题的关键是掌握运算法则进行解题. 18. 解方程:(1)3? 42x y x y -=⎧⎨+=⎩(2)10216x y x y +=⎧⎨+=⎩ [答案](1)12x y =⎧⎨=-⎩ ;(2)64x y =⎧⎨=⎩. [解析][分析](1)直接利用加减消元法解方程组,即可得到答案;(2)直接利用加减消元法解方程组,即可得到答案;[详解]解:(1)342x y x y -=⎧⎨+=⎩①②,由①+②,得:55=x ,∴1x =,把1x =代入①,得:2y =-;∴方程组的解为:12x y =⎧⎨=-⎩; (2)10216x y x y +=⎧⎨+=⎩, 由②①,得:6x =,把6x =代入①,得:4y =,∴方程组的解为:64x y =⎧⎨=⎩; [点睛]本题考查了解二元一次方程组,解题的关键是熟练掌握加减消元法解二元一次方程组.19. 如图,AD ∥BE ,∠1=∠2,求证:∠A =∠E .请完成解答过程:解:∵AD ∥BE (已知)∠A =∠______(_________________)又∵1=∠2(已知)∴AC ∥_____(________________)∴∠3=∠_____(两直线平行,内错角相等)∴∠A =∠E (_________)[答案]3,两直线平行,同位角相等;DE,内错角相等,两直线平行;E ;等量代换.[解析][分析]由于AD ∥BE 可以得到∠A=∠3,又∠1=∠2可以得到DE ∥AC,由此可以证明∠E=∠3,等量代换即可证明题目结论.[详解]解:∵AD ∥BE(已知)∠A=∠3 (两直线平行,同位角相等)又∵1=∠2(已知)∴AC∥DE (内错角相等,两直线平行)∴∠3=∠E (两直线平行,内错角相等)∴∠A=∠E(等量代换)[点睛]本题考查平行线的判定和性质,熟练掌握基础知识进行推理是解题关键.20. 若5a+1和a﹣19是数m的平方根.求a和m的值.[答案]a=3,m=256.[解析][分析]根据数m的平方根分别是5a+1和a﹣19一定互为相反数,据此即可列方程求得a的值,然后根据平方根的定义求得m的值.[详解]解:根据题意得:(5a+1)+(a﹣19)=0,解得:a=3,则m=(5a+1)2=162=256.[点睛]本题考查平方根的概念,掌握概念正确计算是解题关键.21. 已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3),B(3,4),C(2,2)(正方形网格中每个小正方形的边长是一个单位长度)(1)画出△ABC向下平移4个单位长度得到△A1B1C1;(2)求△A1B1C1的面积.[答案](1)见解析;(2)2.5.[解析][分析](1)将ABC的每个定点向下平移4个单位长度再将其相连即可得到的△A1B1C1,如图所示. (2)用△A1B1C1所在的长方形面积减去其余部分的三个小三角形面积即可得到S△A1B1C1. [详解]解:(1)如图所示:△A1B1C1,即为所求;(2)△A1B1C1的面积为:2×3﹣12×1×3﹣12×1×2﹣12×1×2=2.5.[点睛]本题考查图形的变换-平移以及在平面直角坐标系中求三角形的面积.22. “鸡兔同笼”是我国古代著名的数学趣题之一.大约在1500年前成书的《孙子算经》中,就有关于“鸡兔同笼”的记载:“今有雏兔同笼,上有二十五头,下有七十六足,问雏兔各几何?”这四句话的意思是:有若干只鸡兔关在一个笼子里,从上面数,有25个头;从下面数,有76条腿,问笼中各有几只鸡和兔?[答案]笼中有12只鸡,13只兔[解析][分析]根据“上有二十五头,下有七十六足”,得出关于,的二元一次方程组,解之即得.[详解]设笼中有只鸡,只兔.由题意得:25 2476 x yx y+=⎧⎨+=⎩解得:1213 xy=⎧⎨=⎩答:笼中有12只鸡,13只兔.[点睛]本题考查二元一次方程组的鸡兔同笼问题,找出等量关系并根据生活常识列出方程组是解题关键.23. 如图,∠1=80°,∠2=100°∠C=∠D.(1)判断AC与DF的位置关系,并说明理由;(2)若∠C比∠A大20°,求∠F的度数.[答案](1)AC∥DF,理由见解析;(2)40°.[解析][分析](1)根据平行线的性质得出∠ABD=∠C,求出∠D=∠ABD,根据平行线的判定得出AC∥DF;(2)根据平行线的性质和三角形内角和解答即可;[详解]解:(1)AC∥DF,理由如下:∵∠1=80°,∠2=100°,∴∠1+∠2=180°,∴BD∥CE,∴∠ABD=∠C,∵∠C=∠D,∴∠ABD=∠D,∴AC∥DF;(2)∵AC∥DF,∴∠A=∠F,∠ABD=∠D,∵∠C=∠D,∠1=80°,∴∠A+∠ABD=180°﹣80°=100°,即∠A+∠C=100°,∵∠C比∠A大20°,∴∠A=40°,∴∠F=40°.[点睛]本题考查了平行线的性质和判定的应用,能综合运用定理进行推理是解此题的关键.24. 如图,已知∠ABC.点D为∠ABC的内部一点,请你再画一个∠DEF,使DE∥AB,EF∥BC,且DE交BC 边与点P(1)操作:画出满足题意的图形.(2)探究:根据所画图形猜想∠ABC与∠DEF有怎样的数量关系?并说明理由.[答案]见解析[解析][分析]先根据题意画出图形,再根据平行线的性质进行解答即可.[详解]∠ABC与∠DEF的数量关系是相等或互补,理由如下:①如图,∵DE∥AB,∴∠ABC=∠DPC,又∵EF∥BC,∴∠DEF=∠DPC,∴∠ABC=∠DEF;②如图,因为DE∥AB,∴∠ABC+∠DPB=180°,又∵EF∥BC,∴∠DEF=∠DPB.∴∠ABC+∠DEF=180°.[点睛]本题考查了平行线的性质,根据题意画出图形是解答此题的关键,解答此题时要注意分两种情况讨论,否则会造成漏解.25. 如图,平面直角坐标系中,ABCD为长方形,其中点A、C坐标分别为(﹣8,4)、(2,﹣8),且AD∥x轴,交y轴于M点,AB交x轴于N.(1)求B、D两点坐标和长方形ABCD的面积;(2)一动点P从A出发(不与A点重合),以12个单位/秒的速度沿AB向B点运动,在P点运动过程中,连接MP、OP,请直接写出∠AMP、∠MPO、∠PON之间的数量关系;(3)是否存在某一时刻t,使三角形AMP的面积等于长方形面积的13?若存在,求t的值并求此时点P的坐标;若不存在请说明理由.[答案](1)B(﹣8,﹣8),D(2,4),120;(2)∠MPO=∠AMP+∠PON;∠MPO=∠AMP-∠PON;(3)存在,P点坐标为(﹣8,﹣6).[解析][分析](1)利用点A、C的坐标和长方形的性质易得B(﹣8,﹣8),D(2,4),然后根据长方形的面积公式即可计算长方形ABCD的面积;(2)分点P在线段AN上和点P在线段NB上两种情况进行讨论即可得;(3)由于AM=8,AP=12t,根据三角形面积公式可得S△AMP =t,再利用三角形AMP的面积等于长方形面积的13,即可计算出t=20,从而可得AP=10,再根据点的坐标的表示方法即可写出点P的坐标. [详解](1)∵点A、C坐标分别为(﹣8,4)、(2,﹣8),∴B(﹣8,﹣8),D(2,4),长方形ABCD的面积=(2+8)×(4+8)=120;(2)当点P在线段AN上时,作PQ∥AM,如图,∵AM∥ON,∴AM∥PQ∥ON,∴∠QPM=∠AMP,∠QPO=∠PON,∴∠QPM+∠QPO=∠AMP+∠PON,即∠MPO=∠AMP+∠PON;当点P 在线段NB 上时,作PQ ∥AM ,如图,∵AM ∥ON ,∴AM ∥PQ ∥ON ,∴∠QPM=∠AMP ,∠QPO=∠PON , ∴∠QPM-∠QPO=∠AMP-∠PON ,即∠MPO=∠AMP-∠PON ;(3)存在,∵AM=8,AP=12t ,∴S △AMP =12×8×12t=2t , ∵三角形AMP 的面积等于长方形面积的13, ∴2t=120×13=40,∴t=20,AP=12×20=10, ∵AN=4,∴PN=6∴P 点坐标为(﹣8,﹣6).[点睛]本题考查了坐标与图形性质,结合图形、运用分类讨论思想进行解答是关键.。

(完整版)人教版七年级数学下册期中试卷及答案doc完整

(完整版)人教版七年级数学下册期中试卷及答案doc完整

(完整版)人教版七年级数学下册期中试卷及答案doc 完整一、选择题1.25的平方根是()A .±5B .5C .±5D .﹣52.下列图中的“笑脸”,由如图平移得到的是( )A .B .C .D . 3.如果点P (1-2m ,m )的横坐标与纵坐标互为相反数,则点P 一定在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 4.给出下列 4 个命题:①不是对顶角的两个角不相等;②三角形最大内角不小于 60°;③多边形的外角和小于内角和;④平行于同一直线的两条直线平行.其中真命题的个数是 ( )A .1B .2C .3D .45.直线12//l l ,125A ∠=︒,85B ∠=︒,115∠=︒,则2∠=( )A .15°B .25°C .35D .20°6.下列命题正确的是( )A .若a >b ,b <c ,则a >cB .若a ∥b ,b ∥c ,则a ∥cC .49的平方根是7D .负数没有立方根 7.将直角三角尺的直角顶点靠在直尺上,且斜边与这根直尺平行,那么,在形成的这个图中与α∠互余的角共有( )A .0个B .1个C .2个D .3个8.如图,在平面直角坐标系中,A (1,1),B (﹣1,1),C (﹣1,﹣2),D (1,﹣2),把一条长为2021个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A 处,并按A ﹣B ﹣C ﹣D ﹣A …的规律绕在四边形ABCD 的边上,则细线另一端所在位置的点的坐标是( )A .(﹣1,0)B .(0,2)C .(﹣1,﹣2)D .(0,1)二、填空题9.若,则()m a b +的值为10.已知点A (2a +3b ,﹣2)和点B (8,3a +1)关于y 轴对称,那么a +b =_____. 11.如图,在ABC ∆中A α∠=,作ABC ∠的角平分线与ACB ∠的外角的角平分线交于点1A ;1A BC ∠的角平分线与1A CB ∠角平分线交于2A ,如此下去,则2021A ∠=__________.12.如图,//AB CD ,点M 为CD 上一点,MF 平分∠CME .若∠1=57°,则∠EMD 的大小为_____度.13.如图,将长方形纸片ABCD 沿EF 折叠,使得点C 落在边AB 上的点H 处,点D 落在点G 处,若42AHG ∠=︒,则GEF ∠的度数为______.14.已知221m <,若0,m >2m +m =______ .15.若点P (2m+4,3m+3)在x 轴上,则点P 的坐标为________.16.如图,在平面直角坐标系中,三角形123A A A ,三角形345A A A ,三角形567A A A 都是斜边在x 轴上,斜边长分别为2,4,6,…的等腰直角三角形.若三角形123A A A 的顶点坐标分别为()12,0A ,()21,1A ,()30,0A ,则按图中规律,点9A 的坐标为______.三、解答题17.计算下列各式的值:(1)|–2|–3–8 + (–1)2021; (2)()2133+3––6⎛⎫ ⎪⎝⎭. 18.求下列各式中的x 值:(1)()3101250x ++=(2)()22360x --=19.完成下面推理过程,并在括号中填写推理依据:如图,AD ⊥BC 于点D ,EG ⊥BC 于点G ,∠E =∠3,试说明:AD 平分∠BA C .证明:∵AD ⊥BC ,EG ⊥BC∴∠ADC = =90°(垂直定义)∴ ∥EG (同位角相等,两直线平行)∴∠1= ( )∠2=∠3( )又∵∠3=∠E (已知)∴ =∠2∴AD 平分∠BAC20.如图,在平面直角坐标系中,()1,2--A ,()2,4B --,()4,1C --.ABC 中任意一点()00,P x y 经平移后对应点为()1001,2P x y ++,将ABC 作同样的平移得到111A B C △.(1)请画出111A B C △并写出点1A ,1B ,1C 的坐标;(2)求111A B C △的面积;(3)若点P 在y 轴上,且11A B P △的面积是1,请直接写出点P 的坐标.21.已知某正数的两个不同的平方根是314a -和2a +;11b +的立方根为3-;c 是6的整数部分.求3a b c -+的平方根.22.(1)如图1,分别把两个边长为1cm 的小正方形沿一条对角线裁成4个小三角形拼成一个大正方形,则大正方形的边长为______cm ;(2)若一个圆的面积与一个正方形的面积都是22πcm ,设圆的周长为C 圆.正方形的周长为C 正,则C 圆______C 正(填“=”,或“<”,或“>”)(3)如图2,若正方形的面积为2900cm ,李明同学想沿这块正方形边的方向裁出一块面积为2740cm 的长方形纸片,使它的长和宽之比为5:4,他能裁出吗?请说明理由?23.已知直线//AB CD ,点P 为直线AB 、CD 所确定的平面内的一点.(1)如图1,直接写出APC ∠、A ∠、C ∠之间的数量关系 ;(2)如图2,写出APC ∠、A ∠、C ∠之间的数量关系,并证明;(3)如图3,点E 在射线BA 上,过点E 作//EF PC ,作PEG PEF ∠∠=,点G 在直线CD 上,作BEG ∠的平分线EH 交PC 于点H ,若30APC ∠=,140PAB ∠=,求PEH ∠的度数.24.阅读下列材料并解答问题:在一个三角形中,如果一个内角的度数是另一个内角度数的3倍,那么这样的三角形我们称为“梦想三角形”例如:一个三角形三个内角的度数分别是120°,40°,20°,这个三角形就是一个“梦想三角形”.反之,若一个三角形是“梦想三角形”,那么这个三角形的三个内角中一定有一个内角的度数是另一个内角度数的3倍.(1)如果一个“梦想三角形”有一个角为108°,那么这个“梦想三角形”的最小内角的度数为__________(2)如图1,已知∠MON=60°,在射线OM上取一点A,过点A作AB⊥OM交ON于点B,以A为端点作射线AD,交线段OB于点C(点C不与O、B重合),若∠ACB=80°.判定△AOB、△AOC是否是“梦想三角形”,为什么?(3)如图2,点D在△ABC的边上,连接DC,作∠ADC的平分线交AC于点E,在DC上取一点F,使得∠EFC+∠BDC=180°,∠DEF=∠B.若△BCD是“梦想三角形”,求∠B的度数.【参考答案】一、选择题1.A解析:A【分析】根据平方根的定义,进行计算求解即可.【详解】解:∵(±5)2=25∴25的平方根±5.故选A.【点睛】本题主要考查了平方根的定义,解题的关键在于能够熟练掌握平方根的定义.2.D【分析】根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.【详解】解:A 、B 、C 都是由旋转得到的,D 是由平移得到的.故选:D .【点睛】解析:D【分析】根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.【详解】解:A 、B 、C 都是由旋转得到的,D 是由平移得到的.故选:D .【点睛】本题考查平移的基本性质是:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.3.B【分析】互为相反数的两个数的和为0,求出m 的值,再判断出所求点的横纵坐标的符号,进而判断点P 所在的象限.【详解】解:∵点P (1-2m ,m )的横坐标与纵坐标互为相反数∴120m m -+=解得m =1∴1-2m =1-2×1=-1,m =1∴点P 坐标为(-1,1)∴点P 在第二象限故选B .【点睛】本题考查了点的坐标和相反数的定义,解决本题的关键是记住平面直角坐标系中各个象限内点的符号特点:第一象限(+,+),第二象限(-,+),第三象限(-,-),第四象限(+,-). 4.B【分析】①举反例说明即可,②利用三角形内角和定理判断即可,③举反例说明即可,④根据平行线的判定方法判断即可.解:①如:两直线平行同位角相等,所以不是对顶角的两个角不相等,错误,;②若三角形最大内角小于60°,则三角形内角和小于180°,所以三角形最大内角不小于60°,正确;③如:三角形的外角和大于内角和,所以多边形的外角和小于内角和,错误;④平行于同一直线的两条直线平行,正确.故选:B.【点睛】本题考查了命题的真假,熟练掌握真假命题的定义及几何图形的性质是解答本题的关键,当命题的条件成立时,结论也一定成立的命题叫做真命题;当命题的条件成立时,不能保证命题的结论总是成立的命题叫做假命题.要指出一个命题是假命题,只要能够举出一个例子,使它具备命题的条件,而不符合命题的结论就可以了,这样的例子叫做反例.5.A【分析】分别过A、B作直线1l的平行线AD、BC,根据平行线的性质即可完成.【详解】分别过A、B作直线1l∥AD、1l∥BC,如图所示,则AD∥BC∵l∥2l1∴l∥BC2∴∠CBF=∠2∵l∥AD1∴∠EAD=∠1=15゜∴∠DAB=∠EAB-∠EAD=125゜-15゜=110゜∵AD∥BC∴∠DAB+∠ABC=180゜∴∠ABC=180゜-∠DAB=180゜-110゜=70゜∴∠CBF=∠ABF-∠ABC=85゜-70゜=15゜∴∠2=15゜故选:A.【点睛】本题考查了平行线的性质与判定等知识,关键是作两条平行线.6.B【分析】根据不等式的性质、平行线的判定、平方根和立方根依次判定各项后即可解答.【详解】选项A,由a>b,b>c,则a>c,可得选项A错误;选项B,若a∥b,b∥c,则a∥c,正确;选项C,由49的平方根是±7,可得选项C错误;选项D,由负数有立方根,可得选项D错误;故选B.【点睛】本题考查了命题的知识,关键是根据不等式的性质、平行线的判定、平方根和立方根解答.7.B【分析】由互余的定义、平行线的性质,利用等量代换求解即可.【详解】解:∵斜边与这根直尺平行,∴∠α=∠2,又∵∠1+∠2=90°,∴∠1+∠α=90°,又∠α+∠3=90°∴与α互余的角为∠1和∠3.故选:B.【点睛】此题考查的是对平行线的性质的理解,目的是找出与∠α和为90°的角.8.D【分析】根据题意可得,从A→B→C→D→A一圈的长度为2(AB+BC)=10,据此分析即可得细线另一端在绕四边形第202圈的第1个单位长度的位置,从而求得细线另一端所在位置的点的坐标.【详解解析:D【分析】根据题意可得,从A→B→C→D→A一圈的长度为2(AB+BC)=10,据此分析即可得细线另一端在绕四边形第202圈的第1个单位长度的位置,从而求得细线另一端所在位置的点的坐标.解:∵A 点坐标为(1,1),B 点坐标为(﹣1,1),C 点坐标为(﹣1,﹣2), ∴AB =1﹣(﹣1)=2,BC =2﹣(﹣1)=3,∴从A →B →C →D →A 一圈的长度为2(AB +BC )=10.2021÷10=202…1,∴细线另一端在绕四边形第202圈的第1个单位长度的位置,即细线另一端所在位置的点的坐标是(0,1).故选:D .【点睛】本题考查了坐标规律探索,找到规律是解题的关键.二、填空题9.-1【解析】解:有题意得,,,,则解析:-1【解析】 解:有题意得,,,,则()m a b + 10.-3.【分析】关于y 轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.据此可得a ,b 的值.【详解】解:∵点A (2a+3b ,﹣2)和点B (8,3a+1)关于y 轴对称,∴,解得,∴a+b =解析:-3.【分析】关于y 轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.据此可得a ,b 的值.【详解】解:∵点A (2a +3b ,﹣2)和点B (8,3a +1)关于y 轴对称,∴238312a b a +=-⎧⎨+=-⎩, 解得12a b =-⎧⎨=-⎩, ∴a +b =﹣3,故答案为:﹣3.本题考查的是关于y 轴对称的两个点的坐标关系,掌握以上知识是解题的关键. 11.【分析】根据角平分线的定义以及三角形外角的性质,三角形内角和定理得出与,与的关系,找出规律即可.【详解】解:设BC 延长与点D ,∵,的角平分线与的外角的角平分线交于点,∴,同 解析:202112α【分析】根据角平分线的定义以及三角形外角的性质,三角形内角和定理得出A ∠与1A ∠,A ∠与2A ∠的关系,找出规律即可.【详解】解:设BC 延长与点D ,∵180ACD ACB ∠=︒-∠, ABC ∠的角平分线与ACD ∠的外角的角平分线交于点1A ,∴111180()A A BC ACB ACA ∠=︒-∠+∠+∠11180(180)22ABC ACB ACB =︒-∠-∠-︒-∠ 190()2ABC ACB =︒-∠+∠ 190(180)2A =︒-︒-∠ 12A =∠, 同理可得1221122A A A ∠=∠=∠, 2331122A A A ∠=∠=∠,∴2021202112A A ∠=∠,∵A α∠=, ∴2021202112A α∠=, 故答案为:202112α.【点睛】 本题主要考查三角形外角的性质,角平分线的定义,三角形内角和等知识点,熟知以上知识点,找出角度之间的规律是解题的关键.12.【分析】根据AB ∥CD ,求得∠CMF=∠1=57°,利用MF 平分∠CME ,求得∠CME=2∠CMF =114°,根据∠EMD=180°-∠CME 求出结果.【详解】∵AB ∥CD ,∴∠CMF=∠解析:66【分析】根据AB ∥CD ,求得∠CMF=∠1=57°,利用MF 平分∠CME ,求得∠CME=2∠CMF =114°,根据∠EMD=180°-∠CME 求出结果.【详解】∵AB ∥CD ,∴∠CMF=∠1=57°,∵MF 平分∠CME ,∴∠CME=2∠CMF =114°,∴∠EMD=180°-∠CME =66°,故答案为:66.【点睛】此题考查平行线的性质,角平分线的有关计算,理解图形中角之间的和差关系是解题的关键.13.111°【分析】结合题意,根据轴对称和长方形的性质,得,,,,从而推导得;通过计算得,根据平行线同旁内角互补的性质,得,即可得到答案.【详解】根据题意,得,,,∴,∴∴∴∵解析:111°【分析】结合题意,根据轴对称和长方形的性质,得90FHG C B ∠=∠=∠=︒,HFE CFE ∠=∠,//BC AD ,GEF DEF ∠=∠,从而推导得BFH AHG ∠=∠;通过计算得CFE ∠,根据平行线同旁内角互补的性质,得DEF ∠,即可得到答案.【详解】根据题意,得90FHG C B ∠=∠=∠=︒,HFE CFE ∠=∠,//BC AD ,GEF DEF ∠=∠ ∴90BHF AHG ∠+∠=︒,90BHF BFH ∠+∠=︒∴42BFH AHG ∠=∠=︒∴180138HFE CFE BFH ∠+∠=︒-∠=︒∴69HFE CFE ∠=∠=︒∵//BC AD∴180111DEF CFE ∠=︒-∠=︒∴111GEF DEF ∠=∠=︒故答案为:111°.【点睛】本题考查了轴对称、平行线、矩形、余角的知识;解题的关键是熟练掌握轴对称和平行线的性质,从而完成求解.14.2【分析】根据题意可知m 是整数,然后求出m 的范围即可得出m 的具体数值,然后根据是整数即可求出答案.【详解】解:∵是整数,∴m 是整数,∵,∴m2≤4,∴−2≤m≤2,∴m =−2,−1解析:2【分析】根据题意可知m 是整数,然后求出m 的范围即可得出m 整数即可求出答案.【详解】解:∵∴m是整数,∵2m<∴m2≤4,∴−2≤m≤2,∴m=−2,−1,0,1,2当m=±2或−1m>∵0,∴m=2故答案为:2.【点睛】本题考查算术平方根和无理数大小的估算,解题的关键是根据条件求出m的范围,本题属于中等题型.15.(2,0)【分析】根据x轴上点的坐标的特点y=0,计算出m的值,从而得出点P坐标.【详解】解:∵点P(2m+4,3m+3)在x轴上,∴3m+3=0,∴m=﹣1,∴2m+4=2,∴点P解析:(2,0)【分析】根据x轴上点的坐标的特点y=0,计算出m的值,从而得出点P坐标.【详解】解:∵点P(2m+4,3m+3)在x轴上,∴3m+3=0,∴m=﹣1,∴2m+4=2,∴点P的坐标为(2,0),故答案为(2,0).16.【分析】根据题意可以知道A7A8A9的斜边长为8 ,A3A4A5的斜边长为4,A5A6A7的斜边长为6,进行计算求解即可.【详解】解:由题意得 A7A8A9的斜边长为8 ,A3A4A5的斜边解析:()6,0【分析】根据题意可以知道A 7A 8A 9的斜边长为8 ,A 3A 4A 5的斜边长为4,A 5A 6A 7的斜边长为6,进行计算求解即可.【详解】解:由题意得 A 7A 8A 9的斜边长为8 ,A 3A 4A 5的斜边长为4,A 5A 6A 7的斜边长为6 ∴A 7A 9=8,A 5A 7=6,A 3A 5=4∴A 3A 7= A 5A 7- A 3A 5=2∴A 3A 7= A 7A 9- A 3A 7=6又∵A 3与原点重合∴A 9的坐标为(6,0)故答案为:(6,0).【点睛】本题主要考查了坐标与图形的变化,解题的关键在于能够准确从图形中获取信息求解.三、解答题17.(1)3;(2)–2【分析】(1)根据绝对值、立方根、乘方解决此题.(2)先用乘法分配律去括号,从而简化运算.再根据算术平方根解决本题.【详解】解:(1)原式=,=3.(2)原式,=解析:(1)3;(2)–2【分析】(1)根据绝对值、立方根、乘方解决此题.(2)先用乘法分配律去括号,从而简化运算.再根据算术平方根解决本题.【详解】解:(1)原式=()()221--+-,=3.(2)原式= =3+1-6,=–2.【点睛】本地主要考查绝对值、立方根、算术平方根以及乘方,熟练掌握绝对值、立方根、算术平方根以及乘方是解决本题的关键.18.(1)x=-15;(2)x=8或x=-4【分析】(1)利用直接开立方法求得x 的值;(3)利用直接开平方法求得x 的值.【详解】解:(1),∴,∴,解得:x=-15;(2),∴,∴解析:(1)x =-15;(2)x =8或x =-4【分析】(1)利用直接开立方法求得x 的值;(3)利用直接开平方法求得x 的值.【详解】解:(1)()3101250x ++=,∴()310125x +=-, ∴105x +=-,解得:x =-15;(2)()22360x --=,∴()2236x -=, ∴26x -=±,解得:x =8或x =-4.【点睛】本题考查了立方根和平方根.正数的立方根是正数,0的立方根是0,负数的立方根是负数.即任意数都有立方根.19.;两直线平等行,同位角相等;两直线平行,内错角相等;;等量代换;角平分线定义【分析】根据AD ⊥BC ,EG ⊥BC ,可得,进而根据平行线的性质,两直线平行同位角相等,内错角相等,可得,,由已知条件∠解析:;;EGC AD E ∠∠;两直线平等行,同位角相等;两直线平行,内错角相等;1∠;等量代换;角平分线定义【分析】根据AD ⊥BC ,EG ⊥BC ,可得//AD EG ,进而根据平行线的性质,两直线平行同位角相等,内错角相等,可得1E ∠=∠,2=3∠∠,由已知条件∠3=∠E ,等量代换即可的12∠=∠,即可证明AD 平分∠BA C .【详解】证明:∵AD ⊥BC ,EG ⊥BC∴∠ADC =EGC ∠=90°(垂直定义)∴AD ∥EG (同位角相等,两直线平行)∴∠1=E ∠(两直线平等行,同位角相等)∠2=∠3(两直线平行,内错角相等)又∵∠3=∠E (已知)∴1∠=∠2(等量代换)∴AD 平分∠BAC (角平分线的定义)故答案是:∠EGC ;AD ;∠E ;两直线平等行,同位角相等;两直线平行,内错角相等;∠1;等量代换;角平分线定义.【点睛】本题考查了垂线的定义,平行线的性质与判定,角平分线的定义,掌握以上定理性质是解题的关键.20.(1)图见解析,,,;(2)3.5;(3)点的坐标为或【分析】(1)依据点P (x0,y0)经平移后对应点为P1(x0+1,y0+2),可得平移的方向和距离,将△ABC 作同样的平移即可得到△A1B解析:(1)图见解析,()10,0A ,()11,2B --,()131C ,-;(2)3.5;(3)点P 的坐标为()02,或()0,2-【分析】(1)依据点P (x 0,y 0)经平移后对应点为P 1(x 0+1,y 0+2),可得平移的方向和距离,将△ABC 作同样的平移即可得到△A 1B 1C 1;(2)利用割补法进行计算,即可得到△A 1B 1C 1的面积;(3)设P (0,y ),依据△A 1B 1P 的面积是1,即可得到y 的值,进而得出点P 的坐标.【详解】解:(1)如图所示,111A B C △即为所求;()10,0A ,()11,2B --,()131C ,-;(2)111A B C △的面积为:()11113313126 1.51 3.5222+⨯-⨯⨯-⨯⨯=--=; (3)设()0,P y ,则1A P y =,∵11A B P △的面积是1, ∴1112y ⨯⨯=, 解得2y =±,∴点P 的坐标为()02,或()0,2-.【点睛】本题主要考查了利用平移变换作图,作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形. 21.【分析】由平方根的含义求解 由立方根的含义求解 由整数部分的含义求解 从而可得答案.【详解】解:某正数的两个平方根分别是和,,又的立方根为,,,又是的整数部分,;当,,时,解析:7±【分析】由平方根的含义求解,a 由立方根的含义求解,b 由整数部分的含义求解,c 从而可得答案.【详解】 解:某正数的两个平方根分别是314a -和2a +,(314)(2)0a a ∴-++=,3,a ∴=又11b +的立方根为3-,311(3)27b ∴+=-=-,38b ∴=-,又c2c ∴=;当3a =,38b =-,2c =时,333(38)249a b c -+=⨯--+=,3a b c ∴-+的平方根是7±.【点睛】本题考查的是平方根,立方根的含义,无理数的估算,整数部分的含义,掌握以上知识是解题的关键.22.(1);(2)<;(3)不能,理由见解析【分析】(1)根据所拼成的大正方形的面积为2即可求得大正方形的边长;(2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形的解析:(12)<;(3)不能,理由见解析【分析】(1)根据所拼成的大正方形的面积为2即可求得大正方形的边长;(2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形的周长,利用作商法比较这两数大小即可;(3)利用方程思想求出长方形的长边,与正方形边长比较大小即可;【详解】解:(1)∵小正方形的边长为1cm ,∴小正方形的面积为1cm 2,∴两个小正方形的面积之和为2cm 2,即所拼成的大正方形的面积为2 cm 2,设大正方形的边长为x cm ,∴22x = , ∴x∴;(2)设圆的半径为r ,∴由题意得22r ππ=, ∴r =∴=22C r π=圆设正方形的边长为a∵22a π=, ∴a∴=4C a =正∴1C C ===<圆正 故答案为:<;(3)解:不能裁剪出,理由如下:∵正方形的面积为900cm 2,∴正方形的边长为30cm∵长方形纸片的长和宽之比为5:4,∴设长方形纸片的长为5x ,宽为4x ,则54740x x ⋅=,整理得:237x =,∴22(5)252537925900x x ==⨯=>,∴22(5)30x >,∴530x >,∴长方形纸片的长大于正方形的边长,∴不能裁出这样的长方形纸片.【点睛】本题通过圆和正方形的面积考查了对算术平方根的应用,主要是对学生无理数运算及比较大小进行了考查.23.(1)∠A+∠C+∠APC=360°;(2)见解析;(3)55°【分析】(1)首先过点P 作PQ ∥AB ,则易得AB ∥PQ ∥CD ,然后由两直线平行,同旁内角互补,即可证得∠A+∠C+∠APC=360解析:(1)∠A +∠C +∠APC =360°;(2)见解析;(3)55°【分析】(1)首先过点P 作PQ ∥AB ,则易得AB ∥PQ ∥CD ,然后由两直线平行,同旁内角互补,即可证得∠A +∠C +∠APC =360°;(2)作PQ ∥AB ,易得AB ∥PQ ∥CD ,根据两直线平行,内错角相等,即可证得∠APC =∠A +∠C ;(3)由(2)知,∠APC =∠PAB -∠PCD ,先证∠BEF =∠PQB =110°、∠PEG =12∠FEG ,∠GEH =12∠BEG ,根据∠PEH =∠PEG -∠GEH 可得答案.【详解】解:(1)∠A +∠C +∠APC =360°如图1所示,过点P作PQ∥AB,∴∠A+∠APQ=180°,∵AB∥CD,∴PQ∥CD,∴∠C+∠CPQ=180°,∴∠A+∠APQ+∠C+∠CPQ=360°,即∠A+∠C+∠APC=360°;(2)∠APC=∠A+∠C,如图2,作PQ∥AB,∴∠A=∠APQ,∵AB∥CD,∴PQ∥CD,∴∠C=∠CPQ,∵∠APC=∠APQ-∠CPQ,∴∠APC=∠A-∠C;(3)由(2)知,∠APC=∠PAB-∠PCD,∵∠APC=30°,∠PAB=140°,∴∠PCD=110°,∵AB∥CD,∴∠PQB=∠PCD=110°,∵EF∥BC,∴∠BEF=∠PQB=110°,∵EF∥BC,∴∠BEF=∠PQB=110°,∵∠PEG=∠PEF,∠FEG,∴∠PEG=12∵EH平分∠BEG,∴∠GEH=12∠BEG,∴∠PEH=∠PEG-∠GEH=1 2∠FEG-12∠BEG=12∠BEF=55°.【点睛】此题考查了平行线的性质以及角平分线的定义.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.24.(1)36°或18°;(2)△AOB、△AOC都是“梦想三角形”,证明详见解析;(3)∠B=36°或∠B=.【分析】(1)根据三角形内角和等于180°,如果一个“梦想三角形”有一个角为108°,解析:(1)36°或18°;(2)△AOB、△AOC都是“梦想三角形”,证明详见解析;(3)∠B=36°或∠B=5407().【分析】(1)根据三角形内角和等于180°,如果一个“梦想三角形”有一个角为108°,可得另两个角的和为72°,由三角形中一个内角是另一个内角的3倍时,可以分别求得最小角为180°﹣108°﹣108÷3°=36°,72°÷(1+3)=18°,由此比较得出答案即可;(2)根据垂直的定义、三角形内角和定理求出∠ABO、∠OAC的度数,根据“梦想三角形”的定义判断即可;(3)根据同角的补角相等得到∠EFC=∠ADC,根据平行线的性质得到∠DEF=∠ADE,推出DE∥BC,得到∠CDE=∠BCD,根据角平分线的定义得到∠ADE=∠CDE,求得∠B=∠BCD,根据“梦想三角形”的定义求解即可.【详解】解:当108°的角是另一个内角的3倍时,最小角为180°﹣108°﹣108÷3°=36°,当180°﹣108°=72°的角是另一个内角的3倍时,最小角为72°÷(1+3)=18°,因此,这个“梦想三角形”的最小内角的度数为36°或18°.故答案为:18°或36°.(2)△AOB、△AOC都是“梦想三角形”证明:∵AB⊥OM,∴∠OAB=90°,∴∠ABO=90°﹣∠MON=30°,∴∠OAB=3∠ABO,∴△AOB为“梦想三角形”,∵∠MON=60°,∠ACB=80°,∠ACB=∠OAC+∠MON,∴∠OAC=80°﹣60°=20°,∴∠AOB=3∠OAC,∴△AOC是“梦想三角形”.(3)解:∵∠EFC+∠BDC=180°,∠ADC+∠BDC=180°,∴∠EFC=∠ADC,∴AD∥EF,∴∠DEF=∠ADE,∵∠DEF=∠B,∴∠B=∠ADE,∴DE∥BC,∴∠CDE=∠BCD,∵AE平分∠ADC,∴∠ADE=∠CDE,∴∠B=∠BCD,∵△BCD是“梦想三角形”,∴∠BDC=3∠B,或∠B=3∠BDC,∵∠BDC+∠BCD+∠B=180°,∴∠B=36°或∠B=5407().【点睛】本题考查的是三角形内角和定理、“梦想三角形”的概念,用分类讨论的思想解决问题是解本题的关键.。

(完整版)人教版七年级数学下册期中试卷及答案doc完整

(完整版)人教版七年级数学下册期中试卷及答案doc完整

(完整版)人教版七年级数学下册期中试卷及答案doc 完整一、选择题1.2(2)-的平方根是()A .2B .2±C .2±D .22.下列四幅图案中,通过平移能得到图案E 的是( )A .AB .BC .CD .D 3.在平面直角坐标系中,下列各点位于第三象限的是( ) A .(0,3) B .(2,1)- C .(1,2)- D .(1,1)-- 4.下列四个命题其中正确的个数是( )①对顶角相等;②在同一平面内,若//a b ,c 与a 相交,则b 与c 也相交;③邻补角的平分线互相垂直;④在同一平面内,垂直于同一条直线的两条直线互相垂直A .1个B .2个C .3个D .4个5.如图,已知直线AB 、CD 被直线AC 所截,//AB CD ,E 是直线AC 右边任意一点(点E 不在直线AB ,CD 上),设BAE α∠=,DCE β∠=.下列各式:①αβ+,②αβ-,③βα-,④360αβ︒--,AEC ∠的度数可能是( )A .①②③B .①②④C .①③④D .①②③④ 6.对于有理数a .b ,定义min {a ,b }的含义为:当a <b 时,min {a ,b }=a ,当b <a 时,min {a ,b }=b .例如:min {1,﹣2}=﹣2,已知min {30,a }=a ,min {30,b }=30,且a 和b 为两个连续正整数,则a ﹣b 的立方根为( )A .﹣1B .1C .﹣2D .27.如图,在ABC 中,//DF AB 交AC 于点E ,交BC 于点F ,连接DC ,70A ∠=︒,38D ∠=︒,则DCA ∠的度数是( )A .42°B .38°C .40°D .32°8.若点(1,3)++M k k 在x 轴上,则点M 的坐标为( )A .(4,0)B .(0,3)-C .(2,0)-D .(0,2)-二、填空题9.425⨯=______.10.已知点(),2019A a 与点202()0,B b 关于y 轴对称,则+a b 的值为__________. 11.如图,在ABC 中,70A ∠=︒,ABC ∠的角平分线与ABC 的外角角平分线交于点E ,则E ∠=__________度.12.如图,//a b ,直角三角板直角顶点在直线b 上.已知150∠=︒,则2∠的度数为______°.13.把一张长方形纸条按如图所示折叠后,若70AOB '∠=︒,则OGD ∠=_______;14.已知M 是满足不等式36a <<N 是满足不等式372-大整数,则M +N 的平方根为________. 15.已知点M 在y 轴上,纵坐标为4,点P (6,﹣4),则△OMP 的面积是__. 16.如图,在平面直角坐标系中,x AB //EG //轴,BC DE HG AP y ////////轴,点D 、C 、P 、H 在x 轴上,()1,2A ,()1,2B -,()3,0D -,()3,2E --,()3,2G -.把一条长为2018个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在A 处,并按A B C D E F G H P A -------⋅⋅⋅-⋅⋅⋅的规律紧绕在图形“凸”的边上,则细线的另一端所在位置的点的坐标是_______.三、解答题17.计算:(1)()4129-⨯- (2)()432054⎛⎫-⨯- ⎪⎝⎭ 18.求下列各式中x 的值:(1)2360x -=;(2)31348x -=-. 19.如图所示,完成下列填空∵∠1=∠5(已知)∴a // (同位角相等,两直线平行)∵∠3= (已知)∴a //b ( )∵∠5+ =180°(已知)∴a //b ( )20.已知:如图,把△ABC 向上平移4个单位长度,再向右平移3个单位长度,得到△A ′B ′C ′,(1)画出△A ′B ′C ′,写出A ′、B ′、C ′的坐标;(2)点P 在y 轴上,且S △BCP =4S △ABC ,直接写出点P 的坐标.21.阅读下面的文字,解答问题. 大家知道2是无理数,而无理数是无限不循环小数,因此2的小数部分我们不可能全部地写出来,于是小明用21-来表示2的小数部分,你同意小明的表示方法吗? 事实上,小明的表示方法是有道理,因为2的整数部分是1,将这个数减去其整数部分,差就是小数部分.请解答:(1)若13的整数部分为a ,小数部分为b ,求213a b +-的值.(2)已知:103x y +=+,其中x 是整数,且01y <<,求x y -的值.22.如图1,用两个边长相同的小正方形拼成一个大的正方形.(1)如图2,若正方形纸片的面积为12dm ,则此正方形的对角线AC 的长为 dm . (2)如图3,若正方形的面积为162cm ,李明同学想沿这块正方形边的方向裁出一块面积为122cm 的长方形纸片,使它的长和宽之比为3∶2,他能裁出吗?请说明理由. 23.如图1,MN ∥PQ ,点C 、B 分别在直线MN 、PQ 上,点A 在直线MN 、PQ 之间. (1)求证:∠CAB =∠MCA +∠PBA ;(2)如图2,CD ∥AB ,点E 在PQ 上,∠ECN =∠CAB ,求证:∠MCA =∠DCE ;(3)如图3,BF 平分∠ABP ,CG 平分∠ACN ,AF ∥CG .若∠CAB =60°,求∠AFB 的度数.24.如图,在ABC 中,ABC ∠与ACB ∠的角平分线交于O 点.(1)若40A ∠=︒,则BOC ∠= ︒;(2)若A n ∠=︒,则BOC ∠= ︒;(3)若A n ∠=︒,ABC ∠与ACB ∠的角平分线交于O 点,ABO ∠的平分线与ACO ∠的平分线交于点1O ,,2016O BD ∠的平分线与2016O CE ∠的平分线交于点2017O ,则2017O ∠=︒.【参考答案】一、选择题1.B解析:B【分析】先计算出2(2)4-=,再求出的平方根即可.【详解】解:∵2(2)4-=,2(2)4±=∴2(2)-的平方根是2±,故选:B .【点睛】本题考查了平方根的概念和求法,掌握平方根的定义是解题的关键.2.B【分析】根据平移的特征分析各图特点,只要符合“图形的形状、大小和方向都不改变”即为答案.【详解】根据平移不改变图形的形状、大小和方向,将题图所示的图案通过平移后可以得到的图案是E,满足条件解析:B【分析】根据平移的特征分析各图特点,只要符合“图形的形状、大小和方向都不改变”即为答案.【详解】根据平移不改变图形的形状、大小和方向,将题图所示的图案通过平移后可以得到的图案是E,满足条件的原图是B;A,D选项改变了方向,故错误,C选项中,三角形和四边形位置不对,故C错误故选:B【点睛】在平面内,把一个图形整体沿某一个方向移动,这种图形的平行移动,叫做平移变换,简称平移.平移是指图形的平行移动,平移时图形中所有点移动的方向一致,并且移动的距离相等.确定一个图形平移的方向和距离,只需确定其中一个点平移的方向和距离.3.D【分析】根据各象限内点的坐标特征对各选项分析判断后利用排除法求解.【详解】解:A、(0,3)在y轴上,故本选项不符合题意;B、(−2,1)在第二象限,故本选项不符合题意;C、(1,−2)在第四象限,故本选项不符合题意;D、(-1,-1)在第三象限,故本选项符合题意.故选:D.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4.D【分析】分别根据对顶角、邻补角、平行线的判定方法即可解答.【详解】①对顶角相等,正确;②在同一平面内,若//a b,c与a相交,则b与c也相交,正确;③邻补角之和为180°,所以它们平分线的夹角为180=902︒︒,即邻补角的平分线互相垂直,正确;④在同一平面内,垂直于同一条直线的两条直线互相垂直,正确.故选:D.【点睛】本题考查了平行线定理,两直线位置关系和对顶角、邻补角等知识,熟练掌握定理并灵活运用是解题关键.5.A【分析】根据点E有3种可能位置,分情况进行讨论,依据平行线的性质以及三角形外角性质进行计算求解即可.【详解】解:(1)如图,由AB∥CD,可得∠AOC=∠DCE1=β,∵∠AOC=∠BAE1+∠AE1C,∴∠AE1C=β-α.(2)如图,过E2作AB平行线,则由AB∥CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β,∴∠AE2C=α+β.(3)当点E在CD的下方时,同理可得,∠AEC=α-β.综上所述,∠AEC的度数可能为β-α,α+β,α-β.即①α+β,②α-β,③β-α,都成立.故选A .【点睛】本题主要考查了平行线的性质的运用,解题时注意:两直线平行,同位角相等;两直线平行,内错角相等.6.A【分析】根据a ,b 的范围即可求出a −b 的立方根.【详解】解:根据题意得:a ≤30,b ≥30,∵25<30<36,∴5<30<6,∵a 和b 为两个连续正整数,∴a =5,b =6,∴a ﹣b =﹣1,∴﹣1的立方根是﹣1,故选:A .【点睛】本题考查用新定义解决数学问题及无理数的估计,立方根的求法,正确理解新定义是求解本题的关键.7.D【分析】由//DF AB 可得到A ∠与FEC ∠的关系,利用三角形的外角与内角的关系可得结论.【详解】解://DF AB ,70A ∠=︒,70A FEC ∴∠=∠=︒.FEC D DCA ∠=∠+∠,38D ∠=︒,DCA FEC D ∴∠=∠-∠7038=︒-︒32=︒.故选:D .【点睛】本题考查了平行线的性质与三角形的外角性质,掌握“三角形的外角等于与它不相邻的两个内角和”是解决本题的关键.8.C【分析】点在轴上,则纵坐标为零,列式计算,得到 的值,从而代入横坐标得到点M 的坐标.【详解】解:∵在轴上∴∴∴∴点的坐标为故选:C【点睛】本题考查平面直角坐标系中,坐标解析:C【分析】点(1,3)++M k k 在x 轴上,则纵坐标为零,列式计算,得到k 的值,从而代入横坐标得到点M 的坐标.【详解】解:∵(1,3)++M k k 在x 轴上∴30k +=∴3k =-∴13+1=2k +=--∴点M 的坐标为(2,0)-故选:C【点睛】本题考查平面直角坐标系中,坐标轴上点的特征,根据知识点切入解题是关键.二、填空题9.10【分析】先计算乘法,然后计算算术平方根,即可得到答案.【详解】解:;故答案为:10.【点睛】本题考查了算术平方根,解题的关键是掌握算术平方根的计算方法.解析:10【分析】先计算乘法,然后计算算术平方根,即可得到答案.【详解】10=;故答案为:10.【点睛】本题考查了算术平方根,解题的关键是掌握算术平方根的计算方法.10.-1【分析】直接利用关于y 轴对称点的性质得出a ,b 的值进而得出答案.【详解】解:∵点A (a ,2019)与点是关于y 轴的对称点,∴a=-2020,b=2019,∴a+b=-1.故答案为:解析:-1【分析】直接利用关于y 轴对称点的性质得出a ,b 的值进而得出答案.【详解】解:∵点A (a ,2019)与点202()0,B b 是关于y 轴的对称点,∴a=-2020,b=2019,∴a+b=-1.故答案为:-1.【点睛】本题考查关于y 轴对称的点的坐标性质,解题关键是熟练掌握横纵坐标的关系. 11.35【分析】根据三角形的一个外角等于与它不相邻的两个内角的和,用∠A 与∠EBC 表示出∠ECD ,再利用∠E 与∠EBC 表示出∠ECD ,然后整理即可得到∠A 与∠E 的关系,进而可求出∠E .【详解】解解析:35【分析】根据三角形的一个外角等于与它不相邻的两个内角的和,用∠A 与∠EBC 表示出∠ECD ,再利用∠E 与∠EBC 表示出∠ECD ,然后整理即可得到∠A 与∠E 的关系,进而可求出∠E .【详解】解:∵BE和CE分别是∠ABC和∠ACD的角平分线,∴∠EBC=12∠ABC,∠ECD=12∠ACD,又∵∠ACD是△ABC的一外角,∴∠ACD=∠A+∠ABC,∴∠ECD=12(∠A+∠ABC)=12∠A+∠ECD,∵∠ECD是△BEC的一外角,∴∠ECD=∠EBC+∠E,∴∠E=∠ECD-∠EBC=12∠A+∠EBC-∠EBC=12∠A=12×70°=35°,故答案为:35.【点睛】本题考查了三角形的外角性质与内角和定理,角平分线的定义,熟记三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.12.40【分析】根据a∥b,可以得到∠1=∠DAE,∠2=∠CAB,再根据∠DAC=90°,即可求解. 【详解】解:如图所示∵a∥b∴∠1=∠DAE,∠2=∠CAB∵∠DAC=90°∴∠D解析:40【分析】根据a∥b,可以得到∠1=∠DAE,∠2=∠CAB,再根据∠DAC=90°,即可求解.【详解】解:如图所示∵a∥b∴∠1=∠DAE,∠2=∠CAB∵∠DAC=90°∴∠DAE+∠CAB=180°-∠DAC=90°∴∠1+∠2=90°∴∠2=90°-∠1=40°故答案为:40.【点睛】本题主要考查了平行线的性质,解题的关键在于能够熟练掌握平行线的性质.13.55°【分析】直接根据补角的定义可知∠AOB′+∠BOG+∠B′OG=180°,再由图形翻折变换的性质可知∠BOG=∠B′OG ,再由平行线的性质可得出结论.【详解】解:∵∠AOB′=70°,解析:55°【分析】直接根据补角的定义可知∠AOB ′+∠BOG +∠B ′OG =180°,再由图形翻折变换的性质可知∠BOG =∠B ′OG ,再由平行线的性质可得出结论.【详解】解:∵∠AOB ′=70°,∠AOB ′+∠BOG +∠B ′OG =180°,∴∠BOG +∠B ′OG =180°-70°=110°.∵∠B ′OG 由∠BOG 翻折而成,∴∠BOG =∠B ′OG ,∴∠BOG =180702 =55°. ∵AB ∥CD ,∴∠OGD =∠BOG =55°.故答案为:55°.【点睛】本题考查的是平行线的性质,熟知图形翻折不变性的性质是解答此题的关键. 14.±2【分析】首先估计出a 的值,进而得出M 的值,再得出N 的值,再利用平方根的定义得出答案.【详解】解:∵M是满足不等式-的所有整数a的和,∴M=-1+0+1+2=2,∵N是满足不等式x≤的解析:±2【分析】首先估计出a的值,进而得出M的值,再得出N的值,再利用平方根的定义得出答案.【详解】解:∵M a<a的和,∴M=-1+0+1+2=2,∵N是满足不等式x∴N=2,∴M+N的平方根为:±2.故答案为:±2.【点睛】此题主要考查了估计无理数的大小,得出M,N的值是解题关键.15.【分析】由M点的位置易求OM的长,在根据三角形的面积公式计算可求解.【详解】解:∵M在y轴上,纵坐标为4,∴OM=4,∵P(6,﹣4),∴S△OMP=OM•|xP|=×4×6=12解析:【分析】由M点的位置易求OM的长,在根据三角形的面积公式计算可求解.【详解】解:∵M在y轴上,纵坐标为4,∴OM=4,∵P(6,﹣4),∴S△OMP=1OM•|x P|2×4×6=12=12.故答案为12.【点睛】本题考查了三角形的面积,坐标与图形的性质,根据三角形的面积公式求解是解题的关键.16.(1,0)【分析】先求出凸形ABCDEFGHP的周长为20,得到2018÷20的余数为18,由此即可解决问题.【详解】解:∵A(1,2),B(-1,2),D(-3,0),E(-3,-2),G解析:(1,0)【分析】先求出凸形ABCDEFGHP的周长为20,得到2018÷20的余数为18,由此即可解决问题.【详解】解:∵A(1,2),B(-1,2),D(-3,0),E(-3,-2),G(3,-2),∴“凸”形ABCDEFGHP的周长为20,2018÷20的余数为18,∴细线另一端所在位置的点在P处,坐标为(1,0).故答案为:(1,0).【点睛】本题考查规律型:点的坐标,解题的关键是理解题意,求出“凸”形的周长,属于中考常考题型.三、解答题17.(1)-1;(2)-1【分析】(1)根据乘方及二次根式的化简即可求解;(2)根据乘法的分配率计算即可.【详解】(1)(2)【点睛】本题考查的是实数的运算,掌握运算法则及乘法的分配率是解析:(1)-1;(2)-1【分析】(1)根据乘方及二次根式的化简即可求解;(2)根据乘法的分配率计算即可.【详解】(1)()412-⨯ (2)()()()434320=-20--20=-1615=-15454⎛⎫-⨯-⨯⨯+ ⎪⎝⎭【点睛】本题考查的是实数的运算,掌握运算法则及乘法的分配率是关键.18.(1);(2)【分析】(1)方程整理后,利用开平方定义即可求解,即将一个正数开平方后,得到互为相反数的两个解;(2)方程整理后,将一个数开立方后,只得到一个解.【详解】解:(1)移项得,,解析:(1)6x =±;(2)12x =-【分析】(1)方程整理后,利用开平方定义即可求解,即将一个正数开平方后,得到互为相反数的两个解;(2)方程整理后,将一个数开立方后,只得到一个解.【详解】解:(1)移项得,236x =,开方得,6x =±;(2)移项得,33184x =-+, 合并同类项得,318x =-, 开立方得,12x =-.【点睛】此题考查了立方根,以及平方根,熟练掌握各自的性质是解题关键. 19.b ,∠5,内错角相等,两直线平行,∠4,同旁内角互补,两直线平行.【分析】准确的找出“三线八角”中的同位角、内错角、同旁内角,然后根据平行线的判定定理进行求解.【详解】解:∵∠1=∠5,(已解析:b,∠5,内错角相等,两直线平行,∠4,同旁内角互补,两直线平行.【分析】准确的找出“三线八角”中的同位角、内错角、同旁内角,然后根据平行线的判定定理进行求解.【详解】解:∵∠1=∠5,(已知)∴a∥b(同位角相等,两直线平行);∵∠3=∠5,(已知)∴a∥b(内错角相等,两直线平行);∵∠5+∠4=180°,(已知)∴a∥b(同旁内角互补,两直线平行).故答案是:b,∠5,内错角相等,两直线平行,∠4,同旁内角互补,两直线平行.【点睛】本题考查平行线的判定定理,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.20.(1)作图见解析,A′(1,5),B′(0,2),C′(4,2);(2)P(0,10)或(0,-12).【分析】(1)分别作出A,B,C的对应点A′,B′,C′即可解决问题;(2)设P(0,m解析:(1)作图见解析,A′(1,5),B′(0,2),C′(4,2);(2)P(0,10)或(0,-12).【分析】(1)分别作出A,B,C的对应点A′,B′,C′即可解决问题;(2)设P(0,m),构建方程解决问题即可.【详解】解:(1)如图,△A′B′C′即为所求,A′(1,5),B′(0,2),C′(4,2);(2)设P(0,m),由题意:12×4×|m+2|=4×12×4×3,解得m=10或-12,∴P(0,10)或(0,-12).【点睛】本题考查了坐标与图形的性质,平移变换,三角形的面积等知识,解题的关键是熟练掌握平移变换的性质.21.(1)6;(2)12−【分析】(1)先求出的取值范围即可求出a和b的值,然后代入求值即可;(2)先求出的取值范围,即可求出10+的整数部分和小数部分,从而求出x和y,从而求出结论.【详解】解析:(1)6;(2)【分析】(1a和b的值,然后代入求值即可;(2x和y,从而求出结论.【详解】解:(1)∵ 34,∴∴2a b+=23=6(2)∵.又∵x+y,其中x是整数,且0<y<1,∴x=11, y1.∴x−y【点睛】此题考查的是求无理数的整数部分、小数部分和实数的运算,掌握求无理数的取值范围是解决此题的关键.22.(1);(2)不能,理由见解析【分析】(1)由正方形面积,可求得正方形边长,然后利用勾股定理即可求出对角线长;(2)利用方程思想求出长方形的长边,然后与正方形边长比较大小即可.【详解】解:解析:(1)2)不能,理由见解析【分析】(1)由正方形面积,可求得正方形边长,然后利用勾股定理即可求出对角线长; (2)利用方程思想求出长方形的长边,然后与正方形边长比较大小即可.【详解】解:(1)∵正方形纸片的面积为21dm ,∴正方形的边长1AB BC dm ==, ∴AC =.(2)不能;根据题意设长方形的长和宽分别为3xcm 和2xcm .∴长方形面积为:2?312x x =,解得:x =∴长方形的长边为.∵4,∴他不能裁出.【点睛】本题考查了算术平方根在长方形和正方形面积中的应用,灵活的进行算术平方根计算及无理数大小比较是解题的关键.23.(1)证明见解析;(2)证明见解析;(3)120°.【分析】(1)过点A 作AD ∥MN ,根据两直线平行,内错角相等得到∠MCA =∠DAC ,∠PBA =∠DAB ,根据角的和差等量代换即可得解;(2)解析:(1)证明见解析;(2)证明见解析;(3)120°.【分析】(1)过点A 作AD ∥MN ,根据两直线平行,内错角相等得到∠MCA =∠DAC ,∠PBA =∠DAB ,根据角的和差等量代换即可得解;(2)由两直线平行,同旁内角互补得到∴、∠CAB +∠ACD =180°,由邻补角定义得到∠ECM +∠ECN =180°,再等量代换即可得解;(3)由平行线的性质得到,∠FAB =120°﹣∠GCA ,再由角平分线的定义及平行线的性质得到∠GCA ﹣∠ABF =60°,最后根据三角形的内角和是180°即可求解.【详解】解:(1)证明:如图1,过点A 作AD ∥MN ,∵MN∥PQ,AD∥MN,∴AD∥MN∥PQ,∴∠MCA=∠DAC,∠PBA=∠DAB,∴∠CAB=∠DAC+∠DAB=∠MCA+∠PBA,即:∠CAB=∠MCA+∠PBA;(2)如图2,∵CD∥AB,∴∠CAB+∠ACD=180°,∵∠ECM+∠ECN=180°,∵∠ECN=∠CAB∴∠ECM=∠ACD,即∠MCA+∠ACE=∠DCE+∠ACE,∴∠MCA=∠DCE;(3)∵AF∥CG,∴∠GCA+∠FAC=180°,∵∠CAB=60°即∠GCA+∠CAB+∠FAB=180°,∴∠FAB=180°﹣60°﹣∠GCA=120°﹣∠GCA,由(1)可知,∠CAB=∠MCA+∠ABP,∵BF平分∠ABP,CG平分∠ACN,∴∠ACN=2∠GCA,∠ABP=2∠ABF,又∵∠MCA=180°﹣∠ACN,∴∠CAB=180°﹣2∠GCA+2∠ABF=60°,∴∠GCA﹣∠ABF=60°,∵∠AFB+∠ABF+∠FAB=180°,∴∠AFB=180°﹣∠FAB﹣∠FBA=180°﹣(120°﹣∠GCA)﹣∠ABF=180°﹣120°+∠GCA﹣∠ABF=120°.【点睛】本题主要考查了平行线的性质,线段、角、相交线与平行线,准确的推导是解决本题的关键.24.(1)110(2)(90 +n)(3)×90°+n°【分析】(1)根据角平分线的性质,结合三角形的内角和定理可得到角之间的关系,然后求解即可;(2)根据BO 、CO 分别是∠ABC 与∠ACB 的角平解析:(1)110(2)(90 +12n )(3)201712×90°+20182018212-n ° 【分析】(1)根据角平分线的性质,结合三角形的内角和定理可得到角之间的关系,然后求解即可;(2)根据BO 、CO 分别是∠ABC 与∠ACB 的角平分线,用n °的代数式表示出∠OBC 与∠OCB 的和,再根据三角形的内角和定理求出∠BOC 的度数;(3)根据规律直接计算即可.【详解】解:(1)∵∠A=40°,∴∠ABC+∠ACB=140°,∵点O 是∠AB 故答案为:110°;C 与∠ACB 的角平分线的交点,∴∠OBC+∠OCB=70°,∴∠BOC=110°.(2)∵∠A=n°,∴∠ABC+∠ACB=180°-n°,∵BO 、CO 分别是∠ABC 与∠ACB 的角平分线,∴∠OBC +∠OCB =12∠ABC +12∠ACB =12(∠ABC +∠ACB ) =12(180°﹣n °)=90°﹣12n °,∴∠BOC =180°﹣(∠OBC +∠OCB )=90°+12n °.故答案为:(90+12n );(3)由(2)得∠O =90°+12n °,∵∠ABO 的平分线与∠ACO 的平分线交于点O 1, ∴∠O 1BC =34∠ABC ,∠O 1CB =34∠ACB , ∴∠O 1=180°﹣34(∠ABC +∠ACB )=180°﹣34(180°﹣∠A )=14×180°+34n °, 同理,∠O 2=18×180°+78n °, ∴∠O n =112n +×180°+11212n n ++- n °,∴∠O 2017=201812×180°+20182018212-n °, 故答案为:201712×90°+20182018212-n °. 【点睛】 本题考查了三角形内角和定理,角平分线定义的应用,注意:三角形的内角和等于180°.。

人教版七年级下册数学期中考试试题附答案

人教版七年级下册数学期中考试试题附答案

人教版七年级下册数学期中考试试卷一、单选题1.通过平移,可将图(1)中的福娃“欢欢”移动到图()A .B .C .D .2.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的一组对边上,如果∠1=25°,那么∠2的度数是()A .30°B .25°C .20°D .15°3.下列式子错误的是().A .2=±B 1=±C .3=-D 32=4.下列命题中,是真命题的是()A .无限小数都是无理数B .9的立方根是3C .坐标轴上的点不属于任何象限D .非负数都有两个平方根5.若点N 到x 轴的距离是1,到y 轴的距离是2,则点N 的坐标是()A .(1,2)B .(2,1)C .(1,2),(1,-2),(-1,2),(-1,-2)D .(2,1),(2,-1),(-2,1),(-2,-1)6227,π,3.14159,)2,0.1414414441…中,无理数有()个.A .2个B .3个C .4个D .5个7.在实数范围内,下列判断正确的是()A .若m n =,则m=nB .若22a b >,则a >bC 2=,则a=b D =a=b8.在平面直角坐标系中,已知点A (﹣4,﹣1)和B (﹣1,4),平移线段AB 得到线段A 1B 1,使平移后点A 1的坐标为(2,2),则平移后点B 1坐标是()A .(﹣3,1)B .(﹣3,7)C .(1,1)D .(5,7)9.如图,下列能判定//AB CD 的条件有()个.(1)180B BCD ∠+∠=︒;(2)12∠=∠;(3)34∠=∠;(4)5B ∠=∠.A .1B .2C .3D .410.如图所示,AB ∥CD ,∠DEF=120°,则∠B 的度数为()A .120°B .60°C .150°D .30°二、填空题11.已知AB //x 轴,A (﹣2,4),AB =5,则B 点坐标为_____.12.如图,将长为5cm ,宽为3cm 的长方形ABCD 先向右平移2cm ,再向下平移1cm ,得到长方形A B C D '''',则阴影部分的面积为________2cm .13.在平面直角坐标系中,已知点A (﹣4,0),B (0,3),对△AOB 连续作图所示的旋转变换,依次得到三角形(1),(2),(3),(4)…,那么第(2013)个三角形的直角顶点坐标是______14.若25x+y,其中x是整数,且0<y<1,写出x﹣y的相反数______.15.将如图左侧所示的6个大小、形状完全相同的小长方形放置在右侧的大长方形中,所标尺寸如图所示(单位:cm),则图中含有阴影部分的总面积为_____cm216.如图,已知a∥b,小亮把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为_____.三、解答题17.计算:31128222.18.根据如表回答下列问题x23.123.223.323.423.523.623.723.823.9 x2533.61538.24542.89547.56552.25556.96561.69566.44571.21(1)566.44的平方根是;(2561≈;(保留一位小数)(3)满足23.6n<23.7的整数n有个.19.如图,在平面直角坐标系中,平行四边形ABDC 的顶点A 、B 的坐标分别为(﹣1,0),(3,0),OC .(1)求点D 的坐标;(2)求平行四边形ABDC 的面积.20.如图,直线AB 、CD 相交于点O ,OE 平分∠BOD ,OF ⊥CD ,若∠BOC 比∠DOE 大75o .求∠AOD 和∠EOF 的度数.21.已知等式y =ax 2+bx +c ,且当x =1时,y =2;当x =﹣1时,y =6;当x =0时,y =3,求a ,b ,c 的值.22.已知在平面直角坐标系中有三点()2,1A -、()3,1B 、()2,3.C 请回答如下问题:()1如图,在坐标系内描出点A 、B 、C 的位置,求出以A 、B 、C 三点为顶点的三角形的面积;()2在y轴上否存在点P,使以A、B、P三点为顶点的三角形的面积为10,若存在,请直接写出点P的坐标;若不存在,请说明理由.23.如图,∠ENC+∠CMG=180°,AB//C D.(1)请判断∠2与∠3是否相等,请说明理由.(2)若∠A=∠1+70°,∠ACB=42°,求∠B的度数.24.如图,已知△ABC在平面直角坐标系中的位置如图所示,(1)写出△ABC三个顶点的坐标;(2)求出△ABC的面积;(3)在图中画出把△ABC先向左平移5个单位,再向上平移2个单位后所得的△A′B′C′,并写出各顶点坐标.25.在平面直角坐标系中,点A(a,b)是第四象限内一点,AB⊥y轴于B,且B(0,b)=12是y轴负半轴上一点,b2=16,S△ACB(1)求点A和点B的坐标;(2)如图1,点D为线段OA(端点除外)上某一点,过点D作AO垂线交x轴于E,交直线AB于F,∠EOD、∠AFD的平分线相交于N,求∠ONF的度数;(3)如图2,若点D为线段OA(端点除外)上某一点,当点D在线段上运动时,过点D 作直线EF交x轴正半轴于E,交直线AB于F,∠EOD,∠AFD的平分线相交于点N.若记∠ODF=α,请用α的式子表示∠ONF的大小.参考答案1.B【分析】根据平移的性质,结合图形,对选项进行一一分析,排除错误答案.【详解】解:A、属于图形旋转所得到,故不符合;B、图形形状大小没有改变,符合平移性质,故符合;C、属于图形旋转所得到,故不符合;D、属于图形旋转所得到,故不符合.故选:B.【点睛】本题考查图形的平移变换.图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转,以致选错.2.C【分析】由a与b平行,得到一对内错角相等,即∠1=∠3,根据等腰直角三角形的性质得到∠2+∠3=45°,根据∠1的度数即可确定出∠2的度数.【详解】解:∵a∥b,∴∠1=∠3,∵∠2+∠3=45°,∴∠2=45°﹣∠3=45°﹣∠1=20°.故选C.【点睛】本题主要考查了平行线的性质,解题的关键在于能够熟练掌握两直线平行,内错角相等. 3.B【分析】根据算术平方根和平方根的定义求解即可.【详解】A.2=±,故该选项正确,不符合题意;B.1=,故该选项错误,符合题意;C.3=-,故该选项正确,不符合题意;D.3=,故该选项正确,不符合题意;2故选B.【点睛】本题考查算术平方根和平方根的定义,熟练掌握相关定义是解答本题的关键.4.C【分析】利用无理数的定义、立方根和平方根的意义、点的象限分布分别判断后即可确定正确的选项.【详解】解:A、无限不循环小数是无理数,故原命题是假命题,不符合题意;B、9C、坐标轴上的点不属于任何象限,故原命题是真命题,符合题意;D、非负数中的0只有一个平方根,故原命题是假命题,不符合题意;故选:C.【点睛】考查了命题与定理的知识,解题的关键是了解无理数的定义、立方根和平方根的意义,难度不大.5.D【分析】根据到x轴的距离得到纵坐标的可能值,到y轴的距离得到横坐标的可能值,进行组合即可.【详解】∵点N到x轴的距离是1,到y轴的距离是2,∴点N的纵坐标为1或﹣1,横坐标为2或﹣2,∴点N的坐标是(2,1),(2,﹣1),(﹣2,1),(﹣2,﹣1).故选D.【点睛】本题涉及到的知识点为:点到x轴的距离为点的纵坐标的绝对值;点到y轴的距离为点的横坐标的绝对值;易错点是得到所有组合点的坐标.6.B【分析】先把式子进行化简,再根据无理数的概念判断即可.【详解】=4,2=3,,227-,π,3.14159,2,0.1414414441…,π,0.1414414441…共3个,故选:B .【点睛】此题考查的是二次根式的性质与化简,掌握无理数概念是解决此题关键.7.D 【分析】根据实数的基本性质,逐个分析即可.【详解】A 、根据绝对值的性质可知:两个数的绝对值相等,则这两个数相等或互为相反数,故选项错误;B 、平方大的,即这个数的绝对值大,不一定这个数大,如两个负数,故说法错误;C 、两个数可能互为相反数,如a=-3,b=3,故选项错误;D 、根据立方根的定义,显然这两个数相等,故选项正确.故选:D .【点睛】考核知识点:实数的性质.理解算术平方根和立方根性质是关键.8.D 【分析】各对应点之间的关系是横坐标加6,纵坐标加3,那么让点B 的横坐标加6,纵坐标加3即为平移后点B 1的坐标.【详解】由A (﹣4,﹣1)平移后的点A 1的坐标为(2,2),可得坐标的变化规律可知:各对应点之间的关系是横坐标加6,纵坐标加3,∴点B 1的横坐标为﹣1+6=5;纵坐标为4+3=7;即平移后点B 1的坐标是为(5,7).故选:D.【点睛】考核知识点:平移与坐标.熟记坐标变化规律是关键.9.C【分析】根据平行线的判定定理分别进行判断即可.【详解】解:当∠B+∠BCD=180°,AB∥CD,符合题意;当∠1=∠2时,AD∥BC,不符合题意;当∠3=∠4时,AB∥CD,符合题意;当∠B=∠5时,AB∥CD,符合题意.综上,符合题意的有3个,故选:C.【点睛】本题考查了平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.10.B【解析】试题分析:由对顶角相等得∠CEB=∠DEF=120°,由AB∥CD可以得到∠B=180°﹣∠CEB,从而求出∠B.∴∠B=180°﹣∠CEB=60°.故选B.考点:平行线的性质.11.(﹣7,4)或(3,4)【分析】由AB平行于x轴可知,A、B两点纵坐标相等,再根据线段AB的长为5,B点可能在A点的左边或右边,分别求B点坐标.【详解】解:∵AB//x轴,A(﹣2,4),∴A、B两点纵坐标相等,都是4,又∵线段AB的长为5,∴当B点在A点左边时,B的坐标为(﹣7,4),当B点在A点右边时,B的坐标为(3,4).故答案为:(﹣7,4)或(3,4).【点睛】本题考查了与坐标轴平行的平行线上点的坐标特点及分类讨论的解题思想,根据B点位置不确定得出两种情况,此题易出现漏解.12.6【分析】利用平移的性质求出阴影部分矩形的长,宽即可解决问题.【详解】解:由题意,阴影部分是矩形,长为5-2=3(cm),宽为3-1=2(cm),∴阴影部分的面积=2×3=6(cm2),故答案为6.【点睛】本题考查平移的性质,矩形的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.13.(8052,0).【分析】观察图形不难发现,每3个三角形为一个循环组依次循环,用2013除以3,根据商和余数的情况确定出第(2013)个三角形的直角顶点到原点O的距离,然后写出坐标即可.【详解】解:∵点A(﹣4,0),B(0,3),∴OA=4,OB=3,∴AB5,12,0;∴第(3)个三角形的直角顶点的坐标是()观察图形不难发现,每3个三角形为一个循环组依次循环,∴一次循环横坐标增加12,∵2013÷3=671∴第(2013)个三角形是第671组的第三个直角三角形,其直角顶点与第671组的第三个直角三角形顶点重合,∴第(2013)个三角形的直角顶点的坐标是()67112,0⨯即()8052,0.故答案为:()8052,0.【点睛】本题考查了坐标与图形变化-旋转,勾股定理的应用,观察图形,发现每3个三角形为一个循环组依次循环是解题的关键.146.【分析】根据题意确定出x 与y ,即可求出所求.【详解】解:∵23,∴4<5,∵2x +y ,且0<y <1,x 是整数,∴x =4,y 2,∴x −y =4−2)=∴x −y 6-,6.【点睛】此题考查了估算无理数的大小,以及实数的性质,熟练掌握运算法则是解本题的关键.15.17【分析】设小长方形的长为x cm ,宽为y cm ,根据长方形的对边相等,可得出关于x ,y 的二元一次方程组,解之即可得出x ,y 的值,再利用阴影部分的面积=大长方形的面积﹣6×小长方形的面积,即可求出结论.【详解】解:设小长方形的长为xcm ,宽为ycm ,依题意得:4223x y x y yy x y++=++⎧⎨+=+⎩,解得:52 xy=⎧⎨=⎩,∴图中含有阴影部分的总面积=(x+y+4)×(x+y)﹣6xy=(5+2+4)×(5+2)﹣6×5×2=17.故答案为:17.【点睛】本题主要考查了二元一次方程组的实际应用,解题的关键在于能够准确找到x与y的等量关系.16.50°【分析】∠1和∠3互余,即可求出∠3的度数,根据平行线的性质:两直线平行,同位角相等可求∠2的度数.【详解】∵∠1=40°,∴∠3=180°﹣∠1﹣90°=180°﹣40°﹣90°=50°,∵a∥b,∴∠2=∠3=50°.【点睛】本题主要考查平行线的基本性质,熟练掌握基础知识是解题关键.17【分析】根据绝对值的代数意义,立方根的意义以及二次根式的乘法法则计算即可.【详解】解:原式1221=+-+.【点睛】本题考查了绝对值的代数意义,立方根的意义以及二次根式的乘法法则,熟练掌握相关概念机及运算法则是解决本题的关键.;(2)-23.7;(3)518.(1)23.8【分析】(1)根据表格给的对照表即可求出;(2)根据表格给的对照表即可求出;(3)由表格找到23.62=556.96,23.72=561.69,列出不等式556.96<n<561.69,找出整数n=557,558,559,560,561的5个值即可.【详解】(1)由表中数据可得:566.44的平方根是:±23.8;故答案为:±23.8;(2)∵23.72=561.69,≈23.7,﹣23.7,故答案为:﹣23.7;(3)∵23.62=556.96,23.72=561.69,556.96<n<561.69,n=557,558,559,560,561,∴满足23.623.7的整数n有5个,故答案为:5.【点睛】本题考查平方根与平方对照表的实数运算应用,掌握利用对照表求平方根得方法.19.(1)点D(4);(2).【分析】(1)由平行四边形的性质可得AB∥CD,AB=DC=4,可求解;(2)由平行四边形的面积公式可求解.【详解】解:∵OC A(﹣1,0),点B(3,0),∴点C(0),AB=4,∵四边形ABDC是平行四边形,∴AB∥CD,AB=DC=4,∴点D(4);(2)平行四边形ABDC的面积=AB×OC=.【点睛】本题主要考查了坐标与图形,平行四边形的性质,两点之间的距离,解题的关键在于能够熟练掌握相关知识进行求解.20.∠AOD=110°,∠EOF=55°【分析】设∠BOD=2x,利用角平分线的∠BOE=x;由∠BOC比∠DOE大75°可求∠BOC=∠DOE+75°=x+75°.根据题意列出方程x+75°+2x=180°,得出x=35°,求出∠BOD=70°,即可求出∠AOD=180°-70°=110°,由FO⊥CD,可求∠BOF=90°-∠BOD=20°,可求∠EOF=∠FOB+∠BOE=55°.【详解】解:设∠BOD=2x,∵OE平分∠BOD,∴∠DOE=∠EOB=1BOD2 =x,∵∠BOC=∠DOE+75°=x+75°.∴x+75°+2x=180°,解得:x=35°,∴∠BOD=2×35°=70°,∴∠AOD=180°-∠BOD=180°-70°=110°,∵FO⊥CD,∴∠BOF=90°-∠BOD=90°-70°=20°,∴∠EOF=∠FOB+∠BOE=20°+35°=55°.【点睛】本题考查了角平分线、垂线、邻补角,一元一次方程等知识;弄清各个角之间的数量关系是解题的关键.21.a=1,b=﹣2,c=3.【分析】把x与y的值代入等式中计算即可求出所求.【详解】解:根据题意得:263a b ca b cc++=⎧⎪-+=⎨⎪=⎩①②③,①﹣②得:2b=﹣4,解得:b=﹣2,把b=﹣2,c=3代入①得:a=1,则a=1,b=﹣2,c=3.【点睛】此题考查了解三元一次方程组,熟练掌握运算法则是解本题的关键.22.(1)图见详解,5;(2)存在;P点的坐标为(0,5)或(0,-3).【分析】(1)由题意根据点的坐标,直接描点以及根据点的坐标可知,AB∥x轴,且AB=3-(-2)=5,点C到线段AB的距离3-1=2,根据三角形面积公式求解;(2)根据题意可知因为AB=5,要求△ABP的面积为10,只要P点到AB的距离为4即可,又P点在y轴上,满足题意的P点有两个.【详解】解:(1)描点如图;依题意,得AB∥x轴,且AB=3-(-2)=5,∴15252ABC S =⨯⨯= ;(2)存在;∵AB=5,S △ABP =10,∴P 点到AB 的距离为4,又点P 在y 轴上,∴P 点的坐标为(0,5)或(0,-3).【点睛】本题考查点的坐标的表示方法,熟练掌握并能根据点的坐标表示三角形的底和高以及求三角形的面积.23.(1)相等,证明见解析;(2)34゜【分析】(1)根据平行线的性质与判定,对顶角相等判断即可;(2)根据平行线的性质和已知条件求解即可.【详解】(1)相等,理由如下:∠ENC +∠CMG =180°,CMG FMN∠=∠180ENC FMN ∴∠+∠=︒//FG ED∴3BFG∴∠=∠//AB CDQ 2BFG ∴∠=∠23∴∠=∠(2)//AB CDQ 180A ACD \Ð+Ð=°1ACD ACB∠=∠+∠ ∠A =∠1+70°1701180ACB ∴∠+︒+∠+∠=︒又∠ACB =42°即217042180∠+︒+︒=︒134∴∠=︒【点睛】本题考查了平行线的性质和判定,对等角相等,熟练平行线的与判定是解题的关键.24.(1)A(4,3)、B(3,1)、C(1,2);(2)△ABC的面积为52;(3)如图所示,见解析;△A′B′C′即为所求,A′(﹣1,5)、B′(﹣2,3)、C′(﹣4,4).【分析】(1)由△ABC在平面直角坐标系中的位置可得答案;(2)利用割补法求解可得答案;(3)将三个顶点分别向左平移5个单位,再向上平移2个单位得到对应点,继而首尾顺次连接即可得.【详解】解:(1)A(4,3)、B(3,1)、C(1,2);(2)△ABC的面积为2×3﹣12×1×2×2﹣12×1×3=52;(3)如图所示,△A′B′C′即为所求,由图知A′(﹣1,5)、B′(﹣2,3)、C′(﹣4,4).【点睛】考核知识点:平移.理解平移和坐标的关系是关键.25.(1)A的坐标为(6,﹣4),B(0,﹣4);(2)45°;(3)1 2α【分析】(1)先确定B的坐标,再利用S△AOB的面积求出AB,即可求出点A的坐标;(2)过点N作NM∥x轴,平行线的性质及角平分线的性质可得出∠MNO=∠NOC=1 2∠EOD,∠MNF=∠NFA=12∠AFD,利用三角形的内角和,即可得出∠ONF的度数;(3)过点N作NM∥x轴,平行线的性质及角平分线的性质可得出∠MNO=∠NOC=1 2∠EOD,∠MNF=∠NFA=12∠AFD,利用三角形外角性质,即可得出∠ONF的度数.【详解】解:(1)∵b2=16,∴b=±4,∵B(0,b)是y轴负半轴上一点,∴B(0,﹣4),∵AB⊥y轴,S△AOB=12,∴12AB•BO=12,即12•AB×4=12,解得AB=6,∴A的坐标为(6,﹣4),(2)如图1,过点N作NM∥x轴,∵NM∥x,∴∠MNO=∠NOC,∵ON是∠EOD的角平分线,∴∠MNO=∠NOC=12∠EOD,又∵MN∥AB,∴∠MNF=∠NFA,∵FN是∠AFD的角平分线,∴∠MNF=∠NFA=12∠AFD,∵AB∥x轴,∴∠OED=∠AFD,∵ED⊥OA,∴∠EOD+∠AFD=90°,∴∠ONF=∠MNO+∠MNF=12(∠EOD+∠AFD)=12×90°=45°.(3)如图2,过点N作NM∥x轴,∵NM∥x,∴∠MNO=∠NOC,∵ON是∠EOD的角平分线,∴∠MNO=∠NOC=12∠EOD,又∵MN∥AB,∴∠MNF=∠NFA,∵FN是∠AFD的角平分线,∴∠MNF=∠NFA=12∠AFD,∵AB∥x轴,∴∠OED=∠AFD,∵∠ODF=∠EOD+∠AFD=α,∴∠ONF=∠MNO+∠MNF=12(∠EOD+∠AFD)=12α.【点睛】本题属于三角形综合题,主要考查了坐标与图形性质,三角形的面积,三角形内角和定理和三角形的外角性质等知识,灵活运用以上性质定理是解题的关键.21。

人教版七年级下册期中考试数学试题及答案

人教版七年级下册期中考试数学试题及答案

人教版七年级下册期中考试数学试卷一、单选题1.如图,直线AB、CD相交于点O,OA平分∠EOC,∠EOC=70°,则∠BOD 的度数等于()A.40°B.35°C.30°D.20°2.实数-2,0.3,-5,2,-π中,无理数的个数有()A.1个B.2个C.3个D.4个3.如图,由下列条件不能得到AB∥CD的是()A.∠B+∠BCD=180°B.∠1=∠2C.∠3=∠4D.∠B=∠5 4.已知点P位于第二象限,距y轴3个单位长度,距x轴4个单位长度,则点P的坐标是()A.(-3,4)B.(3,-4)C.(4,-3)D.(-4,3) 5.如图,数轴上表示1,3的点分别为A和B,若A为BC的中点,则点C表示的数是()A.3-1B.1-3C.3-2D.2-3 6.将一副三角板如图放置,使点A在DE上,BC∥DE,∠E=30°,则∠ACF的度数为()A.10°B.15°C.20°D.25°7.下列说法不正确的是()A .0.3±是0.09的平方根,即0.3=±B 的平方根是8±C .正数的两个平方根的积为负数D .存在立方根和平方根相等的数8.方格纸上有A 、B 两点,若以B 点为原点建立直角坐标系,则A 点坐标为(﹣3,4),若以A 点为原点建立直角坐标系,则B 点坐标是()A .(﹣3,﹣4)B .(﹣3,4)C .(3,﹣4)D .(3,4)9.已知a 、b +2b +1=0,则a +b 的值是()A .12B .1C .−1D .010.如图,AF ∥CD ,BC 平分∠ACD ,BD 平分∠EBF ,且BC ⊥BD ,下列结论:①BC 平分∠ABE ;②AC ∥BE ;③∠BCD+∠D=90°;④∠DBF=2∠ABC .其中正确的个数为()A .1个B .2个C .3个D .4个二、填空题11,2__________.12.已知点P 的坐标为(﹣2,3),则点P 到y 轴的距离为______13.平面直角坐标系中,若A 、B 两点的坐标分别为(-2,3),(3,3),点C 也在直线AB 上,且距B 点有5个单位长度,则点C 的坐标为__________.14.已知直线a 、b 、c 相交于点O ,∠1=30°,∠2=70°,则∠3=________.15的整数部分是a ,小数部分是b ,则2+a b =______.16.如图,直线AB 、CD 相交于点E ,DF ∥AB .若∠D=65°,则∠AEC=.17.已知a 、b 为两个连续的整数,且28a b <<,则+a b =________.18.实数在数轴上的位置如图,那么化简a −b −b 2的结果是_______三、解答题19.计算:(1)|2−3|+3−8+(−2)2(2)(3)(−3)2+(−6)2−(3−0.125)3+|1−2|20.如图,已知EF ∥AD ,∠1=∠2,∠BAC =70°,求∠AGD (请填空)解:∵EF ∥AD ∴∠2=(又∵∠1=∠2∴∠1=∠3()∴AB ∥()∴∠BAC+=180°()∵∠BAC =70°()∴∠AGD =()21.如图,三角形ABC 沿x 轴正方向平移2个单位长度,再沿y 轴负方向平移1个单位长度得到三角形EFG.(1)写出三角形EFG 的三个顶点坐标;(2)求三角形EFG 的面积.22.如图,已知AB ∥DE ,∠ABC +∠DEF =180°,求证:BC ∥EF.23.若23(2)0x z -+-=,求x y z ++的平方根和算术平方根。

人教版七年级下期中数学试卷(含答案)

人教版七年级下期中数学试卷(含答案)

人教版七年级数学下学期期中测试卷(含答案)班级:姓名:学号:分数:(考试时间:120分钟试卷满分:120分)一、选择题(1—6题每题2分,7-16题每题3分,共42分)1.若2a=,10b=,则20用含a,b的式子表示是()A.2a B.2b C.a b+D.ab2.下列四个图形中,不能通过基本图形平移得到的是()A.B.C.D.3.如图,若12∠=∠,则下列选项中可以判定//AB CD的是()A.B.C.D.4.下列各数比1大的是()A.0 B.12C2D.3-5.下面四个命题中,它们的逆命题是真命题的是()①对顶角相等;②同旁内角互补,两直线平行;③直角三角形两锐角互余;④如果a,b都是正数,那么0ab>.A.①②③B.②③④C.②③D.③④6.点M在第二象限,距离x轴5个单位长度,距离y轴3个单位长度,则M点的坐标为() A.(5,3)--D.(3,5)-B.(5,3)-C.(3,5)7.如图,数轴上点N表示的数可能是()A.2B.3C.7D.108.4的算术平方根是()A.2±B.2 C.2-D.16±9.若点(,)x y+=)y=,则(x=,||3P x y在第四象限,且||2A.1-B.1 C.5 D.5-10.一辆汽车在笔直的公路上行驶,第一次左拐50︒,再在笔直的公路上行驶一段距离后,第二次右拐50︒,两次拐弯后的行驶方向与原来的行驶方向()A.恰好相同B.恰好相反C.互相垂直D.夹角为100︒11.如图,四边形OABC是矩形,(2,1)B,点C在第二象限,则点C的坐标是()A,(0,5)A.(1,3)--D.(2,4)-C.(2,3)-B.(1,2)12.小明做了四道练习题:①有公共顶点的两个角是对顶角;②两个直角互为补角;③一个三角板中两个锐角互为余角;④一个角的两边与另一个角的两边分别在同一直线上,这两个角是对顶角;⑤平面内,有且只有一条直线与已知直线垂直;⑥两条直线相交,一定垂直;⑦若两条直线相交所形成的四个角都相等,则这两条直线互相垂直.其中正确的有()A.4个B.3个C.2个D.1个14. 已知则( )A. B. C. D.5215.观察下列图形及图形所对应的算式,根据你发现的规律计算1+8+16+24+……+8n(n是正整数)的结果为A. B. C. D.16.如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D →E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的函数图象大致是()A. B. C.D.二.填空题(每题3分,共12分)17.长为3m+2n,宽为5m-n的长方形的面积为__________.18.已知:OE平分∠AOD,AB∥CD,OF⊥OE于O,∠D = 50°,则∠BOF=________。

人教版七年级下册数学期中考试卷(含答案)

人教版七年级下册数学期中考试卷(含答案)

人教版七年级(下)期中数学试卷一.选择题(共10小题)1.如图,A、B、C、D中的图案()可以通过如图平移得到A.B.C.D.2.4的平方根是()A.2B.C.±2D.±3.如图,在数轴上表示某不等式组中的两个不等式的解集,则该不等式组的解集为()A.x<4B.x<2C.2<x<4D.x>24.已知x>2,则下列变形正确的是()A.mx>2m B.﹣x+2<1C.若y>2,则x﹣y>0D.若m<0,则x﹣m<2﹣m5.如图,若AB,CD相交于点O,过点O作OE⊥AB,则下列结论不正确的是()A.∠1与∠2互为余角B.∠3与∠2互为余角C.∠2与∠AOE互为补角D.∠AOC与∠BOD是对顶角6.已知直线AB,CB,l在同一平面内,若AB⊥l,垂足为B,CB⊥l,垂足也为B,则符合题意的图形可以是()A.B.C.D.7.表格中上下每对x、y的值都是同一个二元一次方程的解,则这个方程为()x﹣1012y852﹣1 A.5x+y=3B.x+y=5C.2x﹣y=0D.3x+y=58.一张方桌由1个桌面,4个桌腿组成.如果1立方米木料可以做方桌的桌面50个或桌腿300条,现有5立方米木料.那么用多少立方米木料做桌面,多少立方米木料做桌腿做出的桌面和桌腿能恰好配成方桌?设生产桌面、桌腿的木料分别是x、y立方米,则符合题意的方程是()A.50x+300y=1B.50x+300 y=5C.50x=1200y D.200x=300y9.已知x,y满足方程组,则无论m取何值,x,y恒有关系式是()A.x+y=1B.x﹣y=9C.x+y=9D.x﹣y=﹣9 10.关于x的不等式组的整数解共有4个,则a的取值范围是()A.7<a<8B.﹣7<a≤8C.7≤a<8D.以上答案都不对二.填空题(共6小题)11.已知4x﹣y=6,用含x的代数式表示y,则y=.12.把命题“同位角相等”改写成“如果…那么…”的形式是,它是命题.(填“真”或“假”)13.如图,点A,B,C,D,E在直线l上,点P在直线l外,PC⊥l于点C,在线段P A,PB,PC,PD,PE中,最短的一条线段是,理由是14.如图,已知三角形ABC的面积为28,将三角形ABC沿BC向右平移得到三角形A′B′C′,使点B′和点C重合,连接AC′交A′C于点D,点D恰为AC′的中点,则三角形CDC′的面积为.15.已知,若是整数,则a=.16.若方程组的解是,那么的解为.三.解答题17.解方程组:.18.解不等式组,并求出非负整数解:.19..20.已知:如图,∠B=∠D,∠1=∠E.求证:AB∥CD.证明∵∠1=∠E(已知),∴∥(),∴∠2+∠=180°().∵∠B=∠D(已知),∴∠2+∠=180°(),∴AB∥CD().21.如图,点O在直线AB上,OC⊥OD,∠D与∠1互余.(1)求证:ED∥AB;(2)OF平分∠AOD交DE于点F,若∠OFD=58°,补全图形,并求∠1的度数.22.某书店计划购进甲,乙两种书共1200本,这两种书的进价,售价如下;进价(元/本)售价(元/本)甲2530乙4560(1)若要使进货款恰好为38000元,书店应如何进货?(2)若书店销售完全部的书后获利不超过进货价的30%,至少购进甲种书多少本?23.定义一种新运算“a*b”的含义为:当a≥b时,a*b=a+b;当a<b时,a*b=a﹣b.(1)填空:(﹣4)*8=;(x2﹣2x+3)*(﹣x2﹣2x﹣3)=;(2)如果(3x﹣7)*(3﹣2x)=2,求x的值.24.在方程y=kx+b(k,b为常数)中,当x=2时,y=1;当x=﹣1时,y=4.(1)求k、b的值;(2)若和是该方程的两组解,且b1>b2,请比较a1与a2大小,并说明理由.(3)若x<5,y<6,若m=x﹣y,求m的取值范围.25.已知:直线AB∥CD,点M、N分别在直线AB,CD上,点E为平面内一点.(1)如图1,求∠AME,∠E,∠ENC的数量关系.(2)利用(1)的结论解决以下问题:如图2所示,已知:AB∥CD,∠BED=75°,∠BFD=35°,若∠EBF=x°,∠EDF=y°且x>y,求3x﹣2y的范围.(3)如图3,点G为CD上一点,∠EMN=∠AMN,∠GEM=∠GEK,EH∥MN交AB于点H,直接写出∠GEK,∠BMN,∠GEH之间的数量关系.(用含m式子表示)人教版七年级(下)期中数学试卷参考答案与试题解析一.选择题(共10小题)1.如图,A、B、C、D中的图案()可以通过如图平移得到A.B.C.D.【分析】根据平移昰图形沿某一方向移动一定的距离,平移不改变图形的形状和大小,可得答案.【解答】解:观察图形可知图案D通过平移后可以得到.故选:D.2.4的平方根是()A.2B.C.±2D.±【分析】原式利用平方根定义计算即可得到结果.【解答】解:∵(±2)2=4,∴4的平方根是±2,故选:C.3.如图,在数轴上表示某不等式组中的两个不等式的解集,则该不等式组的解集为()A.x<4B.x<2C.2<x<4D.x>2【分析】根据不等式组解集在数轴上的表示方法可知,不等式组的解集是指它们的公共部分,公共部分是2左边的部分.【解答】解:不等式组的解集是指它们的公共部分,公共部分是2左边的部分.因而解集是x<2.故选:B.4.已知x>2,则下列变形正确的是()A.mx>2m B.﹣x+2<1C.若y>2,则x﹣y>0D.若m<0,则x﹣m<2﹣m【分析】根据不等式的性质对A、B、D进行判断;利用反例对C进行判断.【解答】解:A、若x>2,当m>0时,mx>2m,所以A选项变形错误;B、若x>2,则﹣x<﹣1,所以﹣x+2<1,所以B选项的变形正确;C、当x=3,y=3,则x﹣y=0,所以C选项的变形错误;D、若x>2,则x﹣m>2﹣m,所以D选项的变形错误.故选:B.5.如图,若AB,CD相交于点O,过点O作OE⊥AB,则下列结论不正确的是()A.∠1与∠2互为余角B.∠3与∠2互为余角C.∠2与∠AOE互为补角D.∠AOC与∠BOD是对顶角【分析】根据OE⊥AB可得∠EOB=90°,再根据对顶角相等可得∠1=∠3,然后根据余角定义和补角定义进行分析即可.【解答】解:A、∠1与∠2互余,说法正确;B、∠2与∠3互余,说法正确;C、∠DOE与∠1互补,说法错误,∠DOE与∠2互补;D、∠AOC与∠BOD是对顶角,说法正确;故选:C.6.已知直线AB,CB,l在同一平面内,若AB⊥l,垂足为B,CB⊥l,垂足也为B,则符合题意的图形可以是()A.B.C.D.【分析】根据题意画出图形即可.【解答】解:根据题意可得图形,故选:C.7.表格中上下每对x、y的值都是同一个二元一次方程的解,则这个方程为()x﹣1012y852﹣1 A.5x+y=3B.x+y=5C.2x﹣y=0D.3x+y=5【分析】设方程为y=kx+b,把x与y的两对值代入求出k与b的值,即可确定出方程.【解答】解:设方程为y=kx+b,把(0,5)与(1,2)代入得:,解得:,∴这个方程为y=﹣3x+5,即3x+y=5,故选:D.8.一张方桌由1个桌面,4个桌腿组成.如果1立方米木料可以做方桌的桌面50个或桌腿300条,现有5立方米木料.那么用多少立方米木料做桌面,多少立方米木料做桌腿做出的桌面和桌腿能恰好配成方桌?设生产桌面、桌腿的木料分别是x、y立方米,则符合题意的方程是()A.50x+300y=1B.50x+300 y=5C.50x=1200y D.200x=300y【分析】根据“桌面数量×4=桌腿数量”可列方程.【解答】解:设生产桌面、桌腿的木料分别是x、y立方米,则符合题意得方程为50x•4=300y,即200x=300y,故选:D.9.已知x,y满足方程组,则无论m取何值,x,y恒有关系式是()A.x+y=1B.x﹣y=9C.x+y=9D.x﹣y=﹣9【分析】由方程组消去m,得到一个关于x,y的方程,化简这个方程即可.【解答】解:,②﹣①得:x﹣y+5=﹣4,∴x﹣y=﹣9,故选:D.10.关于x的不等式组的整数解共有4个,则a的取值范围是()A.7<a<8B.﹣7<a≤8C.7≤a<8D.以上答案都不对【分析】首先解不等式组确定不等式组的解集,然后根据不等式组有四个整数解即可得到关于a的不等式组,求得a的值.【解答】解:,解①得:x≤a,解②得:x>3,则不等式组的解集是:3<x≤a.不等式组有四个整数解,则是4,5,6,7.则7≤a<8.故选:C.二.填空题(共6小题)11.已知4x﹣y=6,用含x的代数式表示y,则y=4x﹣6.【分析】把x看做已知数求出y即可.【解答】解:方程4x﹣y=6,解得:y=4x﹣6.故答案为:4x﹣6.12.把命题“同位角相等”改写成“如果…那么…”的形式是如果有两个角是同位角,那么这两个角相等,它是假命题.(填“真”或“假”)【分析】命题可以写成“如果…那么…”的形式,“如果”的后接部分是题设,“那么”的后接部分是结论.分析是否为真命题,需要分别分析各题设是否能推出结论,能推出结论的即真命题,反之就是假命题.【解答】解:把命题“同位角相等”改写成“如果…那么…”的形式是“如果有两个角是同位角,那么这两个角相等”,它是假命题.故空中填:如果有两个角是同位角,那么这两个角相等,假.13.如图,点A,B,C,D,E在直线l上,点P在直线l外,PC⊥l于点C,在线段P A,PB,PC,PD,PE中,最短的一条线段是PC,理由是垂线段最短【分析】点到直线的距离是指该点到直线的垂线段的长,根据定义即可选出答案.【解答】解:根据点到直线的距离的定义得出线段PC的长是点P到直线l的距离,从直线外一点到这条直线所作的垂线段最短.故答案是:PC;垂线段最短.14.如图,已知三角形ABC的面积为28,将三角形ABC沿BC向右平移得到三角形A′B′C′,使点B′和点C重合,连接AC′交A′C于点D,点D恰为AC′的中点,则三角形CDC′的面积为14.【分析】根据平移变换只改变图形的位置,不改变图形的形状与大小,可得∠B=∠A′CC′,BC=B′C′,再根据同位角相等,两直线平行可得CD∥AB,然后求出CD=AB,点C′到A′C的距离等于点C到AB的距离,根据等高的三角形的面积的比等于底边的比即可求解.【解答】解:根据题意得,∠B=∠A′CC′,BC=B′C′,∴CD∥AB,CD=AB(三角形的中位线),∵点C′到A′C的距离等于点C到AB的距离,∴△C′DC的面积=△ABC的面积=×28=14.故答案为:14.15.已知,若是整数,则a=2或﹣2或﹣1.【分析】利用是整数可判断a为整数且a≥﹣2,则利用a2≤得到﹣7<a<7且a为整数,然后找出满足条件的整数a的值即可.【解答】解:∵是整数,∴a为整数且a≥﹣2,∵a2≤,∴﹣7<a<7且a为整数,∴当a=﹣2或﹣1或2时,是整数.故答案为2或﹣2或﹣1.16.若方程组的解是,那么的解为或.【分析】运用换元思想列出方程组,求出方程组的解即可.【解答】解:将方程组中的两个方程同除以3,整理得,∵方程组的解是,∴,解得或.故答案为或.三.解答题17.解方程组:.【分析】根据观察看出①中x的系数为1,故用代入法消元较好,把①变形成含y的代数式表示x,再把其代入②便可消去x,解出y的值,再把y的值代入变形后的式子,即可得到x的值.【解答】解:,由①得:x=2y+3③,把③代入②中得:3(2y+3)﹣8y=13,6y+9﹣8y=13,∴y=﹣2,把y=﹣2代入③中,得x=﹣1,∴原方程的解为.18.解不等式组,并求出非负整数解:.【考点】CB:解一元一次不等式组;CC:一元一次不等式组的整数解.【专题】524:一元一次不等式(组)及应用;66:运算能力.【答案】0,1,2,3.【分析】分别求出每个不等式的解集,再确定出不等式组的解集,继而可得答案.【解答】解:,解不等式①,得:x≥﹣2,解不等式②,得:x<4,则不等式组的解集为﹣2≤x<4,所以不等式组的非负整数解有0,1,2,3.19..【考点】2C:实数的运算.【专题】514:二次根式;66:运算能力.【答案】﹣0.4.【分析】直接利用二次根式的性质分别化简得出答案.【解答】解:原式=0.6﹣2+1﹣0=﹣0.4.20.已知:如图,∠B=∠D,∠1=∠E.求证:AB∥CD.证明∵∠1=∠E(已知),∴∥(),∴∠2+∠=180°().∵∠B=∠D(已知),∴∠2+∠=180°(),∴AB∥CD().【考点】JB:平行线的判定与性质.【专题】551:线段、角、相交线与平行线;67:推理能力.【答案】AD;BC;内错角相等,两直线平行;D;两直线平行,同旁内角互补;B;等量代换;同旁内角互补,两直线平行.【分析】利用平行线的判定定理和性质定理解答即可.【解答】证明:∵∠1=∠E(已知),∴AD∥BC(内错角相等,两直线平行),∴∠2+∠D=180°(两直线平行,同旁内角互补),∵∠B=∠D(已知),∴∠2+∠B=180°(等量代换),∴AB∥CD(同旁内角互补,两直线平行).故答案为:AD;BC;内错角相等,两直线平行;D;两直线平行,同旁内角互补;B;等量代换;同旁内角互补,两直线平行.21.如图,点O在直线AB上,OC⊥OD,∠D与∠1互余.(1)求证:ED∥AB;(2)OF平分∠AOD交DE于点F,若∠OFD=58°,补全图形,并求∠1的度数.【考点】IL:余角和补角;JB:平行线的判定与性质.【专题】551:线段、角、相交线与平行线;67:推理能力.【答案】(1)证明过程见解答;(2)图形见解答,13°.【分析】(1)利用已知得出∠D+∠AOD=180°,进而得出答案;(2)利用角平分线的定义结合已知得出∠COF=∠COD=45°,进而得出答案.【解答】(1)证明:∵∠D与∠1互余,∴∠D+∠1=90°,∵OC⊥OD,∴∠COD=90°,∴∠D+∠1+∠COD=180°,∴∠D+∠AOD=180°,∴ED∥AB;(2)解:如图所示:∵ED∥AB,∴∠AOF=∠OFD=58°,∵OF平分∠COD,∴∠COF=∠COD=45°,∴∠1=∠AOF﹣∠COF=58°﹣45°=13°.22.某书店计划购进甲,乙两种书共1200本,这两种书的进价,售价如下;进价(元/本)售价(元/本)甲2530乙4560(1)若要使进货款恰好为38000元,书店应如何进货?(2)若书店销售完全部的书后获利不超过进货价的30%,至少购进甲种书多少本?【考点】9A:二元一次方程组的应用;C9:一元一次不等式的应用.【专题】12:应用题;521:一次方程(组)及应用;524:一元一次不等式(组)及应用;66:运算能力;69:应用意识.【答案】(1)800,400;(2)450.【分析】(1)设书店购进甲种书x本,购进乙种书y本,根据题意列出二元一次方程组,则可得出答案;(2)设书店购进甲种书a本,列出不等式,解不等式可得出答案.【解答】解:(1)设书店购进甲种书x本,购进乙种书y本,根据题意得,,解得,答:书店应购进甲种书800本,购进乙种书400本.(2)设书店购进甲种书a本,由题意,得:(30﹣25)a+(60﹣45)(1200﹣a)≤[25a+45(1200﹣a)]×30%,解得:a≥450.答:至少购进甲种书450本.23.定义一种新运算“a*b”的含义为:当a≥b时,a*b=a+b;当a<b时,a*b=a﹣b.(1)填空:(﹣4)*8=;(x2﹣2x+3)*(﹣x2﹣2x﹣3)=;(2)如果(3x﹣7)*(3﹣2x)=2,求x的值.【考点】1G:有理数的混合运算;44:整式的加减;86:解一元一次方程.【专题】521:一次方程(组)及应用;66:运算能力.【答案】(1)﹣12,﹣4x;(2)6.【分析】(1)原式利用题中的新定义计算即可求出值;先利用作差法判断出x2﹣2x+3>﹣x2﹣2x﹣3,再新运算化简即可;(2)分3x﹣7≥3﹣2x和3x﹣7<3﹣2x两种情况,依据新定义列出方程求解可得.【解答】解:(1)根据题中的新定义得:(﹣4)⊗8=(﹣4)﹣8=﹣12;∵(x2﹣2x+3)﹣(﹣x2﹣2x﹣3)=2m2+6>0,∴(x2﹣2x+3)*(﹣x2﹣2x﹣3)=(x2﹣2x+3)+(﹣x2﹣2x﹣3)=﹣4x;故答案为﹣12,﹣4x;(2)当3x﹣7≥3﹣2x,即x≥2时,由题意得:(3x﹣7)+(3﹣2x)=2,解得x=6;当3x﹣7<3﹣2x,即x<2时,由题意得:(3x﹣7)﹣(3﹣2x)=2,解得x=(舍).∴x的值为6.24.在方程y=kx+b(k,b为常数)中,当x=2时,y=1;当x=﹣1时,y=4.(1)求k、b的值;(2)若和是该方程的两组解,且b1>b2,请比较a1与a2大小,并说明理由.(3)若x<5,y<6,若m=x﹣y,求m的取值范围.【考点】92:二元一次方程的解;98:解二元一次方程组;CB:解一元一次不等式组.【专题】11:计算题;521:一次方程(组)及应用;524:一元一次不等式(组)及应用;66:运算能力.【答案】(1)k=﹣1,b=3;(2)a1<a2;(3)﹣9<m<7.【分析】(1)根据二元一次方程组的求解方法,求出k、b的值各是多少即可.(2)由题意得出b1=﹣a1+3,b2=﹣a2+3,则可得出答案;(3)解方程组可得出x,y,根据题意列出不等式组,则可得出答案.【解答】解:(1)由题意得,解得,即k=﹣1,b=3.(2)∵和是该方程的两组解,∴b1=﹣a1+3,b2=﹣a2+3,∵b1>b2,∴﹣a1+3>﹣a2+3,∴a1<a2.(3)∵,∴,∵x<5,y<6,∴,解得﹣9<m<7.∴m的取值范围是﹣9<m<7.25.已知:直线AB∥CD,点M、N分别在直线AB,CD上,点E为平面内一点.(1)如图1,求∠AME,∠E,∠ENC的数量关系.(2)利用(1)的结论解决以下问题:如图2所示,已知:AB∥CD,∠BED=75°,∠BFD=35°,若∠EBF=x°,∠EDF=y°且x>y,求3x﹣2y的范围.(3)如图3,点G为CD上一点,∠EMN=∠AMN,∠GEM=∠GEK,EH∥MN交AB于点H,直接写出∠GEK,∠BMN,∠GEH之间的数量关系.(用含m式子表示)【考点】JA:平行线的性质.【专题】551:线段、角、相交线与平行线;67:推理能力.【答案】(1)∠MEN=∠BME+∠END;(2)20<3x﹣2y<120;(3)∠BMN+∠KEG﹣m∠GEH=180°.【分析】(1)过点E作EL∥AB,利用平行线的性质可得∠1=∠BME,∠2=∠DNE,由∠MEN=∠1+∠2,等量代换可得结论;(2)根据(1)中的关系得出x与y的关系式,再根据已知条件x∥y列出y的不等式求得y的取值范围;(3)由已知∠EMN=∠BMN,∠GEN=∠GEK,EH∥MN,可得∠HEM=∠ENM =∠BMN,因为∠GEH=∠GEM﹣∠HEM,等量代换得出结论.【解答】解:(1)如图1,过点E作EL∥AB,∵AB∥CD,∴EL∥AB∥CD,∴∠1=∠AME,∠2=∠CNE,∵∠MEN=∠1+∠2,∴∠MEN=∠BME+∠END;(2)由(1)的结论得:∠BFD=∠ABF+∠CFD=35°,∠BED=∠ABE+∠CDE=∠ABF+∠EBF+∠CDF+∠EDF=75°,即x°+y°+35°=75°,∴x°=40°﹣y°,∴3x﹣2y=120﹣5y,∵x>y,∴40﹣y>y,∴y<20,∴0<y<20,当y=0时,120﹣5y=120,当y=20时,120﹣5y=20,∴3x﹣2y的范围为:20<3x﹣2y<120;(3)∵∠AMN=∠EMN,∠GEK=∠GEM∴m∠AMN=∠EMN,m∠GEK=∠GEM,∵EH∥MN,∴∠HEM=∠EMN=m∠AMN,∵∠GEH=∠GEM﹣∠HEM=m∠GEK﹣m∠AMN,∴∠GEK=∠GEM=(∠GEH+∠HEM),∴m∠GEK=∠GEH+∠HEM,∵∠BMN=180°﹣∠AMN,∴∠BMN+∠KEG﹣m∠GEH=180°.。

2024—2025学年最新人教版七年级下学期数学期中考试试卷(含参考答案)

2024—2025学年最新人教版七年级下学期数学期中考试试卷(含参考答案)

最新人教版七年级下学期数学期中考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、在实数3π,﹣,0,,﹣3.14,,,0.151 551 555 1…中,无理数有()A.2个B.3个C.4个D.5个2、已知点P(﹣3,4),则P到y轴的距离为()A.﹣3B.4C.3D.﹣43、下列命题中,是真命题的是()A.0没有算术平方根B.两条直线被第三条直线所截,同位角相等C.相等的角是对顶角D.a是实数,点P(a2+1,2)一定在第一象限4、如图,直径为单位1的圆从数轴上的原点沿着数轴无滑动地顺时针滚动一周到达点A,则点A表示的数是()A.2B.C.πD.45、下列图形中,由∠1=∠2,能得到AB∥CD的是()A.B.C.D.6、若正数a的两个平方根是3m﹣2与3﹣2m,则m为()A.0B.1C.﹣1D.1或﹣17、如图,将△ABC沿BC方向平移3cm得到△DEF,若△ABC的周长为24cm,则四边形ABFD的周长为()A.30cm B.24cmC.27cm D.33cm8、若方程组的解满足x+y=0,则k的值为()A.﹣1B.1C.0D.1或09、《九章算术》是中国古代重要的数学著作,其中有这样一道题:“今有醇酒一斗,直钱五十;行酒一斗,直钱一十.今将钱三十,得酒二斗,问醇、行酒各得几何?”译文:今有醇酒(优质酒)1斗,价格50钱;行酒(勾兑酒)1斗,价格10钱.现有30钱,买2斗酒,问能买醇酒、行酒各多少斗?设能买醇酒x斗,行酒y斗,可列二元一次方程组为()A.B.C.D.10、如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(﹣1,1),第2次接着运动到点(﹣2,0),第3次接着运动到点(﹣3,2),…,按这样的运动规律,经过第2022次运动后,动点P的坐标是()A.(2022,0)B.(﹣2022,0)C.(﹣2022,1)D.(﹣2022,2)二、填空题(每小题3分,满分18分)11、已知AB∥x轴,A的坐标为(1,6),AB=4,则点B的坐标是.12、若x|a|﹣1﹣1+(a﹣2)y=1是关于x,y的二元一次方程,则a=.13、已知=1.038,=2.237,=4.820,则=.14、已知x,y为实数,且+(y+1)2=0,则x+y的算术平方根是.15、若点P(m+1,3﹣2m)在第一、第三象限的角平分线上,则m=.16、如图,a∥b,M,N分别在a,b上,P为两平行线间一点,那么∠1+∠2+∠3=°.最新人教版七年级下学期数学期中考试试卷(答卷)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算:.18、已知2a﹣1的算术平方根是3,b是﹣1的立方根,c是的整数部分,求a+b+c的值.19、解不等式组并求它的所有的非负整数解.20、已知x,y为实数,是否存在实数m满足关系式如果存在,求出m的值;如果不存在,说明理由.21、如图,在边长为1的正方形网格中,三角形ABC中任意一点P(x0,y0)经平移后对应点为P1(x0﹣4,y0+3),已知A(0,2),B(4,0),C(﹣1,﹣1),将三角形ABC作同样的平移得到三角形A1B1C1.(1)画出三角形A1B1C1并写出坐标:A1(,),B1(,),C1(,);(2)三角形A1B1C1的面积为;(3)已知点P在y轴上,且三角形P AC的面积等于三角形ABC面积的一半,则P点坐标是.22、某物流公司在运货时有A、B两种车型,如果用3辆A型车和2辆B型车载满货物一次可运17吨货物;用2辆A型车和3辆B型车载满货物一次可运18吨货物.现需要运输货物32吨,计划同时租用A型车和B型车若干辆,一次运完,且每辆车都载满货物.(1)1辆A型车和1辆B型车都载满货物,一次可分别运输货物多少吨?(2)若A型车每辆需租金200元/次,B型车每辆需租金240元/次.请帮物流公司设计租车方案,并选出最省钱的方案及最少租金.23、已知AD∥BC,AB∥CD,E为射线BC上一点,AE平分∠BAD.(1)如图1,当点E在线段BC上时,求证:∠BAE=∠BEA;(2)如图2,当点E在线段BC延长线上时,连接DE,若∠ADE=3∠CDE,∠AED=50°.①求证:∠ABC=∠ADC;②求∠CED的度数.24、对x,y,z定义一种新运算F,规定:F(x,y,z)=ax+by+cz,其中a,b,c为非负数.(1)当c=0时,F(1,﹣1,3)=1,F(3,1,﹣2)=7,求a,b的值;(2)在(1)的基础上,若关于m的不等式组恰有3个整数解,求k的取值范围;(3)已知F(3,2,1)=5,F(2,1,﹣3)=1,设H=3a+b﹣7c,求H 的最大值和最小值.25、如图,在平面直角坐标系中,AB⊥x轴,垂足为A,BC⊥y轴,垂足为C,已知A(a,0),C(0,c),其中a,c满足关系式(a﹣6)2+|c+8|=0,点P 从O点出发沿折线OA﹣AB﹣BC的方向运动到点C停止,运动的速度为每秒2个单位长度,设点P的运动时间为t秒.(1)在运动过程中,当点P到AB的距离为2个单位长度时,t=;(2)在点P的运动过程中,用含t的代数式表示P点的坐标;(3)当点P在线段AB上的运动过程中,射线AO上一点E,射线OC上一点F(不与C重合),连接PE,PF,使得∠EPF=70°,求∠AEP与∠PFC的数量关系.最新人教版七年级下学期数学期中考试试卷(参考答案)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、(﹣3,6)或(5,6)12、﹣2 13、22.37 14、2 15、16、360三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、18、719、它的非负整数解为0,1,220、即m的值为721、(1)﹣4、5、0、3、﹣5、2(2)7(3)(0,9)或(0,﹣5)22、(1)1辆A型车载满货物一次可运输货物3吨,1辆B型车载满货物一次可运输货物4吨(2)当租用4辆A型车,5辆B型车时,租金最少,最少租金为2000元23、(1)证明(略)(2)①∠ABC=∠ADC ②120°24、(1)(2)故k的取值范围为27≤k<33(3)当c=时,H的最大值为﹣,当c=时,H的最小值为﹣25、(1)2s或8s(2)P(2t,0)P(6,6﹣2t)(20﹣2t,﹣8)(3)∠PFC+∠PEA=160°或∠PFC﹣∠AEP=20°。

(完整版)人教版七年级数学下册期中试卷及答案doc完整

(完整版)人教版七年级数学下册期中试卷及答案doc完整

(完整版)人教版七年级数学下册期中试卷及答案doc 完整 一、选择题1.9的值是()A .﹣3B .3C .±3D .﹣92.把“笑脸”进行平移,能得到的图形是( )A .B .C .D . 3.点()3,5A -在平面直角坐标系中所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 4.下列命题中,假命题的数量为( )①如果两个角的和等于平角,那么这两个角互为补角;②内错角相等;③两个锐角的和是锐角;④如果直线a ∥b ,b ∥c ,那么a ∥c .A .3B .2C .1D .05.如图,//AB CD ,DCE ∠的角平分线CG 的反向延长线和ABE ∠是角平分线BF 交于点F ,48E F ∠-∠=︒,则F ∠等于( )A .42°B .44°C .72°D .76° 6.下列语句中正确的是( )A .-9的平方根是-3B .9的平方根是3C .9的立方根是3±D .9的算术平方根是3 7.珠江流域某江段江水流向经过B 、C 、D 三点,拐弯后与原来方向相同.如图,若∠ABC =120°,∠BCD =80°,则∠CDE 等于( )A .20°B .40°C .60°D .80°8.如图,在平面直角坐标系中,一动点从原点O 出发,按向上.向右.向下.向右的方向依次平移,每次移动一个单位,得到()10,1A ,()21,1A ,()31,0A ,()42,0A ,…那么点2021A 的坐标为( )A .()505,0B .()505,1C .()1010,0D .()1010,1二、填空题9.169=___.10.点A (-2,1)关于x 轴对称的点的坐标是____________________.11.如图//AB CD ,分别作AEF ∠和CFE ∠的角平分线交于点1P ,称为第一次操作,则1P ∠=_______;接着作1AEP ∠和1CFP ∠的角平分线交于2P ,称为第二次操作,继续作2AEP ∠和2CFP ∠的角平分线交于2P ,称方第三次操作,如此一直操作下去,则n P ∠=______.12.如图,AD 是∠EAC 的平分线,AD ∥BC ,∠B =40°,则∠DAC 的度数为____. 13.如图,将四边形纸片ABCD 沿MN 折叠,点A 、D 分别落在点A 1、D 1处.若∠1+∠2=130°,则∠B +∠C =___°.14.规定,()221x f x x =+,例如:()223931310f ==+,221113310113f ⎛⎫ ⎪⎛⎫⎝⎭== ⎪⎝⎭⎛⎫÷ ⎪⎝⎭,通过观察,那么()()()()11111239910099982f f f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫+++⋅⋅⋅+++++⋅⋅⋅+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()100f +=______. 15.已知点()6,23A m m --,且点A 到两坐标轴的距离相等,则点A 的坐标是____. 16.如图,长方形BCDE 的各边分别平行于x 轴或y 轴,物体甲和物体乙分别由点A (4,0),沿长方形BCDE 的边作环绕运动.物体甲按逆时针方向以2个单位/秒匀速运动,物体乙按顺时针方向以4个单位秒匀速运动,则两个物体运动后的第2021次相遇地点的坐标是___.三、解答题17.(1)计算:16125- (2)计算: 3223--(3)计算:310.0484+-- (4)计算:16122+--18.已知a +b =5,ab =2,求下列各式的值.(1)a 2+b 2;(2)(a ﹣b )2.19.请把以下证明过程补充完整,并在下面的括号内填上推理理由:已知:如图,∠1=∠2,∠A =∠D .求证:∠B =∠C .证明:∵∠1=∠2,(已知)又:∵∠1=∠3,( )∴∠2=____________(等量代换)AE FD ∴∥(同位角相等,两直线平行)∴∠A =∠BFD ( )∵∠A =∠D (已知)∴∠D =_____________(等量代换)∴____________∥CD ( )∴∠B =∠C ( )20.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A 处出发去看望B 、C 、D 处的其它甲虫,规定:向上向右走为正,向下向左走为负.如果从A 到B 记为:A →B (+1,+4),从B 到A 记为:A →B (﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向,那么图中(1)A →C ( , ),B →D ( , ),C → (+1, );(2)若这只甲虫从A 处去甲虫P 处的行走路线依次为(+2,+2),(+1,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P 的位置.21.解下列问题:(1)已知235150x y x y --++-=;求223x y +的值.(2)已知22的小数部分为,33a 的整数部分为b ,求122b a +-的值. 22.数学活动课上,小新和小葵各自拿着不同的长方形纸片在做数学问题探究.(1)小新经过测量和计算得到长方形纸片的长宽之比为3:2,面积为30,请求出该长方形纸片的长和宽;(2)小葵在长方形内画出边长为a ,b 的两个正方形(如图所示),其中小正方形的一条边在大正方形的一条边上,她经过测量和计算得到长方形纸片的周长为50,阴影部分两个长方形的周长之和为30,由此她判断大正方形的面积为100,间小葵的判断正确吗?请说明理由.23.如图,直线//PQ MN ,点C 是PQ 、MN 之间(不在直线PQ ,MN 上)的一个动点.(1)如图1,若1∠与2∠都是锐角,请写出C ∠与1∠,2∠之间的数量关系并说明理由; (2)把直角三角形ABC 如图2摆放,直角顶点C 在两条平行线之间,CB 与PQ 交于点D ,CA 与MN 交于点E ,BA 与PQ 交于点F ,点G 在线段CE 上,连接DG ,有BDF GDF ∠=∠,求AEN CDG∠∠的值; (3)如图3,若点D 是MN 下方一点,BC 平分PBD ∠, AM 平分CAD ∠,已知25PBC ∠=︒,求ACB ADB ∠+∠的度数.24.如图,直线m 与直线n 互相垂直,垂足为O 、A 、B 两点同时从点O 出发,点A 沿直线m 向左运动,点B 沿直线n 向上运动.(1)若∠BAO 和∠ABO 的平分线相交于点Q ,在点A ,B 的运动过程中,∠AQB 的大小是否会发生变化?若不发生变化,请求出其值,若发生变化,请说明理由.(2)若AP 是∠BAO 的邻补角的平分线,BP 是∠ABO 的邻补角的平分线,AP 、BP 相交于点P ,AQ 的延长线交PB 的延长线于点C ,在点A ,B 的运动过程中,∠P 和∠C 的大小是否会发生变化?若不发生变化,请求出∠P 和∠C 的度数;若发生变化,请说明理由.【参考答案】一、选择题1.B解析:B【分析】99的算术平方根,而9的算术平方根是3,进而得出答案.【详解】解:因为32=9,9,故选:B .【点睛】本题考查了算术平方根,理解算术平方根的意义是正确解答的前提.【分析】根据平移不改变图形的形状和大小,对应点的连线相等且互相平行即可判断.【详解】解:观察图形可知图形进行平移,能得到图形D .故选:D .【点睛】本题考查了图形的平移,图形的平移只改解析:D【分析】根据平移不改变图形的形状和大小,对应点的连线相等且互相平行即可判断.【详解】解:观察图形可知图形进行平移,能得到图形D .故选:D .【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小. 3.B【分析】根据坐标的特点即可求解.【详解】点()3,5A -在平面直角坐标系中所在的象限是第二象限故选B .【点睛】此题主要考查坐标所在象限,解题的关键是熟知直角坐标系的特点.4.B【分析】根据平角和补角的性质判断①;内错角不一定相等判断②;根据锐角的定义:小于90°的角,判断③;根据平行线的性质判断④.【详解】根据平角和补角的性质可以判断①是真命题;两直线平行内错角相等,故②是假命题;两锐角的和可能是钝角也可能是直角,故③是假命题;平行于同一条直线的两条直线平行,故④是真命题,因此假命题有两个②和③,故选:B .【点睛】本题考查了平角、补角、内错角、平行线和锐角,熟练掌握相关定义和性质是解决本题的关键.【分析】过F作FH∥AB,依据平行线的性质,可设∠ABF=∠EBF=α=∠BFH,∠DCG=∠ECG=β=∠CFH,根据四边形内角和以及∠E-∠F=48°,即可得到∠E的度数.【详解】解:如图,过F作FH∥AB,∵AB∥CD,∴FH∥AB∥CD,∵∠DCE的角平分线CG的反向延长线和∠ABE的角平分线BF交于点F,∴可设∠ABF=∠EBF=α=∠BFH,∠DCG=∠ECG=β=∠CFH,∴∠ECF=180°-β,∠BFC=∠BFH-∠CFH=α-β,∴四边形BFCE中,∠E+∠BFC=360°-α-(180°-β)=180°-(α-β)=180°-∠BFC,即∠E+2∠BFC=180°,①又∵∠E-∠BFC=48°,∴∠E =∠BFC+48°,②∴由①②可得,∠BFC+48°+2∠BFC=180°,解得∠BFC=44°,故选:B.【点睛】本题主要考查了平行线的性质,掌握平行线的判定和性质是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补.6.D【分析】根据平方根、立方根、算术平方根的定义逐一进行判断即可.【详解】A. 负数没有平方根,故A选项错误;B. 9的平方根是±3,故B选项错误;C. 939C选项错误;D. 9的算术平方根是3,正确,故选D.【点睛】本题考查了平方根、立方根、算术平方根等知识,熟练掌握相关概念以及求解方法是解题的关键.【分析】过点C作CF∥AB,则CF∥DE,利用平行线的性质和角的等量代换求解即可.【详解】解:由题意得,AB∥DE,过点C作CF∥AB,则CF∥DE,∴∠BCF+∠ABC=180°,∴∠BCF=60°,∴∠DCF=20°,∴∠CDE=∠DCF=20°.故选:A.【点睛】本题主要考查了平行线的性质,合理作出辅助线是解题的关键.8.D【分析】根据图象移动的得出移动4次一个循环,得出结果即可;【详解】根据图象可得移动4次图象完成一个循环,∵,∴的坐标是;故答案选D.【点睛】本题主要考查了点的坐标规律题,准确计算解析:D【分析】根据图象移动的得出移动4次一个循环,得出结果即可;【详解】根据图象可得移动4次图象完成一个循环,÷=,∵202145051∴2021A的坐标是()()⨯=;5052,11010,1故答案选D.【点睛】本题主要考查了点的坐标规律题,准确计算是解题的关键.二、填空题9.13【分析】根据求解即可.【详解】解:,故答案为:13.【点睛】题目主要考查算术平方根的计算,熟记常用数的平方及算数平方根的计算法则是解题关键.解析:13【分析】=求解即可.a【详解】==,1313故答案为:13.【点睛】题目主要考查算术平方根的计算,熟记常用数的平方及算数平方根的计算法则是解题关键.10.(-2,-1)【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答.【详解】解:点(-2,1)关于x轴对称的点的坐标是(-2,-1),故答案为:(-2,-1).【点睛】本解析:(-2,-1)【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答.【详解】解:点(-2,1)关于x轴对称的点的坐标是(-2,-1),故答案为:(-2,-1).【点睛】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.11.90°【分析】过P1作P1Q ∥AB ,则P1Q ∥CD ,根据平行线的性质得到∠AEF+∠CFE=180°,∠AEP1=∠EP1Q ,∠CFP1=∠FP1Q ,结合角平分线的定义可计算∠E解析:90° 902n ︒ 【分析】过P 1作P 1Q ∥AB ,则P 1Q ∥CD ,根据平行线的性质得到∠AEF +∠CFE =180°,∠AEP 1=∠EP 1Q ,∠CFP 1=∠FP 1Q ,结合角平分线的定义可计算∠EP 1F ,再同理求出∠P 2,∠P 3,总结规律可得n P ∠.【详解】解:过P 1作P 1Q ∥AB ,则P 1Q ∥CD ,∵AB ∥CD ,∴∠AEF +∠CFE =180°,∠AEP 1=∠EP 1Q ,∠CFP 1=∠FP 1Q ,∵AEF ∠和CFE ∠的角平分线交于点1P ,∴∠EP 1F =∠EP 1Q +∠FP 1Q =∠AEP 1+∠CFP 1=12(∠AEF +∠CFE )=90°;同理可得:∠P 2=14(∠AEF +∠CFE )=45°, ∠P 3=18(∠AEF +∠CFE )=22.5°, ...,∴902n nP ︒∠=, 故答案为:90°,902n ︒.【点睛】本题主要考查了平行线的性质,角平分线的定义,规律性问题,解决问题的关键是作辅助线构造内错角,依据两直线平行,内错角相等进行计算求解.12.40°【分析】根据平行线的性质可得∠EAD=∠B ,根据角平分线的定义可得∠DAC=∠EAD ,即可得答案.【详解】∵AD ∥BC ,∠B =40°,∴∠EAD=∠B=40°,∵AD 是∠EAC 的平解析:40°【分析】根据平行线的性质可得∠EAD =∠B ,根据角平分线的定义可得∠DAC =∠EAD ,即可得答案.【详解】∵AD ∥BC ,∠B =40°,∴∠EAD =∠B =40°,∵AD 是∠EAC 的平分线,∴∠DAC =∠EAD =40°,故答案为:40°【点睛】本题考查平行线的性质及角平分线的定义,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;熟练掌握平行线的性质是解题关键.13.115【分析】先根据∠1+∠2=130°得出∠AMN+∠DNM 的度数,再由四边形内角和定理即可得出结论.【详解】解:∵∠1+∠2=130°,∴∠AMN+∠DNM= =115°.∵∠A+∠解析:115【分析】先根据∠1+∠2=130°得出∠AMN +∠DNM 的度数,再由四边形内角和定理即可得出结论.【详解】解:∵∠1+∠2=130°,∴∠AMN +∠DNM =3601302︒-︒ =115°. ∵∠A +∠D +(∠AMN +∠DNM )=360°,∠A +∠D +(∠B +∠C )=360°,∴∠B +∠C =∠AMN +∠DNM =115°.故答案为:115.【点睛】本题考查的是翻折变换,熟知图形翻折不变性的性质是解答此题的关键.14.【分析】由题干得到,将原式进行整理化简即可求解.【详解】∵,∴,∴.【点睛】本题考查了归纳概括,找到互为倒数的两个数之和为1是解题关键. 解析:1992【分析】由题干得到()11⎛⎫+= ⎪⎝⎭f n f n ,将原式进行整理化简即可求解. 【详解】∵()1913131010f f ⎛⎫+=+= ⎪⎝⎭, ∴()()()()111,111,12f n f f f f n ⎛⎫+=+=∴= ⎪⎝⎭, ∴()()()1199100110099f f f f f ⎛⎫⎛⎫++⋅⋅⋅+++ ⎪ ⎪⎝⎭⎝⎭ 119999112=+=+. 【点睛】本题考查了归纳概括,找到互为倒数的两个数之和为1是解题关键.15.或;【分析】根据点A 到两坐标轴的距离相等,列出绝对值方程,解方程即可得到答案.【详解】解:∵点A 到两坐标轴的距离相等,且点A 为,∴,∴或,解得:或,∴点A 的坐标为:或;故答案为:或解析:()4,4--或()8,8-;【分析】根据点A 到两坐标轴的距离相等,列出绝对值方程,解方程即可得到答案.【详解】解:∵点A 到两坐标轴的距离相等,且点A 为()6,23m m --, ∴623m m -=-,∴623m m -=-或6(23)m m -=--,解得:2m =或2m =-,∴点A 的坐标为:()4,4--或()8,8-;故答案为:()4,4--或()8,8-;【点睛】本题考查了点的坐标:直角坐标系中点与有序实数对一一对应;在x 轴上点的纵坐标为0,在y 轴上点的横坐标为0;记住各象限点的坐标特点.16.【分析】利用行程问题中的相遇问题,根据矩形的边长为8和4,物体乙是物体甲的速度的2倍,求得每一次相遇的地点,找出规律即可解答.【详解】解:矩形的周长为,所以,第一次相遇的时间为秒,此时,解析:(2,2)--【分析】利用行程问题中的相遇问题,根据矩形的边长为8和4,物体乙是物体甲的速度的2倍,求得每一次相遇的地点,找出规律即可解答.【详解】解:矩形的周长为2(84)24⨯+=,所以,第一次相遇的时间为24(24)4÷+=秒,此时,甲走过的路程为428⨯=,相遇坐标为(2,2)-,第二次相遇又用时间为428⨯=(秒),甲又走过的路程为8216⨯=,相遇坐标为(2,2)--,∵3824=÷,∴第3次相遇时在点A 处,则以后3的倍数次相遇都在点A 处,∵202136732,∴第2021次相遇地点与第2次相遇地点的相同,∴第2021次相遇地点的坐标为(2,2)--.故填:(2,2)--.【点睛】此题主要考查了点的变化规律以及行程问题中的相遇问题及按比例分配的运用,通过计算发现规律就可以解决问题,解本题的关键是找出规律每相遇三次,甲乙两物体回到出发点.三、解答题17.(1);(2);(3);(4)【分析】(1)根据算术平方根的求法计算即可;(2)先化简绝对值,再合并即可;(3)分别进行二次根式的化简、开立方,然后合并求解;(4)先化简绝对值和二次根式,解析:(1)35;(2)3)2310-;(4)3 【分析】(1)根据算术平方根的求法计算即可;(2)先化简绝对值,再合并即可;(3)分别进行二次根式的化简、开立方,然后合并求解;(4)先化简绝对值和二次根式,再合并即可.【详解】解:(1==35=(2)==(310.222=-- 2205)(1010+=-2310=-(414=3=【点睛】本题考查了实数的运算,涉及了二次根式的化简、绝对值的化简、开立方等知识. 18.(1)21;(2)17【分析】(1)根据完全平方公式变形,得到a2+b2=(a+b )2﹣2ab ,即可求解; (1)根据完全平方公式变形,得到(a ﹣b )2=a2+b2-2ab ,即可求解.【详解】解析:(1)21;(2)17【分析】(1)根据完全平方公式变形,得到a 2+b 2=(a +b )2﹣2ab ,即可求解;(1)根据完全平方公式变形,得到(a ﹣b )2=a 2+b 2-2ab ,即可求解.【详解】解:(1)∵a +b =5,ab =2,∴a 2+b 2=(a +b )2﹣2ab =52﹣2×2=21;(2))∵a +b =5,ab =2,∴(a ﹣b )2=a 2+b 2-2ab =21-2×2=17.【点睛】本题主要考查了完全平方公式,熟练掌握()2222a b a ab b +=±+ 及其变形公式是解题的关键.19.对顶角相等;∠3;两直线平行,同位角相等;∠BFD ;AB ;内错角相等,两直线平行;两直线平行,内错角相等【分析】根据对顶角相等,平行线的性质与判定定理填空即可.【详解】证明:∵∠1=∠2,(解析:对顶角相等;∠3;两直线平行,同位角相等;∠BFD ;AB ;内错角相等,两直线平行;两直线平行,内错角相等【分析】根据对顶角相等,平行线的性质与判定定理填空即可.【详解】证明:∵∠1=∠2,(已知)又:∵∠1=∠3,(对顶角相等)∴∠2=∠3(等量代换)∥(同位角相等,两直线平行)AE FD∴∠A=∠BFD(两直线平行,同位角相等)∵∠A=∠D(已知)∴∠D=∠BFD(等量代换)∴AB∥CD(内错角相等,两直线平行)∴∠B=∠C(两直线平行,内错角相等).【点睛】本题考查了平行线的性质与判定,掌握平行线的性质与判定是解题的关键.20.(1)3,4,3,﹣2,D,﹣2;(2)见解析【分析】(1)根据向上向右走为正,向下向左走为负,可得答案;(2)根据向上向右走为正,向下向左走为负,可得答案.【详解】解:(1)A→C( 3解析:(1)3,4,3,﹣2,D,﹣2;(2)见解析【分析】(1)根据向上向右走为正,向下向左走为负,可得答案;(2)根据向上向右走为正,向下向左走为负,可得答案.【详解】解:(1)A→C( 3,4),B→D(3﹣2),C→D(+1,﹣2);故答案为3,4;3,﹣2;D,﹣2;(2)这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+1,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置,如图【点睛】本题主要考查了用有序实数对表示路线.读懂题目信息,正确理解行走路线的记录方法是解题的关键.21.(1);(2).(1)直接利用非负数的性质得出x ,y 的值,再利用立方根的定义求出答案; (2)直接估算无理数的取值范围得出a ,b 的值,进而得出答案.【详解】原式.解析:(1)5;(2)3-.【分析】(1)直接利用非负数的性质得出x ,y 的值,再利用立方根的定义求出答案; (2)直接估算无理数的取值范围得出a ,b 的值,进而得出答案.【详解】()12350x y --23500x y ⎧--=⎪∴⎨= 2350150x y x y --=⎧∴⎨+-=⎩105x y =⎧∴⎨=⎩5== ()22223<<2a ∴=5336<<5b ∴=∴原式=3=-.【点睛】此题主要考查了估算无理数的大小,正确得出无理数的取值范围是解题关键. 22.(1)长为,宽为;(2)正确,理由见解析【分析】(1)设长为3x ,宽为2x ,根据长方形的面积为30列方程,解方程即可; (2)根据长方形纸片的周长为50,阴影部分两个长方形的周长之和为30列方程解析:(1)长为,宽为2)正确,理由见解析(1)设长为3x,宽为2x,根据长方形的面积为30列方程,解方程即可;(2)根据长方形纸片的周长为50,阴影部分两个长方形的周长之和为30列方程组,解方程组求出a即可得到大正方形的面积.【详解】解:(1)设长为3x,宽为2x,则:3x•2x=30,∴x=5(负值舍去),∴3x=35,2x=25,答:这个长方形纸片的长为35,宽为25;(2)正确.理由如下:根据题意得:()()250 4230a b ab a b⎧⎡⎤++=⎪⎣⎦⎨+-=⎪⎩,解得:105ab=⎧⎨=⎩,∴大正方形的面积为102=100.【点睛】本题考查了算术平方根,二元一次方程组,解二元一次方程组的基本思路是消元,把二元方程转化为一元方程是解题的关键.23.(1)见解析;(2);(3)75°【分析】(1)根据平行线的性质、余角和补角的性质即可求解.(2)根据平行线的性质、对顶角的性质和平角的定义解答即可.(3)根据平行线的性质和角平分线的定义以解析:(1)见解析;(2)12;(3)75°【分析】(1)根据平行线的性质、余角和补角的性质即可求解.(2)根据平行线的性质、对顶角的性质和平角的定义解答即可.(3)根据平行线的性质和角平分线的定义以及三角形内角和解答即可.【详解】解:(1)∠C=∠1+∠2,证明:过C作l∥MN,如下图所示,∵l∥MN,∴∠4=∠2(两直线平行,内错角相等),∵l∥MN,PQ∥MN,∴l∥PQ,∴∠3=∠1(两直线平行,内错角相等),∴∠3+∠4=∠1+∠2,∴∠C=∠1+∠2;(2)∵∠BDF=∠GDF,∵∠BDF=∠PDC,∴∠GDF=∠PDC,∵∠PDC+∠CDG+∠GDF=180°,∴∠CDG+2∠PDC=180°,∴∠PDC=90°-12∠CDG,由(1)可得,∠PDC+∠CEM=∠C=90°,∴∠AEN=∠CEM,∴190(90)90122CDGAEN CEM PDCCDG CDG CDG CDG︒-︒-∠∠∠︒-∠====∠∠∠∠,(3)设BD交MN于J.∵BC平分∠PBD,AM平分∠CAD,∠PBC=25°,∴∠PBD=2∠PBC=50°,∠CAM=∠MAD,∵PQ∥MN,∴∠BJA=∠PBD=50°,∴∠ADB=∠AJB-∠JAD=50°-∠JAD=50°-∠CAM,由(1)可得,∠ACB=∠PBC+∠CAM,∴∠ACB+∠ADB=∠PBC+∠CAM+50°-∠CAM=25°+50°=75°.【点睛】本题考查了平行线的性质、余角和补角的性质,解题的关键是根据平行找出角度之间的关系.24.(1)∠AQB的大小不发生变化,∠AQB=135°;(2)∠P和∠C的大小不变,∠P=45°,∠C=45°.【分析】第(1)题因垂直可求出∠ABO与∠BAO的和,由角平分线和角的和差可求出∠BA解析:(1)∠AQB的大小不发生变化,∠AQB=135°;(2)∠P和∠C的大小不变,∠P=45°,∠C=45°.【分析】第(1)题因垂直可求出∠ABO与∠BAO的和,由角平分线和角的和差可求出∠BAQ与∠ABQ 的和,最后在△ABQ中,根据三角形的内角各定理可求∠AQB的大小.第(2)题求∠P的大小,用邻补角、角平分线、平角、直角和三角形内角和定理等知识求解.【详解】解:(1)∠AQB的大小不发生变化,如图1所示,其原因如下:∵m⊥n,∴∠AOB=90°,∵在△ABO中,∠AOB+∠ABO+∠BAO=180°,∴∠ABO+∠BAO=90°,又∵AQ、BQ分别是∠BAO和∠ABO的角平分线,∴∠BAQ=12∠BAC,∠ABQ=12∠ABO,∴∠BAQ+∠ABQ=12 (∠ABO+∠BAO)=190452⨯=又∵在△ABQ中,∠BAQ+∠ABQ+∠AQB=180°,∴∠AQB=180°﹣45°=135°.(2)如图2所示:①∠P的大小不发生变化,其原因如下:∵∠ABF+∠ABO=180°,∠EAB+∠BAO=180°∠BAQ+∠ABQ=90°,∴∠ABF+∠EAB=360°﹣90°=270°,又∵AP、BP分别是∠BAE和∠ABP的角平分线,∴∠PAB=12∠EAB,∠PBA=12∠ABF,∴∠PAB+∠PBA=12 (∠EAB+∠ABF)=12×270°=135°,又∵在△PAB中,∠P+∠PAB+∠PBA=180°,∴∠P=180°﹣135°=45°.②∠C的大小不变,其原因如下:∵∠AQB=135°,∠AQB+∠BQC=180°,∴∠BQC=180°﹣135°,又∵∠FBO=∠OBQ+∠QBA+∠ABP+∠PBF=180°∠ABQ=∠QBO=12∠ABO,∠PBA=∠PBF=∠ABF,∴∠PBQ=∠ABQ+∠PBA=90°,又∵∠PBC=∠PBQ+∠CBQ=180°,∴∠QBC=180°﹣90°=90°.又∵∠QBC+∠C+∠BQC=180°,∴∠C=180°﹣90°﹣45°=45°【点睛】本题考查三角形内角和定理,垂直,角平分线,平角,直角和角的和差等知识点,同时,也是一个以静求动的一个点型题目,有益于培养学生的思维几何综合题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【本文档由书林工作坊整理发布,谢谢你的下载和关注!】期中数学试卷一、选择题1.在下列各数:3.1415926、、0.2、、、、中无理数的个数是()A.2 B.3 C.4 D.52.下列各式中,正确的是()A.±=± B.±=C.±=± D.=±3.若|3﹣a|+=0,则a+b的值是()A.2 B.1 C.0 D.﹣14.估算﹣2的值()A.在1到2之间B.在2到3之间C.在3到4之间D.在4到5之间5.已知下列命题:①若a>0,b>0,则a+b>0;②若a≠b,则a2≠b2;③两点之间,线段最短;④同位角相等,两直线平行.其中真命题的个数是()A.1个 B.2个 C.3个 D.4个6.同桌读了:“子非鱼焉知鱼之乐乎?”后,兴高采烈地利用电脑画出了几幅鱼的图案,请问:由图中所示的图案通过平移后得到的图案是()A.B.C.D.7.如图,小明从A处出发沿北偏东60°方向行走至B处,又沿北偏西20°方向行走至C处,此时需把方向调整到与出发时一致,则方向的调整应是()A.右转80°B.左转80°C.右转100°D.左转100°8.已知点P位于y轴右侧,距y轴3个单位长度,位于x轴上方,距离x轴4个单位长度,则点P坐标是()A.(﹣3,4)B.(3,4) C.(﹣4,3)D.(4,3)9.在平面直角坐标系中,将点B(﹣3,2)向右平移5个单位长度,再向下平移3个单位长度后与点A(x,y)重合,则点A的坐标是()A.(2,5) B.(﹣8,5)C.(﹣8,﹣1)D.(2,﹣1)10.如图,已知棋子“车”的坐标为(﹣2,﹣1),棋子“马”的坐标为(1,﹣1),则棋子“炮”的坐标为()A.(3,2) B.(﹣3,2)C.(3,﹣2)D.(﹣3,﹣2)11.已知点A(1,0),B(0,2),点P在x轴上,且△PAB的面积为5,则点P 的坐标为()A.(﹣4,0)B.(6,0) C.(﹣4,0)或(6,0)D.无法确定12.如图,AB∥CD,DE⊥CE,∠1=34°,则∠DCE的度数为()A.34°B.56°C.66°D.54°13.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132°B.134°C.136° D.138°14.如图a是长方形纸带,∠DEF=20°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是()A.110°B.120°C.140° D.150°二、填空题15.把命题“同角的余角相等”改写成“如果…那么…”的形式.16.3﹣的相反数是,绝对值是.17.若一个正数的平方根是2a﹣3与5﹣a,则这个正数是.18.点P(2a,1﹣3a)是第二象限内的一个点,且点P到两坐标轴的距离之和为4,则点P的坐标是.19.直线m外有一定点A,A到直线m的距离是7cm,B是直线m上的任意一点,则线段AB的长度:AB7cm.(填>或者<或者=或者≤或者≥).20.如图是某公园里一处矩形风景欣赏区ABCD,长AB=50米,宽BC=25米,为方便游人观赏,公园特意修建了如图所示的小路(图中非阴影部分),小路的宽均为1米,那么小明沿着小路的中间出口A到出口B所走的路线(图中虚线)长为米.三、解答题(共60分)21.(10分)(1)计算:(﹣2)2×+||+×(﹣1)2016(2)解方程:3(x﹣2)2=27.22.(10分)完成下面推理过程:如图,已知DE∥BC,DF、BE分别平分∠ADE、∠ABC,可推得∠FDE=∠DEB的理由:∵DE∥BC(已知)∴∠ADE=()∵DF、BE分别平分∠ADE、∠ABC,∴∠ADF=()∠ABE=()∴∠ADF=∠ABE∴∥()∴∠FDE=∠DEB.()23.(10分)如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2),(1)写出点A、B的坐标:A(,)、B(,)(2)将△ABC先向左平移1个单位长度,再向上平移2个单位长度,得到△A′B′C′,画出△A′B′C′(3)写出三个顶点坐标A′(、)、B′(、)、C′、)(4)求△ABC的面积.24.(10分)如图,在A、B两处之间要修一条笔直的公路,从A地测得公路走向是北偏东46°,A、B两地同时开工,若干天后公路准确接通.(1)B地修公路的走向是南偏西多少度?(2)若公路AB长12千米,另一条公路BC长6千米,且BC的走向是北偏西44°,试求A到公路BC的距离?25.(10分)如图,∠1+∠2=180°,∠A=∠C,DA平分∠BDF.(1)AE与FC会平行吗?说明理由;(2)AD与BC的位置关系如何?为什么?(3)BC平分∠DBE吗?为什么.26.(10分)如图(1),AB∥CD,猜想∠BPD与∠B、∠D的关系,说出理由.解:猜想∠BPD+∠B+∠D=360°理由:过点P作EF∥AB,∴∠B+∠BPE=180°(两直线平行,同旁内角互补)∵AB∥CD,EF∥AB,∴EF∥CD,(如果两条直线都和第三条直线平行,那么这两条直线也互相平行.)∴∠EPD+∠D=180°(两直线平行,同旁内角互补)∴∠B+∠BPE+∠EPD+∠D=360°∴∠B+∠BPD+∠D=360°(1)依照上面的解题方法,观察图(2),已知AB∥CD,猜想图中的∠BPD与∠B、∠D的关系,并说明理由.(2)观察图(3)和(4),已知AB∥CD,猜想图中的∠BPD与∠B、∠D的关系,不需要说明理由.参考答案与试题解析一、选择题(每小题3分,共42)1.在下列各数:3.1415926、、0.2、、、、中无理数的个数是()A.2 B.3 C.4 D.5【考点】26:无理数.【分析】根据无理数的定义及常见的无理数的形式即可判定.【解答】解:在下列各数:3.1415926、、0.2、、、、中,根据无理数的定义可得,无理数有、两个.故选A.【点评】此题主要考查了无理数的定义,解题要注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.2.下列各式中,正确的是()A.±=± B.±=C.±=± D.=±【考点】22:算术平方根.【分析】根据平方根的定义得到±=±,即可对各选项进行判断.【解答】解:因为±=±,所以A选项正确;B、C、D选项都错误.故选A.【点评】本题考查了算术平方根的定义:一个正数的正的平方根叫这个数的算术平方根;0的算术平方根为0.3.若|3﹣a|+=0,则a+b的值是()A.2 B.1 C.0 D.﹣1【考点】23:非负数的性质:算术平方根;16:非负数的性质:绝对值.【分析】根据几个非负数的和为0时,这几个非负数都为0列出算式求出a、b 的值,计算即可.【解答】解:由题意得,3﹣a=0,2+b=0,解得,a=3,b=﹣2,a+b=1,故选:B.【点评】本题考查的是非负数的性质,掌握几个非负数的和为0时,这几个非负数都为0是解题的关键.4.估算﹣2的值()A.在1到2之间B.在2到3之间C.在3到4之间D.在4到5之间【考点】2B:估算无理数的大小.【专题】11 :计算题;511:实数.【分析】估算出的范围,即可确定出所求式子的范围.【解答】解:∵16<21<25,∴4<<5,即2<﹣2<3,则﹣2的值在2到3之间,故选B【点评】此题考查了估算无理数的大小,设实数为a,a的整数部分A为不大于a的最大整数,小数部分B为实数a减去其整数部分,即B=a﹣A;5.已知下列命题:①若a>0,b>0,则a+b>0;②若a≠b,则a2≠b2;③两点之间,线段最短;④同位角相等,两直线平行.其中真命题的个数是()A.1个 B.2个 C.3个 D.4个【考点】O1:命题与定理.【专题】17 :推理填空题.【分析】正确的命题叫真命题,错误的命题叫做假命题,据此逐项判断即可.【解答】解:∵若a>0,b>0,则a+b>0,∴选项①符合题意;∵若a≠b,且|a|=|b|时,a2=b2,∴选项②不符合题意;∵两点之间,线段最短,∴选项③符合题意;∵同位角相等,两直线平行,∴选项④符合题意,∴真命题的个数是3个:①、③、④.故选:C.【点评】此题主要考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.6.同桌读了:“子非鱼焉知鱼之乐乎?”后,兴高采烈地利用电脑画出了几幅鱼的图案,请问:由图中所示的图案通过平移后得到的图案是()A.B.C.D.【考点】Q1:生活中的平移现象.【分析】根据图形平移的性质对各选项进行逐一分析即可.【解答】解:A、由图中所示的图案通过旋转而成,故本选项错误;B、由图中所示的图案通过翻折而成,故本选项错误C、由图中所示的图案通过旋转而成,故本选项错误;D、由图中所示的图案通过平移而成,故本选项正确.故选D.【点评】本题考查的是生活中的平移现象,熟知图形平移变换的性质是解答此题的关键.7.如图,小明从A处出发沿北偏东60°方向行走至B处,又沿北偏西20°方向行走至C处,此时需把方向调整到与出发时一致,则方向的调整应是()A.右转80°B.左转80°C.右转100°D.左转100°【考点】IH:方向角.【专题】12 :应用题.【分析】本题考查了方向角有关的知识,若需要和出发时的方向一致,在C点的方向应调整为向右80度.【解答】解:60°+20°=80°.由北偏西20°转向北偏东60°,需要向右转.故选:A.【点评】本题考查的是方向角,解答时要注意以北方为参照方向,进行角度调整.8.已知点P位于y轴右侧,距y轴3个单位长度,位于x轴上方,距离x轴4个单位长度,则点P坐标是()A.(﹣3,4)B.(3,4) C.(﹣4,3)D.(4,3)【考点】D1:点的坐标.【分析】根据题意,P点应在第一象限,横、纵坐标为正,再根据P点到坐标轴的距离确定点的坐标.【解答】解:∵P点位于y轴右侧,x轴上方,∴P点在第一象限,又∵P点距y轴3个单位长度,距x轴4个单位长度,∴P点横坐标为3,纵坐标为4,即点P的坐标为(3,4).故选B.【点评】本题考查了点的位置判断方法及点的坐标几何意义.9.在平面直角坐标系中,将点B(﹣3,2)向右平移5个单位长度,再向下平移3个单位长度后与点A(x,y)重合,则点A的坐标是()A.(2,5) B.(﹣8,5)C.(﹣8,﹣1)D.(2,﹣1)【考点】Q3:坐标与图形变化﹣平移.【分析】让B的横坐标加5,纵坐标减3即可得到所求点A的坐标.【解答】解:∵将点B(﹣3,2)向右平移5个单位长度,再向下平移3个单位长度后与点A(x,y)重合,∴所求点A的横坐标为:﹣3+5=2,纵坐标为2﹣3=﹣1,∴所求点的坐标为(2,﹣1).故选D.【点评】本题考查图形的平移变换,要牢记左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加.10.如图,已知棋子“车”的坐标为(﹣2,﹣1),棋子“马”的坐标为(1,﹣1),则棋子“炮”的坐标为()A.(3,2) B.(﹣3,2)C.(3,﹣2)D.(﹣3,﹣2)【考点】D3:坐标确定位置.【专题】31 :数形结合.【分析】先根据棋子“车”的坐标画出直角坐标系,然后写出棋子“炮”的坐标.【解答】解:如图,棋子“炮”的坐标为(3,﹣2).故选C.【点评】本题考查了坐标确定位置:平面坐标系中的点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.11.已知点A(1,0),B(0,2),点P在x轴上,且△PAB的面积为5,则点P 的坐标为()A.(﹣4,0)B.(6,0) C.(﹣4,0)或(6,0)D.无法确定【考点】D5:坐标与图形性质;K3:三角形的面积.【分析】根据B点的坐标可知AP边上的高为2,而△PAB的面积为5,点P在x 轴上,说明AP=5,已知点A的坐标,可求P点坐标.【解答】解:∵A(1,0),B(0,2),点P在x轴上,∴AP边上的高为2,又△PAB的面积为5,∴AP=5,而点P可能在点A(1,0)的左边或者右边,∴P(﹣4,0)或(6,0).故选C.【点评】本题考查了直角坐标系中,利用三角形的底和高及面积,表示点的坐标.12.如图,AB∥CD,DE⊥CE,∠1=34°,则∠DCE的度数为()A.34°B.56°C.66°D.54°【考点】JA:平行线的性质.【分析】根据平行线的性质得到∠D=∠1=34°,由垂直的定义得到∠DEC=90°,根据三角形的内角和即可得到结论.【解答】解:∵AB∥CD,∴∠D=∠1=34°,∵DE⊥CE,∴∠DEC=90°,∴∠DCE=180°﹣90°﹣34°=56°.故选B.【点评】本题考查了平行线的性质,三角形的内角和,熟记平行线的性质定理是解题的关键.13.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132°B.134°C.136° D.138°【考点】JA:平行线的性质.【分析】过E作EF∥AB,求出AB∥CD∥EF,根据平行线的性质得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.【解答】解:过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故选B.【点评】本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.14.如图a是长方形纸带,∠DEF=20°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是()A.110°B.120°C.140° D.150°【考点】PB:翻折变换(折叠问题).【专题】16 :压轴题.【分析】由题意知∠DEF=∠EFB=20°图b∠GFC=140°,图c中的∠CFE=∠GFC﹣∠EFG.【解答】解:∵AD∥BC,∴∠DEF=∠EFB=20°,在图b中∠GFC=180°﹣2∠EFG=140°,在图c中∠CFE=∠GFC﹣∠EFG=120°,故选B.【点评】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.二、填空题15.把命题“同角的余角相等”改写成“如果…那么…”的形式如果两个角是同一个角的余角,那么这两个角相等.【考点】O1:命题与定理.【分析】命题有题设和结论两部分组成,通常写成“如果…那么…”的形式.“如果”后面接题设,“那么”后面接结论.【解答】解:根据命题的特点,可以改写为:“如果两个角是同一个角的余角,那么这两个角相等”,故答案为:如果两个角是同一个角的余角,那么这两个角相等.【点评】本题考查命题的定义,根据命题的定义,命题有题设和结论两部分组成.16.3﹣的相反数是﹣3,绝对值是﹣3.【考点】28:实数的性质.【分析】根据只有符号不同的两数叫做互为相反数解答;根据负数的绝对值等于它的相反数解答.【解答】解:3﹣的相反数是﹣3,绝对值是﹣3.故答案为:﹣3;﹣3.【点评】本题考查了实数的性质,主要利用了相反数的定义,绝对值的性质,是基础题,熟记概念与性质是解题的关键.17.若一个正数的平方根是2a﹣3与5﹣a,则这个正数是49.【考点】21:平方根.【分析】根据平方根的定义得到2a﹣3与5﹣a互为相反数,列出关于a的方程,求出方程的解得到a的值,即可确定出这个正数.【解答】解:根据题意得:2a﹣3+5﹣a=0,解得:a=﹣2,则这个正数为49.故答案为:49【点评】此题考查了平方根,熟练掌握平方根的定义是解本题的关键.18.点P(2a,1﹣3a)是第二象限内的一个点,且点P到两坐标轴的距离之和为4,则点P的坐标是(﹣,).【考点】D1:点的坐标.【分析】根据第二象限内点的横坐标是负数,纵坐标是正数,点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度列方程求出a的值,再求解即可.【解答】解:∵点P(2a,1﹣3a)是第二象限内的一个点,且点P到两坐标轴的距离之和为4,∴﹣2a+1﹣3a=4,解得a=﹣,∴2a=2×(﹣)=﹣,1﹣3a=1﹣3×(﹣)=1+=,所以,点P的坐标为(﹣,).故答案为(﹣,).【点评】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度是解题的关键.19.直线m外有一定点A,A到直线m的距离是7cm,B是直线m上的任意一点,则线段AB的长度:AB≥7cm.(填>或者<或者=或者≤或者≥).【考点】J4:垂线段最短;J5:点到直线的距离.【分析】利用“从直线外一点到这条直线上各点所连的线段中,垂线段最短”可以作出判断.【解答】解:A到直线m的距离是7cm,根据点到直线距离的定义,7cm表示垂线段的长度,根据垂线段最短,其它线段的长度大于或等于7cm,故答案填:≥.【点评】此题主要考查了从直线外一点到这条直线上各点所连的线段中,垂线段最短.20.如图是某公园里一处矩形风景欣赏区ABCD,长AB=50米,宽BC=25米,为方便游人观赏,公园特意修建了如图所示的小路(图中非阴影部分),小路的宽均为1米,那么小明沿着小路的中间出口A到出口B所走的路线(图中虚线)长为98米.【考点】Q1:生活中的平移现象.【分析】根据已知可以得出此图形可以分为横向与纵向分析,横向距离等于AB,纵向距离等于(AD﹣1)×2,求出即可.【解答】解:利用已知可以得出此图形可以分为横向与纵向分析,横向距离等于AB,纵向距离等于(AD﹣1)×2,∴图是某公园里一处矩形风景欣赏区ABCD,长AB=50米,宽BC=25米,为50+(25﹣1)×2=98米,故答案为:98.【点评】此题主要考查了生活中的平移现象,根据已知得出所走路径是解决问题的关键.三、解答题21.(10分)(1)计算:(﹣2)2×+||+×(﹣1)2016(2)解方程:3(x﹣2)2=27.【考点】2C:实数的运算.【专题】11 :计算题;511:实数.【分析】(1)原式利用平方根、立方根定义,绝对值的代数意义,以及乘方的意义计算即可得到结果;(2)方程整理后,利用平方根定义开方即可求出解.【解答】解:(1)原式=2+2+=4+;(2)方程整理得:(x﹣2)2=9,开方得:x﹣2=±3,解得:x=5或x=﹣1.【点评】此题考查了实数的运算,平方根、立方根,熟练掌握各自的性质是解本题的关键.22.(10分)完成下面推理过程:如图,已知DE∥BC,DF、BE分别平分∠ADE、∠ABC,可推得∠FDE=∠DEB的理由:∵DE∥BC(已知)∴∠ADE=∠ABC(两直线平行,同位角相等)∵DF、BE分别平分∠ADE、∠ABC,∴∠ADF=∠ADE(角平分线定义)∠ABE=∠ABC(角平分线定义)∴∠ADF=∠ABE∴DF∥BE(同位角相等,两直线平行)∴∠FDE=∠DEB.(两直线平行,内错角相等)【考点】JB:平行线的判定与性质.【分析】根据平行线的性质得出∠ADE=∠ABC,根据角平分线定义得出∠ADF=∠ADE,∠ABE=∠ABC,推出∠ADF=∠ABE,根据平行线的判定得出DF∥BE即可.【解答】解:理由是:∵DE∥BC(已知),∴∠ADE=∠ABC(两直线平行,同位角相等),∵DF、BE分别平分ADE、∠ABC,∴∠ADF=∠ADE(角平分线定义),∠ABE=∠ABC(角平分线定义),∴∠ADF=∠ABE,∴DF∥BE(同位角相等,两直线平行),∴∠FDE=∠DEB(两直线平行,内错角相等),故答案为:∠ABC,两直线平行,同位角相等;∠ADE,角平分线定义;∠ABC,角平分线定义;DF,BE,同位角相等,两直线平行;两直线平行,内错角相等.【点评】本题考查了平行线的性质和判定的应用,能熟记平行线的性质和判定定理是解此题的关键.平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.23.(10分)如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2),(1)写出点A、B的坐标:A(2,﹣1)、B(4,3)(2)将△ABC先向左平移1个单位长度,再向上平移2个单位长度,得到△A′B′C′,画出△A′B′C′(3)写出三个顶点坐标A′(1、1)、B′(3、5)、C′0、4)(4)求△ABC的面积.【考点】Q4:作图﹣平移变换.【分析】(1)根据图可直接写出答案;(2)根据平移的方向作图即可;(3)根据所画的图形写出坐标即可;(4)利用长方形的面积减去四周三角形的面积可得答案.【解答】解:(1)A(2,﹣1),B(4,3);(2)如图所示:(3)A′(1,1),B′(3,5),C′(0,4);(4)△ABC的面积:3×4﹣×1×3﹣×2×4﹣×1×3=5.【点评】此题主要考查了平移作图,以及点的坐标,关键是正确画出图形.24.(10分)如图,在A、B两处之间要修一条笔直的公路,从A地测得公路走向是北偏东46°,A、B两地同时开工,若干天后公路准确接通.(1)B地修公路的走向是南偏西多少度?(2)若公路AB长12千米,另一条公路BC长6千米,且BC的走向是北偏西44°,试求A到公路BC的距离?【考点】IH:方向角;J5:点到直线的距离.【专题】12 :应用题.【分析】根据方位角的概念,图中给出的信息,再根据已知转向的角度求解.【解答】解:(1)由两地南北方向平行,根据内错角相等,可知B地所修公路的走向是南偏西46°;(2)∵∠ABC=180°﹣∠ABG﹣∠EBC=180°﹣46°﹣44°=90°,∴AB⊥BC,∴A地到公路BC的距离是AB=12千米.【点评】此题是一道方向角问题,结合生活中的实际问题,将解三角形的相关知识有机结合,体现了数学应用于实际生活的思想.25.(10分)如图,∠1+∠2=180°,∠A=∠C,DA平分∠BDF.(1)AE与FC会平行吗?说明理由;(2)AD与BC的位置关系如何?为什么?(3)BC平分∠DBE吗?为什么.【考点】J9:平行线的判定.【分析】(1)证明∠1=∠CDB,利用同位角相等,两直线平行即可证得;(2)平行,根据平行线的性质可以证得∠A=∠CBE,然后利用平行线的判定方法即可证得;(3)∠EBC=∠CBD,根据平行线的性质即可证得.【解答】解:(1)平行.理由如下:∵∠1+∠2=180°,∠2+∠CDB=180°(邻补角定义),∴∠1=∠CDB,∴AE∥FC(同位角相等两直线平行);(2)平行.理由如下:∵AE∥CF,∴∠C=∠CBE(两直线平行,内错角相等),又∵∠A=∠C,∴∠A=∠CBE,∴AD∥BC(同位角相等,两直线平行);(3)平分.理由如下:∵DA平分∠BDF,∴∠FDA=∠ADB,∵AE∥CF,AD∥BC,∴∠FDA=∠A=∠CBE,∠ADB=∠CBD,∴∠EBC=∠CBD,∴BC平分∠DBE.【点评】本题考查了平行线的判定与性质,解答此题的关键是注意平行线的性质和判定定理的综合运用.26.(10分)如图(1),AB∥CD,猜想∠BPD与∠B、∠D的关系,说出理由.解:猜想∠BPD+∠B+∠D=360°理由:过点P作EF∥AB,∴∠B+∠BPE=180°(两直线平行,同旁内角互补)∵AB∥CD,EF∥AB,∴EF∥CD,(如果两条直线都和第三条直线平行,那么这两条直线也互相平行.)∴∠EPD+∠D=180°(两直线平行,同旁内角互补)∴∠B+∠BPE+∠EPD+∠D=360°∴∠B+∠BPD+∠D=360°(1)依照上面的解题方法,观察图(2),已知AB∥CD,猜想图中的∠BPD与∠B、∠D的关系,并说明理由.(2)观察图(3)和(4),已知AB∥CD,猜想图中的∠BPD与∠B、∠D的关系,不需要说明理由.【考点】JA:平行线的性质.【分析】(1)首先过点P作PE∥AB,由AB∥CD,可得PE∥AB∥CD,根据两直线平行,内错角相等,即可得∠1=∠B,∠2=∠D,则可求得∠BPD=∠B+∠D.(2)由AB∥CD,根据两直线平行,内错角相等与三角形外角的性质,即可求得∠BPD与∠B、∠D的关系.【解答】解:(1)∠BPD=∠B+∠D.理由:如图2,过点P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠1=∠B,∠2=∠D,∴∠BPD=∠1+∠2=∠B+∠D;(2)如图(3):∠BPD=∠D﹣∠B.理由:∵AB∥CD,∴∠1=∠D,∵∠1=∠B+∠P,∴∠D=∠B+∠P,即∠BPD=∠D﹣∠B;如图(4):∠BPD=∠B﹣∠D.理由:∵AB∥CD,∴∠1=∠B,∵∠1=∠D+∠P,∴∠B=∠D+∠P,即∠BPD=∠B﹣∠D.【点评】此题考查了平行线的性质与三角形外角的性质.此题难度不大,解题的关键是注意掌握两直线平行,内错角相等定理的应用,注意辅助线的作法.。

相关文档
最新文档