初三数学期末综合练习题
九年级上数学期末综合练习(1-4)
九年级数学期末综合练习1班级 学号 姓名 成绩一、填空题:1、如图,已知方格纸中是4个相同的正方形,则∠1+∠2+∠3= 。
2、一根蜡烛在凸透镜下成一实像,物距u ,像距v 和凸透镜的焦距f 满足关系式:111u v f+=。
若f =6cm ,v =8cm ,则物距u = 厘米。
3、正方形ABCD 内接于⊙O ,E 为DC 的中点,如果⊙O 2,则O 点到直线BE 的距离为______。
4、关于x 的方程2210x k x +-=有两个不相等的实数根,则k 的取值范围是 。
5、顶点为(-2,-5)且过点(1,-14)的抛物线的解析式为 。
6、将抛物线22(3)5y x =---向左平移2个单位,再向上平移3个单位,则其顶点为 。
二、选择题:7、如图,图中的两个转盘分别被均匀地分成5个和4个扇形,每个扇形上都标有数字,同时自由转动两个转盘,转盘停止后,指针都落在奇数上的概率是( ) A 、0.4 B 、0.3 C 、0.2 D 、0.158、抛物线24y x x c =-++的顶点在x 轴上,则c 的值为( ) A 、16 B 、-16 C 、4 D 、-49、已知21,x x 是方程22310x x --=的两个根,那么2111x x +等于( ) A 、3 B 、3- C 、31 D 、 31- 10、一个圆锥的侧面展开图是一个半径为6cm 的半圆,则此圆锥的底面半径是( ) A 、23cm B 、2cm C 、3cm D 、6cm. 11、在ΔABC 中,∠A=30º,∠B=60º,AC=6,则ΔABC 的外接圆的半径为( ) A 、23 B 、33 C 、3 D 、 312、如果两圆半径为R 、r ,圆心距为d ,且R 、r 、d 满足关系式2222R d Rd r +=+,则两123453489123圆位置关系是( ) A 、外切 B 、内切 C 、相切 D 、相交 三、解答题: 13、先化简后求值:)252(23--+÷--x x x x ,其中22x = 14、如图,在□ABCD 中,点E 、F 在BD 上,且BF =DE 。
九年级数学上册期末复习综合测试题(含答案)
(第4题)九年级数学上册期末复习综合测试题(含答案)一、选择题(本大题共6小题,每小题2分,共12分.) 1.一元二次方程 x 2=x 的根是( )A .x 1=0,x 2=1B .x 1=0,x 2=-1C .x 1=x 2=0D .x 1=x 2=12.一个不透明布袋中有2个红球,3个白球,这些球除颜色外无其他差别,摇匀后从中随机摸出一个小球,该小球是红色的概率为( )A .12B .23C .15D .253.若一组数据 2,3,4,5,x 的方差比另一组数据 5,6,7,8,9 的方差大,则 x 的值可能是( ) A .1B .4C .6D .84.如图,OA 、OB 是⊙O 的半径,C 是⊙O 上一点.若∠OAC =16°,∠OBC =54°,则 ∠AOB 的度数是( )A .70°B .72°C .74°D .76°5.若关于x 的一元二次方程ax 2+k =0的一个根为2,则二次函数y =a (x +1)2+k 与x 轴的交点坐标为( ) A .(-3,0)、(1,0) B .(-2,0)、(2,0) C .(-1,0)、(1,0)D .(-1,0)、(3,0)6.如图,在Rt △ABC ,∠ACB =90°,AC =4,BC =3,点D ,E 分别在AB ,AC 上,连接DE ,将△ADE 沿DE 翻折,使点A 的对应点F 落在BC 的延长线上,若FD 平分∠EFB ,则AD 的长为( ) A . 157B .207C .258D .259二、填空题(本大题共10小题,每小题2分,共20分.) 7(第12题)l 1 l 2l 3A BCEFD (第11题)8.若a b =43,则a -b b= .9.设x 1、x 2是方程x 2+mx -m +3=0的两个根,则x 1+x 2-x 1x 2= .10.把抛物线y =-x 2向左平移2个单位,然后向上平移3个单位,则平移后该抛物线相应的函数表达式为 .11.如图,l 1∥l 2∥l 3,若AD =1,BE =3,CF =6,则ABBC的值为 .12.如图,点A 、B 、C 在⊙O 上,⊙O 的半径为3,∠AOC =的长为 . 13.已知关于x 的函数y =x 2+2mx +1,若x >1时,y 随x 的增大而增大,则m 的取值范围是 .14.如图,弦AB 是⊙O 的内接正六边形的一边,弦AC 是⊙O 的内接正方形的一边,若 BC =2+23,则⊙O 的半径为 .15.如图,正方形ABCD 的边长是4,点E 在DC 上,点F 在AC 上,∠BFE =90°,若 CE =116.如图,在矩形ABCD 中,AB =2,AD =4,点E 、F 分别为AD 、CD 边上的点,且EF 的长为2,点G 为EF 的中点,点P 为BC 上一动点,则P A +PG 的最小值为 . 三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17.(8分)解方程:(1)x 2-4x -5=0; (2)x 2-4=2x (x -2).18.(8分)甲乙两人在相同条件下完成了5次射击训练,两人的成绩(单位:环)如下(1)甲射击成绩的中位数为 环,乙射击成绩的众数为 环;(2)计算两人射击成绩的方差;(3)根据训练成绩,你认为选派哪一名队员参赛更好,为什么?19.(8分)某校开展秋季运动会,需运动员代表进行发言,从甲、乙、丙、丁四名运动员中随机抽取.(1)若随机抽取1名,甲被抽中的概率为 ; (2)若随机抽取2名,求甲在其中的概率.20.(7分)如图,在△ABC 中,点D 、E 分别在AB 、AC 上,且∠BCE +∠BDE =180°. (1)求证:△ADE ∽△ACB ;(2)连接BE 、CD ,求证:△AEB ∽△ADC .21.(8分)如图是二次函数y =-x 2+bx +c 的图像. (1)求该二次函数的关系式及顶点坐标; (2)当y >0时 x 的取值范围是 ;(3)当m <x <m +4时,-5<y ≤4,则m 的值为 .22.(7分)在Rt △ABC ,∠BAC =90°,AB =AC ,D 、E、F 分别为BC 、AB 、AC 边上的点,且∠EDF =45°.(1)求证:△EBD ∽△DCF ;(2)当D 是BC 的中点时,连接EF ,若CF =5,DF =4,则EF 的长为 .23.(8分)某超市销售一种商品,成本为每千克50元.当每千克售价60元时,每天的销售量为60千克,经市场调查,当每千克售价增加1元,每天的销售量减少2千克. (1)为保证某天获得750元的销售利润,则该天的销售单价应定为多少? (2)当销售单价定为多少时,才能使当天的销售利润最大?最大利润是多少?24.(8分)如图,AB 为⊙O 的直径,弦CD ⊥AB 于点P ,连接BC ,过点D 作DE ⊥CD ,交⊙O 于点E ,连接AE ,F 是DE 延长线上一点,且∠BCD =∠F AE . (1)求证:AF 是⊙O 的切线;(2)若AF =2,EF =1,求⊙O 的半径.25.(8分)已知二次函数y =(x -2)(x -m )(m 为常数). (1)求证:不论m 为何值,该函数的图像与x 轴总有公共点;(2)若M (-1,0), N (3,0),该函数图像与线段MN 只有1个公共点,直接写出 m 的取值范围;(3)若点A (-1,a ),B (1,b ),C (3,c )在该函数的图像上,当abc <0时,结合函数图像,直接写出m 的取值范围.26.(8分)如图,四边形ABCD 内接于⊙O ,AB =AC ,BD ⊥AC ,垂足为E . (1)求证:∠BAC =2∠DAC ; (2)若AB =10,CD =5,求BC 的长.27.(10分)定义:圆心在三角形的一边上,与另一边相切,且经过三角形一个顶点(非切点)的圆,称为这个三角形圆心所在边上的“伴随圆”.(1) 如图①,在△ABC 中,∠C =90°,AB =5,AC =3,则BC 边上的伴随圆的半径为 . (2)如图②,△ABC 中,AB =AC =5,BC =6,直接写出它的所有伴随圆的半径. (3)如图③,△ABC 中,∠ACB =90°,点E 在边AB 上,AE =2BE ,D 为AC 的中点,且∠CED =90°.①求证:△CED 的外接圆是△ABC 的AC 边上的伴随圆; ②DE的值为 .参考答案说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(本大题共6小题,每小题2分,共12分)二、填空题(本大题共10小题,每小题2分,共20分)7.9 8.13 9.-3 10.y =-(x +2)2+3 11.2312.2π 13.m ≥-1 14. 2 2 15.322 16.4 2 -1三、解答题(本大题共11小题,共88分) 17.(8分)(1)解:x 2-4x -5=0 x 2-4x +4=5+4(x -2)2=9 ········································································································ 1分x -2=±3 ········································································································ 2分 ∴ x 1=5,x 2=-1. ··························································································· 4分 (2)解:x 2-4=2x (x -2) x 2-4=2x 2-4xx 2-4x +4=0 ··································································································· 5分 (x -2)2=0 ········································································································ 6分 ∴ x 1=x 2=2. ··································································································· 8分 18.(8分)(1)7;8 ········································································································ 2分 (2)s 2甲=(7-8)2+(7-8) 2+(10-8)2+(9-8)2+(7-8)25=1.6环2. ······························ 4分s 2乙=(8-8)2+(8-8) 2+ (7-8)2+(8-8)2+(9-8)25=0.4环2. ······································ 6分(3)选择乙.因为甲乙两人平均数相同均为8,说明两人实力相当,但s 2乙<s 2甲,乙的成绩更加稳定,所以选乙. ······················································································· 8分19.(8分)(1)14. ·········································································································· 2分(2)解:随机抽取两名运动员,共有6种等可能性结果:(甲,乙)、(甲,丙)、(甲,丁)、(乙,丙)、(乙,丁)、(丙,丁).其中满足“有甲运动员”(记为事件A )的结果只有3种,所以P (A )=12. ·································································································· 8分20.(7分)(1)证明:∵ ∠BCE +∠BDE =180°, ∠EDA +∠BDE =180°,∴ ∠EDA =∠BCE . ·························································································· 1分 又 ∠A =∠A , ································································································· 2分 ∴ △ADE ∽△ACB . ·························································································· 3分 (2)∵ △ADE ∽△ACB , ∴ AD AC =AE AB, ·········································· 4分 ∴AD AE =ACAB, ······································· 5分 又 ∠A =∠A , ········································ 6分 ∴ △AEB ∽△ADC . ································· 7分21.(8分)(1)将(0,3)、 (3,0)代入,得⎩⎨⎧3=c ,0=-9+3b +c································································································· 1分解得⎩⎨⎧c =3,b =2····································································································· 2分∴ y =-x 2+2x +3 ····························································································· 3分 ∴ 顶点坐标为(1,4) ························································································ 4分 (2)-1<x <3. ······························································································ 6分 (3)-2或0 ···································································································· 8分 22.(7分)(1)解:∵∠BAC =90°,AB =AC ,∴ ∠B =∠C =45°. ··························································································· 1分 ∴ 在△BDE 中,∠BED +∠BDE =180°-∠B =135°, ∵ ∠EDF =45°,∴ ∠BDE +∠CDF =135°,∴ ∠BED =∠CDF . ·························································································· 3分 ∵ ∠B =∠C ,∴ △EBD ∽△DCF . ·························································································· 5分 (2 ········································································································ 7分23.(8分)(1)解:设每千克的销售价增加x 元,根据题意,得(60+x -50) (60-2x )=750 ··················································································· 2分 ∴ x 1=5,x 2=15. ····························································································· 3分 60+5=65或60+15=75 ···················································································· 4分 答:销售单价为65或75元时获得利润750元. (2)解:每千克的销售价增加x 元,利润为w 元.w =(60+x -50) (60-2x ) ···················································································· 6分 =-2(x -10)2+800 ···························································································· 7分 ∵ a =-2<0,∴ 当x =10时,w 有最大值800. ········································································ 8分 60+10=70答:当销售单价为70元时获得最大利润,为800元. 24.(8分) (1)连接BD .∵ AB 为⊙O 的直径,CD ⊥AB ,∴ ⌒BC = ⌒BD , ························································· 1分 ∴ ∠BDC =∠BCD .∵ 四边形ABDE 为⊙O 的内接四边形,∴ ∠BDE +∠BAE =180°,即∠BDC +∠CDF +∠BAE ····· 2分∵ DE ⊥CD , ∴ ∠CDF =90°, ∴ ∠BDC +∠BAE =90°.∵ ∠BCD =∠F AE , ·························································································· 3分 ∴ ∠BAE +∠F AE =90°,即∠F AB =90°, ∴ AF ⊥AB . 又 点A 在⊙O 上,∴ AF 与⊙O 相切. ·························································································· 4分 (2)过点O 作OG ⊥DF 垂足为G . ∵ ∠F AB =∠D =∠APD =90°, ∴ 四边形APDF 是矩形, ∴ ∠F =90°.∵ ∠F AB =∠F =∠OGF =90°, ∴ 四边形AOGF 是矩形,∴ AF =OG ,AO =GF . ···················································· 5分 设OE =OA =r ,则GE =r -1.在Rt △OGE 中,由勾股定理得OG 2+GE 2=OE 2, ···················································· 6分 即4+(r -1)2=r 2, ···························································································· 7分 解得r =5 2 . ····································································································· 8分25.(8分)(1)令y =0,即(x -2)(x -m )=0 ········································································· 1分 ∴ x 1=2,x 2=m . ····························································································· 2分 当m =2时,x 1=x 2,方程有两个相等的实数根; 当m ≠2时,x 1≠x 2,方程有两个不等的实数根. ∴ 不论m 为何值,方程总有实数根;∴ 不论m 为何值,该函数的图像与x 轴总有公共点. ·············································· 3分 (2)m =2或m >3或m <-1. ··········································································· 6分 (3)-1<m <1或m >3. ·················································································· 8分 26.(8分)。
人教版九年级数学期末考试综合复习测试题(含答案)
人教版九年级数学期末考试综合复习测试题(含答案)一.选择题(共10小题,每小题3分,共30分)1.计算,3(2)a -结果正确的是( )A .32a -B .36a -C .38a -D .38a2.据教育部统计,2022年高校毕业生约1076万人,用科学记数法表示1076万为( )A .4107610⨯B .61.07610⨯C .71.07610⨯D .80.107610⨯3.下列汽车标志中,是中心对称图形的是( ) A . B . C . D .4.如图所示,直线//EF GH ,射线AC 分别交直线EF 、GH 于点B 和点C ,AD EF ⊥于点D ,如果20A ∠=︒,则(ACH ∠= )A .160︒B .110︒C .100︒D .70︒5.如图,已知ABC ADE ∆≅∆,若70E ∠=︒,30D ∠=︒,则BAC ∠的度数是( )A .70︒B .80︒C .40︒D .30︒6.方程2210x x --=实数根的情况为( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .不能确定7.在平面直角坐标系中,若点(1,)A a b -+与点(,3)B a b -关于原点对称,则点(,)C a b 在( )A .第一象限B .第二象限C .第三象限D .第四象限8.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与ABC ∆相似的是( )A .B .C .D .9.已知正比例函数11(0)y k x k =≠的图象与反比例函数22(0)k y k x =≠的图象交于A ,B 两点,其中点A 在第二象限,横坐标为2-,另一交点B 的纵坐标为1-,则12(k k ⋅= )A .4B .4-C .1-D .110.已知(3,2)A --,(1,2)B -,抛物线2(0)y ax bx c a =++>顶点在线段AB 上运动,形状保持不变,与x 轴交于C ,D 两点(C 在D 的右侧),下列结论:①2c -;②当0x >时,一定有y 随x 的增大而增大;③若点D 横坐标的最小值为5-,则点C 横坐标的最大值为3;④当四边形ABCD 为平行四边形时,12a =. 其中正确的是( )A .①③B .②③C .①④D .①③④二.填空题(共5小题,每小题3分,共15分)11.因式分解:22416x y -= . 12.若2|2|(3)0x y -++=,则2()x y += .13.已知m ,()n m n ≠是一元二次方程220230x x +-=的两个实数根,则代数式22m m n ++的值为 .14.如图,A ,B ,C ,D 是O 上的四点,且点B 是AC 的中点,BD 交OC 于点E ,60OED ∠=︒,35OCD ∠=︒,那么AOC ∠的度数是 .15.如图,E 为正方形ABCD 内一点,5AD =,4AE =,将ADE ∆绕点A 顺时针旋转90︒到ABE ∆',则边DE 所扫过的区域(图中阴影部分)的面积为 .题14图 题15图三.解答题(一)(共3小题,每小题8分,共24分)16.(1)计算:0111(2021)()2cos45221π--++-︒+; (2)先化简,再求值:23210(1)19x x x x --⋅---,其中x 是1、2、3中的一个合适的数.17.如图,DE AB ⊥于E ,DF AC ⊥于F ,若BD CD =,BE CF =.求证:(1)AD 平分BAC ∠;(2)2AC AB BE =+.18.今年,我市某学校举办了为贫困生捐赠书包活动.该学校用2000元在某商店购进一批学生书包,随后发现书包数量不够,于是又购进第二批同样的书包,所购数量是第一批的3倍,每个书包比第一批购买时贵了4元,结果第二批用了6300元.(1)该学校第一批购进的学生书包每个多少元?(2)如果该商店第一批、第二批学生书包每个的进价分别是68元、70元,售给该学校的这些学生书包,该商店盈利多少元?四.解答题(二)(共3小题,每小题9分,共27分)19.某银行柜台在储户人数较多时常开放1、2、3、4号窗口办理日常业务,一般是先到取号机拿号,按顾客“先到达,先服务“的方式服务(1)求某储户在3号窗口办业务的概率是(2)储户乙取号时发现储户甲已办理完业务准备离开(储户甲、乙先后到达银行取号办理业务),请用树状图或列表法求储户甲、乙两人在同一柜台办理业务的概率.20.如图,在平行四边形ABCD 中,BD AB ⊥,延长AB 至点E ,使BE AB =,连接EC .(1)求证:四边形BECD 是矩形.(2)连接AC ,若3AD =,2CD =,求AC 的长.21.Rt ABO ∆的顶点A 是双曲线k y x =与直线(1)y x k =--+在第二象限的交点,AB 垂直x 轴于点B 且32ABO S ∆=. (1)求这两个函数解析式;(2)求AOC ∆的面积;(3)根据图象直接写出不等式(1)k x k x >-+的解集.五.解答题(三)(共2小题,每小题12分,共24分)22.如图,AB 是⊙O 的直径,C 、D 是⊙O 上两点,连接CD ,C 是的中点,过点C 作AD 的垂线,垂足是E .连接AC 交BD 于点F .(1)求证:CE 是⊙O 的切线;(2)求证:△CDF ∽△CAD ;(3)若DF =2,CD =,求AC 值.23.如图,在平面直角坐标系中,抛物线21y ax bx =++交y 轴于点A ,交x 轴正半轴于点(4,0)B ,交直线AD 于点5(3,)2D ,过点D 作DC x ⊥轴于点C . (1)求抛物线的解析式;(2)点P 为x 轴正半轴上一动点,过点P 作PN x ⊥轴交直线AD 于点M ,交抛物线于点N ;若点P 在线段OC 上(不与O 、C 重合),连接CM ,求PCM ∆面积的最大值。
初三数学综合测试卷及答案
一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √16B. √-9C. πD. 0.1010010001……2. 已知等腰三角形底边长为8cm,腰长为10cm,则其面积为()A. 32cm²B. 40cm²C. 48cm²D. 80cm²3. 下列函数中,一次函数是()A. y = 2x² - 3x + 1B. y = √x + 1C. y = 2x + 3D. y = 3/x4. 已知一元二次方程x² - 5x + 6 = 0,则其解为()A. x₁ = 2, x₂ = 3B. x₁ = 3, x₂ = 2C. x₁ = 6, x₂ = 1D. x₁ = 1, x₂ = 65. 在平面直角坐标系中,点A(2,3)关于原点的对称点是()A.(-2,-3)B.(2,-3)C.(-2,3)D.(3,-2)6. 下列各组数中,成等差数列的是()A. 1,4,7,10B. 2,5,8,11C. 3,6,9,12D. 4,7,10,137. 若直角三角形的两条直角边长分别为3cm和4cm,则斜边长为()A. 5cmB. 6cmC. 7cmD. 8cm8. 下列命题中,正确的是()A. 若a > b,则a² > b²B. 若a > b,则ac > bcC. 若a > b,则a² > b²D. 若a > b,则ac > bc9. 已知正方形的边长为a,则其对角线长为()A. aB. √2aC. 2aD. a√210. 在等腰三角形ABC中,若底边BC=8cm,腰AB=AC=10cm,则三角形ABC的周长为()A. 24cmB. 26cmC. 28cmD. 30cm二、填空题(每题4分,共40分)11. 分数 3/4 与 -1/2 的差是 ________。
九年级数学第一学期期末考试综合复习测试题(含答案)
九年级数学第一学期期末考试综合复习测试题(含答案)一.选择题(共10小题,每小题3分,共30分) 1.2022的相反数是( )A .2022B .2022-C .12022D .2022± 2.若代数式3125m x y -与822m nx y +-是同类项,则( )A .73m =,83n =-B .3m =,4n =C .73m =,4n =- D .3m =,4n =-3.下列四组线段中,能组成直角三角形的是( ) A .1a =,3b =,3c = B .2a =,3b =,4c = C .2a =,4b =,5c =D .3a =,4b =,5c = 4.如图所示,直线//a b ,231∠=︒,28A ∠=︒,则1(∠= )A .61︒B .60︒C .59︒D .58︒5.下列关于事件发生可能性的表述,正确的是( )A .“在地面向上抛石子后落在地上”是随机事件B .掷两枚硬币,朝上面是一正面一反面的概率为13C .在同批次10000件产品中抽取100件发现有5件次品,则这批产品中大约有500件左右的次品D .彩票的中奖率为10%,则买100张彩票必有10张中奖6.某校10名学生参加课外实践活动的时间分别为:3,3,6,4,3,7,5,7,4,9(单位:小时),这组数据的众数和中位数分别为( ) A .9和7 B .3和3 C .3和4.5 D .3和5 7.一个正多边形的每一个内角都是150︒,则它的边数为( ) A .6 B .9 C .12 D .158.若不等式组841x x x m +<-⎧⎨>⎩的解集是3x >,则m 的取值范围是( )A .3m <B .3mC .3m >D .3m9.已知关于x 的一元二次方程22(21)0x m x m --+=有实数根,则m 的取值范围是( ) A .14m 且0m ≠ B .14m C .14m < D .14m >10.如图1,一个扇形纸片的圆心角为90︒,半径为6.如图2,将这张扇形纸片折叠,使点A 与点O 恰好重合,折痕为CD ,图中阴影为重合部分,则阴影部分的面积为( )A .9632π-B .693π-C .91232π-D .94π二.填空题(共5小题,每小题3分,共15分) 11.将数据2022万用科学记数法表示为 .12.已知当3x =时,代数式35ax bx +-的值为20,则当3x =-时,代数式35ax bx +-的值是 .13.将抛物线229y x x =-+-向左平移2个单位,再向上平移1个单位后,得到的抛物线的解析式为 .14.已知ABC ∆中,点O 是ABC ∆的外心,140BOC ∠=︒,那么BAC ∠的度数为 .15.如图,在正方形ABCD 中,顶点(5,0)A -,(5,10)C ,点F 是BC 的中点,CD 与y 轴交于点E ,AF 与BE 交于点G ,将正方形ABCD 绕点O 顺时针旋转,每次旋转90︒,则第2023次旋转结束时,点G 的坐标为 .三.解答题(一)(共3小题,每小题8分,共24分) 16.计算(1)2()(2)x y x y x +--;(2)2219(1)244a a a a --÷--+.17.如图,90ACB ∠=︒,AC AD =.(1)过点D 作AB 的垂线DE 交BC 与点E ,连接AE .(尺规作图,并保留作图痕迹) (2)如果8BD =,10BE =,求BC 的长.18.如图,在四边形ABCD 中,AC 与BD 交于点O ,BE AC ⊥,DF AC ⊥,垂足分别为点E ,F ,且BE DF =,ABD BDC ∠=∠.求证:四边形ABCD 是平行四边形.四.解答题(二)(共3小题,每小题9分,共27分) 19.阳光中学为了丰富学生的课余生活,计划购买围棋和中国象棋供棋类兴趣小组活动使用,若购买3副围棋和5副中国象棋需要98元;若购买1副围棋和2副中国象棋需要36元.(1)求每副围棋和每副中国象棋各多少元;(2)阳光中学决定购买围棋和中国象棋共40副,总费用不超过538元,且围棋的副数不低于象棋的副数,问阳光中学有几种购买方案;(3)请求出最省钱的方案需要多少钱?20.我市某中学举行“中国梦⋅我的梦”的演讲比赛,赛后整理参赛学生的成绩,将学生的成绩分为A,B,C,D四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图,但均不完整,请你根据统计图解答下列问题.(1)参加比赛的学生人数共有名,在扇形统计图中,表示“D等级”的扇形的圆心角为度,图中m的值为;(2)补全条形统计图;(3)组委会决定从本次比赛中获得A等级的学生中,选出两名去参加市中学生演讲比赛,已知A等级中男生只有1名,请用画树状图或列表的方法求出所选学生恰是一男一女的概率.21.22.某网店专售一款新型钢笔,其成本为20元/支,销售中发现,该商品每天的销售量y与销售单价x(元/支)之间存在如下关系:10400y x=-+,自武汉爆发了“新型冠状病毒”疫情该网店店主决定从每天获得的利润中抽出200元捐赠给武汉,同时又让顾客得到实惠,当销售单价定位多少元时,捐款后每天剩余利润为550元?五.解答题(三)(共2小题,每小题12分,共24分)22.如图,以点O为圆心,AB长为直径作圆,在O上取一点C,延长AB至点D,连接DC,过点A作O的切线交DC的延长线于点E,且DCB DAC∠=∠.(1)求证:CD是O的切线;(2)若6AD=,2:3BC CA=,求AE的长.23.如图,在平面直角坐标系中,直线33y x =--与x 轴交于点A ,与y 轴交于点C .抛物线2y x bx c =++经过A 、C 两点,且与x 轴交于另一点B (点B 在点A 右侧). (1)求抛物线的解析式;(2)若点M 是线段BC 上一动点,过点M 的直线ED 平行y 轴交x 轴于点D ,交抛物线于点E ,求ME 长的最大值及此时点M 的坐标; (3)在(2)的条件下:当ME 取得最大值时,在x 轴上是否存在这样的点P ,使得以点M 、点B 、点P 为顶点的三角形是等腰三角形?若存在,请直接写出所有点P 的坐标;若不存在,请说明理由.答案一.选择题1. B .2. D .3. D .4. C .5. C .6. C .7. C .8. B .9. B .10. C . 二.填空题11. 72.02210⨯.12. 30-.13. 228y x x =---.14. 70︒或110︒.15. (4,3)-. 三.解答题16.解:(1)2()(2)x y x y x +--22222x xy y xy x =++-- 2y =;(2)2219(1)244a a a a --÷--+ 23(3)(3)2(2)a a a a a ---+=÷-- 23(2)2(3)(3)a a a a a --=⋅---+ 23a a -=--. 17.解:(1)如图所示即为所求作的图形. (2)ED 垂直AB , 90ADE EDB ∴∠=∠=︒,在Rt BDE ∆中,22221086DE BE BD =-=-=, 在Rt ADE ∆和Rt ACE ∆中, AC ADAE AE =⎧⎨=⎩, Rt ADE Rt ACE(HL)∴∆≅∆, 6EC ED ∴==, 16BC BE EC ∴=+=.18.证明:ABD BDC ∠=∠, //AB CD ∴.BAE DCF ∴∠=∠.在ABE ∆与CDF ∆中, 90BAE DCF AEB CFD BE DF ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩. ()ABE CDF AAS ∴∆≅∆. AB CD ∴=.∴四边形ABCD 是平行四边形.19.解:(1)设每副围棋x 元,每副中国象棋y 元,根据题意得:3598236x y x y +=⎧⎨+=⎩,∴1610x y =⎧⎨=⎩,∴每副围棋16元,每副中国象棋10元;(2)设购买围棋z 副,则购买象棋(40)z -副, 根据题意得:1610(40)538m m +-,40m z -,2023m ∴,m 可以取20、21、22、23则有:方案一:购买围棋20副,购买中国象棋20副方案二:购买围棋21副,购买中国象棋19副方案:购买围棋22副,购买中国象棋18副方案四:购买围棋23副,购买中国象棋17副由4种方案;(3)由上一问可知共有四种方案:方案一:购买围棋20副,购买中国象棋20副;方案二:购买围棋21副,购买中国象棋19副;方案三:购买围棋22副,购买中国象棋18副;方案四:购买围棋23副,购买中国象棋17副;方案一需要20162010520x x +=; 方案二需要21161910526x x +=; 方案三需要22161810532x x +=; 方案四需要23161710538x x +=; 所以最省钱是方案一,需要520元.20.(1)解:根据题意得:总人数为:315%20÷=(人), 表示“D 等级”的扇形的圆心角为43607220⨯︒=︒;C等级所占的百分比为8100%40% 20⨯=,所以40m=,故答案为:20,72,40.(2)解:等级B的人数为20(384)5-++=(人),补全统计图,如图所示:(3)解:根据题意,列出表格,如下:男女1女2男女1、男女2、男女1男、女1女2、女1女2男、女2女1、女2共有6种等可能结果,其中恰是一男一女的有4种,所以恰是一男一女的概率为42 63 =.21.解:由题意可得(20)(10400)200550x x--+-=解得125x=,235x=因为要让顾客得到实惠,所以25x=答:当销售单价定为25元时,捐款后每天剩余利润为550元.22.(1)证明:连接OC,OE,如图,AB为直径,90ACB∴∠=︒,即190BCO∠+∠=︒,又DCB CAD∠=∠,1CAD∠=∠,1DCB∴∠=∠,90DCB BCO ∴∠+∠=︒,即90DCO ∠=︒, CD ∴是O 的切线;(2)解:EC ,EA 为O 的切线, EC EA ∴=,AE AD ⊥, OC OA =, OE AC ∴⊥,90BAC EAC ∴∠+∠=︒,90AEO EAC ∠+∠=︒, BAC AEO ∴∠=∠, tan tan BAC AEO ∴∠=∠,∴23BC AO AC AE ==, Rt DCO Rt DAE ∆∆∽,∴23CD OC OA DA AE AE ===, 2643CD ∴=⨯=, 在Rt DAE ∆中,设AE x =,222(4)6x x ∴+=+, 解得52x =. 即AE 的长为52.23.解:(1)直线33y x =--与x 轴、y 轴分别交于点A 、C , (1,0)A ∴-,(0,3)C -抛物线2y x bx c =++经过点(1,0)A -,(0,3)C -, ∴103b c c -+=⎧⎨=-⎩,解得23b c =-⎧⎨=-⎩,∴抛物线的解析式为223y x x =--.(2)设(E x ,223)(03)x x x --<<,则(,3)M x x -, 222393(23)3()24ME x x x x x x ∴=----=-+=--+,∴当32x =时,94ME =最大,此时3(2M ,3)2-. (3)存在.如图3,由(2)得,当ME 最大时,则3(2D ,0),3(2M ,3)2-,32DO DB DM ∴===; 90BDM ∠=︒,223332()()222OM BM ∴==+=. 点1P 、2P 、3P 、4P 在x 轴上, 当点1P 与原点O 重合时,则1322PM BM ==,1(0,0)P ; 当2322BP BM ==时,则232632322OP -=-=, 2632(2P -∴,0); 当点3P 与点D 重合时,则3332P M P B ==,33(2P ,0); 当4322BP BM ==时,则432632322OP +=+=, 4632(2P +∴,0). 综上所述,1(0,0)P ,2632(2P -,0),33(2P ,0),4632(2P +,0).。
2019-2020学年九年级(华师大版)数学上册期末综合练习卷(含答案) (1)
九年级上册期末综合练习卷一.选择题1.下列各式①;②;③;④;⑤;其中一定是最简二次根式的有()A.4个B.3个C.2个D.1个2.在Rt△ABC中,∠C=90°,AB=5,AC=4,则cos B的值是()A.B.C.D.3.四边形ABCD在平面直角坐标系中的位置如图3所示,若AD⊥CD,AB∥CD,AB=5,A点坐标为(﹣2,7),则点B坐标为()A.(﹣2,2)B.(﹣2,12)C.(3,7)D.(﹣7,7)4.小王抛一枚质地均匀的硬币,连续抛4次,硬币均正面朝上落地,如果他再抛第5次,那么硬币正面朝上的概率为()A.1B.C.D.5.已知方程x2﹣4x+2=0的两根是x1,x2,则代数式的值是()A.2011B.2012C.2013D.20146.如图,在△ABC中,点D在边AB上,则下列条件中不能判断△ABC∽△ACD的是()A.∠ABC=∠ACD B.∠ADC=∠ACB C.D.AC2=AD•AE 7.若分式的值是正整数,则m可取的整数有()A.4个B.5个C.6个D.10个8.一枚均匀的正方体骰子,六个面上分别刻有1,2,3,4,5,6个点.甲乙两人各掷一次,如果朝上一面的两个点数之和为奇数,则甲胜;若为偶数,则乙胜,下列说法正确的是()A.甲获胜的可能性大B.乙获胜的可能性大C.甲乙获胜的可能性一样大D.乙一定获胜9.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x名同学,那么依题意,可列出的方程是()A.x(x+1)=210B.x(x﹣1)=210C.2x(x﹣1)=210D.x(x﹣1)=210二.填空题10.已知==,且a+b﹣2c=6,则a的值为.11.如图,在平面直角坐标系中,直线OA过点(2,1),则tanα的值是.12.把二次函数y=(x﹣1)2+2的图象向左平移3个单位,再向下平移2个单位,所得函数的表达式是.13.如图,ED为△ABC的中位线,点G是AD和CE的交点,过点G作GF∥BC交AC于点F,如果GF=4,那么线段BC的长是.14.如图,矩形ABCD中,AB=1,AD=2,点E是边AD上的一个动点,把△BAE沿BE 折叠,点A落在A′处,如果A′恰在矩形的对称轴上,则AE的长为.三.解答题(共8小题,满分75分)15.计算下列各题(1)(2)(3)(4)16.如图,在△ABC中,∠A=30°,∠B=45°,AC=,求AB的长.17.已知关于x的一元二次方程x2﹣6x+2a+5=0有两个不相等的实数根x1,x2.(1)求a的取值范围;(2)若x12+x22﹣x1x2≤30,且a为整数,求a的值.18.在歌唱比赛中,一位歌手分别转动如下的两个转盘(每个转盘都被分成3等份)一次,根据指针指向的歌曲名演唱两首曲目.(1)转动转盘①时,该转盘指针指向歌曲“3”的概率是;(2)若允许该歌手替换他最不擅长的歌曲“3”,即指针指向歌曲“3”时,该歌手就选择自己最擅长的歌曲“1”,求他演唱歌曲“1”和“4”的概率.19.如图所示,甲、乙两船同时由港口A出发开往海岛B,甲船沿东北方向向海岛B航行,其速度为15海里/小时;乙船速度为20海里/小时,先沿正东方向航行1小时后,到达C 港口接旅客,停留半小时后再转向北偏东30°方向开往B岛,其速度仍为20海里/小时.(1)求港口A到海岛B的距离;(2)B岛建有一座灯塔,在离灯塔方圆5海里内都可以看见灯塔,问甲、乙两船哪一艘先看到灯塔?20.如图,在△ABC中,∠BAC=90°,AB=AC,点D、E分别在BC、AC上,且∠ADE =45°.(1)求证:△ABD∽△DCE;(2)若AB=2,BD=1,求CE的长.参考答案一.选择题1.C.2.B.3.C.4.B.5.D.6.C.7.A.8.C.9.B.二.填空题10.解:∵==,∴设a=6x,b=5x,c=4x,∵a+b﹣2c=6,∴6x+5x﹣8x=6,解得:x=2,故a=12.故答案为:12.11.解:如图,tanα==故答案为:.12.解:根据“上加下减,左加右减”的原则可知,把二次函数y=(x﹣1)2+2的图象向左平移3个单位,再向下平移2个单位,所得函数的表达式是y=(x﹣1+3)2+2﹣2,即y=(x+2)2,故答案为y=(x+2)2.13.解:∵ED为△ABC的中位线,∴AD、CE为△ABC的中线,∴点G为△ABC的重心,∴AG=2GD,∵GF∥BC,∴△AGF∽△ADC,∴==,∴CD=GF=×4=6,∴BC=2CD=12.故答案为12.14.解:分两种情况:①如图1,过A′作MN∥CD交AD于M,交BC于N,则直线MN是矩形ABCD的对称轴,∴AM=BN=AD=1,∵△ABE沿BE折叠得到△A′BE,∴A′E=AE,A′B=AB=1,∴A′N==0,即A′与N重合,∴A′M=1,∴A′E2=EM2+A′M2,∴A′E2=(1﹣A′E)2+12,解得:A′E=1,∴AE=1;②如图2,过A′作PQ∥AD交AB于P,交CD于Q,则直线PQ是矩形ABCD的对称轴,∴PQ⊥AB,AP=PB,AD∥PQ∥BC,∴A′B=2PB,∴∠P A′B=30°,∴∠A′BC=30°,∴∠EBA′=30°,∴AE=A′E=A′B×tan30°=1×=;综上所述:AE的长为1或;故答案为:1或.三.解答题15.解:(1)原式=﹣1+4﹣2=+1;(2)原式=2﹣3﹣(3﹣2)+3=2﹣;(3)原式=10+3+2=15;(4)原式=3+4+4﹣4+2=9.16.解:过C作CD⊥AB于D,∴∠ADC=∠BDC=90°,∵∠B=45°,∴∠BCD=∠B=45°,∴CD=BD,∵∠A=30°,AC=2,∴CD=,∴BD=CD=,由勾股定理得:AD==3,∴AB=AD+BD=3+,答:AB的长是3+.17.解:(1)∵关于x的一元二次方程x2﹣6x+2a+5=0有两个不相等的实数根x1,x2,∴△>0,即(﹣6)2﹣4(2a+5)>0,解得a<2;(2)由根与系数的关系知:x1+x2=6,x1x2=2a+5,∵x1,x2满足x12+x22﹣x1x2≤30,∴(x1+x2)2﹣3x1x2≤30,∴36﹣3(2a+5)≤30,∴a≥﹣,∵a为整数,∴a的值为﹣1,0,1.18.解:(1)∵转动转盘①一共有3种可能,∴转盘指针指向歌曲“3”的概率是:;故答案为:;(2)分别转动两个转盘一次,列表:(画树状图也可以)45 6BA11,41,51,622,42,52,633,43,53,6共有9种,它们出现的可能性相同.由于指针指向歌曲“3”时,该歌手就选择自己最擅长的歌曲“1”,所以所有的结果中,该歌手演唱歌曲“1”和“4”(记为事件A)的结果有2种,所以P(A )=.(说明:通过枚举、画树状图或列表得出全部正确情况得(4分);没有说明等可能性扣(1分).)19.解:(1)过点B作BD⊥AE于D在Rt△BCD中,∠BCD=60°,设CD=x,则BD =,BC=2x在Rt△ABD中,∠BAD=45°则AD=BD=,AB=BD=由AC+CD=AD得20+x=x解得:x=10+10故AB=30+10答:港口A到海岛B的距离为海里.(2)甲船看见灯塔所用时间:小时乙船看见灯塔所用时间:小时所以乙船先看见灯塔.20.解:(1)∵∠BAC=90°,AB=AC,∴∠B=∠C=45°,又因为∠DEC=∠ADE+∠CAD=45°+∠CAD(三角形的外角等于不相邻的两个内角之和),同理∠ADB=∠C+∠CAD=45°+∠CAD,∴∠DEC=∠ADB,又∠ABD=∠DCE=45°,∴△ABD∽△DCE;(2)∵AB=2,∴BC=2,∵△ABD∽△DCE,∴=,即=,=,CE=﹣.。
2024年最新人教版初三数学(上册)期末考卷及答案(各版本)
2024年最新人教版初三数学(上册)期末考卷一、选择题(每题3分,共30分)1. 若一个数的立方根等于它的平方根,则这个数是()A. 0B. 1C. 1D. ±12. 若一个数是它自己的倒数,则这个数是()A. 0B. 1C. 1D. ±13. 若一个数的绝对值等于它本身,则这个数是()A. 正数B. 负数C. 0D. 正数或04. 若一个数的绝对值等于它的相反数,则这个数是()A. 正数B. 负数C. 0D. 正数或05. 若一个数的平方等于它本身,则这个数是()A. 0B. 1C. 1D. 0或16. 若一个数的立方等于它本身,则这个数是()A. 0B. 1C. 1D. 0或17. 若一个数的平方根是它自己的倒数,则这个数是()A. 0B. 1C. 1D. ±18. 若一个数的立方根是它自己的相反数,则这个数是()A. 0B. 1C. 1D. ±19. 若一个数的绝对值等于它的立方,则这个数是()A. 正数B. 负数C. 0D. 正数或010. 若一个数的绝对值等于它的平方,则这个数是()A. 正数B. 负数C. 0D. 正数或0二、填空题(每题3分,共30分)11. 若一个数的平方根是它自己的倒数,则这个数是______。
12. 若一个数的立方根是它自己的相反数,则这个数是______。
13. 若一个数的绝对值等于它的立方,则这个数是______。
14. 若一个数的绝对值等于它的平方,则这个数是______。
15. 若一个数的平方等于它本身,则这个数是______。
16. 若一个数的立方等于它本身,则这个数是______。
17. 若一个数的平方根是它自己的倒数,则这个数是______。
18. 若一个数的立方根是它自己的相反数,则这个数是______。
19. 若一个数的绝对值等于它的立方,则这个数是______。
20. 若一个数的绝对值等于它的平方,则这个数是______。
九年级数学上册第一学期期末综合测试卷(沪科版 2024年秋)
九年级数学上册第一学期期末综合测试卷(沪科版2024年秋)一、选择题(本大题共10小题,每小题4分,满分40分)题序12345678910答案1.2cos45°的值等于()A.1 B.2 C.3D.22.下列函数中,一定是反比例函数的是()A.y=-2x-1B.y=kx-1C.y=4x D.y=1x-13.已知二次函数y=-3(x-2)2-3,下列说法正确的是()A.图象的对称轴为直线x=-2B.图象的顶点坐标为(2,3)C.函数的最大值是-3D.函数的最小值是-34.如图,在△ABC中,点D是AB边上一点,下列条件中,能使△ABC与△BDC 相似的是()A.∠B=∠ACD B.∠ACB=∠ADCC.AC2=AD·AB D.BC2=BD·AB(第4题)5.若点A(x1,2),B(x2,-1),C(x3,4)都在反比例函数y=8x的图象上,则x1,x2,x3的大小关系是()A.x1<x2<x3B.x2<x3<x1 C.x1<x3<x2D.x2<x1<x3 6.如图,△ABC∽△ADE,且BC=2DE,则S四边形BEDC:S△ABC的值为() A.1:4B.3:4C.2:3D.1:2(第6题)(第7题)7.如图,在△ABC中,∠C=45°,tan B=3,AD⊥BC于点D,AC=2 6.若E,F分别为AC,BC的中点,则EF的长为()A.233B.2C.3D.238.已知二次函数y=ax2+bx-2(a≠0)的图象的顶点在第三象限,且过点(1,0),设t=a-b-2,则t的取值范围是()A.-2<t<0B.-3<t<0C.-4<t<-2D.-4<t<0 9.如图,在x轴的正半轴上依次截取OP1=P1P2=P2P3=…=P n-1P n=1,过点P1,P2,P3,…,P n分别作x轴的垂线,与反比例函数y=2x(x>0)的图象交于点Q1,Q2,Q3,…,Q n,连接Q1Q2,Q2Q3,…,Q n-1Q n,过点Q2,Q3,…,Q n分别向P1Q1,P2Q2,…,P n-1Q n-1作垂线段,构成的一系列直角三角形(图中阴影部分)的面积和等于()(第9题)A.2n+1B.2n C.n-1n D.n+22n10.如图,正方形ABCD的边长为2cm,点O为正方形的中心,点P从点A出发沿A-O-D运动,同时点Q从点B出发沿BC运动,连接BP,PQ,在移动的过程中始终保持PQ⊥BC.已知点P的运动速度为2cm/s,设点P的运动时间为t(s),△BPQ的面积为S(cm2),下列图象能正确反映出S与t的函数关系的是()(第10题)二、填空题(本大题共4小题,每小题5分,满分20分)11.如果α是锐角,sin α=cos 30°,那么α=________°.12.已知3a =4b ,则3a +2b a -b=________.13.已知点C 是线段AB 的黄金分割点,且AB =5+1,则AC 的长是________.14.如图,抛物线y =-x 2+2x +c 交x 轴于A (-1,0),B 两点,交y 轴于点C ,D 为抛物线的顶点.(第14题)(1)点D 的坐标为________;(2)若点C 关于抛物线对称轴的对称点为点E ,M 是抛物线对称轴上一点,且△DMB和△BCE 相似,则点M 的坐标为________.三、(本大题共2小题,每小题8分,满分16分)15.计算:27+-122-3tan 60°+(π-2)0.16.已知:如图,△ABD ∽△ACE .求证:(1)∠DAE =∠BAC ;(2)△DAE ∽△BAC .(第16题)四、(本大题共2小题,每小题8分,满分16分)17.如图,在12×12的正方形网格中,△CAB的顶点坐标分别为点C(1,1),A(2,3),B(4,2).(1)以点C(1,1)为位似中心,按21在位似中心的同侧将△CAB放大为△CA′B′,放大后点A,B的对应点分别为A′,B′,画出△CA′B′,并写出点A′,B′的坐标;(2)在(1)中,若P(a,b)为线段AB上任意一点,请直接写出变化后点P的对应点P′的坐标.(第17题)18.《九章算术》中有一道这样的题,原文如下:“今有邑,东西七里,南北九里,各中开门,出东门一十五里有木,问:出南门几何步而见木?”大意为:今有一座长方形小城(如图),东西向城墙长7里,南北向城墙长9里,各城墙正中均开一城门,走出东门15里处有棵大树,问:走出南门多少步恰好能望见这棵树?(注:1里=300步)(第18题)五、(本大题共2小题,每小题10分,满分20分)19.已知二次函数y=ax2+bx+c与x的一些对应值如下表:x…-101234…y=ax2+bx+c…3-13…(1)根据表格中的数据,该二次函数的表达式为__________;(2)填写表格中空白处的对应值,并利用五点作图法在下面的网格图中画出该二次函数y=ax2+bx+c的图象(不必重新列表);(3)根据图象回答:①当1≤x≤4时,y的取值范围是________________;②当x取什么值时,y>0?(第19题)(m≠0,x>0)的图象20.如图,一次函数y=kx+2(k≠0)的图象与反比例函数y=mx交于点A(2,n),与y轴交于点B,与x轴交于点C(-4,0).(1)直接写出k,m的值;(2)若P(a,0)为x轴上的一动点,当△APB的面积为72时,求a的值.(第20题)六、(本题满分12分)21.“山地自行车速降赛”是一种新兴的极限运动,这项运动的赛道需全部是下坡骑行路段.如图是某一下坡赛道,由AB,BC,CD三段组成,在同一平面内,其中AB段的俯角是30°,长为2m,BC段与AB段,CD段都垂直,长为1m,CD段长为3m,求此下坡赛道的垂直高度.(结果保留根号)(第21题)七、(本题满分12分)22.某电子科技公司开发一种新产品,公司对经营的盈亏情况每月最后一天结算1次.在1~12月中,公司前x个月累计获得的总利润y(万元)与销售时间x(月)之间满足二次函数表达式y=a(x-h)2+k.二次函数y=a(x-h)2+k的一部分图象如图所示,点A为抛物线的顶点,且点A,B,C的横坐标分别为4,10,12,点A,B的纵坐标分别为-16,20.(1)该二次函数的表达式y=a(x-h)2+k为__________;(2)分别求出前9个月公司累计获得的利润以及10月一个月内所获得的利润;(3)在1~12月中,哪个月该公司一个月内所获得的利润最多?最多利润是多少万元?(第22题)八、(本题满分14分)23.【项目化学习】背景:小明是学校的一名升旗手,他在考虑如何能让国旗在国歌结束时,刚好升至旗杆顶端?要解决此问题就要知道学校旗杆的高度,为此他与同学们进行了专题项目研究.主题:测量学校旗杆的高度.分析探究:旗杆的高度不能直接测量,需要借助一些工具,比如小镜子、标杆、皮尺、小木棒、自制的直角三角形硬纸板……确定方案后,画出测量示意图,并进行实地测量,得到具体数据,从而计算出旗杆的高度.成果展示:下面是部分测量方案及测量数据.方案一方案二工具皮尺标杆,皮尺测量方案选一名同学直立于旗杆影子的顶端处,测量该同学的身高和影长及同一时刻旗杆的影长.选一名同学作为观测者,在观测者与旗杆之间的地面上直立一根高度适当的标杆,使旗杆的顶端、标杆的顶端与观测者的眼睛恰好在一条直线上,这时测出观测者的脚到旗杆底端的距离,以及观测者的脚到标杆底端的距离,然后测出标杆的高.测量示意图测量数据线段AB表示旗杆,这名同学的身高CD=1.8m,这名同学的影长DE=1.44m,同一时刻旗杆的影长BD=10.32m.线段AB表示旗杆,标杆EF=2.6m,观测者的眼睛到地面的距离CD=1.7m,观测者的脚到旗杆底端的距离DB=16.8m,观测者的脚到标杆底端的距离DF=1.35m.……请你继续完善上述成果展示.任务一:写出“方案一”中求旗杆高度时所利用的知识:____________________________;(写出一个即可)任务二:根据“方案二”的测量数据,求学校旗杆AB的高度;任务三:写出一条你在活动中的收获、反思或困惑.答案一、1.B 2.C3.C4.D5.B6.B7.B8.D 9.C10.D 点拨:如图①,当点P 在OA 上时,0≤t ≤1,延长QP 交AD 于点E ,则PE ⊥AD ,由题意得BQ =t cm ,AP =2t cm ,易得AE =PE =t cm ,QE =AB =2cm ,∴PQ =(2-t )cm ,∴S =12BQ ·PQ =12t (2-t )=-12t 2+t ;(第10题)如图②,当点P 在OD 上时,1<t ≤2,由题意得PQ =BQ =t cm ,∴S =12t 2.二、11.6012.-1713.2或5-114.(1)(1,4)(2)(1,-2)三、15.解:原式=33+4-33+1=5.16.证明:(1)∵△ABD ∽△ACE ,∴∠BAD =∠CAE ,∴∠BAD +∠BAE =∠CAE +∠BAE ,∴∠DAE =∠BAC .(2)∵△ABD ∽△ACE ,∴AD AE =AB AC ,∴AD AB =AE AC,而∠DAE =∠BAC ,∴△DAE ∽△BAC .四、17.解:(1)如图,△CA ′B ′即为所求.其中A ′(3,5),B ′(7,3).(第17题)(2)P ′(2a -1,2b -1).18.解:如图,由题意,得AB =15里,AC =4.5里,CD =3.5里.(第18题)∵DE ⊥CD ,AC ⊥CD ,∴AC ∥DE ,∴△ACB ∽△DEC ,∴DE AC =DC AB ,即DE 4.5=3.515,解得DE =1.05里=315步.答:走出南门315步恰好能望见这棵树.五、19.解:(1)y =x 2-4x +3(2)x …-101234…y =ax 2+bx +c…83-13…函数图象如图所示.(第19题)(3)①-1≤y ≤3②当x <1或x >3时,y >0.20.解:(1)k 的值为12,m 的值为6.(2)易知B (0,2).∵P (a ,0)为x 轴上的一动点,∴PC =|a +4|,∴S △CBP =12PC ·OB =12×|a +4|×2=|a +4|,S △CAP =12PC ·y A =12×|a +4|×3=32|a +4|.∵S △CP A =S △ABP +S △CBP ,∴32|a +4|=72+|a +4|,解得a =3或-11.六、21.解:如图,延长AB 与直线l 2交于点E ,过点D 作DF ⊥BE 于点F ,过点A 作AG ⊥l 2于点G ,易得DF =BC =1m ,BF =CD =3m ,∠FED =30°.在Rt △DEF 中,tan 30°=DF EF,∴EF =3m ,∴AE =AB +BF +EF =2+3+3=(5+3)m.在Rt △AGE 中,AG =12AE =5+32m.答:此下坡赛道的垂直高度为5+32m.(第21题)七、22.解:(1)y =(x -4)2-16(2)当x =9时,y =(9-4)2-16=9,答:前9个月公司累计获得的利润为9万元;当x =10时,y =20.20-9=11(万元).答:10月一个月内所获得的利润为11万元.(3)设在1~12月中,第n 个月该公司一个月内所获得的利润为s 万元,则有s =(n -4)2-16-[(n -1-4)2-16]=2n -9.∵2>0,∴s 随n 的增大而增大.又∵n 的最大值为12,∴当n =12时,s 取最大值,为15.答:12月该公司一个月内所获得的利润最多,最多利润是15万元.八、23.解:任务一:相似三角形的判定与性质(答案不唯一)任务二:如图,过点C 作CG ⊥AB 于点G ,交EF 于点H ,则易得四边形CDBG 与四边形CDFH 是矩形,(第23题)∴CH =DF =1.35m ,CG =BD =16.8m ,CD =HF =GB =1.7m ,∴EH =EF -HF =2.6-1.7=0.9(m).由题意得EF ∥AB ,∴△CEH ∽△CAG ,∴CH CG =EH AG ,∴1.3516.8=0.9AG,∴AG =11.2m.∴AB =AG +BG =11.2+1.7=12.9(m).答:学校旗杆AB 的高度为12.9m.任务三:在利用阳光下的影子测量时,如果没有太阳光,会影响测量;测量数据不准确,在测量过程中为了避免误差太大,可以多次测量,取平均值作为最后的测量结果;在项目研究中感受到了数学与生活的联系等.(答案不唯一,表述合理即可)。
初三期末数学试题及答案
初三期末数学试题及答案一、选择题(每题2分,共10分)1. 下列哪个数是无理数?A. 3.14159B. πC. 0.33333D. √22. 一个直角三角形的两条直角边分别为3和4,斜边的长度是:A. 5B. 6C. 7D. 83. 函数y = 2x + 3的斜率是:A. 2B. 3C. -2D. -34. 一个数的平方根是4,这个数是:A. 16B. -16C. 8D. -85. 以下哪个方程的解是x = 2?A. x + 2 = 4B. x - 2 = 4C. 2x = 4D. 3x = 6答案:1. B 2. A 3. A 4. A 5. A二、填空题(每题1分,共5分)6. 一个数的绝对值是5,这个数是______。
7. 一个正比例函数y = kx,当x = 2时,y = 4,k的值是______。
8. 一个二次方程ax² + bx + c = 0的判别式是b² - 4ac,当判别式小于0时,方程______实数解。
9. 一个圆的半径是r,它的面积是______。
10. 一个数的立方根是2,这个数是______。
答案:6. ±5 7. 2 8. 没有9. πr² 10. 8三、计算题(每题5分,共15分)11. 计算下列表达式的值:(3x - 2)² - 4(x - 3)²,当x = 1。
12. 解下列方程:2x - 5 = 3x + 1。
13. 化简下列分数:\(\frac{2x}{3} + \frac{5}{x - 2}\)。
答案:11. 712. x = -613. \(\frac{2x^2 - 4x + 15}{3(x - 2)}\)四、解答题(每题10分,共20分)14. 一个长方体的长、宽、高分别是2x,3x和4x,求它的体积。
15. 一个圆的半径是5厘米,求它的周长和面积。
答案:14. 体积是 \(24x^3\)。
2024年北京初三九年级上学期数学期末考《几何综合》
2024年1月九上期末——几何综合1.【东城】27.在△ABC中,AB=AC,∠BAC=120°,D为BC上一点,连接DA,将线段DA绕点D顺时针旋转60°得到线段DE.(1)如图1,当点D与点B重合时,连接AE,交BC于点H,求证:AE⊥BC;(2)当BD≠CD时(图2中BD<CD,图3中BD>CD),F为线段AC的中点,连接EF.在图2,图3中任选一种情况,完成下列问题:①依题意,补全图形;②猜想∠AFE的大小,并证明.2.【西城】27.在ABC △中,90ACB ∠=︒,AC BC =,CM AB ⊥于点M .点P 在射线CM 上,连接AP ,作CD AP ⊥于点D .连接MD ,作CE MD ⊥于点E ,作//DF AB 交直线CE 于点F ,连接MF .图1图2备用图(1)当点P 在线段CM 上时,在图1中补全图形,并直接写出ADM ∠的度数;(2)当点P 在线段CM 的延长线上时,利用图2探究线段DF 与AM 之间的数量关系,并证明;(3)取线段MF 的中点K ,连接BK ,若8AC =,直接写出线段BK 的长的最小值.3.【海淀】27.如图,在ABC △中,AB AC =,点D ,E 分别在边AC ,BC 上,连接DE ,EDC B ∠∠=.(1)求证:ED EC =;(2)连接BD ,点F 为BD 的中点,连接AF ,EF .①依题意补全图形;②若AF EF ⊥,求BAC ∠的大小.4.【朝阳】27.已知线段AB 和点C ,将线段AC 绕点A 逆时针旋转α(0°<α<90°),得到线段AD ,将线段BC 绕点B 顺时针旋转180°-α,得到线段BE ,连接DE ,F 为DE 的中点,连接AF ,BF .(1)如图1,点C 在线段AB 上,依题意补全图1,直接写出∠AFB 的度数;(2)如图2,点C 在线段AB 的上方,写出一个α的度数,使得3AF =成立,并证明.图1图25.【石景山】27.如图,在Rt ACB △中,90ACB ∠=°,60BAC ∠=°.D 是边BA 上一点(不与点B 重合且12BD BA <),将线段CD 绕点C 逆时针旋转60°得到线段CE ,连接DE ,AE .(1)求CAE ∠的度数;(2)F 是DE 的中点,连接AF 并延长,交CD 的延长线于点G ,依题意补全图形.若G ACE ∠=∠,用等式表示线段FG ,AF ,AE 之间的数量关系,并证明.6.【丰台】27.已知在△ABC中,AB=AC,0°<∠BAC<90°,将线段AC绕点A逆时针旋转α得到线段AD,连接BD,CD.(1)如图1,当∠BAC=α时,∠ABD=(用含有α的式子表示);(2)如图2,当α=90°时,连接BD,作∠BAD的角平分线交BC的延长线于点F,交BD于点E,连接DF.①依题意在图2中补全图形,并求∠DBC的度数;②用等式表示线段AF,CF,DF之间的数量关系,并证明.7.【昌平】27.在△ABC中,AB=AC,∠BAC=90°,点M为BC的中点,连接AM,点D为线段CM上一动点,过点D作DE⊥BC,且DE=DM,(点E在BC的上方),连接AE,过点E作AE的垂线交BC边于点F.(1)如图1,当点D为CM的中点时,①依题意补全图形;②直接写出BF和DE的数量关系为______________;(2)当点D在图2的位置时,用等式表示线段BF与DE之间的数量关系,并证明.图1图227题图127题图28.【通州】27.如图,ABC △中,90ACB ∠=︒,AC BC =,点D 在AB 的延长线上,取AD 的中点F ,连结CD 、CF ,将线段CD 绕点C 顺时针旋转90︒得到线段CE ,连结AE 、BE .(1)依题意,请补全图形;(2)判断BE 、CF 的数量关系及它们所在直线的位置关系,并证明.9.【房山】27.如图,在等边三角形ABC 中,E ,F 分别是BC ,AC 上的点,且BE CF =,AE ,BF 交于点G .(1)AGF ∠=°;(2)过点A 作AD ∥BC (点D 在AE 的右侧),且AD BC =,连接DG .①依题意补全图形;②用等式表示线段AG ,BG 与DG 的数量关系,并证明.10.【大兴】27.在△ABC中,∠BAC=90°,AB=AC,点P为BA的延长线上一点,连接PC,以点P为中心,将线段PC顺时针旋转90°得到线段PD,连接BD.(1)依题意补全图形;(2)求证:∠ACP=∠DPB;(3)用等式表示线段BC,BP,BD之间的数量关系,并证明.11.【门头沟】27.如图,Rt△ABC中,∠ACB=90°,CA=CB,过点C在△ABC外作射线CP,且∠ACP=α,点A关于CP的对称点为点D,连接AD,BD,CD,其中AD,BD分别交射线CP于点M,N.(1)依题意补全图形;(2)当α=30°时,直接写出∠CNB的度数;(3)当0°<α<45°时,用等式表示线段BN,CM之间的数量关系,并证明.12.【燕山】27.如图,△ABC为等边三角形,点M为AB边上一点(不与点A,B重合),连接CM,过点A作AD⊥CM于点D,将线段AD绕点A顺时针旋转60°得到线段AE,连接BE.(1)依题意补全图形,直接写出∠AEB的大小,并证明;(2)连接ED并延长交BC于点F,用等式表示BF与FC的数量关系,并证明.13.【顺义】27.在菱形ABCD中,∠B=60°,点P是对角线AC上一点(不与点A重合),点E,F分别是边AB,AD上的点,且∠EPF=60°,射线PE,PF分别与DA,BA的延长线交于点M,N.(1)如图1,若点P与C重合,且PA平分∠EPF,求证:AM=AN;(2)连接BP,若∠ABP=45°,BP=3,且PA不平分∠EPF.①依题意补全图2;②用等式表示线段AM,AN的数量关系,并证明.14.【密云】27.如图,在Rt△ABC中,∠ACB=90°,AC=BC.点D为AB边上的一点,将线段CD绕点C逆时针旋转90°得到线段CE,连接AE、BE.(1)依据题意,补全图形;(2)直接写出∠A C E+∠B C D的度数;(3)若点F为BD中点,连接CF交AE于点P,用等式表示线段A E与CF之间的数量关系,并证明.15.【平谷】27.如图,△ABC中,AC=BC,∠ACB=90°,D为AB边中点,E为△ABC外部射线CD上一点,连接AE,过C作CF⊥AE于F.(1)依题意补全图形,(2)找出图中与∠EAD相等的角,并证明;(3)连接DF,猜想∠CFD的度数,并证明.。
2023届山西省(太原地区公立学校数学九年级第一学期期末综合测试试题含解析
2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)1.如图所示,该几何体的俯视图是( )A .B .C .D .2.如图,在ABC ∆中,10AB =,8AC =,6BC =,以边AB 的中点O 为圆心作半圆,使BC 与半圆相切,点,P Q 分别是边AC 和半圆上的动点,连接PQ ,则PQ 长的最大值与最小值的和是( )A .8B .9C .10D .123.从甲、乙、丙、丁四人中选一人参加诗词大会比赛,经过三轮初赛,他们的平均成绩都是86分,方差如下表,你认为派谁去参赛更合适( ) 选手甲 乙 丙 丁 方差1.52.63.5 3.68A .甲B .乙C .丙D .丁 4.如图,厂房屋顶人字架(等腰三角形)的跨度BC =10m ,∠B =36°,D 为底边BC 的中点,则上弦AB 的长约为( )(结果保留小数点后一位sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)A .3.6mB .6.2mC .8.5mD .12.4m5.已知正多边形的一个内角是135°,则这个正多边形的边数是( )A .3B .4C .6D .86.如图,一张矩形纸片ABCD 的长AB a =,宽BC b.=将纸片对折,折痕为EF ,所得矩形AFED 与矩形ABCD 相似,则a :b (= )A .2:1B .2:1C .3:3D .3:27.二次根式x 3-中,x 的取值范围是( )A .x 3≥B .x 3>C .x 3≤D .x 3<8.方程5x 2=6x ﹣8化成一元二次方程一般形式后,二次项系数、一次项系数、常数项分别是( )A .5、6、﹣8B .5,﹣6,﹣8C .5,﹣6,8D .6,5,﹣89.如图,正方形ABCD 的边长为2cm ,动点P ,Q 同时从点A 出发,在正方形的边上,分别按A D C →→,A B C →→的方向,都以1/cm s 的速度运动,到达点C 运动终止,连接PQ ,设运动时间为x s ,APQ ∆的面积为2y cm ,则下列图象中能大致表示y 与x 的函数关系的是( )A .B .C .D .10.不透明袋子中有除颜色外完全相同的4个黑球和2个白球,从袋子中随机摸出3个球,下列事件是必然事件的是().A.3个都是黑球B.2个黑球1个白球C.2个白球1个黑球D.至少有1个黑球二、填空题(每小题3分,共24分)11.如图,在平面直角坐标系xOy中,P是直线y=2上的一个动点,⊙P的半径为1,直线OQ切⊙P于点Q,则线段OQ取最小值时,Q点的坐标为_____.12.若一个扇形的圆心角是120°,且它的半径是18cm,则此扇形的弧长是_______cm13.如图,D是反比例函数kyx=(k<0)的图象上一点,过D作DE⊥x轴于E,DC⊥y轴于C,一次函数y=﹣x+m与323y x=-+的图象都经过点C,与x轴分别交于A、B两点,四边形DCAE的面积为4,则k的值为_______.14.用一个半径为10的半圆,围成一个圆锥的侧面,该圆锥的底面圆的半径为_____.15.如图,△ABC内接于⊙O,∠ACB=35º,则∠OAB=º.16.如果A地到B地的路程为80千米,那么汽车从A地到B地的速度x千米/时和时间y时之间的函数解析式为______. 17.已知线段a、b、c,其中c是a、b的比例中项,若a=2cm,b=8cm,则线段c=_____cm.18.如图,⊙O为△ABC的内切圆,D、E、F分别为切点,已知∠C=90°,⊙O半径长为1cm,BC=3cm,则AD 长度为__cm.三、解答题(共66分)19.(10分)解方程:()12410x x -+=.()2()()229241x x -=+20.(6分)如图,在O 中,弦CD 垂直于直径AB ,垂足为E ,连结AC ,将ACE ∆沿AC 翻转得到ACF ∆,直线FC 与直线AB 相交于点G .(1)求证:FG 是O 的切线;(2)若B 为OG 的中点,①求证:四边形OCBD 是菱形;②若23CE =,求O 的半径长. 21.(6分)已知正比例函数12y x =的图象与反比例函数2(0k y k x =≠的图象交于一点M ,且M 点的横坐标为1. (1)求反比例函数的解析式;(2)当25x ≤≤时,求反比例函数2(0k y k x=≠的取值范围 22.(8分)如图,在△ABC 中,D 为BC 边上的一点,且∠CAD=∠B,CD=4,BD=2,求AC 的长23.(8分)阅读下列材料,关于x 的方程:x +1x =c +1c 的解是x 1=c ,x 2=1c ;x ﹣1x =c ﹣1c 的解是x 1=c ,x 2=﹣1c;x +2x=c +2c 的解是x 1=c ,x 2=2c ;x +3x =c +3c 的解是x 1=c ,x 2=3c ;…… (1)请观察上述方程与解的特征,比较关于x 的方程x +a x =c +a c (a ≠0)与它们的关系猜想它的解是什么,并利用“方程的解”的概念进行验证.(2)可以直接利用(1)的结论,解关于x的方程:x+33x-=a+33a-.24.(8分)某商场购进一种每件价格为100元的新商品,在商场试销发现:销售单价x(元/件)与每天销售量y(件)之间满足如图所示的关系:(1)求出y与x之间的函数关系式;(2)如果商店销售这种商品,每天要获得1500元利润,那么每件商品的销售价应定为多少元?(3)写出每天的利润W与销售单价x之间的函数关系式;若你是商场负责人,会将售价定为多少,来保证每天获得的利润最大,最大利润是多少?25.(10分)已知二次函数y=ax2+bx+3的图象经过点 (-3,0),(2,-5).(1)试确定此二次函数的解析式;(2)请你判断点P(-2,3)是否在这个二次函数的图象上?26.(10分)某商业集团新建一小车停车场,经测算,此停车场每天需固定支出的费用(设施维修费、车辆管理人员工资等)为800元.为制定合理的收费标准,该集团对一段时间每天小车停放辆次与每辆次小车的收费情况进行了调查,发现每辆次小车的停车费不超过5元时,每天来此处停放的小车可达1440辆次;若停车费超过5元,则每超过1元,每天来此处停放的小车就减少120辆次.为便于结算,规定每辆次小车的停车费x(元)只取整数,用y(元)表示此停车场的日净收入,且要求日净收入不低于2512元.(日净收入=每天共收取的停车费﹣每天的固定支出)(1)当x≤5时,写出y与x之间的关系式,并说明每辆小车的停车费最少不低于多少元;(2)当x>5时,写出y与x之间的函数关系式(不必写出x的取值范围);(3)该集团要求此停车场既要吸引客户,使每天小车停放的辆次较多,又要有较大的日净收入.按此要求,每辆次小车的停车费应定为多少元?此时日净收入是多少?参考答案一、选择题(每小题3分,共30分)1、C【解析】从上往下看,总体上是一个矩形,中间隔着一个竖直的同宽的小矩形,而挖空后长方体内的剩余部分用虚线表示为左右对称的两条靠近宽的线,选项C中图象便是俯视图.故选:C.2、C【分析】如图,设⊙O与BC相切于点E,连接OE,作OP2⊥AC垂足为P2交⊙O于Q2,此时垂线段OP2最短,P2Q2最小值为OQ2-OP2,如图当Q2在AB边上时,P2与A重合时,P2Q2最大值,由此不难解决问题.【详解】解:如图,设⊙O与BC相切于点E,连接OE,作OP2⊥AC垂足为P2交⊙O于Q2,此时垂线段OP2最短,P2Q2最小值为OQ2-OP2,∵AB=20,AC=8,BC=6,∴AB2=AC2+BC2,∴∠C=90°,∵∠OP2A=90°,∴OP2∥BC.∵O为AB的中点,∴P2C=P2A,OP2=12BC=2.又∵BC是⊙O的切线,∴∠OEB=90°,∴OE∥AC,又O为AB的中点,∴OE=12AC=4=OQ2.∴P2Q2最小值为OQ2-OP2=4-2=2,如图,当Q2在AB边上时,P2与A重合时,P2Q2经过圆心,经过圆心的弦最长,P2Q2最大值=AO+OQ2=5+4=9,∴PQ长的最大值与最小值的和是20.故选:C.【点睛】本题考查切线的性质,三角形中位线定理,勾股定理的逆定理以及平行线的判定等知识,解题的关键是正确找到点PQ 取得最大值、最小值时的位置,属于中考常考题型.3、A【分析】根据方差的意义即可得.【详解】方差越小,表示成绩波动性越小、越稳定观察表格可知,甲的方差最小,则派甲去参赛更合适故选:A .【点睛】本题考查了方差的意义,掌握理解方差的意义是解题关键.4、B【分析】先根据等腰三角形的性质得出BD =12BC =5m ,AD ⊥BC ,再由cos B =BD AB,∠B =36°知AB =cos BD B ,代入计算可得.【详解】∵△ABC 是等腰三角形,且BD =CD , ∴BD =12BC =5m ,AD ⊥BC , 在Rt △ABD 中,∵cos B =BD AB,∠B =36°, ∴AB =cos BD B =5cos36︒≈6.2(m ),故选:B . 【点睛】本题考查解直接三角形的应用,解题的关键是根据等腰三角形的性质构造出直角三角形Rt △ABD ,再利用三角函数求解.5、D【分析】根据正多边形的一个内角是135°,则知该正多边形的一个外角为45°,再根据多边形的外角之和为360°,即可求出正多边形的边数.【详解】解:∵正多边形的一个内角是135°,∴该正多边形的一个外角为45°,∵多边形的外角之和为360°, ∴边数=360845︒=︒, ∴这个正多边形的边数是1.故选:D .【点睛】本题考查了正多边形的内角和与外角和的知识,知道正多边形的外角之和为360°是解题关键.6、B【分析】根据折叠性质得到AF =12AB =12a ,再根据相似多边形的性质得到AB AD AD AF =,即12a b b a =,然后利用比例的性质计算即可.【详解】解:∵矩形纸片对折,折痕为EF ,∴AF =12AB =12a , ∵矩形AFED 与矩形ABCD 相似, ∴AB AD AD AF =,即12a b b a =, ∴a ∶b.所以答案选B.【点睛】本题考查了相似多边形的性质:相似多边形对应边的比叫做相似比.相似多边形的对应角相等,对应边的比相等. 7、A【解析】根据二次根式有意义的条件:被开方数为非负数解答即可.∴x-3≥0,解得x≥3.故选A.【点睛】本题考查了二次根式有意义的条件.熟记二次根式的被开方数是非负数是解题关键.8、C【解析】根据一元二次方程的一般形式进行解答即可.【详解】5x 2=6x ﹣8化成一元二次方程一般形式是5x 2﹣6x+8=0,它的二次项系数是5,一次项系数是﹣6,常数项是8,故选C .【点睛】本题考查了一元二次方程的一般形式,一元二次方程的一般形式是:ax 2+bx+c=0(a ,b ,c 是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax 2叫二次项,bx 叫一次项,c 是常数项.其中a ,b ,c 分别叫二次项系数,一次项系数,常数项.9、A【分析】根据题意结合图形,分情况讨论:①02x ≤≤时,根据12APQ S AQ AP ∆=⋅,列出函数关系式,从而得到函数图象;②24x ≤≤时,根据''''APQ CP Q ABQ AP D ABCD S S S S S ∆∆∆∆=---正方形列出函数关系式,从而得到函数图象,再结合四个选项即可得解.【详解】①当02x ≤≤时,∵正方形的边长为2cm , ∴21122APQ y S AQ AP x ∆==⋅=; ②当24x ≤≤时,APQ y S ∆=''''CP Q ABQ AP D ABCD S S S S ∆∆∆=---正方形()()()21112242222222x x x =⨯---⨯⨯--⨯⨯- 2122x x =-+, 所以,y 与x 之间的函数关系可以用两段二次函数图象表示,纵观各选项,只有A 选项图象符合,故选A .【点睛】本题考查了动点问题的函数图象,根据题意,分别求出两个时间段的函数关系式是解题的关键.10、D【分析】根据白球两个,摸出三个球必然有一个黑球.【详解】解:A 袋子中装有4个黑球和2个白球,摸出的三个球中可能为两个白球一个黑球,所以A 不是必然事件; B .C .袋子中有4个黑球,有可能摸到的全部是黑球,B 、C 有可能不发生,所以B 、C 不是必然事件;D .白球只有两个,如果摸到三个球不可能都是白梂,因此至少有一个是黑球,D 正确.故选D .【点睛】本题考查随机事件,解题关键在于根据题意对选项进行判断即可.二、填空题(每小题3分,共24分)11、(3±,32). 【分析】连接PQ 、OP ,如图,根据切线的性质得PQ ⊥OQ ,再利用勾股定理得到21OP -当OP 最小时,OQ 最小,然后求出OP 的最小值,得到OQ 的最小值,于是得到结论.【详解】连接PQ 、OP ,如图,∵直线OQ 切⊙P 于点Q ,∴PQ ⊥OQ ,在Rt △OPQ 中,OQ 22OP PQ -21OP -当OP 最小时,OQ 最小,当OP ⊥直线y =2时,OP 有最小值2,∴OQ 221-3设点Q 的横坐标为a ,∴S △OPQ =12×1312×2×|a , ∴a =3, ∴Q 223(3)2⎛⎫- ⎪ ⎪⎝⎭32, ∴Q 点的坐标为(32±,32), 故答案为(3,32). 【点睛】 本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了勾股定理.12、12π 【分析】根据弧长公式180n r l π=代入可得结论. 【详解】解:根据题意,扇形的弧长为12018==12180180n r l πππ⨯⨯=, 故答案为:12π.【点睛】本题主要考查弧长的计算,解决本题的关键是要熟练掌握弧长公式.13、-1【详解】解:∵2y x =+的图象经过点C ,∴C (0,1), 将点C 代入一次函数y=-x+m 中,得m=1,∴y=-x+1,令y=0得x=1,∴A (1,0),∴S △AOC =12×OA×OC=1, ∵四边形DCAE 的面积为4,∴S 矩形OCDE =4-1=1,∴k=-1故答案为:-1.14、5【解析】试题解析:∵半径为10的半圆的弧长为:12×2π×10=10π ∴围成的圆锥的底面圆的周长为10π设圆锥的底面圆的半径为r ,则2πr=10π解得r=515、55【解析】分析:∵∠ACB 与∠AOB 是AB 所对的圆周角和圆心角,∠ACB =35º,∴∠AOB=2∠ACB=70°.∵OA=OB ,∴∠OAB=∠OBA=18070255︒-︒=︒. 16、80y x= 【分析】根据速度=路程÷时间,即可得出y 与x 的函数关系式.【详解】解:∵速度=路程÷时间, ∴80y x= 故答案为:80y x =【点睛】本题考查了根据行程问题得到反比例函数关系式,熟练掌握常见问题的数量关系是解答本题的关键.17、4【分析】根据比例中项的定义,列出比例式即可求解.【详解】∵线段c 是a 、b 的比例中项,线段a =2cm ,b =8cm ,∴ac=cb,∴c2=ab=2×8=16,∴c1=4,c2=﹣4(舍去),∴线段c=4cm.故答案为:4【点睛】本题考查了比例中项的概念:当两个比例内项相同时,就叫比例中项.这里注意线段不能是负数.18、3【分析】如图,连接OD、OE、OF,由切线的性质和切线长定理可得OD⊥AB,OE⊥BC,OF⊥AC,AF=AD,BE=BD,接着证明四边形OECF为正方形,则CE=OE=CF=OF=1cm,所以BE=BD=2cm,由勾股定理可求AD的长.【详解】解:如图,连接OE,OF,OD,∵⊙O为△ABC内切圆,与三边分别相切于D、E、F,∴OD⊥AB,OE⊥BC,OF⊥AC,AF=AD,BE=BD,∴四边形OECF为矩形而OF=OE,∴四边形OECF为正方形,∴CE=OE=CF=OF=1cm,∴BE=BD=2cm,∵AC2+BC2=AB2,∴(AD+1)2+9=(AD+2)2,∴AD=3cm,故答案为:3【点睛】本题考查了三角形的内切圆与内心,切线的性质,切线长定理,勾股定理,正方形的判定和性质,熟悉切线长定理是本题的关键.三、解答题(共66分)19、(1)x 1=2+3,x 2=2﹣3;(2)x 1=45,x 2=1. 【分析】解一元二次方程常用的方法有因式分解法和公式法,方程2410x x -+=在整式范围内不能因式分解,所以选择公式法即可求解;而方程229(2)4(1)x x -=+移项后方程左边可以利用平方差公式进行因式分解,易求出此方程的解.【详解】解:(1)x 2﹣4x+4=3,(x ﹣2)2=3,x ﹣2=±3,所以x 1=2+3,x 2=2﹣3;(2)9(x ﹣2)2﹣4(x+1)2=0,[3(x ﹣2)+2(x+1)][3(x ﹣2)﹣2(x+1)]=0,3(x ﹣2)+2(x+1)=0或3(x ﹣2)﹣2(x+1)=0,所以x 1=45,x 2=1. 【点睛】本题考查的是一元二次方程的解法,根据方程的特点和每一种解法的要点,选择合适的方法进行求解是关键.20、(1)见解析;(2)①见解析,②1【分析】(1)连接OC ,由OA=OC 得∠OAC=∠OCA ,结合折叠的性质得∠OCA=∠FAC ,于是可判断OC ∥AF ,然后根据切线的性质得直线FC 与⊙O 相切;(2)①连接OD 、BD ,利用直角三角形斜边上的中线的性质可证得CB=OC=OD=BD ,再根据菱形的判定定理即可判定;②首先证明△OBC 是等边三角形,在Rt △OCE 中,根据222OC OE CE =+,构建方程即可解决问题;【详解】(1)如图,连接OC ,∵OA=OC ,∴∠OAC=∠OCA ,由翻折的性质,有∠OAC=∠FAC ,∠AEC=∠AFC=90°,∴∠FAC=∠OCA ,∴OC ∥AF ,∴∠OCG=∠AFC=90°,故FG 是⊙O 的切线;(2)①如图,连接OD 、BD ,∵CD 垂直于直径AB ,∴OC=OD ,BC=BD ,又∵B 为OG 的中点, ∴12CB OG =, ∴CB=OB ,又∵OB=OC ,∴CB=OC ,则有CB=OC=OD=BD ,故四边形OCBD 是菱形;②由①知,△OBC 是等边三角形,∵CD 垂直于直径AB ,∴30OCE ∠=, ∴12OE OC =, 设⊙O 的半径长为R ,在Rt △OCE 中,有222OC OE CE =+,即2221()(23)2R R =+,解之得:4R =,⊙O 的半径长为:1.【点睛】本题属于圆综合题,考查了切线的判定,等边三角形的判定和性质,直角三角形斜边上的中线的性质,勾股定理等知识,解题的关键是学会添加常用辅助线,学会利用方程的思想解决问题.21、(1)22y x=;(2)215x ≤≤. 【分析】(1)根据M 点的横坐标为1,求出k 的值,得到反比例函数的解析式;(2)求出x=2,x=5时y 的取值,再根据反比例函数的增减性求出y 的取值范围.【详解】(1)正比例函数12y x =的图象与反比例函数()20k y k x=≠的图象交于一点M ,且M 点的横坐标为1. 1,2212M M M x y x ∴===⨯=,122M M k x y ∴=⋅=⨯=,∴反比例函数的解析式为22y x =; (2)在反比例函数22y x =中,当22,1x y ==, 当225,5x y ==, 在反比例函数22y x=中,20k =>, ∴当0x >时,2y 随x 的增大而减小,∴当25x ≤≤时,反比例函数()20k y k x =≠的取值范围为215x ≤≤. 【点睛】此题考查了三个方面:(1)函数图象上点的坐标特征;(2)用待定系数法求函数解析式;(3)反比例函数的增减性.22、AC =【分析】根据相似三角形的判定定理可得△CAD ∽△CBA ,列出比例式即可求出AC.【详解】解:∵CD=4,BD=2,∴BC=CD +BD=6∵∠CAD=∠B,∠C=∠C∴△CAD ∽△CBA ∴AC DC BC AC=∴26424AC BC CD =•=⨯=解得:AC =或-即AC =【点睛】此题考查的是相似三角形的判定及性质,掌握有两组对应角相等的两个三角形相似和相似三角形的对应边成比例是解决此题的关键.23、(1)方程的解为x 1=c ,x 2=a c ,验证见解析;(2)x =a 与x =363a a --都为分式方程的解. 【分析】(1)根据材料即可判断方程的解,然后代入到方程的左右两边检验即可;(2)将方程左右两边同时减去3,变为题干中的形式,即可得出答案.【详解】(1)方程的解为x 1=c ,x 2=a c , 验证:当x =c 时,∵左边=c +a c ,右边=c +a c, ∴左边=右边,∴x =c 是x +a x=c +a c 的解, 同理可得:x =a c 是x +a x=c +a c 的解; (2)方程整理得:(x ﹣3)+33x -=(a ﹣3)+33a -, 解得:x ﹣3=a ﹣3或x ﹣3=33a -,即x =a 或x =363a a --, 经检验x =a 与x =363a a --都为分式方程的解. 【点睛】本题主要为材料理解题,理解材料中方程的根的由来是解题的关键.24、 (1)180y x =-+;(2) 每件商品的销售价应定为130元或150元;(3)售价定为140元/件时,每天最大利润1600W =元.【分析】(1)待定系数法求解可得;(2)根据“每件利润×销售量=总利润”列出一元二次方程,解之可得;(3)根据以上相等关系列出函数解析式,配方成顶点式,利用二次函数性质求解可得.【详解】(1)设y 与x 之间的函数关系式为()0y kx b k =+≠,由所给函数图象可知:1305015030k b k b +=⎧⎨+=⎩, 解得:1180k b =-⎧⎨=⎩. 故y 与x 的函数关系式为180y x =-+;(2)根据题意,得:()()1001801500x x --+=,整理,得:2280195000x x -+=,解得:130x =或150x =,答:每件商品的销售价应定为130元或150元;(3)∵180y x =-+,∴()()()100100180W x y x x =-=--+228018000x x =-+- 2(140)1600x =--+,∴当140x =时,1600W =最大,∴售价定为140元/件时,每天最大利润1600W =元.【点睛】本题主要考查二次函数的应用,解题的关键是掌握待定系数法求函数解析式,理解题意确定相等关系,并据此列出函数解析式.25、(1)y=﹣x 2﹣2x+1;(2)点P (﹣2,1)在这个二次函数的图象上,【分析】(1)根据给定点的坐标,利用待定系数法求出二次函数解析式即可;(2)代入x=-2求出y 值,将其与1比较后即可得出结论.【详解】(1)设二次函数的解析式为y=ax 2+bx+1;∵二次函数的图象经过点(﹣1,0),(2,﹣5),则有:933428a b a b -=-⎧⎨+=-⎩ 解得;12a b =-⎧⎨=-⎩∴y=﹣x 2﹣2x+1.(2)把x=-2代入函数得y=﹣(﹣2)2﹣2×(﹣2)+1=﹣4+4+1=1,∴点P (﹣2,1)在这个二次函数的图象上,【点睛】考查待定系数法求二次函数解析式,二次函数图象上点的坐标特征,掌握待定系数法求二次函数解析式是解题的关键.26、(1)y=1440x﹣800;每辆次小车的停车费最少不低于3元;(2)y=﹣120x2+2040x﹣800;(3)每辆次小车的停车费应定为8元,此时的日净收入为7840元.【分析】(1)根据题意和公式:日净收入=每天共收取的停车费﹣每天的固定支出,即可求出y与x的关系式,然后根据日净收入不低于2512元,列出不等式,即可求出x的最小整数值;(2)根据题意和公式:日净收入=每天共收取的停车费﹣每天的固定支出,即可求出y与x的关系式;(3)根据x的取值范围,分类讨论:当x≤5时,根据一次函数的增减性,即可求出此时y的最大值;当x>5时,将二次函数一般式化为顶点式,即可求出此时y的最大值,从而得出结论.【详解】解:(1)由题意得:y=1440x﹣800∵1440x﹣800≥2512,∴x≥2.3∵x取整数,∴x最小取3,即每辆次小车的停车费最少不低于3元.答:每辆小车的停车费最少不低于3元;(2)由题意得:y=[1440﹣120(x﹣5)]x﹣800即y=﹣120x2+2040x﹣800(3)当x≤5时,∵1440>0,∴y随x的增大而增大∴当x=5时,最大日净收入y=1440×5﹣800=6400(元)当x>5时,y=﹣120x2+2040x﹣800=﹣120(x2﹣17x)﹣800=﹣120(x﹣172)2+7870∴当x=172时,y有最大值.但x只能取整数,∴x取8或1.显然,x取8时,小车停放辆次较多,此时最大日净收入为y=﹣120×14+7870=7840(元)∵7840元>6400元∴每辆次小车的停车费应定为8元,此时的日净收入为7840元.答:每辆次小车的停车费应定为8元,此时的日净收入为7840元.【点睛】此题考查的是一次函数和二次函数的综合应用,掌握实际问题中的等量关系、一次函数的增减性和利用二次函数求最值是解决此题的关键.。
人教版九年级数学上册期末综合复习测试题(含答案)
人教版九年级数学上册期末综合复习测试题(含答案)时间:100分钟 总分:120分一、 选择题(每题3分,共24分)1.已知关于x 的方程()222310---=m m x x +是一元二次方程,则m 的值为( ) A .2m =B .4m =C .2m =±D .2m =-2.如图,将AOB ∆绕点O 按逆时针方向旋转40°后得到A OB ''△,若15AOB ∠=︒,则AOB '∠的度数是 ( )A .25°B .30°C .35°D .40°3.顶点(2,1),且开口方向、形状与函数22y x =的图像相同的抛物线是 ( ) A .221y x =+ B .22(2)1y x =-+ C .22(2)1y x =++D .22(2)1y x =+-4.把方程2630x x +-=化成2)x m n (的形式,则m n += ( ) A .15-B .9C .15D .65.如图,ABC ∆内接于O ,直径8cm AD =,=60B ∠︒,则AC 的长度为 ( )A .5cmB .42C .43D .6cm6.在一个不透明的口袋中有红色、黄色和绿色球共60个,它们除颜色外,其余完全相同.在不倒出球的情况下,要估计袋中各种颜色球的个数.同学们通过大量的摸球试验后,发现摸到红球、黄球和绿球的频率分别稳定在20%,40%和40%.由此,推测口袋中黄色球的个数有( ) A .15个B .20个C .21个D .24个7.在同一坐标系中,一次函数y ax k =+与二次函数2y kx a =+的图象可能是 ( )A .B .C .D .8.二次函数2y ax bx c =++的图像如图所示,对称轴是直线1x =.下列结论:①0abc >;②30a c +>;③a c b +<-;④520a b c -+<.其中结论正确的个数为 ( )A .1个B .2个C .3个D .4个二、填空题(每题3分,共24分)9.若n 是方程2210x x --=的一个根,则代数式232n n -+-的值是________. 10.如图,AB 是半圆的直径,C 、D 是半圆上的两点,且20BAC =︒∠,点D 是AC 的中点,则BAD ∠=______.11.点()()1122,,,A x y B x y 在二次函数232y x x =-++的图像上,若122x x <<-,则1y 与2y 的大小关系是1y _______________2y .(用“>”、“<”、“=”填空)12.已知关于x 的一元二次方程2()0(,,a x h k a h k -+=都是常数,且0)a ≠的解为1213x x =-=,,则方程2(1)0(,,a x h k a h k --+=都是常数,且0)a ≠的解为___________.13.如图,正方形ABCD 的边长为3,点E 为AB 的中点,以E 为圆心,3为半径作圆,分别交AD 、BC 于M 、N 两点,与DC 切于P 点.则图中阴影部分的面积是______.14.如图,正方形OABC 的顶点B 在抛物线2y x 的第一象限的图象上,若点B 的纵坐标是横坐标的2倍,则对角线AC 的长为_________.15.如图,抛物线2y ax c =+与直线y mx n =+交于()1,A p -,()3,B q 两点,则不等式2ax mx c n ++<的解集是__________.16.如图,以(0,3)G 为圆心,半径为6的圆与x 轴交于A ,B 两点,与y 轴交于C ,D 两点,点E 为⊙G 上一动点,CF AE ⊥于F ,点E 在G 的运动过程中,线段FG 的长度的最小值为______.三、解答题(每题8分,共72分) 17.解方程: (1)(2)(3)12x x --= (2)23410x x -+=18.已知关于x 的一元二次方程24250x x m --+=有两个实数根. (1)求m 的取值范围;(2)若该方程的两个根都是符号相同的整数,直接写出它的根.19.已知二次函数图像与x 轴两个交点之间的距离是4个单位,且顶点M 为()14-,,求二次函数的解析式.20.如图,抛物线2(0)y ax bx c a =++≠与直线1y x =+相交于(-10)A ,,(4)B m ,两点,且抛物线经过点(50)C ,(1)求抛物线的解析式;(2)点P 是抛物线上的一个动点(不与点A .点B 重合),过点P 作直线PD ⊥x 轴于点D ,交直线AB 于点E.当PE =2ED 时,求P 点坐标;(3)点P 是直线上方的抛物线上的一个动点,求ABP ∆的面积最大时的P 点坐标.21.一个不透明的口袋中有四个完全相同的小球.把它们分别标记为1,2,3,4.(1)随机摸取一个小球的标号是偶数,该事件的概率为______;(2)小雨和小佳玩摸球游戏,两人各摸一个球,谁摸到的数字大谁获胜.小雨先从口袋中摸出一个小球,不放回,小佳再从口袋中摸出一个小球.用画树状图(或列表)的方法,分别求出小雨和小佳获胜的概率.22.如图,已知女排球场的长度OD 为20米,位于球场中线处的球网AB 的高度2.24米,一队员站在点O 处发球,排球从点O 的正上方2米的C 点向正前方飞去,排球的飞行路线是抛物线的一部分,当排球运行至离点O 的水平距离OE 为6米时,到达最高点G ,以O 为原点建立如图所示的平面直角坐标系.(1)写出C 点坐标___________;B 点坐标___________.(2)若排球运行的最大高度为3米,求排球飞行的高度p (单位:米)与水平距离x (单位:米)之间的函数关系式(不要求写自变量x 的取值范围);(3)在(2)的条件下,这次所发的球能够过网吗?如果能够过网,是否会出界?请说明理由.23.如图,在Rt ABC △中,90ACB ∠=︒,延长CA 到点D ,以AD 为直径作O ,交BA 的延长线于点E ,延长BC 到点F ,使BF EF =.(1)求证:EF 是O 的切线.(2)若9OC =,4AC =,8AE =,则BC =______,BE =______.24.如图,已知等边ABC ,直线AM BC ⊥,点M 为垂足,点D 是直线AM 上的一个动点,线段CD 绕点D 顺时针方向旋转60°得线段DE ,联结BE 、CE .(1)如图1,当点D 在线段AM 上时,说明BE AB ⊥的理由;(2)如图2,当点D 在线段MA 的延长线上时,设直线BE 与直线AM 交于点F ,求BFM ∠的度数;(3)定义:有一个内角是36︒的等腰三角形称作黄金三角形,联结DB ,当DBE 是黄金三角形吋,直接写出BEC ∠为______度.25.抛物线2y ax 2x c =++与x 轴交于(1,0)A -、B 两点.与y 轴交于点(0,3)C 、点(,3)D m 在抛物线上.(1)求抛物线的解析式.(2)如图1,连接BC 、BD ,点P 在对称轴左侧的抛物线上,若PBC DBC ∠=∠,求点P 的坐标.(3)如图2,过点A 的直线∥m BC ,点Q 是直线BC 上方抛物线上一动点,过点Q 作QE m ⊥,垂足为点E ,连接BE ,CE ,CQ ,QB .当四边形BECQ 的面积最大时,求点Q 的坐标及四边形BDCQ 面积的最大值。
初三数学期末考试练习试题及答案
初三数学期末考试练习试题及答案初三数学期末考试练习试题及答案初三数学期末考试练习试题一、选择题(每题3分、共30分)1.四会市现在总人口43万多,数据43万用科学记数法表示为( )A.43×104B.4.3×105C.4.3×106D.0.43×1062.下列四个多边形:①等边三角形;②正方形;③正五边形;④正六边形、其中,既是轴对称图形又是中心对称图形的是( )A.①②B.②③C.②④D.①④3.如图,在菱形ABCD中,AB=5,∠BCD=120°,则对角线AC 等于( )A.20B.15C.10D.54.如图是一个用相同的小立方体搭成的几何体的三视图,则组成这个几何体的小立方体的个数是( )A.2B.3C.4D.55.在平面中,下列命题为真命题的是( )A.四边相等的四边形是正方形B.对角线相等的四边形是菱形C.四个角相等的四边形是矩形D.对角线互相垂直的四边形是平行四边形6.若关于x的方程x2﹣4x+m=0没有实数根,则实数m的取值范围是( )A.m<﹣4b.m>﹣4C.m<4d.m>47.用配方法解一元二次方程x2+4x﹣5=0,此方程可变形为( )A.(x+2)2=9B.(x﹣2)2=9C.(x+2)2=1D.(x﹣2)2=18.货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x千米/小时,依题意列方程正确的是( )A.B.C.D.9.在同一平面直角坐标系中,一次函数y=ax+b和二次函数y=ax2+bx的图象可能为( )A.B.C.D.10.如图,抛物线y=x2与直线y=x交于A点,沿直线y=x平移抛物线,使得平移后的抛物线顶点恰好为A点,则平移后抛物线的解析式是( )A.y=(x+1)2﹣1B.y=(x+1)2+1C.y=(x﹣1)2+1D.y=(x﹣1)2﹣1二、填空题(每题3分、共30分)11.若在实数范围内有意义,则x的取值范围是 .12.已知一次函数y=kx+3的图象经过第一、二、四象限,则k的取值范围是 .13.分解因式:3ax2﹣3ay2= .14.在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .15.设x1、x2是方程3x2﹣x﹣1=0的两个实数根,则3x12﹣2x1﹣x2的值等于 .16.某商品原价289元,经过两次连续降价后售价为256元,设平均每次降价的百分率为x,则由题意所列方程 .17.若|a﹣3|+(a﹣b)2=0,则ab的倒数是 .18.如图,在?ABCD中,AE⊥BC于E,AE=EB=EC=a,且a是一元二次方程x2+2x﹣3=0的根,则?ABCD的周长是 .19.如图,A(4,0),B(3,3),以AO,AB为边作平行四边形OABC,则经过C点的反比例函数的解析式为 .三、解答题(共60分)20.(﹣1)0+()﹣2﹣.21.先化简,再求值:,其中.22.解不等式组:,并把解集在数轴上表示出来.23.某校初三(1)班的同学踊跃为“雅安芦山地震”捐款,根据捐款情况(捐款数为正数)制作以下统计图表,但生活委员不小心把墨水滴在统计表上,部分数据看不清楚.捐款人数0~20元21~40元41~60元61~80元681元以上4(1)全班有多少人捐款?(2)如果捐款0~20元的人数在扇形统计图中所占的圆心角为72°,那么捐款21~40元的有多少人?24.四张扑克牌的点数分别是2,3,4,8,将它们洗匀后背面朝上放在桌上.(1)从中随机抽取一张牌,求这张牌的点数偶数的概率;(2)从中随机抽取一张牌,接着再抽取一张,求这两张牌的点数都是偶数的概率.25.如图.直线y=ax+b与双曲线相交于两点A(1,2),B(m,﹣4).(1)求直线与双曲线的解析式;(2)求不等式ax+b>的解集(直接写出答案)26.(10分)(2013南通)某公司营销A、B两种产品,根据市场调研,发现如下信息:信息1:销售A种产品所获利润y(万元)与销售产品x(吨)之间存在二次函数关系y=ax2+bx.在x=1时,y=1.4;当x=3时,y=3.6.信息2:销售B种产品所获利润y(万元)与销售产品x(吨)之间存在正比例函数关系y=0.3x.根据以上信息,解答下列问题;(1)求二次函数解析式;(2)该公司准备购进A、B两种产品共10吨,请设计一个营销方案,使销售A、B两种产品获得的利润之和最大,最大利润是多少?27.(12分)(2008包头)阅读并解答:①方程x2﹣2x+1=0的根是x1=x2=1,则有x1+x2=2,x1x2=1.②方程2x2﹣x﹣2=0的根是x1=,x2=,则有x1+x2=,x1x2=﹣1.③方程3x2+4x﹣7=0的根是x1=﹣,x2=1,则有x1+x2=﹣,x1x2=﹣.(1)根据以上①②③请你猜想:如果关于x的一元二次方程ax2+bx+c=0(a≠0)有两个实数根为x1,x2,那么x1,x2与系数a、b、c有什么关系?请写出你的猜想并证明你的猜想;(2)利用你的猜想结论,解决下面的问题:已知关于x的方程x2+(2k+1)x+k2﹣2=0有实数根x1,x2,且x12+x22=11,求k的值.参考答案与试题解析一、选择题(每题3分、共30分)1.四会市现在总人口43万多,数据43万用科学记数法表示为( )A.43×104B.4.3×105C.4.3×106D.0.43×106考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于43万有6位,所以可以确定n=6﹣1=5.解答:解:43万=430000=4.3×105.故选B.点评:此题考查科学记数法表示较大的数的方法,准确确定a与n 值是关键.2.下列四个多边形:①等边三角形;②正方形;③正五边形;④正六边形、其中,既是轴对称图形又是中心对称图形的是( )A.①②B.②③C.②④D.①④考点:中心对称图形;轴对称图形.分析:根据正多边形的性质和轴对称与中心对称的性质解答.解答:解:由正多边形的对称性知,偶数边的正多边形既是轴对称图形,又是中心对称图形;奇数边的正多边形只是轴对称图形,不是中心对称图形.故选C.点评:此题考查正多边形对称性.关键要记住偶数边的正多边形既是轴对称图形,又是中心对称图形,奇数边的正多边形只是轴对称图形.3.如图,在菱形ABCD中,AB=5,∠BCD=120°,则对角线AC 等于( )A.20B.15C.10D.5考点:菱形的性质;等边三角形的判定与性质.分析:根据菱形的性质及已知可得△ABC为等边三角形,从而得到AC=AB.解答:解:∵AB=BC,∠B+∠BCD=180°,∠BCD=120°∴∠B=60°∴△ABC为等边三角形∴AC=AB=5故选D.点评:本题考查了菱形的性质和等边三角形的判定.4.如图是一个用相同的小立方体搭成的几何体的三视图,则组成这个几何体的小立方体的个数是( )A.2B.3C.4D.5考点:由三视图判断几何体.分析:根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,再结合题意和三视图的特点找出每行和每列的小正方体的个数再相加即可.解答:解:由俯视图易得最底层有3个立方体,第二层有1个立方体,那么搭成这个几何体所用的小立方体个数是4.故选C.点评:本题意在考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.5.在平面中,下列命题为真命题的是( )A.四边相等的四边形是正方形B.对角线相等的四边形是菱形C.四个角相等的四边形是矩形D.对角线互相垂直的四边形是平行四边形考点:正方形的判定;平行四边形的判定;菱形的判定;矩形的判定;命题与定理.分析:分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案,不是真命题的可以举出反例.解答:解:A、四边相等的四边形不一定是正方形,例如菱形,故此选项错误;B、对角线相等的四边形不是菱形,例如矩形,等腰梯形,故此选项错误;C、四个角相等的四边形是矩形,故此选项正确;D、对角线互相垂直的四边形不一定是平行四边形,如右图所示,故此选项错误.故选:C.点评:此题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.6.若关于x的方程x2﹣4x+m=0没有实数根,则实数m的取值范围是( )A.m<﹣4b.m>﹣4C.m<4d.m>4考点:根的判别式.专题:计算题.分析:由方程没有实数根,得到根的判别式的值小于0,列出关于m的不等式,求出不等式的解集即可得到m的范围.解答:解:∵△=(﹣4)2﹣4m=16﹣4m<0,∴m>4.故选D点评:此题考查了根的判别式,熟练掌握根的判别式的意义是解本题的关键.7.用配方法解一元二次方程x2+4x﹣5=0,此方程可变形为( )A.(x+2)2=9B.(x﹣2)2=9C.(x+2)2=1D.(x﹣2)2=1考点:解一元二次方程-配方法.分析:移项后配方,再根据完全平方公式求出即可.解答:解:x2+4x﹣5=0,x2+4x=5,x2+4x+22=5+22,(x+2)2=9,故选:A.点评:本题考查了解一元二次方程的应用,关键是能正确配方.8.货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x千米/小时,依题意列方程正确的是( )A.B.C.D.考点:由实际问题抽象出分式方程.分析:题中等量关系:货车行驶25千米与小车行驶35千米所用时间相同,列出关系式.解答:解:根据题意,得.故选:C.点评:理解题意是解答应用题的关键,找出题中的等量关系,列出关系式.9.在同一平面直角坐标系中,一次函数y=ax+b和二次函数y=ax2+bx的图象可能为( )A.B.C.D.考点:二次函数的图象;一次函数的图象.专题:数形结合.分析:根据二次函数的性质首先排除B选项,再根据a、b的值的正负,结合二次函数和一次函数的性质逐个检验即可得出答案.解答:解:根据题意可知二次函数y=ax2+bx的图象经过原点O(0,0),故B选项错误;当a<0时,二次函数y=ax2+bx的图象开口向下,一次函数y=ax+b的斜率a为负值,故D选项错误;当a<0、b>0时,二次函数y=ax2+bx的对称轴x=﹣>0,一次函数y=ax+b与y轴的交点(0,b)应该在y轴正半轴,故C选项错误;当a>0、b<0时,二次函数y=ax2+bx的对称轴x=﹣>0,一次函数y=ax+b与y轴的交点(0,b)应该在y轴负半轴,故A选项正确.故选A.点评:本题主要考查了二次函数的性质和一次函数的性质,做题时要注意数形结合思想的运用,同学们加强训练即可掌握,属于基础题.10.如图,抛物线y=x2与直线y=x交于A点,沿直线y=x平移抛物线,使得平移后的抛物线顶点恰好为A点,则平移后抛物线的解析式是( )A.y=(x+1)2﹣1B.y=(x+1)2+1C.y=(x﹣1)2+1D.y=(x﹣1)2﹣1考点:二次函数图象与几何变换.分析:首先根据抛物线y=x2与直线y=x交于A点,即可得出A 点坐标,然后根据抛物线平移的性质:左加右减,上加下减可得解析式.解答:解:∵抛物线y=x2与直线y=x交于A点,∴x2=x,解得:x1=1,x2=0(舍去),∴A(1,1),∴抛物线解析式为:y=(x﹣1)2+1,故选:C.点评:此题主要考查了二次函数图象的几何变换,关键是求出A 点坐标,掌握抛物线平移的性质:左加右减,上加下减.二、填空题(每题3分、共30分)11.若在实数范围内有意义,则x的取值范围是x≥2 .考点:二次根式有意义的条件.专题:计算题.分析:让二次根式的被开方数为非负数列式求解即可.解答:解:由题意得:3x﹣6≥0,解得x≥2,故答案为:x≥2.点评:考查二次根式有意义的条件;用到的知识点为:二次根式有意义,被开方数为非负数.12.已知一次函数y=kx+3的图象经过第一、二、四象限,则k的取值范围是 k<0 .考点:一次函数图象与系数的关系.分析:根据一次函数经过的象限确定其图象的增减性,然后确定k 的取值范围即可.解答:解:∵一次函数y=kx+3的图象经过第一、二、四象限,∴k<0;故答案为:k<0.点评:本题考查了一次函数的图象与系数的关系,解题的关键是根据图象的位置确定其增减性.13.分解因式:3ax2﹣3ay2= 3a(x+y)(x﹣y) .考点:提公因式法与公式法的综合运用.分析:当一个多项式有公因式,将其分解因式时应先提取公因式,再对余下的多项式继续分解.解答:解:3ax2﹣3ay2=3a(x2﹣y2)=3a(x+y)(x﹣y).故答案为:3a(x+y)(x﹣y)点评:本题考查了提公因式法,公式法分解因式,关键在于提取公因式后再利用平方差公式继续进行二次因式分解,分解因式一定要彻底.14.在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .考点:概率公式.分析:由在10个外观相同的产品中,有2个不合格产品,直接利用概率公式求解即可求得答案.解答:解:∵在10个外观相同的产品中,有2个不合格产品,∴现从中任意抽取1个进行检测,抽到合格产品的概率是:=.故答案为:.点评:此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.15.设x1、x2是方程3x2﹣x﹣1=0的两个实数根,则3x12﹣2x1﹣x2的值等于 .考点:根与系数的关系;一元二次方程的解.分析:根据题意可知,x1+x2=,然后根据方程解的定义得到3x12=x1+1,然后整体代入3x12﹣2x1﹣x2计算即可.解答:解:∵x1,x2是方程3x2﹣x﹣1=0的两个实数根,∴x1+x2=,∵x1是方程x2﹣5x﹣1=0的实数根,∴3x12﹣x1﹣1=0,∴x12=x1+1,∴3x12﹣2x1+x2=x1+1﹣2x1﹣x2=1﹣(x1+x2)=1﹣=.故答案为:.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系x1+x2=﹣,x1x2=,以及一元二次方程的解.16.某商品原价289元,经过两次连续降价后售价为256元,设平均每次降价的百分率为x,则由题意所列方程289×(1﹣x)2=256 .考点:由实际问题抽象出一元二次方程.专题:增长率问题.分析:可先表示出第一次降价后的价格,那么第一次降价后的价格×(1﹣降低的百分率)=256,把相应数值代入即可求解.解答:解:第一次降价后的价格为289×(1﹣x),两次连续降价后售价在第一次降价后的价格的基础上降低x,为289×(1﹣x)×(1﹣x),则列出的方程是289×(1﹣x)2=256.点评:考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.17.若|a﹣3|+(a﹣b)2=0,则ab的倒数是 .考点:非负数的性质:偶次方;非负数的性质:绝对值.分析:根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.解答:解:根据题意得,a﹣3=0,a﹣b=0,解得a=b=3,所以,ab=33=27,所以,ab的倒数是.故答案为:.点评:本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.18.如图,在?ABCD中,AE⊥BC于E,AE=EB=EC=a,且a是一元二次方程x2+2x﹣3=0的根,则?ABCD的周长是 4+2 .考点:解一元二次方程-因式分解法;平行四边形的性质.专题:计算题.分析:先解方程求得a,再根据勾股定理求得AB,从而计算出?ABCD的周长即可.解答:解:∵a是一元二次方程x2+2x﹣3=0的根,∴(x﹣1)(x+3)=0,即x=1或﹣3,∵AE=EB=EC=a,∴a=1,在Rt△ABE中,AB==a=,∴?ABCD的周长=4a+2a=4+2.故答案为:4+2.点评:本题考查了用因式分解法解一元二次方程,以及平行四边形的性质,是基础知识要熟练掌握.19.如图,A(4,0),B(3,3),以AO,AB为边作平行四边形OABC,则经过C点的反比例函数的解析式为 y=﹣ .考点:待定系数法求反比例函数解析式;平行四边形的性质.专题:待定系数法.分析:设经过C点的反比例函数的解析式是y=(k≠0),设C(x,y).根据平行四边形的性质求出点C的坐标(﹣1,3).然后利用待定系数法求反比例函数的解析式.解答:解:设经过C点的反比例函数的解析式是y=(k≠0),设C(x,y).∵四边形OABC是平行四边形,∴BC∥OA,BC=OA;∵A(4,0),B(3,3),∴点C的纵坐标是y=3,|3﹣x|=4(x<0),∴x=﹣1,∴C(﹣1,3).∵点C在反比例函数y=(k≠0)的图象上,∴3=,解得,k=﹣3,∴经过C点的反比例函数的解析式是y=﹣.故答案为:y=﹣.点评:本题主要考查了平行四边形的性质(对边平行且相等)、利用待定系数法求反比例函数的解析式.解答反比例函数的解析式时,还借用了反比例函数图象上点的坐标特征,经过函数的某点一定在函数的图象上.三、解答题(共60分)20.(﹣1)0+()﹣2﹣.考点:实数的运算;零指数幂;负整数指数幂.专题:计算题.分析:原式第一项利用零指数幂法则计算,第二项利用负整数指数幂法则计算,即可得到结果.解答:解:原式=1+4﹣=4.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.21.先化简,再求值:,其中.考点:分式的化简求值;约分;分式的乘除法;分式的加减法.专题:计算题.分析:先算括号里面的减法,再把除法变成乘法,进行约分即可.解答:解:原式=&pide;()=×=,当x=﹣3时,原式==.点评:本题主要考查对分式的加减、乘除,约分等知识点的理解和掌握,能熟练地运用法则进行化简是解此题的关键.22.解不等式组:,并把解集在数轴上表示出来.考点:解一元一次不等式组;在数轴上表示不等式的解集.专题:计算题.分析:分别解两个不等式得到x≥﹣2和x<1,再根据大于小的小于大的取中间确定不等式组的解集,然后用数轴表示解集.解答:解:,由①得:x≥﹣2,由②得:x<1,∴不等式组的解集为:﹣2≤x<1,如图,在数轴上表示为:.点评:本题考查了解一元一次不等式组:分别求出不等式组各不等式的解集,然后根据“同大取大,同小取小,大于小的小于大的取中间,大于大的小于小的无解”确定不等式组的解集.也考查了在数轴上表示不等式的解集.23.某校初三(1)班的同学踊跃为“雅安芦山地震”捐款,根据捐款情况(捐款数为正数)制作以下统计图表,但生活委员不小心把墨水滴在统计表上,部分数据看不清楚.捐款人数0~20元21~40元41~60元61~80元681元以上4(1)全班有多少人捐款?(2)如果捐款0~20元的人数在扇形统计图中所占的圆心角为72°,那么捐款21~40元的有多少人?考点:扇形统计图;统计表.分析:(1)根据扇形统计图中的捐款81元以上的认识和其所占的百分比确定全班人数即可;(2)分别确定每个小组的人数,最后确定捐款数在21﹣40元的人数即可.解答:解:(1)4&pide;8%=50答:全班有50人捐款.(2)∵捐款0~20元的人数在扇形统计图中所占的圆心角为72°∴捐款0~20元的人数为50×=10∴50﹣10﹣50×32%﹣6﹣4=14答:捐款21~40元的有14人.点评:本题考查了扇形统计图及统计表的知识,解题的关键是确定总人数.24.四张扑克牌的'点数分别是2,3,4,8,将它们洗匀后背面朝上放在桌上.(1)从中随机抽取一张牌,求这张牌的点数偶数的概率;(2)从中随机抽取一张牌,接着再抽取一张,求这两张牌的点数都是偶数的概率.考点:列表法与树状图法;概率公式.分析:(1)利用数字2,3,4,8中一共有3个偶数,总数为4,即可得出点数偶数的概率;(2)利用树状图列举出所有情况,让点数都是偶数的情况数除以总情况数即为所求的概率.解答:解:(1)根据数字2,3,4,8中一共有3个偶数,故从中随机抽取一张牌,这张牌的点数偶数的概率为:;(2)根据从中随机抽取一张牌,接着再抽取一张,列树状图如下:根据树状图可知,一共有12种情况,两张牌的点数都是偶数的有6种,故连续抽取两张牌的点数都是偶数的概率是:=.点评:此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.25.如图.直线y=ax+b与双曲线相交于两点A(1,2),B(m,﹣4).(1)求直线与双曲线的解析式;(2)求不等式ax+b>的解集(直接写出答案)考点:反比例函数与一次函数的交点问题.分析:(1)先把先把(1,2)代入双曲线中,可求k,从而可得双曲线的解析式,再把y=﹣4代入双曲线的解析式中,可求m,最后把(1,2)、(﹣,﹣4)代入一次函数,可得关于a、b的二元一次方程组,解可求a、b的值,进而可求出一次函数解析式;(2)根据图象观察可得x>1或﹣<x<0.主要是观察交点的左右即可.<>解答:解:(1)先把(1,2)代入双曲线中,得k=2,∴双曲线的解析式是y=,当y=﹣4时,m=﹣,把(1,2)、(﹣,﹣4)代入一次函数,可得,解得,∴一次函数的解析式是y=4x﹣2;(2)根据图象可知,若ax+b>,那么x>1或﹣<x<0.<>点评:本题考查了一次函数与反比例函数交点问题,解题的关键是掌握待定系数法求函数解析式,并会根据图象求出不等式的解集.26.(10分)(2013南通)某公司营销A、B两种产品,根据市场调研,发现如下信息:信息1:销售A种产品所获利润y(万元)与销售产品x(吨)之间存在二次函数关系y=ax2+bx.在x=1时,y=1.4;当x=3时,y=3.6.信息2:销售B种产品所获利润y(万元)与销售产品x(吨)之间存在正比例函数关系y=0.3x.根据以上信息,解答下列问题;(1)求二次函数解析式;(2)该公司准备购进A、B两种产品共10吨,请设计一个营销方案,使销售A、B两种产品获得的利润之和最大,最大利润是多少?考点:二次函数的应用.分析:(1)把两组数据代入二次函数解析式,然后利用待定系数法求解即可;(2)设购进A产品m吨,购进B产品(10﹣m)吨,销售A、B两种产品获得的利润之和为W元,根据总利润等于两种产品的利润的和列式整理得到W与m的函数关系式,再根据二次函数的最值问题解答.解答:解:(1)∵当x=1时,y=1.4;当x=3时,y=3.6,∴,解得,所以,二次函数解析式为y=﹣0.1x2+1.5x;(2)设购进A产品m吨,购进B产品(10﹣m)吨,销售A、B两种产品获得的利润之和为W元,则W=﹣0.1m2+1.5m+0.3(10﹣m)=﹣0.1m2+1.2m+3=﹣0.1(m﹣6)2+6.6,∵﹣0.1<0,∴当m=6时,W有最大值6.6,∴购进A产品6吨,购进B产品4吨,销售A、B两种产品获得的利润之和最大,最大利润是6.6万元.点评:本题考查了二次函数的应用,主要利用了待定系数法求二次函数解析式,二次函数的最值问题,比较简单,(2)整理得到所获利润与购进A产品的吨数的关系式是解题的关键.27.(12分)(2008包头)阅读并解答:①方程x2﹣2x+1=0的根是x1=x2=1,则有x1+x2=2,x1x2=1.②方程2x2﹣x﹣2=0的根是x1=,x2=,则有x1+x2=,x1x2=﹣1.③方程3x2+4x﹣7=0的根是x1=﹣,x2=1,则有x1+x2=﹣,x1x2=﹣.(1)根据以上①②③请你猜想:如果关于x的一元二次方程ax2+bx+c=0(a≠0)有两个实数根为x1,x2,那么x1,x2与系数a、b、c有什么关系?请写出你的猜想并证明你的猜想;(2)利用你的猜想结论,解决下面的问题:已知关于x的方程x2+(2k+1)x+k2﹣2=0有实数根x1,x2,且x12+x22=11,求k的值.考点:根与系数的关系;解一元二次方程-公式法;解一元二次方程-因式分解法;根的判别式.专题:压轴题;阅读型.分析:(1)由①②③中两根之和与两根之积的结果可以看出,两根之和正好等于一次项系数与二次项系数之比的相反数,两根之积正好等于常数项与二次项系数之比.(2)欲求k的值,先把代数式x12+x22变形为两根之积或两根之和的形式,然后与两根之和公式、两根之积公式联立组成方程组,解方程组即可求k值.解答:解:(1)猜想为:设ax2+bx+c=0(a≠0)的两根为x1、x2,则有,.理由:设x1、x2是一元二次方程ax2+bx+c=0(a≠0)的两根,那么由求根公式可知,,.于是有,,综上得,设ax2+bx+c=0(a≠0)的两根为x1、x2,则有,.(2)x1、x2是方程x2+(2k+1)x+k2﹣2=0的两个实数根∴x1+x2=﹣(2k+1),x1x2=k2﹣2,又∵x12+x22=x12+x22+2x1x2﹣2x1x2=(x1+x2)2﹣2x1x2∴[﹣(2k+1)]2﹣2×(k2﹣2)=11整理得k2+2k﹣3=0,解得k=1或﹣3,又∵△=[﹣(2k+1)]2﹣4(k2﹣2)≥0,解得k≥﹣,∴k=1.点评:本题考查了学生的总结和分析能力,善于总结,善于发现,学会分析是学好数学必备的能力.将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.。
2021-2022学年沪科版九年级数学第一学期期末复习综合练习题1(附答案)
2021-2022学年沪科版九年级数学第一学期期末复习综合练习题1(附答案)1.下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.下列函数中,y随x的增大而减小的是()A.B.C.D.3.下列命题①垂直于弦的直径平分弦,并且平分弦所对的两条弧;②在同圆或等圆中相等的圆心角所对的弧相等;③在同圆或等圆中如果两条弦相等,那么它们所对的圆心角相等;④圆内接四边形的对角互补.其中正确的命题共有()A.4个B.3个C.2个D.1个4.已知在Rt△ABC中,∠C=90°,AB=3,BC=2,那么tan B的值等于()A.B.C.D.5.在同一平面直角坐标系中,函数y=kx+1(k≠0)和y=(k≠0)的图象大致是()A.B.C.D.6.如图,已知∠1=∠2,添加下列条件后,仍无法判定△ABC∽△ADE的是()A.=B.∠B=∠D C.∠C=∠AED D.=7.用min{a,b}表示a,b两数中的最小数,若函数y=min{x2+1,1﹣x2},则y的图象为()A.B.C.D.8.如图,矩形ABCD的顶点A,B在x轴的正半轴上,反比例函数y=在第一象限内的图象经过点D,交BC于点E.若AB=4,CE=2BE,tan∠AOD=,则k的值为()A.3B.2C.6D.129.如图,二次函数y=ax2+bx+c的图象经过点A(﹣3,0),其对称轴为直线x=﹣1,有下列结论:①abc<0;②a+b+c<0;③2a﹣b=0;④4ac﹣b2>0;⑤若P(﹣5,y1),Q(m,y2)是抛物线上两点,且y1>y2,则实数m的取值范围是﹣5<m<3.其中正确结论的个数是()A.1B.2C.3D.410.如图,Rt△ABC中,AB=BC,点D是AB的中点,连接CD,过点B作BG⊥CD,分别交CD,CA于点E,F,与过点A且垂直于AB的直线相交于点G,下列结论正确的是()A.EF=GF B.∠ADF=∠CDB C.AF=AB D.S△ABC=5S△BDF11.若关于x的一元二次方程x2+mx+2n=0有一个根是2,则m+n=.12.如图,圆锥的表面展开图由一扇形和一个圆组成,已知圆的面积为100π,扇形的圆心角为120°,这个扇形的面积为.13.点A,B,C,D都在⊙O上,,D为⊙O上的一点,∠ABC=∠ODC=67.5°,CO的延长线交AB于点P,若CD=2,则BP=.14.已知抛物线y=ax2﹣x+1(a≠0)与线段AB有两个不同的交点,已知A(﹣1,0),B (1,1),则a的取值范围是.15.计算:|﹣|+﹣(﹣2)﹣2﹣(3.14﹣π)0﹣4cos30°+|2﹣|.16.先化简,后求值:,其中17.如图,在边长为1的正方形网格中,△ABC的顶点均在格点上,把△ABC绕点C逆时针旋转90°后得到△A1B1C.(1)画出△A1B1C;(2)求在旋转过程中,CA所扫过的面积.18.如图,一次函数y=x+1与反比例函数y=的图象相交于点A(2,3)和点B.(1)求反比例函数的解析式;(2)过点B作BC⊥x轴于C,求S△ABC;(3)是否在y轴上存在一点D,使得BD+CD的值最小,并求出D坐标.19.中国“蛟龙”号深潜器目前最大深潜极限为7062.68米.某天该深潜器在海面下1800米处作业(如图),测得正前方海底沉船C的俯角为45°,该深潜器在同一深度向正前方直线航行2000米到B点,此时测得海底沉船C的俯角为60°.请判断沉船C是否在“蛟龙”号深潜极限范围内?并说明理由;(精确到0.01)(参考数据:≈1.414,≈1.732)20.如图,⊙O是△ABC的外接圆,BC为⊙O的直径,点E为△ABC的内心,连接AE并延长交⊙O于D点,连接BE.(1)求证:DB=DE;(2)若过C点的切线与BD的延长线交于点F,已知DE=,求弧DC、线段DF、CF围成的阴影部分面积.21.已知:如图,在△ABC中,点D在边BC上,AE∥BC,BE与AD、AC分别相交于点F、G,AF2=FG⋅FE.(1)求证:△CAD∽△CBG;(2)联结DG,求证:DG•AE=AB•AG.22.某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且每件的利润率不得高于45%,经试销发现,销售量y(件)与销售单价x(元)符合一次函数y=﹣x+120.(1)若该服装获得利润为w(元),试写出利润w与销售单价x之间的关系式;销售单价定为多少时,商场可获得利润最大,最大利润是多少元?(2)若该商场获得利润不低于500元,试确定销售单价的取值范围.23.在△ABC中,AB=5,BC=7,AC=3.(1)求证:∠A=120°.(2)在(1)的基础上,请画一个三边长均为整数,且一个角的度数也是整数的非直角三角形.(3)以BC为边向下侧作一个等边△BCD,连接AD,那么AD的长是多少?参考答案1.解:A、不是轴对称图形,是中心对称图形;B、是轴对称图形,也是中心对称图形;C、是轴对称图形,不是中心对称图形;D、不是轴对称图形,是中心对称图形.故选:B.2.解:A、函数y=x的图象是y随着x增大而增大,故本选项错误;B、函数中的k<0,y随着x增大而减小,故本选项正确;C、D两个答案考虑其增减性时,需要考虑自变量的取值范围,故C、D错误.故选:B.3.解:①垂直于弦的直径平分弦,并且平分弦所对的两条弧,本小题说法是真命题;②在同圆或等圆中相等的圆心角所对的弧相等,本小题说法是真命题;③在同圆或等圆中如果两条弦相等,那么它们所对的圆心角相等,本小题说法是真命题;④圆内接四边形的对角互补,本小题说法是真命题;故选:A.4.解:如图,由勾股定理得,AC===,∴tan B==,故选:C.5.解:①当k>0时,y=kx+1过一、二、三象限;y=过一、三象限;②当k<0时,y=kx+1过一、二、四象象限;y=过二、四象限.观察图形可知,只有C选项符合题意.故选:C.6.解:∵∠1=∠2,∴∠DAE=∠BAC,若,∠DAE=∠BAC,∴△ABC∽△ADE,故A不符合题意;若∠DAE=∠BAC,∠B=∠D,∴△ABC∽△ADE,故B不符合题意;若∠C=∠AED,∠DAE=∠BAC,∴△ABC∽△ADE,故C不符合题意;∵,∠DAE=∠BAC,∴无法判断△ABC与△ADE相似,故D符合题意;故选:D.7.解:根据题意,min{x2+1,1﹣x2}表示x2+1与1﹣x2中的最小数,不论x取何值,都有x2+1≥1﹣x2,所以y=1﹣x2;可知,当x=0时,y=1;当y=0时,x=±1;则函数图象与x轴的交点坐标为(1,0),(﹣1,0);与y轴的交点坐标为(0,1).故选:C.8.解:∵tan∠AOD==,∴设AD=3a、OA=4a,则BC=AD=3a,点D坐标为(4a,3a),∵CE=2BE,∴BE=BC=a,∵AB=4,∴点E(4+4a,a),∵反比例函数y=经过点D、E,∴k=12a2=(4+4a)a,解得:a=或a=0(舍),则k=12×=3,9.解:①观察图象可知:a>0,b>0,c<0,∴abc<0,∴①正确;②∵二次函数y=ax2+bx+c的图象经过点A(﹣3,0),其对称轴为直线x=﹣1,∴二次函数y=ax2+bx+c的图象经过点A(﹣3,0)关于直线x=﹣1的对称点(1,0),故当x=1时,y=0,即a+b+c=0,∴②错误;③对称轴x=﹣1,即﹣=﹣1得b=2a,∴2a﹣b=0,∴③正确;④因为抛物线与x轴有两个交点,所以Δ>0,即b2﹣4ac>0,∴4ac﹣b2<0.∴④错误;⑤∵(﹣5,y1)关于直线x=﹣1的对称点的坐标是(3,y1),∴当y1>y2时,﹣5<m<3.∴⑤正确.故选:C.10.解:如图,∵BG⊥CD,∴∠BED=∠ABC=90°,∴∠1+∠3=90°,∠1+∠4=90°,∴∠3=∠4.在△ABG与△BCD中,,∴△ABG≌△BCD(ASA),又BD=AD,∴AG=AD;在△AFG与△AFD中,,∴△AFG≌△AFD(SAS),∴FG=FD,∠5=∠2,在Rt△DEF中,DF>FE∴GF>FE,∴EF≠FG,故A选项错误;又∠5+∠3=∠1+∠3=90°,∴∠5=∠1,∴∠1=∠2,即∠ADF=∠CDB.故B选项正确;∵△ABC为等腰直角三角形,∴AC=AB,∵△AFG≌△AFD,∴AG=AD=AB=BC,∵△AFG∽△BFC,∴=,∴FC=2AF,∴AF=AC=AB,故C选项错误;∵AF=AC,所以S△ABF=S△ABC;又D为中点,∴S△BDF=S△ABF,∴S△BDF=S△ABC,即S△ABC=6S△BDF.故D选项错误.故选:B.11.解:∵2(n≠0)是关于x的一元二次方程x2+mx+2n=0的一个根,∴4+2m+2n=0,∴n+m=﹣2,故答案为:﹣2.12.解:∵底面圆的面积为100π,∴底面圆的半径为10,∴扇形的弧长等于圆的周长为20π,设扇形的母线长为r,则=20π,解得:母线长为30,∴扇形的面积为πrl=π×10×30=300π,故答案为:300π.13.解:连接AC、OB,∵OD=OC,∴∠OCD=∠ODC=67.5°,∴∠DOC=180°﹣67.5°﹣67.5°=45°,∵,∴∠ABC=∠ACB=67.5°,∴∠A=45°,∴∠BOC=90°,∵OB=OC,∴∠OBC=∠OCB=45°,∴OC=BC,∵∠BCP=∠COD=45°,∠PBC=∠OCD=67.5°,∴△CPB∽△ODC,∴,∴,∴PB=2,故答案为:2.14.解:由点A、B的坐标得,直线AB的表达式为y=x+,∵抛物线y=ax2﹣x+1(a≠0)与线段AB有两个不同的交点,∴令x+=ax2﹣x+1,则2ax2﹣3x+1=0,∴△=9﹣8a>0,∴a<;①当a<0时,此时函数的对称轴在y轴左侧,当抛物线过点A时,为两个函数有两个交点的临界点,将点A的坐标代入抛物线表达式得:a+1+1=0,解得a=﹣2,故a≤﹣2;②当a>0时,此时函数的对称轴在y轴右侧,当抛物线过点B时,为两个函数有两个交点的临界点,将点B的坐标代入抛物线表达式得:a﹣1+1=1,解得a=1,即:a≥1∴1≤a<综上所述:1≤a<或a≤﹣2.故答案为1≤a<或a≤﹣2.15.解:原式=+3﹣﹣1﹣4×+2﹣2==.16.解:===,当a=﹣2+时,原式=.17.解:(1)则△A1B1C为所求作的图形.(2)∵AC=,∠ACA1=90°,∴在旋转过程中,CA所扫过的面积为:S扇形CAA1=.18.解:(1)∵反比例函数过点A(2,3),∴k=2×3=6,∴反比例函数的关系式为;(2)方程组的解为,,又∵A(2,3),∴点B(﹣3,﹣2),又∵BC⊥x轴,∴点C(﹣3,0),BC=2,∴S△ABC=×2×(2+3)=5;(3)存在,理由为:作C关于y轴的对称点C',连接BC'交y轴于点D,连接CD,此时DB+CD最小,∵C(﹣3,0),∴C'(3,0),设直线BC'的关系式为y=mx+n,将B(﹣3,﹣2),C'(3,0)代入得,,解得m=,n=﹣1,∴一次函数的关系式为y=x﹣1,当x=0时,y=﹣1,∴点D(0,﹣1).19.解:(1)过点C作CD垂直AB延长线于点D,设CD=x米,在Rt△ACD中,∵∠DAC=45°,∴AD=x,在Rt△BCD中,∵∠CBD=60°,∴BD=x,∴AB=AD﹣BD=x﹣x=2000,解得:x≈4732.05,∴船C距离海平面为4732.05+1800=6532.05米<7062.68米,∴沉船C在“蛟龙”号深潜极限范围内.20.(1)证明:∵E是△ABC的内心.∴∠BAE=∠CAE,∠EBA=∠EBC,∵∠BED=∠BAE+∠EBA,∠DBE=∠EBC+∠DBC,∠DBC=∠EAC,∴∠DBE=∠DEB,∴DB=DE.(2)解:连接CD、OD.∵∠BAD=∠DAC,∴=,∴BD=CD,∵BC是直径,∴∠BDC=90°,∴∠DBC=∠DCB=45°,∵FC是切线,∴∠BCF=90°,∴∠DCF=45°,∴△CDF是等腰直角三角形,∵DE=DB=3,∴OD=OC=3,DF=CD=BD=3,∴S阴=S△CDF﹣(S扇形OCD﹣S△OCD)=×3×3﹣(﹣×3×3)=﹣.21.证明:(1)∵AF2=FG⋅FE.∴,且∠AFG=∠EF A,∴△F AG∽△FEA,∴∠F AG=∠E,∵AE∥BC,∴∠E=∠EBC,∴∠EBC=∠F AG,且∠ACD=∠BCG,∴△CAD∽△CBG;(2)∵△CAD∽△CBG,∴,且∠DCG=∠ACB,∴△CDG∽△CAB,∴,∵AE∥BC,∴∴,∴,∴DG•AE=AB•AG.22.解:(1)由题意得:w=(﹣x+120)(x﹣60)=﹣x2+180x﹣7200=﹣(x﹣90)2+900,∵二次项系数为负,抛物线开口向下,∴当x≤90时,w随x的增大而增大,∵销售单价不低于成本单价,且每件的利润率不得高于45%,∴60≤x≤45%×60+60,即60≤x≤87,∴当x=87时,商场可获得最大利润,此时,w=﹣(87﹣90)2+900=891(元).∴利润w与销售单价x之间的关系式为w=﹣x2+180x﹣7200;销售单价定为87元时,商场可获得利润最大,最大利润是891元.(2)当w=500时,则有:500=﹣x2+180x﹣7200,整理得:x2﹣180x+7700=0,解得:x1=70,x2=110,∵抛物线开口向下,对称轴为直线x=90,∴若该商场获得利润不低于500元,则有70≤x≤110,又∵60≤x≤87,∴销售单价x的取值范围为:70≤x≤87.23.(1)证明:如图,延长BA,过点C作CE⊥BA延长线于点E,设AE=x,在Rt△BCE中,CE2=BC2﹣BE2,在Rt△ACE中,CE2=AC2﹣AE2,∴BC2﹣BE2=AC2﹣AE2,∴72﹣(5+x)2=32﹣x2,∴,在Rt△ACE中,AC=2AE,∴∠ACE=30°,∴∠EAC=60°,即∠BAC=120°;(2)解:如图,以点C为圆心,AC长为半径画弧交BE的延长线于点F,连接CF,则AC=CF,∵∠EAC=60°,∴△ACF为等边三角形,∴AF=CF=AC=3,BF=5+3=8,又BC=7,∴△BCF为三边长均为整数,且一个角的度数也是整数的非直角三角形.故△BCF即为所求;(3)解:以BC为边向下作一个等边△BCD,如图所示,由(1)可知:∠BAC=120°且∠BDC=60°,∴∠BAC+∠BDC=180°,∴A、B、D、C四点共圆.∵△BCD是等边三角形,∴BC=BD=CD,∴∠1=∠BCD=60°,在AD上截取AH=AC,连接CH,∴△ACH为等边三角形,∴AC=AH=HC,∠ACH=∠BCD,即∠ACH﹣∠BCH=∠BCD﹣∠BCH,∴∠3=∠2,∴△ABC≌△CHD(SAS),∴AB=HD,即AD=AH+AD=AC+AB=8.。
九年级初三数学期末考试卷
一、选择题(每题5分,共50分)1. 若m和n是实数,且m + n = 0,则下列等式中正确的是()A. m² = n²B. m² > n²C. m > nD. m < n2. 已知等差数列{an}中,a1 = 2,d = 3,则第10项a10等于()A. 27B. 30C. 33D. 363. 已知函数f(x) = 2x - 1,则f(-3)的值为()A. -7B. -5C. 1D. 34. 下列哪个不是一元二次方程?()A. x² + 2x + 1 = 0B. x² - 3x + 4 = 0C. x³ + 2x² - 3x - 6 = 0D. 2x² - 3x + 1 = 05. 已知三角形ABC中,∠A = 45°,∠B = 60°,则∠C的度数为()A. 75°B. 105°C. 120°D. 135°6. 若等比数列{an}中,a1 = 2,q = 3,则第5项a5等于()A. 18B. 27C. 36D. 547. 下列哪个不是等差数列?()A. 1, 4, 7, 10, ...B. 1, 3, 5, 7, ...C. 1, 2, 4, 8, ...D. 1, 2, 3, 4, ...8. 已知函数f(x) = x² - 4x + 4,则f(2)的值为()A. 0B. 2C. 4D. 89. 若等差数列{an}中,a1 = 3,d = -2,则第10项a10等于()A. -17B. -15C. -13D. -1110. 下列哪个不是一元二次方程的解?()A. x = 1B. x = 2C. x = -3D. x = 0二、填空题(每题5分,共50分)1. 若x² - 5x + 6 = 0,则x的值为__________。
初三数学期末测试卷及答案
一、选择题(每题4分,共20分)1. 下列各数中,绝对值最小的是()A. -2.5B. -2C. 2D. 2.52. 已知方程x^2 - 3x + 2 = 0,则方程的解是()A. x = 1B. x = 2C. x = 1 或 x = 2D. x = 1 或 x = -23. 在直角坐标系中,点A(-3,2)关于原点的对称点是()A. (3,-2)B. (-3,-2)C. (2,-3)D. (-2,3)4. 若一个长方体的长、宽、高分别为3cm、4cm、5cm,则它的对角线长为()A. 7cmB. 8cmC. 9cmD. 10cm5. 已知函数f(x) = 2x - 1,若f(x)的值域为[3, 5],则x的取值范围是()A. [2, 3]B. [2, 4]C. [3, 4]D. [2, 5]二、填空题(每题4分,共16分)6. 若a + b = 5,a - b = 1,则ab的值为______。
7. 在等腰三角形ABC中,AB = AC,若BC = 6cm,则三角形ABC的底角∠B的度数是______。
8. 若函数y = -3x^2 + 4x + 1的图象与x轴的交点坐标是(1,0),则该函数的对称轴方程是______。
9. 圆的半径是r,则圆的周长是______。
10. 若等差数列{an}的前n项和为Sn,公差为d,首项为a1,则Sn =______。
三、解答题(共64分)11. (12分)解下列方程组:\[\begin{cases}2x + 3y = 8 \\x - y = 1\end{cases}\]12. (12分)已知二次函数y = ax^2 + bx + c的图象与x轴的交点坐标为(-1,0)和(2,0),且顶点坐标为(1,-3)。
(1)求该二次函数的解析式;(2)求该函数的对称轴方程。
13. (12分)在直角坐标系中,点A(-2,3)关于直线y = x的对称点为B。
(1)求点B的坐标;(2)求直线AB的方程。
人教版九年级上学期期末数学综合训练题(二)(第21-27章内容)
A、7
B、7.5
C、8
D、8.5
1 / 13
9、如图,已知
AD
为 △ABC 的角平分线,DE//AB
交
AC
于点
E,
AE EC
3 5
,
那么
AB EC
(
)
5 A、 8
2 B、 5
3 C、 5
3 D、 8
10、已知二次函数 y ax2 bx c (a≠0)的图象如图所示,则下列结论中,正确的是( )
9
21. (1)解法 1: b 2 1, 4ac b2 4 (1) 2 22 3 ,
2a 2
4a
4 (1)
∴抛物线 y x2 2x 2 的对称轴为 x 1 ,顶点坐标为 (1,3) .
y
5
4
解法 2:∵ y x2 2x 2 (x 1)2 3 , 3
2
∴抛物线 y x2 2x 2 的对称轴为 x 1 ,顶点坐标为 (1,3) . 1
6 / 13
25、(14 分)如图,扇形 OAB 的半径 OA=3,圆心角∠AOB=90°,点 C 是 AB 上异于 A、B 的动点,过点 C 作 CD⊥OA 于点 D,作 CE⊥OB 于点 E,连结 DE,点 G、H 在线段 DE 上,且 DG=GH=HE
(1)求证:四边形 OGCH 是平行四边形 (2)当点 C 在 AB 上运动时,在 CD、CG、DG 中,是否存在长度不变的线段?若存在,请求出该线段的 长度。(3)求证: CD2 3CH 2 是定值
当 DE=3 时,AD=4,AE= 32 42 5 , ∴S 取最大值时,E 点为 AB 的中点
10 / 13
∴ AD 4 x , DC 8 4 x
人教版九年级数学上册期末综合检测试卷(有答案)
【期末专题复习】人教版九年级数学上册期末综合检测试卷学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(本题共计 10 小题,每题 3 分,共计30分,)1. 已知关于的方程的一个根是,则实数的值是()A. B. C. D.2. 若二次函数(、为常数)的图象如图,则的值为()A. B. C. D.3. 已知,中,∠,斜边上的高为,以点为圆心,为半径的圆与该直线的交点个数为()A.个B.个C.个D.个4. 如图,是等边三角形的外接圆,的半径为,则等边三角形的边长为()A. B. C. D.5. 某商品的进价为每件元.当售价为每件元时,每星期可卖出件,现需降价处理,为占有市场份额,且经市场调查:每降价元,每星期可多卖出件.现在要使利润为元,每件商品应降价()元.A. B. C. D.6. 如图,抛物线与轴交于点,顶点坐标为,与轴的交点在、之间(包含端点).有下列结论:①当时,;②;③;④.其中正确的有()A.个B.个C.个D.个7. 用配方法解方的配方过程正确是()A.将原方程配方B.将原方程配方C.将原方程配方D.将原方程配方8. 如图,将边长为的正六边形,在直线上由图的位置按顺时针方向向右作无滑动滚动,当第一次滚动到图位置时,顶点所经过的路径的长为()A. B.C. D.9. 已知二次函数的图象如图所示,对称轴为直线,则下列结论正确的是()A. B.方程的两根是,C. D.当时,随的增大而减小10. 如图,中,∠,,以为直径的圆交于点,则图中阴影部分的面积为()A. B. C. D.二、填空题(本题共计 10 小题,每题 3 分,共计30分,)11. 方程:的解是:________.12. 某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留宽的门.已知计划中的材料可建墙体(不包括门)总长为,则能建成的饲养室面积最大为________.13. 有一扇形的铁皮,其半径为,圆心角为,若用此扇形铁皮围成一个圆锥形的教具(不计接缝),则此圆锥的高是________.14. 小华和小丽做游戏:抛掷两枚硬币,每人各抛掷次,小华在次抛掷中,成功率为,则她成功了________次,小丽成功率为,则她成功了________次.15. 钟表分针的运动可看作是一种旋转现象,一只标准时钟的分针匀速旋转,经过分钟旋转了________ 度.16. 某射手在一次射击中,射中环、环、环的概率分别是、、,那么,这个射手在这次射击中,射中环或环的概率为________;不够环的概率为________.17. 如图,将绕点逆时针旋转,得到′′,使′恰好经过点,连接′,则∠′的度数为________.18. 一个不透明的塑料袋中有个小球,其中个红球和个白球,它们除颜色外其余都相同,摸出一个球记下颜色后放回,再摸出一个小球,则两次摸出的小球恰好颜色不同的概率是________.19. 如图,在方格纸上建立的平面直角坐标系中,将绕点按顺时针方向旋转,得到,那么点的坐标为________.20. 已知二次函数的图象如图所示,下列结论:①;②;③;④与都是负数,其中结论正确的序号是________.三、解答题(本题共计 9 小题,共计60分,)21.(12分) 解下列方程:(1)(3)22.(5分) (原创题)如图所示,轴,且,点坐标为,若:(1)写出,坐标;(2)你发现,,,坐标之间有何特征?23.(5分) 已知函数是二次函数.(1)求的值;(2)写出这个二次函数图象的对称轴和顶点坐标.24. (5分)如图已知直线的函数解析式为,点从点开始沿方向以个单位/秒的速度运动,点从点开始沿方向以个单位/秒的速度运动.如果、两点分别从点、点同时出发,经过多少秒后能使的面积为个平方单位?25. (5分)如图,是的直径,是的弦,直径过的中点.求证:.26.(7分) 对于抛物线.对于抛物线.它与轴交点的坐标为________,与轴交点的坐标为________,顶点坐标为________;利用以上信息解答下列问题:若关于的一元二次方程(为实数)在的范围内有解,则的取值范围是________.27. (7分)某童装店在服装销售中发现:进货价每件元,销售价每件元的某童装每天可售出件.为了迎接“六一儿童节”,童装店决定采取适当的促销措施,扩大销售量,增加盈利.经调查发现:如果每件童装降价元,那么每天就可多售出件.(1)如果童装店想每天销售这种童装盈利元,同时又要使顾客得到更多的实惠,那么每件童装应降价多少元?(2)每件童装降价多少元时,童装店每天可获得最大利润?最大利润是多少元?28. (7分)如图,是的内接三角形,∠是的一个外角,∠,∠的平分线分别交与点、.若连接,则与有怎样的位置关系?为什么?29.(7分) 某商场购进一种每件价格为元的新商品,在商场试销发现:销售单价(元/件)与每天销售量(件)之间满足如图所示的关系:(1)求出与之间的函数关系式;(2)如果商店销售这种商品,每天要获得元利润,那么每件商品的销售价应定为多少元?(3)写出每天的利润与销售单价之间的函数关系式;若你是商场负责人,会将售价定为多少,来保证每天获得的利润最大,最大利润是多少?参考答案与试题解析【期末专题复习】人教版九年级数学上册期末综合检测试卷一、选择题(本题共计 10 小题,每题 3 分,共计30分)1.【答案】D【考点】一元二次方程的解【解析】把代入方程,得到的一元一次方程,解出的值即可.2.【答案】C【考点】二次函数图象上点的坐标特征【解析】根据图象开口向下可知,又二次函数图象经过坐标原点,把原点坐标代入函数解析式解关于的一元二次方程即可.3.【答案】A【考点】直线与圆的位置关系【解析】根据直线和圆的位置关系与数量之间的联系进行判断.若,则直线与圆相交;若,则直线于圆相切;若,则直线与圆相离.4.【答案】C【考点】正多边形和圆【解析】首先连接,,过点作于,由是等边的外接圆,即可求得∠的度数,然后由三角函数的性质即可求得的长,又由垂径定理即可求得等边的边长.5.【答案】A【考点】一元二次方程的应用【解析】设售价为元时,每星期盈利为元,那么每件利润为,原来售价为每件元时,每星期可卖出件,所以现在可以卖出件,然后根据盈利为元即可列出方程解决问题.6.【答案】C【考点】二次函数图象与系数的关系【解析】①由抛物线的顶点坐标的横坐标可得出抛物线的对称轴为,结合抛物线的对称性及点的坐标,可得出点的坐标,由点的坐标即可断定①正确;②由抛物线的开口向下可得出,结合抛物线对称轴为,可得出,将代入中,结合即可得出②不正确;③由抛物线与轴的交点的范围可得出的取值范围,将代入抛物线解析式中,再结合即可得出的取值范围,从而断定③正确;④结合抛物线的顶点坐标的纵坐标为,结合的取值范围以及的取值范围即可得出的范围,从而断定④正确.综上所述,即可得出结论.7.【答案】D【考点】解一元二次方程-配方法【解析】配方法的一般步骤:把常数项移到等号的右边;把二次项的系数化为;等式两边同时加上一次项系数一半的平方.8.【答案】A【考点】弧长的计算旋转的性质【解析】连,,,作,利用正六边形的性质分别计算出,,而当第一次滚动到图位置时,顶点所经过的路径分别是以,,,,为圆心,以,,,,为半径,圆心角都为的五条弧,然后根据弧长公式进行计算即可.9.【答案】B【考点】二次函数图象与系数的关系抛物线与x轴的交点【解析】根据抛物线的开口方向,对称轴,与轴、轴的交点,逐一判断.10.【答案】C【考点】扇形面积的计算【解析】从图中的图形关系看出阴影部分的面积可以简化成一个三角形的面积,然后通过已知条件求出面积.二、填空题(本题共计 10 小题,每题 3 分,共计30分)11.【答案】,【考点】解一元二次方程-因式分解法【解析】通过提取公因式对等式的左边进行因式分解,然后解方程.12.【答案】【考点】二次函数的应用【解析】设垂直于墙的材料长为米,则平行于墙的材料长为,表示出总面积即可求得面积的最值.13.【答案】【考点】圆锥的计算【解析】根据题目提供的数据求出扇形的弧长,根据扇形的弧长等于圆锥地面的周长求出圆锥的半径,然后在圆锥的高、母线和底面半径构造的直角三角形中求圆锥的高.14.【答案】,【考点】概率的意义【解析】用抛掷次数乘以成功率即可.15.【答案】【考点】生活中的旋转现象【解析】根据钟表面的知识,钟表上分针走过一个小格转过的度数是,走过分钟,乘以,计算即可得解.16.【答案】,【考点】概率公式【解析】“射中环或环”意思就是射中环和射中环的总和,由此可得到所求的概率;“不够环”意思就是射中、、、、、、环,我们可以从反面入手,求出射中、、环的概率,然后再用减去这个概率,得到所求的概率.17.【答案】【考点】旋转的性质【解析】先根据旋转的性质得到∠∠′′,于是得到∠′∠∠′′.18.【答案】【考点】列表法与树状图法【解析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的球恰好颜色不同的情况,再利用概率公式即可求得答案.19.【答案】【考点】坐标与图形变化-旋转【解析】抓住旋转的三要素:旋转中心,旋转方向顺时针,旋转角度,通过画图得.20.【答案】②③【考点】二次函数图象与系数的关系【解析】根据函数的开口方向,对称轴以及与轴的交点即可确定,,的符号,从而判断①;根据对称轴的位置即可判断②;根据二次函数与轴的交点的坐标,即可确定的范围,确定与的大小,从而判断的符号;根据和时,点的坐标的符号判断④.三、解答题(本题共计 9 小题,共计60分)21.【答案】解:(1)因式分解,得,所以或,解得,或;(2)移项得,,变形得,,因式分解,得,解得,或;(3)移项得,,因式分解得,,解得或;(4)化简得:即解得或.【考点】解一元二次方程-因式分解法换元法解一元二次方程【解析】(1)方程左边可以利用十字相乘法进行因式分解,因此应用因式分解法解答.(2)先移项,然后把因式分解为,然后再提取公因式,因式分解即可.(3)先移项,然后用提取公因式法对左边进行因式分解即可.(4)把看作是一个整体,然后套用公式,进行进一步分解,故用因式分解法解答.22.【答案】解:(1)∵轴,点坐标为,点,∴点、的纵坐标分别是,,∵,∴,.(2)∵,横、纵坐标互为相反数,∴关于原点对称,同理,,关于原点对称.【考点】关于原点对称的点的坐标【解析】(1)根据平行于轴的直线的特点、以及得出,坐标;(2)对比的坐标得出他们之间的特征.23.【答案】解:(1)由是二次函数,得且.解得;(2)当时,二次函数为,,,,对称轴为,11试卷第!异常的公式结尾页,总14页12顶点坐标为.【考点】二次函数的定义二次函数的性质【解析】(1)根据二次函数的定义:是二次函数,可得答案;(2)根据的对称轴是,顶点坐标是,可得答案.24.【答案】解:∵直线的函数解析式为,∴点,点.设运动时间为,则,,根据题意,得:,解得:,,(舍去),.∴经过秒、秒或秒后能使的面积为个平方单位【考点】一元二次方程的应用【解析】根据直线的解析式可得出点、的坐标,设运动时间为,则,,根据三角形的面积即可得出关于的一元二次方程,解方程即可得出结论.25.【答案】证明:连接,∵,为中点,∴,∵过,∴弧弧弧,∵∠∠,∴弧弧,∴.【考点】垂径定理【解析】连接,根据等腰三角形性质得出,根据垂径定理求出弧弧弧,求出弧弧,即可得出答案.26.【答案】,,,【考点】抛物线与x轴的交点二次函数的图象二次函数的性质【解析】据正方形的性质可以确坐标,先出的解析式,再由的标就可求的析;如图、图作,于,根据定理就可以求出点的纵坐标从而点的坐,根据直角三性质就可以∠的度数,平行性就可以得∠的度数.当在轴的方时如同可以得结论.27.【答案】童装店应该降价元.(2)设每件童装降价元,可获利元,根据题意,得,化简得:∴答:每件童装降价元童装店可获得最大利润,最大利润是元【考点】一元二次方程的应用二次函数的应用【解析】(1)设每件童装降价元,利用童装平均每天售出的件数每件盈利每天销售这种童装利润列出方程解答即可;(2)设每件童装降价元,可获利元,利用上面的关系列出函数,利用配方法解决问题.28.【答案】解:垂直平分.理由如下:∵平分∠,平分∠,∴∠∠,∠∠,∴∠∠∠∠,即∠,∴为的直径,∵平分∠,∴∠∠,∴,13试卷第!异常的公式结尾页,总14页14∴垂直平分.【考点】圆周角定理圆心角、弧、弦的关系【解析】先利用角平分线定义和平角定义计算出∠,则利用圆周角定理的推论得到为的直径,由平分∠得∠∠,根据圆周角定理得,于是根据垂径定理的推论可得垂直平分.29.【答案】设与之间的函数关系式为,由所给函数图象可知:,解得:.故与的函数关系式为;根据题意,得:,整理,得:,解得:或,答:每件商品的销售价应定为元或元;∵,∴,∴当时,最大,∴售价定为元/件时,每天最大利润元.【考点】一元二次方程的应用二次函数的应用【解析】(1)待定系数法求解可得;(2)根据“每件利润销售量总利润”列出一元二次方程,解之可得;(3)根据以上相等关系列出函数解析式,配方成顶点式,利用二次函数性质求解可得.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三数学期末综合练习题-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN2006学年初三数学期末综合练习题(仙村中学)一、 选择题(每小题3分,共30分)1.无论x 取什么值,下列分式中总有意义的是 ( )(A )22x x + (B )35+x (C )132+x x (D )11-+x x2.下列变形中,一定正确的是 ( )(A )33++=y x y x (B )mymxy x = (C )xy x y x 2= (D )2y xy y x =3.方程22=x 的根是 ( )(A )x = 2 (B )x =-2 ; (C )x 1=2,x 2=-2; (D )2,221-==x x 4.若b <0,那么关于x 的方程b x 2-2x +1 = 0的根的情况 ( )(A )有两个相等的实数根; (B )有两个不相等的实数根; (C )没有实数根; (D )不能确定。
5.一元二次方程x 2-6x +1 = 0配方后变形正确的是 ( ) (A )8)3(2=-x (B )35)3(2=+x (C )35)3(2=-x (D )8)3(2=+x 6.如图,CA 为⊙O 的切线,切点为A ,点B 在⊙O 上,如果∠CAB = 55°, 那么∠AOB 为 ( )(A )55 (B )90° (C )110° (D )120°BCA7.如上图,AB 是⊙O 的直径,弦C D ⊥AB ,垂足为E ,若AB = 10,CD = 8,那么AE 的长为 ( )(A )2 (B )3 (C )4 (D )58.如图,△ABC 中,AB = AC ,BE = CF ,AD ⊥BC , A则图中共有全等三角形 ( ) (A )2对; (B )3对 (C )4对 (D )5对B EDFC9.下列调查方式中,你认为合适的是( ) (A )为了了解炮弹的杀伤力,采用普查的方式;(B )为了了解全国中学生的睡眠情况,采用普查方式; (C )为了了解人们保护水资源的意识,采取抽样调查的方式; (D )对载人航天器“神舟”五号零部件的检查,采用抽样调查方式。
10.有两组扑克牌,每组三张牌,它们的牌面数字分别都是1、2、3,那么从每组牌中各摸出一张牌,两张牌的牌面数字和为奇数的概率是 ( )(A )95 (B )94 (C )92 (D )32二、填空题(每小题3分,共18分)D11.用科学记数法表示:-0.0000000168 = ;12.如图,点A 、B 、C 、D 是⊙O 上的四点,点D 是弧AB 的 EA中点,弦CD 交OB 于E ,若∠AOB = 100°,∠OBC = 55°, ·O则∠OEC 的大小为 ; 13.方程0432=--y y 的根为1y 、2y ,C则1y +2y = ,1y ·2y = ;14.当x 为 时,代数式932-+x x 的值等于-9; C 15.如图,△ABC≌△AED,∠B=35°,∠EAB D=21°,∠C=29°,则∠D= ,∠DAC= ; E16.某校九年级⑴班共有53人,其中14岁的有20人, B15岁的有26人,16岁的有7人,则该班的平均年龄 A (保留三位有效数字)是 ;三、 解答题(9小题,共102分)17.(9分)化简:1121222+-÷++-a aa a a a18.解分式方程:12512=--+-xx x x x (9分)19.(10分)如图,给出四个等式:①AE=AD , C②AB=AC ,③OB=OC ,④∠B=∠C ,现选取 E 其中的三个,以两个作为已知条件,另一个作 O 为结论,请你写出一个正确的命题,并加以 A 证明。
D BA20.(10分)已知圆锥的高为4,底面半径为3求圆锥铡面展开图的扇形的圆心角n 。
B21.已知关于x 的方程062=-+kx x 的一个根是3,求它的另一个根及k 的值。
(12分)22.如图,直线AD 交⊙O 于B 、D ,⊙O °,OC ⊥AD ,C 为垂足,求BD 的长。
(12·ODC23.小明和老李用如图所示的两个转盘做游戏,转动两个转盘各一次,若两次数字和为奇数,则小明胜,而和为偶数,则老李胜,你认为这个游戏对双方公平吗?认为公平,请说明理由,认为不公平,请你设计出较为公平的规则。
(12分)(A )(B )24.(14分)m 取什么值时,关于x 的方程022)2(22=-++-m x m x 有两个相等的实数根?并求出这时方程的根。
AB25.(14分)如图所示,在Rt△ABC ,AC=BC=2,将一块三角板的直角顶点放在斜边AB的中点P处,将三角板绕点P旋转,三角板的两直角边分别交AC、CB于D、E两点,请将三角板绕点P旋转①观察线段PD和PE的长度大小有何关系?并说明理由;②四边形PDCE的面积随D、E的变化而变化吗?若变化,求出其变化范围,若不变化求出它的值;③四边形PDCE的周长随D、E围,若不变化求出它的值。
C E B参考答案一、选择题(每小题3分,共30分)二、填空题(每小题3分,共18分)三、解答题(9小题,共102分)17.解原式=a a a a a a a 1)1(1)1()1)(1(2=-+⋅+-+18.解:方程两边同时乘以x (x -1)得 )1(252-=-+x x x x x x x x -=-+2225 6x = 231=x经检验,31=x 是原方程的解;∴原方程的解是31=x 。
19.答案不唯一。
命题:如果AE = AD ,AB = AC ,那么∠B = ∠C 。
证明如下:在△ABE 和△ACD 中 ∵AE =AD ,AB = AC (已知) 又∵∠A = ∠A∴△ABE ≌△ACD (S .A .S .) ∴∠B = ∠C (全等三角形对应角相等)20.解:设扇形的半径为R,弧长为l,则R5432222=+=+=OBOA Al = πππ6322=⨯=r由180Rnlπ=得·O B∴扇形的圆心角是216度。
21.设方程的另一根为x,则⎩⎨⎧-=+-=)2(3)1(6311kxx由(1)得1x =-2,把1x=-2代入(2)得k =-1∴方程的另一根是1x =-2,k的值是-1。
22.解:在Rt△OAC中,∵∠A = 30°∴ OC =21OA =21×8 = 4连结OB,则BC = 3452222=-=-OCOB∴BD = 2BC = 2×3 = 6(㎝)B C D21656180180=⨯==πππRln23.解:∵P 1(和为奇数)= 95P 2(和为偶数)=94P 1 ≠ P 2∴这个游戏对双方不公平 (公平的游戏规则不唯一)从上表可以看出,如果两转盘各转动1次,两个指针所指区域内的数的和为4或6的机会是相等的,均为92,故公平的游戏规律可以这样:两数和是4小明胜,两数和是6则老李胜,其余的不分胜负。
24.依题意042=-ac b即0)22(24)]2([2=-⨯-+-m m01616442=+-++m m m 020122=+-m m101=m ,22=m当10=m 时,原方程可化为0181222=+-x x 0962=+-x x 0)3(2=-x ∴321==x x 当2=m 时,原方程可化为02422=+-x x 0122=+-x x 0)1(2=-x ∴143==x x∴当10=m 或当2=m 时,方程有两个相等的实数根,方程的根是321==x x ,143==x x25.解:(1)PD = PE ,说明如下:连结PC ,在Rt △ABC 中, ∵AC = BC = 2,∴AB = 22,∠A = ∠B = 45°又∵P 为斜边AB 的中点 D∴CP = 21AB = PB = 2 C E B ∵CP ⊥AB ,CP 平分∠ACB∴∠PCD = 21∠ACB = 45°= ∠B ,∠CPB = 90° 又∵∠DPE = 90°,∴∠DPC = ∠EPB∵在△PCD 与△PBE 中,∠PCD = ∠B ,∠DPC = ∠EPB ,CP = PB ∴△PCD ≌△PBE (A ·A ·S ·)∴PD = PE(2)四边形PDCE 的面积不会随着点P 、D 的变化而变化,且四边形PDCE 的面积等于1。
理由如下:由(1)得△PCD ≌△PBE ,∴四边形PDCE 的面积 = PCE PEB PCE PDE S S S S ∆∆∆∆+=+ 12221=⨯⨯==∆PCB S (3)四边形PDCE 的周长C = PD+DC+CE+PE由(1)得△PCD ≌△PBE∴PD = PE ,DC = BE∴C = 2PE+BE+CE = 2PE+BC = 2PE+2∵当PE ⊥BC 时,PE 最短=PB ×Sin ∠B 1452=︒⨯=Sin∴四边形PDCE 的周长最小值是4。
又∵当点E 与点B 或点C 重合时,PE 最长221==AB ,但这时四边形PDCE 不存在, 故四边形PDCE 的周长C 的取值范围是4222+≤≤C 。