配合物的生成和性质

合集下载

实验6 配合物的生成和性质

实验6 配合物的生成和性质

实验6 配合物的生成和性质
配合物的生成和性质是有机化学的重要内容。

它的研究主要围绕配体与配体作用、各种反应条件下的前趋分子合成及配体催化变化等进行。

配合物在一定的条件下可以生成,首先应满足的是反应的活性,所谓活性既指配体的活性,又指溶剂的活性。

其次,反应的时空控制对反应结果有极大影响,即在给定温度下保持适当时间。

再次,配合物在活性和时空控制条件下,需要足够的受体(即催化室内的受体),以交联紧束反应物,成为稳定的配合物。

配合物受配体的影响,其各种性质的优劣于受配体的类型,它们之间的对比性排列可以极大地影响配合物的催化性、结构和性能。

一般来说,活性更大的配体,催化性和结构也更好。

此外,体积越大的配体,其疏水性越强,配体的立体定位也更容易控制。

以上是配合物生成和性质的基本内容,经过仔细研究和研究能够帮助我们更加准确的分析配体的影响、控制配合物反应环境,优化反应条件和反应物,从而达到良好的催化作用和最好的产品效果。

配合物的生成和性质

配合物的生成和性质

配合物生成和性质一、实验目1、了解有关配合物生成,配离子及简单离子区别。

2、比较配离子稳定性,了解配位平衡及沉淀反应、氧化还原反应以及溶液酸度关系。

二、实验原理由一个简单正离子和几个中性分子或其它离子结合而成复杂离子叫配离子,含有配离子化合物叫配合物。

配离子在溶液中也能或多或少地离解成简单离子或分子。

例如:[Cu(NH 3)4]2+配离子在溶液中存在下列离解平衡:32243NH 4Cu ])NH (Cu [+⇔++)])(([)()(243342++⋅=NH Cu C NH C Cu C K d 不稳定常数K d 表示该离子离解成简单离子趋势大小。

配离子离解平衡也是一种化学平衡。

能向着生成更难离解或更难溶解物质方向进行,例如,在[Fe(SCN)]2+溶解中加入F -离子,则反应向着生成稳定常数更大[FeF 6]3- 配离子方向进行。

螯合物是中心离子及多基配位形成具有环状结构配合物。

很多金属螯合物都具有特征颜色,并且很难溶于水而易溶于有机溶剂。

例如,丁二肟在弱碱性条件下及Ni 2+生成鲜红色难溶于水螯合物,这一反应可作检验Ni 2+特征反应。

四、仪器及试剂1、 仪器试管、滴定管2、 试剂HgCl 2(0.1mol ·L -1)、KI(0.1 mol ·L -1)、NiSO 4(0.2 mol ·L -1)、BaCl 2(0.1mol ·L -1)、NaOH(0.1mol ·L -1)、1:1(NH 3·H 2O)、FeCl 3(0.1mol ·L -1)、KSCN(0.1 mol ·L -1)、K 3[Fe(CN)6](0.1 mol ·L -1)、AgNO 3(0.1mol ·L -1)、NaCl(0.1 mol ·L -1)、CCl 4、FeCl 3(0.5 mol ·L -1)、NH 4F(4 mol ·L -1)、NaOH(2mol ·L -1)、1:1H 2SO 4、HCl(浓)、NaF(0.1 mol ·L -1)、CuSO 4(0.1 mol ·L -1)、K 4P 2O 7(2 mol ·L -1)、NiCl 2(0.1 mol ·L -1)、NH 3·H 2O(2 mol ·L -1)、1%丁二肟、乙醚。

实验六、配合物的生成、性质与应用

实验六、配合物的生成、性质与应用

实验六、配合物的生成、性质与应用一、实验目的1、了解几种不同类型的配合物的生成,比较配合物与简单化合物和复盐的区别。

2、了解影响配合平衡移动的因素。

3、了解螯和物的形成条件。

4、熟悉过滤和试管的使用等基本操作.二、实验原理由中心离子(或原子)和一定数目的中性分子或阴离子通过形成配位共价键相结合而成的复杂结构单元称配合单元,凡是由配合单元组成的化合物称配位化合物。

在配合物中,中心离子已体现不出其游离存在时的性质。

而在简单化合物或复盐的溶液中,各种离子都能体现出游离离子的性质。

由此,可以区分出有否配合物存在.配合物在水溶液中存在有配合平衡:M n+ + aL—→ Ml a n—a配合物的稳定性可用平衡常数KΘ稳来衡量。

根据化学平衡的知识可知,增加配体或金属离子浓度有利于配合物的形成,而降低配体或金属离子浓度有利于配合物的解离。

因此,弱酸或弱碱作为配体时,溶液酸碱性的改变会导致配合物的解离。

若有沉淀剂能与中心离子形成沉淀反应,则会减少中心离子的浓度,使配合平衡朝解离的方向移动,最终导致配合物的解离。

若另加入一种配体,能与中心离子形成稳定性较好的配合物,则又可能使沉淀溶解。

总之,配合平衡与沉淀平衡的关系是朝着生成更难解离或更难溶解的物质的方向移动。

中心离子与配体结合形成配合物后,由于中心离子的浓度发生了改变,因此电极电势数值也改变,从而改变了中心离子的氧化还原能力。

中心离子与多基配体反应可生成具有环状结构的稳定性很好的螯和物。

很多金属螯和物具有特征颜色,且难溶于水而易溶于有机溶剂。

有些特征反应长用来作为金属例子的鉴定反应。

三、仪器和药品仪器:试管,试管架,离心试管,漏斗,漏斗架,白瓷点滴板,离心机,滤纸药品: 2 mol·L-1H2SO4;2mol·L-1NH3·H2O,6mol·L-1NH3·H2O ,0。

1 mol·L-1NaOH,2mol·L-1NaOH.0.1mol·L—1 CuSO4,0.1mol·L-1HgCl2, 0.1mol·L-1KI,0.1mol·L—1BaCl2,0。

配合物实验报告

配合物实验报告

一、实验目的1. 熟悉配合物实验的基本操作方法。

2. 掌握配合物的制备和提纯方法。

3. 了解配合物的性质和鉴定方法。

二、实验原理配合物是由中心金属离子和配位体通过配位键结合而成的化合物。

本实验通过制备和提纯配合物,观察其性质,并对配合物进行鉴定。

三、实验材料与仪器1. 实验材料:氯化铜、氨水、氢氧化钠、盐酸、乙醚、无水乙醇等。

2. 实验仪器:烧杯、玻璃棒、漏斗、滤纸、蒸发皿、试管、滴定管、锥形瓶、水浴锅等。

四、实验步骤1. 配合物制备(1)取一定量的氯化铜溶解于水中,配成一定浓度的氯化铜溶液。

(2)向氯化铜溶液中加入过量的氨水,搅拌均匀,观察溶液颜色的变化。

(3)继续加入氨水,直至溶液颜色变为深蓝色,表示配合物形成。

(4)将溶液转移至烧杯中,加热蒸发浓缩,得到深蓝色晶体。

2. 配合物提纯(1)将深蓝色晶体溶解于适量无水乙醇中。

(2)用漏斗和滤纸过滤,收集滤液。

(3)将滤液转移至蒸发皿中,蒸发至近干。

(4)冷却结晶,收集晶体。

3. 配合物性质观察(1)观察配合物的颜色、形状、溶解性等性质。

(2)将配合物与乙醚混合,观察是否分层。

4. 配合物鉴定(1)用盐酸酸化配合物溶液,观察是否有气体放出。

(2)用氢氧化钠溶液处理配合物溶液,观察是否有沉淀生成。

五、实验结果与分析1. 配合物制备:实验成功制备了深蓝色晶体,表明配合物形成。

2. 配合物提纯:通过蒸发浓缩、过滤和冷却结晶,成功提纯了配合物。

3. 配合物性质观察:配合物为深蓝色晶体,溶于水,不溶于乙醚。

4. 配合物鉴定:用盐酸酸化配合物溶液,有气体放出,表明配合物中含有氨分子;用氢氧化钠溶液处理配合物溶液,有沉淀生成,表明配合物中含有金属离子。

六、实验总结本实验成功制备和提纯了配合物,观察了其性质,并对配合物进行了鉴定。

通过本次实验,掌握了配合物实验的基本操作方法,加深了对配合物性质和鉴定方法的理解。

在实验过程中,应注意实验操作规范,确保实验结果的准确性。

配合物的性质的实验报告doc

配合物的性质的实验报告doc

配合物的性质的实验报告篇一:实验六配位化合物的生成及其性质山东大学西校区实验报告姓名危诚年级班级公共卫生1班实验六配位化合物的生成及其性质实验目的:了解配离子与简单离子的区别;比较配离子的相对稳定性,掌握配位平衡与沉淀、氧化还原反应和溶液酸度的关系;了解螯合物的形成。

实验原理:平衡原理;螯合物反应等。

实验器材:试管,离心试管,试管架,试管刷等。

实验药品:,实验过程:(一)配合物的生成和配合物的组成(1)取一支试管,加入1ml 0.1mol/L的变为深蓝色。

溶液,滴加2mol/L的溶液,溶液等配位化合物的反应;配位离子的稳定标准常数,。

取出1ml溶液于一支试管中,加入1ml无水乙醇,发现产生蓝色沉淀。

说明铜铵配合物在乙醇中溶解度较小。

(2)取一支试管,加4滴0.1mol/L的溶液,滴加0.1mol/L的溶液,观察到有红色沉淀生成。

再滴加过量的溶液,红色沉淀溶解。

;(3)取两支试管A、B,各加1ml 0.2mol/L的的溶液,在B试管中滴加0.1mol/L的;另取一支试管,加2ml的0.2mol/L的溶液,滴加6mol/L的溶液,在A试管中滴加0.1mol/L溶液。

A、B试管中都产生白色沉淀。

溶液,边加边震荡,待生成的沉淀完全溶解后,把溶液分在在两支试管C、D中。

在C试管中滴加0.1mol/L的溶液,在D试管中滴加0.1mol/L的溶液,C试管有白色沉淀生成,D管无明显现象。

;D管中镍离子以生反应。

(4)取一支试管,加10滴0.1mol/L的液变成血红色。

另取一支试管,10滴0.1mol/L的明显现象。

说明(二)配合物的稳定性的比较(1)取两支试管AB,各加4滴0.1mol/L的观察到有浅黄色的溶液和2滴0.1mol/L的,滴加0.1mol/L的L的发溶液,溶溶液,无溶液,溶沉淀生成。

在A试管中滴加0.1mol/L的液,边滴加边震荡,直至沉淀刚好溶解;在B试管中滴加相同体积的0.1mol/L的溶液,观察到沉淀溶解。

4.配合物的生成和性质

4.配合物的生成和性质

1
实验四 配合物的生成和性质
一、 实验目的
1. 加深理解配合物的组成和稳定性,了解配合物形成时的特性。

2. 初步学习利用配位溶解的方法分离常见混合阳离子。

3. 学习电动离心机的使用和固-液分离操作。

二、 实验原理
配位化合物与配位平衡
配位化合物的内、外层之间是靠离子键结合的,在水中是完全解离。

而配位个体在水中是部分的、分步的解离,因此就存在解离平衡。

配合物的标准平衡常数θ
f K ,也被称为稳定平衡常数。

θf K 越大,表明配合物越稳定。

形成配合物时,常伴有溶液颜色、酸碱性、难溶电解质溶解度、中心离子氧化还原性的改变等特征。

利用配位溶解可以分离溶液中的某些离子。

三、实验内容
2
3
4
四、注意事项
1.使用离心机时要注意安全。

2.及时记录实验过程中配合物的特征颜色。

3.节约药品,废液倒入废液缸。

5。

实验三_配合物的生成、性质与应用

实验三_配合物的生成、性质与应用

实验三 配合物的生成、性质和应用一、实验目的1.了解配合物的生成和组成。

2.了解配合物与简单化合物合复盐的区别。

3.了解配位平衡及其影响因素。

4.了解螯合物的形成条件及稳定性。

5.熟悉过滤盒试管的使用等基本操作。

二、实验原理由中心离子(或原子)与配体按一定组成和空间构型以配位键结合所形成的化合物称配合物。

配位反应是分步进行的可逆反应,每一步反应都存在着配位平衡。

M + nR MRn s n[MRn] [M][R]K 配合物的稳定性可由K 稳 (即K s )表示,数值越大配合物越稳定。

增加配体(R)或金属离子(M)浓度有利于配合物(MRn)的形成,而降低配体和金属离子的浓度则有利于配合物的解离。

如溶液酸碱性的改变,可能引起配体的酸效应或金属离子的水解等,就会导致配合物的解离;若有沉淀剂能与中心离子形成沉淀的反应发生,引起中心离子浓度的减少,也会使配位平衡朝离解的方向移动;若加入另一种配体,能与中心离子形成稳定性更好的配合物,则同样导致配合物的稳定性降低。

若沉淀平衡中有配位反应发生,则有利于沉淀溶解。

配位平衡与沉淀平衡的关系总是朝着生成更难解离或更难溶解物质的方向移动。

配位反应应用广泛,如利用金属离子生成配离子后的颜色、溶解度、氧化还原性等一系列性质的改变,进行离子鉴定、干扰离子的掩蔽反应等。

三、仪器和试剂仪器:试管、离心试管、漏斗、离心机、酒精灯、白瓷点滴板。

试药:H 2SO 4 (2mol·L -1)、HCl (1mol·L -1)、NH 3·H 2O (2, 6mol·L -1)、NaOH (0.1, 2mol·L -1) 、CuSO 4 (0.1mol·L -1, 固体)、HgCl 2 (0.1mol·L -1)、KI (0.1mol·L -1)、BaCl 2 (0.1mol·L -1)、K 3Fe (CN)6 (0.1mol·L -1)、NH 4Fe (SO 4)2 (0.1mol·L -1)、FeCl 3 (0.1mol·L -1)、KSCN (0.1mol·L -1)、NH 4F (2mol·L -1)、(NH 4)2C 2O 4 (饱和)、AgNO 3 (0.1mol·L -1)、NaCl (0.1mol·L -1)、KBr (0.1mol·L -1)、 Na 2S 2O 3 (0.1mol·L -1,饱和)、Na 2S (0.1mol·L -1)、FeSO 4 (0.1mol·L -1)、NiSO 4 (0.1mol·L -1) 、CoCl 2(0.1mol·L -1)、CrCl 3 (0.1mol·L -1)、EDTA (0.1mol·L -1)、乙醇 (95%)、CCl 4、邻菲罗啉 (0.25%)、二乙酰二肟(1%)、乙醚、丙酮。

配合物的性质的实验报告

配合物的性质的实验报告

一、实验目的1. 了解配合物的定义、组成和结构;2. 掌握配合物性质的基本实验方法;3. 分析配合物的颜色、溶解度、稳定性等性质;4. 探讨配合物在化学实验中的应用。

二、实验原理配合物是由中心离子(或原子)与配体以配位键结合而成的化合物。

中心离子通常为金属离子,配体为能提供孤电子对的分子或离子。

配合物的性质与中心离子、配体和配位键等因素有关。

三、实验器材1. 烧杯、试管、滴定管、移液管、玻璃棒、镊子、滤纸;2. 实验试剂:氯化铁溶液、硫氰酸钾溶液、氨水、氢氧化钠溶液、硫酸铜溶液、硝酸银溶液、硫化钠溶液等。

四、实验步骤1. 配合物颜色实验(1)取少量氯化铁溶液于试管中,加入几滴硫氰酸钾溶液,观察溶液颜色变化;(2)取少量硫酸铜溶液于试管中,加入几滴氢氧化钠溶液,观察溶液颜色变化;(3)取少量硝酸银溶液于试管中,加入几滴硫化钠溶液,观察溶液颜色变化。

2. 配合物溶解度实验(1)取少量氯化铁溶液于试管中,加入少量氨水,观察溶液颜色变化及沉淀形成;(2)取少量硫酸铜溶液于试管中,加入少量氢氧化钠溶液,观察溶液颜色变化及沉淀形成;(3)取少量硝酸银溶液于试管中,加入少量硫化钠溶液,观察溶液颜色变化及沉淀形成。

3. 配合物稳定性实验(1)取少量氯化铁溶液于试管中,加入几滴氨水,观察溶液颜色变化及沉淀形成;(2)取少量硫酸铜溶液于试管中,加入几滴氢氧化钠溶液,观察溶液颜色变化及沉淀形成;(3)取少量硝酸银溶液于试管中,加入几滴硫化钠溶液,观察溶液颜色变化及沉淀形成。

五、实验结果与分析1. 配合物颜色实验(1)氯化铁溶液与硫氰酸钾溶液反应生成血红色配合物;(2)硫酸铜溶液与氢氧化钠溶液反应生成蓝色沉淀;(3)硝酸银溶液与硫化钠溶液反应生成黑色沉淀。

2. 配合物溶解度实验(1)氯化铁溶液与氨水反应生成红褐色沉淀;(2)硫酸铜溶液与氢氧化钠溶液反应生成蓝色沉淀;(3)硝酸银溶液与硫化钠溶液反应生成黑色沉淀。

3. 配合物稳定性实验(1)氯化铁溶液与氨水反应生成的红褐色沉淀在加热后溶解;(2)硫酸铜溶液与氢氧化钠溶液反应生成的蓝色沉淀在加热后溶解;(3)硝酸银溶液与硫化钠溶液反应生成的黑色沉淀在加热后溶解。

配合物的制备

配合物的制备

配合物的制备一、配合物的概念及意义配合物是由中心金属离子和周围的一些分子或离子组成的化合物。

它们具有独特的化学性质和生物活性,因此在药物、催化剂、材料等领域得到了广泛应用。

二、配合物的制备方法1. 直接合成法直接将金属离子和配体在适当条件下混合反应,生成配合物。

例如:FeCl3 + 6H2O + 3NH3 → [Fe(NH3)6]Cl3。

2. 水热法在高温高压水溶液中进行反应,利用水分子作为配体参与反应。

例如:CuSO4·5H2O + NH4NO3 + H2O → [Cu(H2O)6](NO3)2。

3. 溶剂热法在有机溶剂中进行反应,利用有机分子作为配体参与反应。

例如:Ni(NO3)2·6H2O + 4,4’-bipyridine + C2H5OH →[Ni(bpy)2](NO3)2。

4. 气相沉积法将金属源和有机源混合,在高温下进行气相沉积形成薄膜或纳米颗粒。

例如:Fe(CO)5 + CH3OH → Fe(CH3O)5。

三、配合物制备中需要注意的事项1. 配体选择选择合适的配体是制备高效、高产率配合物的关键。

一般来说,配体应具有较强的配位能力和较好的溶解性。

2. 反应条件控制反应条件包括反应温度、反应时间、反应物比例等,需要根据具体情况进行调整。

同时还需要注意反应过程中氧气和水分的影响,避免产生不必要的副产物。

3. 结晶与分离在制备过程中,需要通过结晶、沉淀或萃取等方法将目标产物从反应混合物中分离出来。

这一步骤需要掌握合适的技术,并注意对产物进行干燥和储存。

四、结语通过以上介绍,我们可以看出配合物制备是一个复杂而又精细的过程。

在实际操作中,需要掌握良好的化学基础知识和实验技能,并注重实验细节和安全操作。

只有这样才能保证得到高质量、高产率的目标产品。

配位化合物的生成和性质

配位化合物的生成和性质

配位化合物的生成和性质一、实验目的1.比较配合物与简单化合物和复盐的区别;2.了解配位平衡与沉淀反应、氧化还原反应、溶液酸碱性的关系;3.了解蟹合物的形成条件。

二、实验提要配合物是由中心离子和配体组成配离子,带正电荷的称为配阳离子,带负电荷的称为配阴离子。

配合物与复盐不同:在水溶液中电离出来的配离子很稳定,只有一部分电离出简单离子,而复盐则全部电离为简单离子。

例如:配位化合物 [Cu(NH 3)4]SO 4[Cu(NH 3)4]2+ + SO 42- [Cu(NH 3)4]2+Cu 2+ + 4NH 3 复盐 NH 4Fe(SO 4)2 NH 4+ + Fe 3+ + 2SO 42-配合物中的内界和外界可用实验来确定。

通过配位反应形成的配合物的性质(如颜色、溶解度、氧化还原性等),往往和原物质有很大的差别。

例如,AgCl 难溶于水,但Ag(NH 3)2Cl 易溶于水,因此可以通过AgCl 与氨水的配位反应使AgCl 溶解。

配位化合物往往是强电解质,而配离子多是弱电解质,在水溶液中存在配离子解离平衡。

溶液的酸度、沉淀反应、氧化还原反应等能引起配离子解离平衡的移动。

例如,配位平衡与沉淀平衡的转化:Ag ++Cl -→AgCl ↓ 3+NH −−−→[ Ag (NH 3)2]+-+Br −−−→AgBr ↓2-23+S O −−−→[ Ag (S 2O 3)2]3--+I −−→AgI ↓。

配位平衡与氧化还原平衡的转化:3+-2+22Fe +2I 2Fe +I 垐噲加入F -离子形成配离子,改变电对电极电势,使配位平衡与氧化还原平衡的发生转化。

水溶液酸碱性对配离子的稳定性有影响。

例如。

绝大多数金属的氨配离子在酸性溶液中不能存在(因为氨分子与H +结合成NH 4+),绝大多数金属的氰配离子在酸性溶液中不能存在(因为CN -与H +结合成HCN 使配位平衡向增加解离的方向移动)。

配离子的性质往往会发生一些变化,因而配位反应常用来分离和鉴定某些离子。

生成配合物的反应

生成配合物的反应

生成配合物的反应一、配合物的概念配合物是由中心金属离子与配体形成的化合物。

中心金属离子通过配位键与配体结合,形成稳定的配合物。

配合物的形成反应涉及到配体的配位能力和中心金属离子的化学性质。

二、配体与中心金属离子的配位反应1. 配体的配位反应配体是指可以通过给电子对形成配位键与中心金属离子结合的分子或离子。

配体的配位反应是指配体与中心金属离子形成配位键的过程。

以氨为例,氨是一种常见的配体,它可以通过氮上的孤电子对与中心金属离子形成配位键。

例如,氨与二价铜离子反应生成[Cu(NH3)4]2+配合物。

配体的配位反应是配合物形成的基础。

2. 中心金属离子的化学性质配合物的生成还受到中心金属离子的化学性质的影响。

不同的中心金属离子具有不同的配位能力和反应性。

以铁离子为例,铁离子可以形成不同配位数的配合物。

当铁离子为+2价时,它可以形成六配位的配合物,如[Fe(CN)6]4-;当铁离子为+3价时,它可以形成五配位的配合物,如[Fe(CN)5]3-。

中心金属离子的化学性质决定了它与配体形成配位键的方式。

三、生成配合物的反应生成配合物的反应可以分为两类:配体替代反应和配体加成反应。

1. 配体替代反应配体替代反应是指在已有配合物的基础上,通过替代已有配体生成新的配合物。

这种反应常见于配合物的合成和反应动力学研究中。

以铂配合物为例,[PtCl4]2-是一种常见的四配位配合物。

当加入亚硝酸钠(NaNO2)时,亚硝酸根离子(NO2-)会替代氯离子与铂离子形成[PtCl3(NO2)]-配合物。

这是一种典型的配体替代反应。

2. 配体加成反应配体加成反应是指在没有配合物的情况下,通过配体的加成生成配合物。

这种反应常见于无机合成和催化反应中。

以氰化银为例,当加入过量的氰化钠(NaCN)时,氰离子(CN-)可以与银离子(Ag+)形成配位键,生成线性四配位的[Ag(CN)4]3-配合物。

这是一种典型的配体加成反应。

四、配合物的应用配合物在化学、医学、材料科学等领域具有广泛的应用价值。

配合物的生成和性质.新doc.doc

配合物的生成和性质.新doc.doc

配合物的生成和性质.新doc.doc
分子组装是结构化有机分子体系中最基本的方法之一,从两个或以上有机分子及/或非有机物中形成一种新的正面反面结构。

配合物就是通过分子组装生成的一类特殊分子,它所拥有的各种物理化学性质和晶体结构与普通分子有很大不同。

因此,研究配合物的生成和性质也就十分重要了。

配合物的形成有三种不同的方式:分子的排列、结构变化和它们之间的氢键作用。

第一种方式是分子的排列,这种排列是通过两个分子间的化学键的断裂结合,由一种有序的排列生成新的正反面结构而形成的,这种新形成的结构就是配合物。

第二种方式是结构变化,金属离子和有机分子之间会发生结构变化,而这些结构变化就会改变两种分子间的相互作用,使之形成了新的配合物。

第三种方式是氢键作用,惰性分子会通过氢键作用,在许多有机物之间形成配合物。

配合物拥有独特的物理化学性质。

它们的熔点、沸点远高于普通有机分子,它们的沸点一般高达一千多摄氏度。

它们的形貌是一种块体晶体,具有固有的晶体结构,具有螺旋形,线型等不同的晶体形态。

在外界条件和环境下,它们也可以表现出电磁学、光学、热力学等性质。

此外,配合物也可用于离子和抗菌药物的研究和细胞分子生物学的研究,以及各种电化学应用,如摩擦磨损和腐蚀保护剂、发光材料和抗氧化剂等。

从上述可以看出,配合物不仅在分子组装的发展中具有非常重要的作用,也在其他科学领域的研究和应用中发挥着巨大的作用,因此,在未来的研究中,深入研究配合物的生成和性质,为今后分子组装及其它领域的研究奠定坚实基础是十分必要的。

实验十一-配合物的生成、性质与应用

实验十一-配合物的生成、性质与应用

实验十一配合物的生成、性质和应用一、实验目的1.了解配合物的生成和组成。

2.了解配合物与简单化合物的区别。

3.了解配位平衡及其影响因素。

4.了解螯合物的形成条件及稳定性。

二、实验原理由中心离子(或原子)与配体按一定组成和空间构型以配位键结合所形成的化合物称配合物。

配位反应是分步进行的可逆反应,每一步反应都存在着配位平衡。

M+nR MR n s n [MRn] [M][R]K配合物的稳定性可由K 稳(即K s)表示,数值越大配合物越稳定。

增加配体(R)或金属离子(M)浓度有利于配合物(MRn)的形成,而降低配体和金属离子的浓度则有利于配合物的解离。

如溶液酸碱性的改变,可能引起配体的酸效应或金属离子的水解等,就会导致配合物的解离;若有沉淀剂能与中心离子形成沉淀的反应发生,引起中心离子浓度的减少,也会使配位平衡朝离解的方向移动;若加入另一种配体,能与中心离子形成稳定性更好的配合物,则同样导致配合物的稳定性降低。

若沉淀平衡中有配位反应发生,则有利于沉淀溶解。

配位平衡与沉淀平衡的关系总是朝着生成更难解离或更难溶解物质的方向移动。

配位反应应用广泛,如利用金属离子生成配离子后的颜色、溶解度、氧化还原性等一系列性质的改变,进行离子鉴定、干扰离子的掩蔽反应等。

三、仪器和试药仪器:试管、离心试管、漏斗、离心机、酒精灯、白瓷点滴板。

试药:H2SO4 (2mol·L-1)、HCl (1mol·L-1)、NH3·H2O (2, 6mol·L-1)、NaOH (0.1, 2mol·L-1) 、CuSO4 (0.1mol·L-1, 固体)、HgCl2 (0.1mol·L-1)、KI (0.1mol·L-1)、BaCl2 (0.1mol·L-1)、K3Fe (CN)6 (0.1mol·L-1)、NH4Fe (SO4)2 (0.1mol·L-1)、FeCl3 (0.1mol·L-1)、KSCN(0.1mol·L-1)、NH4F (2mol·L-1)、(NH4)2C2O4(饱和)、AgNO3 (0.1mol·L-1)、NaCl (0.1mol·L-1)、KBr (0.1mol·L-1)、Na2S2O3 (0.1mol·L-1,饱和)、Na2S (0.1mol·L-1)、FeSO4 (0.1mol·L-1)、NiSO4 (0.1mol·L-1) 、CoCl2 (0.1mol·L-1)、CrCl3 (0.1mol·L-1)、EDTA(0.1mol·L-1)、乙醇(95%)、CCl4、邻菲罗啉(0.25%)、二乙酰二肟(1%)、乙醚、丙酮。

配位化合物的生成和性质

配位化合物的生成和性质

实验七 配位化合物的生成和性质一、配离子和简单离子性质比较:1、2+-2Hg + 2OH = HgO + H O ↓黄 2+-2-2-24Hg + 2I = HgI HgI + 2I = [HgI ]↓红色沉淀 无色溶液2、硫酸亚铁铵(FeSO 4)2-22223Fe + 2OH = Fe(OH)4Fe(OH)+ O + 2H O = 4Fe(OH)+↓↓白棕3、气室法测铵离子:+-432NH + OH = NH + H O pH ↑湿润试纸变蓝(碱性)二、配位平衡的移动:1、-34n3+--43+-3n [FeCl ][FeSCN]Fe 4Cl = [FeCl ] Fe + nSCN = [FeSCN] (n = 1-6) Fe K K K n n --+3-63+-3-6稳稳稳[FeF ]蓝绿色溶液血红色 + 6F = [FeF ] 无色< <2+2-43+-3nCo + 4SCN- = [Co(SCN )] Fe + nSCN = [FeSCN] (n = 1-6) n-蓝色血红色2、 3---63[FeF ] + 3OH = Fe(OH) + 6F 褐色沉淀3++4224243243243-+3+243224Fe + 3(NH )C O +3H O = (NH )[Fe(C O )]3H O + 3NH [Fe(C O )] + 6H = Fe + 3H C O 淡黄绿色棕黄这个方程式错了,在前面加上6个氰酸根,后面加上氰酸铁(一个铁6个氰酸根)带3歌负电荷,吧3价铁离子删掉,颜色为血红色。

3、 +--+332+3232-3-232323--2-23223Ag + Cl = AgCl AgCl +NH =Cl + Ag(NH )]Ag(NH )] + Br- = AgBr + 2NH AgBr +S O = [Ag(S O )] [Ag(S O )] + I = AgI + 2S O ↓↓↓白2 [[淡黄无色溶液黄4、3+-2+2Fe Fe + 2I = 2Fe + I 3+-3-6 + 6F = [FeF ] 无色2棕黑KI 浓度高时为棕黑色,浓度低时为紫红色2+3+-24--3-266I + 2Fe = 2Fe + 2I I + 2[Fe(CN)] = 2I + 2[Fe(CN)]⨯3+2+2+4+2Fe + Sn = 2Fe + Sn 三、配合物生成:3+-242+- 2-42242+2--22433442+2-442+2-+3442+- 2-344NH H O NH + OH 2Cu + 2OH + SO = [Cu (OH)]SO [Cu (OH)]SO + 8NH = 2[Cu(NH )] + SO + 2OH Ba + SO = BaSO [Cu(NH )] + S = CuS + 4NH [Cu(NH )] + 2OH + SO ⋅↓↓↓浅蓝深蓝溶液白黑224322424= [Cu (OH)]SO + 8NH [Cu (OH)]SO 2CuO + H SO ∆↓↑−−→ 黑四、螯合物生成: 1、2+- 22+-2334Ni + 2OH = Ni(OH) Ni(OH) + 4NH = [Ni(NH )]+ 2OH ↓浅绿蓝紫丁二酮肟镍 鲜红色沉淀2、 Fe(SCN)3-63- 血红 → [FeF 6]3- 无色 → [Fe(EDTA)]- 黄五、配合物的水合异构现象略。

配合物实验报告讨论(3篇)

配合物实验报告讨论(3篇)

第1篇一、实验背景配合物是一类特殊的化合物,由中心原子或离子与一定数目的配位体通过配位键结合而成。

它们在化学、生物、材料等领域具有广泛的应用。

本次实验旨在通过一系列的实验操作,了解配合物的生成条件、性质及其应用。

二、实验目的1. 掌握配合物的生成条件,包括配位体的选择、中心原子或离子的性质等。

2. 了解配合物的性质,如颜色、溶解度、氧化还原性等。

3. 探讨配合物的应用,如分析化学、生物催化、材料科学等。

三、实验方法1. 配合物的生成:选择合适的中心原子或离子和配位体,通过配位反应生成配合物。

2. 配合物的性质测试:通过观察配合物的颜色、溶解度、氧化还原性等性质,分析其结构。

3. 配合物的应用研究:探讨配合物在分析化学、生物催化、材料科学等领域的应用。

四、实验结果与讨论1. 配合物的生成:- 在实验中,我们选择了Cu2+离子作为中心原子,Cl-离子作为配位体,通过配位反应生成了[CuCl4]2-配合物。

- 实验结果显示,配合物呈蓝色,且在水中溶解度较大。

这表明配位键的形成使得Cu2+离子的氧化态降低,配位体Cl-离子的还原态提高,从而降低了配合物的氧化还原电位,使其更易溶于水。

2. 配合物的性质:- 通过观察配合物的颜色,我们可以初步判断其结构。

例如,[CuCl4]2-配合物呈蓝色,表明其中心原子Cu2+与配位体Cl-形成了配位键。

- 配合物的溶解度与配位键的强度有关。

实验结果显示,[CuCl4]2-配合物在水中的溶解度较大,说明配位键的强度较弱。

- 配合物的氧化还原性可以通过观察其与氧化剂或还原剂的反应来判断。

实验结果显示,[CuCl4]2-配合物与还原剂NaBH4反应,生成Cu单质,表明其具有一定的氧化性。

3. 配合物的应用:- 在分析化学领域,配合物可以用于测定溶液中金属离子的含量。

例如,[CuCl4]2-配合物可以用于测定溶液中Cu2+离子的含量。

- 在生物催化领域,配合物可以作为催化剂,加速化学反应。

《药用基础化学》配合物的生成和性质实验

《药用基础化学》配合物的生成和性质实验

《药用基础化学》配合物的生成和性质实验【实验目的】1.了解配合物的生成、组成及配离子的稳定性。

2.了解配位平衡与沉淀反应、氧化还原反应及溶液酸度的关系;3.了解螯合物的生成。

【实验原理】配合物是由中心原子与配体按一定的组成和空间构型通过配位键结合所形成的化合物。

配合物的组成一般可分为内界和外界两个部分,中心原子与配体组成配合物的内界,称为配离子,其余部分组成外界。

配合物在水中可解离出配离子,配离子可部分离解成中心离子和配位体。

如:K3[Fe(CN)6]3K+ + [Fe(CN)6]3-3-Fe3+ + 6CN-[Fe(CN)而形式上与配合物类似的复盐则完全离解为简单离子:NH4Fe(SO4)2NH4+ + Fe3+ + 2SO42-一定温度下,当溶液中配离子的生成和解离速率相等时,体系达到动态平衡,称为配位平衡。

配位平衡与其他化学平衡一样,受外界条件的影响。

当改变溶液的酸碱性或加入沉淀剂、氧化剂、还原剂时,中心原子或配体的浓度会发生变化,因而平衡将发生移动。

【仪器与试剂】仪器:试管,离心试管,试管夹,药匙,烧杯(50ml),石棉网,铁架台,酒精灯,离心机试剂: 6.0 mol/L NH3·H2O ,95%乙醇,0.1mol/LCuSO4,0.1mol/LBaCl2,0.1mol/L NaOH,0.1 mol/LFeCl3,0.1 mol/L K3[Fe(CN)6],0.1 mol/LKCNS,0.1 mol/L (NH4)2·Fe(SO4)2,0.1 mol/LAgNO3,0.1 mol/L NaCl,0.1mol/L KBr,0.1 mol/LNa2S2O3,0.1mol/L KI 0.1 mol/LFeCl3,0.1 mol/LNaF,3mol/L H2SO4 CCl4,广泛pH试纸【实验内容】(一)配合物的生成和组成1.配合物的生成:在烧杯中加入0.1mol/LCuSO45ml,再逐滴加入6.0 mol/L NH3·H2O,观察现象,继续滴加氨水至沉淀溶解而形成深蓝色溶液,然后加入5ml 95%乙醇,振荡试管,有何现象?静置2分钟,常压过滤,分出晶体,在滤纸上逐滴加6.0 mol/L 氨水溶液6ml使晶体溶解,在漏斗下端放一支试管承接此溶液,保留备用,观察溶液变化现象,写出相关离子方程式,并解释之。

配合物的合成实验报告

配合物的合成实验报告

一、实验目的1. 了解配合物的合成原理和方法。

2. 掌握配合物的制备过程及操作技能。

3. 分析配合物的性质和用途。

二、实验原理配合物是由中心金属离子和配位体通过配位键结合而成的化合物。

本实验以氯化铜和氨水为原料,合成[Cu(NH3)4]2+配合物。

在实验过程中,通过观察颜色变化、沉淀溶解等现象,了解配合物的生成过程。

三、实验材料与仪器1. 实验材料:氯化铜(CuCl2)、氨水(NH3·H2O)、蒸馏水、滴管、烧杯、玻璃棒、酒精灯、滤纸、干燥器等。

2. 实验仪器:分析天平、电子秤、试管、锥形瓶、离心机、红外光谱仪、紫外光谱仪等。

四、实验步骤1. 准备氯化铜溶液:称取0.1g氯化铜,加入10ml蒸馏水,溶解后备用。

2. 氨水处理:向氯化铜溶液中滴加氨水,直至溶液中出现蓝色沉淀。

3. 沉淀溶解:继续滴加氨水,直至蓝色沉淀溶解,形成深蓝色透明溶液。

4. 配合物的分离:将深蓝色溶液过滤,收集滤液,并用滤纸吸干滤液中的水分。

5. 干燥:将滤液放入干燥器中,干燥至固体。

6. 红外光谱分析:对干燥后的固体进行红外光谱分析,确定配合物的结构。

五、实验结果与分析1. 观察到溶液颜色从无色变为蓝色,说明氯化铜与氨水反应生成了[Cu(NH3)4]2+配合物。

2. 在滴加氨水过程中,观察到溶液中出现蓝色沉淀,随后沉淀溶解,形成深蓝色透明溶液,说明配合物的生成。

3. 通过红外光谱分析,确定配合物的结构为[Cu(NH3)4]2+。

六、实验讨论1. 在实验过程中,氨水滴加速度对配合物的生成有较大影响。

滴加速度过快,会导致溶液中出现较多沉淀,影响配合物的生成;滴加速度过慢,会导致配合物生成不完全。

2. 实验过程中,溶液颜色变化明显,便于观察实验现象,提高实验效果。

七、实验结论1. 本实验成功合成了[Cu(NH3)4]2+配合物。

2. 通过观察溶液颜色变化、沉淀溶解等现象,了解了配合物的生成过程。

3. 掌握了配合物的制备方法及操作技能,为后续实验奠定了基础。

实验3 配合物的形成和性质

实验3   配合物的形成和性质

实验3 配合物的形成和性质实验目的:了解有关配合物的生成,配离子和简单离子的区别。

熟悉配位平衡与沉淀法应、氧化还原法应和溶液酸度的关系;了解螯合物的形成。

实验用品仪器:试管、白瓷板、滴管。

材料:PH 试纸、红色石蕊试纸。

液体药品:H 2SO 4(1:1) 、H 2S(0.1M)、 H 2C 2O 4(0.1M) 、NaOH(2M 、0.1M)、 氨水(6M 、2M 、0.1M)、CuSO 4(1M)、HgCl 2(0.1M)、KI(0.1M)、NiSO 4(0.2M)、BaCl 2(0.1M)、FeCl 3(0.5、0.1M)、KSCN(0.1M)、KBr(0.1M)、K 3[Fe(CN)6] (0.1M) 、AgNO 3(0.1M)、NaCl(0.1M)、Na 2S 2O 3 (0.1M)、SnCl 2(0.1M)、NH 4F(4M)、FeSO 4(0.1M)、EDTA (0.1M )、邻菲罗啉(0.25%)、二乙酰二肟(1%)、无水酒精。

实验内容一、配离子的生成和配合物的组成1、在试管中加入 1mL 1M CuSO 4 溶液,在逐滴滴入 2M 氨水,观察有无沉淀生成。

继续注入过量氨水,观察有无变化?写出化学反应式。

取出1mL 溶液注入另一试管,往其中注入1mL 无水酒精又有什么现象?解释这种现象。

CuSO 4 3NH −−−→ Cu 2(OH)2 SO 4↓3NH −−−→ [Cu(NH 3)4]2+ + SO 24-无水酒精出现蓝色结晶体[Cu(NH 3)4] SO 4 ,[Cu(NH 3)4] SO 4在乙醇中溶解度小。

2、在试管中滴几滴0.1M HgCl 2溶液(极毒!)使用时注意安全,实验后废液不要倒入下水道,回收)逐滴滴入0.1M KI 溶液,观察红色沉淀的生成,再继续滴入少量KI 溶液,观察沉淀的溶解,化学反应式如下。

HgCl 2 KI −−→ HgI 2 ↓(桔色) KI −−→ HgI 24-(无色溶液) 3、在两支试管中各注入1mL 0.2M NiSO 4溶液,然后在这两试管中分别注入少量0.1M BaCI 2溶液和0.1M NaOH 溶液,观察现象,化学反应式如下。

配合物的生成

配合物的生成

配合物的生成、性质和应用实验目的1.了解配离子与简单离子、配位化合物与复盐的区别。

2.了解配离子的形成与离解。

3.比较不同配位化合物的稳定性,了解配位平衡与沉淀平衡之间的联系与转化条件。

4.了解配位化合物在分析化学中的应用。

实验提要中心原子或离子(称为配合物的形成体)与一定数目的中性分子或阴离子(称为配合物的配体)以配位键结合形成配位个体。

配位个体处于配合物的内界,若带有电荷就称为配离子。

带正电荷称为配阳离子,带负电荷称为配阴离子。

配离子与带有相同数目的相反电荷的离子(外界)组成配位化合物,简称配合物。

通常过渡金属离子易形成配位化合物。

例如Zn2+、Ni2+、Cu2+、Ag+等均易与氨形成相应的配离子[Zn(NH3)4]2+、[Ni(NH3)4]2+、[Cu(NH3)4]2+、[Ag(NH3)2]+等。

大多数易溶配合物在溶液中离解为配离子和外界离子。

例如[Cu(NH3)4]SO4在水溶液中完全离解为[Cu(NH3)4]2+和SO42-。

而配离子只能部分离解,如在水溶液中,[Cu(NH3)4]2+存在下列离解平衡:[Cu(NH3)4]2+CuZ→k-4NH3式中,Kθ不稳称为配离子的不稳定常数,表示配离子稳定性的大小,Kθ不稳越小,配离子越稳定。

根据平衡移动原理,当外界条件改变时,配离子的离解平衡能够向着生成更难离解或更难溶解物质的方向移动。

例如,往配离子[Ag(NH3)2]+溶液中加入一定浓度的KI(沉淀剂),可生成更难溶的AgI沉淀,从而实现了配离子向难溶物的转化。

又如,Fe3+可与SCN-生成血红色的[Fe(SCN)n]3-n(n=1~6)。

若往[Fe(SCN)n]2-n溶液中加入F-,则能转化为更稳定的无色[FeF6]3-。

由中心离子与多齿配体形成的具有环状结构的配合物称为螯合物。

与简单的配合物相比,螯合物具有更好的稳定性。

简单金属离子在形成配合物后,其颜色、溶解性、酸碱性及氧化还原性都会发生改变。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

配合物的生成和性质
一、实验目的
1、比较并解释配离子的稳定性;
2、了解配位离解平衡与其它平衡之间的关系;
3. 了解配合物的一些应用。

二.实验原理
中心原子或离子与一定数目的中性分子或阴离子以配位键结合形成配位个体。

配位个体处于配合物的内界。

若带有电荷就称为配离子,带正电荷称为配阳离子,带负电荷称为配阴离子。

配离子与带有相同数目的相反电荷的离子(外界)组成配位化合物,简称配合物。

简单金属离子在形成配离子后,其颜色,酸碱性,溶解性及氧化还原性都会变化。

配离子之间也可转化,又一种配离子转化为另一种稳定的配离子。

具有环状结构的配合物称为螯合物,螯合物的稳定性更大,且具有特征颜色。

三.实验内容
1. 简单离子与配离子的区别
铁氰化钾K3[Fe(CN)6]加SCN-无血红色
Fe3+ + nSCN- = [Fe(NCS)n]3-n有血红色
结论:FeCl3为离子型简单化合物,在水中可解离出大量的Fe3+,K3[Fe(CN)6]为配合物,配离子[Fe(CN)6]3-比较稳定,难以解离出大量的Fe3+。

2. 配离子稳定性的比较
(1) Fe3+ + n SCN- = [Fe(NCS)n]3-n(有血红色)
[Fe(NCS)n]3-n+(C2O4)22- → [Fe(C2O4)3]3-+SCN-
稳定性[Fe(C2O4)3]3->[Fe(NCS)n]3-n
(2)AgNO3+ NaCl →AgCl ↓(白) + NH3⋅H2O→ [Ag(NH3)2]+
[Ag(NH3)2]++ KBr →AgBr↓(淡黄色),
再滴加Na2S2O3溶液→ 沉淀溶解[Ag(S2O3)2]3-,滴加KI溶液→AgI↓AgBr + 2S2O32- →[Ag(S2O3)2]3- + Br-; [Ag(S2O3)2]3- + I- → AgI↓+ 2S2O32-比较:K SPӨ: AgCl >AgBr >AgI; 稳定性: [Ag(S2O3)2]3-> [Ag(NH3)2]+ (3) I2 + [Fe(CN)6]4- = I- + [Fe(CN)6]3-
EӨ (Fe3+/Fe2+) > EӨ (I2/I-) > EӨ ([Fe(CN)6]3-/[Fe(CN)6]4-)
稳定性[Fe(CN)6]3- >[Fe(CN)6]4-
3. 配位离解平衡的移动
2CuSO4 + 2NH3·H2O → Cu2(OH)2SO4↓+(NH4)2SO4
Cu2(OH)2SO4↓+8NH3·H2O→ [Cu(NH3)4]SO4 + [Cu(NH3)4](OH)2 + 4H2O (1) 利用酸碱反应破坏[Cu(NH3)4]2+
SO42- + 2[Cu(NH3)4]2+ + 6H+ + 2H2O = Cu2(OH)2SO4↓ + 8NH4+
(2) 利用沉淀反应破坏[Cu(NH3)4]2+
[Cu(NH3)4]2+ + S2- → CuS↓ + 4NH3
(3) 利用氧化还原反应破坏[Cu(NH3)4]2+
[Cu(NH3)4]2+ + Zn = [Zn(NH3)4]2+ + Cu
(4) 利用生成更稳定配合物(螯合物)的方法破坏[Cu(NH3)4]2+
[Cu(NH3)4]2+ + edta4- → [Cu(edta)]2- + 4NH3
4. 配合物的某些应用
(1) 利用生成有色配合物定性鉴定某些离子
pH控制为5-10:Ni2+ + NH3⋅H20 +二乙酰二肟→ 鲜红色沉淀
Ni 2+CH 3C C NOH CH 3NOH +CH 3C C
NO CH 3NOH 2Ni +2H +
(2) 利用生成配合物掩蔽干扰离子
Co 2+ + 4SCN - → [Co(NCS)4]2- (溶于有机溶剂戊醇显蓝绿色) 而Fe 3+ + n SCN - = [Fe(NCS)n]3-n (血红色) 会产生干扰
Fe 3+掩蔽方法:Fe 3+ + 6F - → [FeF 6]3- (无色) (3) 硬水软化
N CH 2
CH 2N CH 2COOH CH 2COOH HOOCH 2C
HOOCH 2C
EDTA(简式H 4Y)
问题:为什么加入edta 二钠盐的溶液没有白色悬浮物产生?
Ca 2+ + edta 4- = [Ca(edta)]2-
Mg 2+ + edta 4- = [Mg(edta)]2-
基本操作:
1. 固体的取用(角匙(大头、小头)、纸条的使用、放入试管的方法)
2. 液体的取用 (胶头滴管的操作、勿弄混)
3. 离心机的使用。

相关文档
最新文档