2020衡水金卷先享题调研卷五数学文试题答案解析
2020届河北衡水金卷新高考原创押题考试(五)理科数学
2020届河北衡水金卷新高考原创押题考试(五)理科数学一、单选题1.已知集合1|244x A x ⎧⎫=≤⎨⎬⎩⎭…,{|B y y ==,则A B =I ( ) A. {2} B. {0} C. [2.2]- D. [0.2]【答案】B 【解析】 【分析】分别计算集合[2,2]A =-,集合{0}B =,再求A B I .【详解】由1244x剟,得22x -剟,即[2,2]A =-,由y =,得2x =,所以0y =,所以{0}B =,所以{0}A B =I . 故答案选B【点睛】本题考查了集合的交集,属于简单题. 2.设a R ∈,若复数1ia i-+在复平面内对应的点位于实轴上,则a =( ) A. 2 B. 1C. -1D. -2【答案】C 【解析】 【分析】 化简1i a i -+得()2111a a i a --++,再根据条件求a . 【详解】由于()()()22111111i a i a a ii a i a a ----+-==+++ 由复数1ia i-+在复平面内对应的点位于实轴上. 所以10a +=,所以1a =-.故选:C.【点睛】本题考查复数的除法运算,和复数在复平面上对应的点,属于基础题.3.l 、m 、n 表示空间中三条不同的直线,α、β表示不同的平面,则下列四个命题中正确的是( ) A. 若m α⊂,n β⊂,//αβ,则//m n B. 若m α⊂,n β⊂,//m β,//n α,则//αβC. 若l αβ=I ,m α⊂,n β⊂,l m ⊥,l n ⊥,则αβ⊥D. 若m α⊂,n β⊂,m β⊥,n α⊥,则αβ⊥ 【答案】D 【解析】 【分析】逐一分析各选项中命题的正误,可得出合适的选项.【详解】对于A 选项,若m α⊂,n β⊂,//αβ,则m 与n 无公共点,所以m 与n 平行或异面,A 选项错误;对于B 选项,若m α⊂,n β⊂,//m β,//n α,则α与β平行或相交,B 选项错误;对于C 选项,若l αβ=I ,m α⊂,n β⊂,l m ⊥,l n ⊥,则α与β斜交或垂直,C 选项错误; 对于D 选项,若m α⊂,n β⊂,m β⊥,n α⊥,由平面与平面垂直的判定定理可得αβ⊥,D 选项正确. 故选:D.【点睛】本题考查线面关系、面面关系有关命题真假的判断,可以利用空间中平行、垂直的判定和性质定理进行判断,也可以利用几何体模型来进行判断,考查推理能力,属于中等题.4.已知a v ,b v 为互相垂直的单位向量,若c a b =-v v v,则cos ,b c =v v ( )A. 2-B.2C. D.【答案】A 【解析】【分析】利用向量夹角公式即可得到结果.【详解】代数法:cos ,b a b b c b c b c ⋅-⋅<>==⋅r r r r r r rr r22===-r r r ,故选A. 【点睛】本题考查向量夹角公式,考查向量的运算法则及几何意义,考查学生的运算能力与数形结合能力,属于基础题.5.设12,F F 分别为椭圆()222:11x E y a a+=>的左、右焦点,过2F 且垂直于x 轴的直线与E 相交于,A B 两点,若1F AB ∆为正三角形,则a = ()A.2C.32D. 2【答案】A 【解析】 【分析】由2F A x ⊥ 轴,可求出2AF ,在12Rt AF F ∆中可以建立关于a 的方程,求解出a . 【详解】设2(,0),F c 由2F A x ⊥ 轴,则(,)A c y ,则222222211c a c y a a a -=-==,1221F F AF a ==, 在12Rt AF F ∆中,122tan60F F AF =. 1a =,即424430a a --=,解得232a =, a =故选:A【点睛】本题考查椭圆的基本性质,求椭圆方程中的参数,属于基础题. 6.设x,y,z 是互不相等的正数,则下列不等式中不恒成立的是( )A. 2211x x x x++≥C. 12x y x y-+≥- D. x y x z y z -≤-+- 【答案】C 【解析】【详解】试题分析:x y x z z y x z z y x z y z -=-+-≤-+-=-+-,故D 恒成立; 由于函数()1f x x x=+,在(]0,1单调递减;在[)1,+∞单调递增, 当1x >时, ()()221,x x f x f x >>>即2211x x x x +>+,当01x <<,()()2201,x x f x f x <<即2211x x x x++≥正确,即A 正确;=<=,故B 恒成立,若1x y -=-,不等式12x y x y-+≥-不成立, 故C 不恒成立,故选C . 考点:1、基本不等式证明不等式;2、单调性证明不等式及放缩法证明不等式. 7.在ABC ∆中,A ,B ,C 所对的边分别为a ,b ,c ,若60A =︒,a =3b c +=,则ABC ∆的面积为( )D. 2【答案】B 【解析】 【分析】根据余弦定理求得bc ,再根据三角形面积公式即可求解.【详解】在ABC ∆中,60A =︒,a =3b c +=由余弦定理2222cos a b c bc A =+-代入可得223b c bc =+-,即()233b c bc =+-所以2bc =则ABC ∆的面积1133sin 22222ABC S bc A ∆==⨯⨯=故选:B【点睛】本题考查了余弦定理在解三角形中的应用,三角形面积公式的应用,属于基础题.8.在平面直角坐标系xOy 中,已知2111ln 0x x y --=,2220x y --=,则()()221212x x y y -+-的最小值为( ) A. 1 B. 2 C. 3 D. 4【答案】B 【解析】根据条件得到()()221212x x y y -+-表示的是曲线2111ln x x y -=,222x y -=上两点的距离的平方,∵y=x 2﹣lnx ,∴y′=2x﹣1x(x >0), 由2x ﹣1x=1,可得x=1,此时y=1, ∴曲线C 1:y=x 2﹣lnx 在(1,1)处的切线方程为y ﹣1=x ﹣1,即x ﹣y=0,与直线x ﹣y ﹣2=0的距离为2=2, ∴()()221212x x y y -+-的最小值为2. 故答案为B .点睛:本题考查两点间距离的计算,考查导数知识的运用,求出曲线C 1:y=x 2-lnx 与直线x-y-2=0平行的切线的方程是关键.注意做新颖的题目时,要学会将新颖的问题转化为学过的知识题型,再就是研究导数小题时注意结合函数的图像来寻找灵感,有助于解决题目.9.算筹是在珠算发明以前我国独创并且有效的计算工具,为我国古代数学的发展做出了很大贡献.在算筹计数法中,以“纵式”和“横式”两种方式来表示数字,如图:表示多位数时,个位用纵式,十位用横式,百位用纵式,千位用横式,以此类推,遇零则置空,如图:如果把5根算筹以适当的方式全部放入 下面的表格中,那么可以表示的三位数的个数为( )A. 46B. 44C. 42D. 40 【答案】B 【解析】 【分析】先按每一位算筹的根数分类,再看每一位算筹的根数能组成几个数字. 【详解】按每一位算筹的根数分类一共有15种情况,如下(5,0,0),(4,1,0),(4,0,1),(3,2,0),(3,1,1),(3,0,2),(2,3,0), (2,2,1),(2,1,2),(2,3,0),(1,4,0),(1,3,1),(1,2,2),(1,1,3),(1,0,4),2根以上的算筹可以表示两个数字,运用分布乘法计数原理, 则上列情况能表示的三位数字个数分别为:2,2,2,4,2,4,4,4,4,4,2,2,4,2,2, 根据分布加法计数原理,5根算筹能表示的三位数字个数为:22242444442242244++++++++++++++=.故选B.【点睛】本题考查分类加法计数原理和分布乘法计数原理,考查分析问题解决问题的能力.10.设抛物线2:2(0)C y px p =>的焦点为F ,抛物线C 与圆22:(3)3C x y +='交于M ,N 两点,若||6MN =则MNF V 的面积为( )A.2 B.38C.32D.32【答案】B 【解析】 【分析】由圆C '过原点,知,M N 中有一点M 与原点重合,作出图形,由3C M C N ''==,6MN =,得C M C N ''⊥,从而直线MN 倾斜角为4π,写出N 点坐标,代入抛物线方程求出参数p ,可得F 点坐标,从而得三角形面积.【详解】由题意圆C '过原点,所以原点是圆与抛物线的一个交点,不妨设为M ,如图, 由于3C M C N ''==,6MN =,∴C M C N ''⊥,∴4C MN π'∠=,4NOx π∠=,∴点N 坐标为(3,3),代入抛物线方程得2(3)23p =⨯,32p =, ∴3(,0)4F ,113332248FMN N S MF y ∆=⨯=⨯⨯=. 故选:B.【点睛】本题考查抛物线与圆相交问题,解题关键是发现原点O 是其中一个交点,从而MNC '∆是等腰直角三角形,于是可得N 点坐标,问题可解,如果仅从方程组角度研究两曲线交点,恐怕难度会大大增加,甚至没法求解.11.在内接于球O 的四面体ABCD 中,有AB CD t ==,6AD BC ==,7AC BD ==,若球O 的最大截面的面积是554π,则t的值为( )A. 5B. 6C. 7D. 8【答案】A【解析】【分析】由题意将四面体放入长方体中,由长方体的对角线与外接球的直径相等可求出外接球的半径,球的最大截面既是过球心的圆,由题意求出外接球的半径,进而求出t的值.【详解】将四面体放入到长方体中,AB与CD,AD与BC,AC与BD相当于一个长方体的相对面的对角线,设长方体的长,宽,高分别是,,a b c则22222222276a b tb ca c⎧+=⎪+=⎨⎪+=⎩,∴()2222285a b c t++=+球O的最大截面的面积是554π,球的最大截面即是过球心的大圆,设球的半径为R则2554Rππ=,∴2222(2)55,2R R a b c==++∴2222(2)R a b c=++,255285t∴⨯=+,解得:5t=,故选:A.【点睛】考查三棱锥的外接球的半径的与长方体棱长的关系,考查了分析能力和计算能力,属于中档题.12.已知函数22()ln(1)f x x x a x=--(a∈R),若()0f x≥在x∈(0,1]时恒成立,则实数a的取值范围是 A.[4,+ ∞) B. [12,+∞) C. [2,+∞) D. [1,+∞)【答案】B 【解析】 【分析】首先将式子化简,将参数a 化为关于x 的函数,之后将问题转化为求最值问题来解决,之后应用导数研究函数的单调性,从而求得函数的最值,在求解的过程中,注意对函数进行简化,最后用洛必达法则,通过极限求得结果.【详解】根据题意,有22ln (1)0,((0,1])x x a x x --≥∈恒成立,当1a ≠时,将其变形为22ln 1x xa x ≥-恒成立,即2max 2ln ()1x x a x ≥-,令22ln ()1x xg x x =-,利用求得法则及求导公式可求得3222ln '()(1)x x x x g x x --=-,令3()2ln h x x x x x=--,可得22'()312ln 232ln 3h x x x x x =---=--,可得26(26233''()6x x x h x x x x x+--=-==,因为(0,1]x ∈,所以(0,)3x ∈时,''()0h x <,,1]3x ∈时,''()0h x >,所以函数)'(h x在(0,3x ∈时单调减,在3x ∈时单调增,即'()132ln ln 32h x h ≥=--=-,而'(1)0h =,所以()h x在上是减函数,且(1)0h =,所以函数()h x在区间上满足()0h x ≥恒成立,同理也可以确定()0h x ≥在上也成立,即'()0g x ≥在(0,1]x ∈上恒成立,即22ln ()1x xg x x =-在(0,1]x ∈上单调增,且22111ln 2ln 2ln 11lim lim lim 1222x x x x x x x x x x x →→→++===-,故所求的实数a 的取值范围是1[,)2+∞,故选B. 点睛:该题属于应用导数研究函数最值的综合问题,在解题的过程中,注意构造新函数,并且反复求导,研究函数的单调性,从而确定出函数值的符号,从而确定出函数的单调性,从而得出函数在哪个点处取得最值,还有需要应用洛必达法则求极限来达到求最值的目的.二、填空题13.已知a 、b 、c 分别是ABC ∆三个内角A 、B 、C 的对边,1cos 2a Bbc +=,则角A 的大小为___________. 【答案】3π 【解析】 【分析】根据正弦定理,将表达式转化为角的表达式,由三角形内角的定理,化简即可求得角A . 【详解】因为a 、b 、c 分别是ABC ∆三个内角A 、B 、C 的对边,1cos 2a Bbc += 由正弦定理可得1sin cos sin sin 2A B B C += 因为sin sin()C A B =+ 展开化简可得1sin cos sin sin cos sin cos 2A B B A B B A +=+ 即1sin sin cos 2B B A = 因为三角形中sin 0B ≠ 则1cos 2A = 解得3A π=故答案:3π 【点睛】本题考查了正弦定理在解三角形中的简单应用,属于基础题.14.现有高一学生两人,高二学生两人,高三学生一人,将这五人排成一行,要求同一年级的学生不能相邻,则不同的排法总数为______. 【答案】48 【解析】 【分析】先求得五个人的全排列,除去相邻的情况,即为同一年级学生不相邻的情况. 【详解】将五个人全排列,共有55A 种;高一学生和高二学生都相邻:捆绑法把高一两个人和高二两个人看成一个整体,再三个团体全排列,共有223223A A A 种. 高一学生相邻,高二学生不相邻:捆绑法把高一学生作为一个整体排列,和高三学生再全排列,将高二的学生插3个空位中的两个,共有222223A A A 种. 高二学生相邻,高一学生不相邻:捆绑法把高而学生作为一个整体排列,和高三学生再全排列,将高一的学生插3个空位中的两个,共有222223A A A 种. 所以满足同一年级的学生不能相邻的总排列方法有5223222222522322322312024242448A A A A A A A A A A ---=---=种故答案为:48【点睛】本题考查了排列问题的综合应用,对于相邻问题,通常使用捆绑法作为一个整体处理,对于不相邻问题,通常采用插空法处理,属于中档题.15.已知直线1y x =-与双曲线()2210,0ax by a b +=><的渐近线交于A ,B 两点,且过原点和线段AB中点的直线的斜率为a b =______.【答案】【解析】 【分析】根据双曲线方程表示出双曲线的渐近线方程,与直线方程联立可得,A B 两点坐标,利用中点坐标公式求得中点M 的坐标.即可由直线斜率公式求得ab. 【详解】双曲线()2210,0ax by a b +=><所以其渐近线方程为y x = 因为直线1y x =-与渐近线交于A ,B 两点则1y x y x =-⎧⎪⎨=⎪⎩解得x y ⎧=⎪⎪⎪⎪⎨⎪⎪=⎪⎪⎩x y ⎧=⎪⎪⎪⎪⎨⎪⎪=⎪⎪⎩即两个交点坐标为A ⎛,B ⎛ 设,A B 中点坐标为M 则由中点坐标公式可得11,1a b M a a bb ⎛⎫ ⎪ ⎝+⎪⎪+⎭由题意OM k =则2M OM My a k x b===-故答案为: -【点睛】本题考查了双曲线的渐近线方程的简单应用,直线交点坐标的求法,斜率公式及中点坐标公式的应用,化简过程较为繁琐,属于中档题.16.已知边长为ABCD 的顶点都在同一个球面上,若3BAD π∠=,平面ABD ⊥平面CBD ,则该球的球面面积为___________.【答案】20π 【解析】 【分析】根据题意,画出空间几何图形.由几何关系,找出球心.由勾股定理解方程即可求得球的半径,进而得球的面积. 【详解】根据题意, G 为底面等边三角形CBD重心,作OG ⊥底面CBD .作AE BD ⊥交BD 于E ,过O 作OF AE ⊥交AE 于F .连接,AO OC 画出空间几何图形如下图所示:因为等边三角形CBD 与等边三角形ABD 的边长为23,且3BAD π∠=所以23sin33AE CE π==⨯=G 为底面等边三角形CBD 的重心,则113133EG CE ==⨯=,2GC = 面ABD ⊥平面CBD因而四边形OGEF 为矩形,设OG h =,则EF h =,球的半径为r 在Rt AFO ∆和Rt OGC ∆中()222222312h r h r⎧-+=⎪⎨+=⎪⎩解得15h r =⎧⎪⎨=⎪⎩ 所以球的表面积为()2244520S r πππ==⨯=故答案为: 20π【点睛】本题考查了空间几何体的结构特征,三棱锥外接球的半径与表面积求法,属于中档题.三、解答题17.如图,四棱锥S ABCD -的底面是边长为1的菱形,其中60DAB ∠=︒,SD 垂直于底面ABCD ,3SB =;(1)求四棱锥S ABCD -的体积;(2)设棱SA 的中点为M ,求异面直线DM 与SB 所成角的大小.【答案】(1) 66;(2) 3π.【解析】 【分析】(1)求出1BD =,3AC =,2SD =,由此能求出四棱锥S ABCD -的体积.(2)取BC 中点E ,以D 为原点,DA 为x 轴,DE 为y 轴,DS 为z 轴,建立空间直角坐标系,利用向量法能求出异面直线DM 与SB 所成角.【详解】解:(1)∵四棱锥S ABCD -的底面是边长为1的菱形,其中60DAB ∠=︒,SD 垂直于底面ABCD ,3SB =,∴1BD =,11211cos1203AC =+-⨯⨯⨯︒=,22312SD BD SB =-=-=,1131322ABCD S AC BD =⨯⨯=⨯⨯=, ∴四棱锥S ABCD -的体积113623326ABCD V S SD =⨯⨯=⨯⨯=. (2)取BC 中点E ,以D 为原点,DA 为x 轴,DE 为y 轴,DS 为z 轴,建立空间直角坐标系,()1,0,0A ,(2S ,12,0,22M ⎛ ⎝⎭,132B ⎛⎫ ⎪ ⎪⎝⎭, 122DM ⎛= ⎝⎭u u u u r ,1322SB ⎛= ⎝u u r ,设异面直线DM 与SB 所成角为θ,则31cos 2DM SB DM SBθ⋅===⋅u u u u r u u r u u u ur u u r ,故3πθ=, ∴异面直线DM 与SB 所成角为3π. 【点睛】本题考查了异面直线及其所成的角以及棱锥的体积,需熟记椎体的体积公式,异面直线所成的角可采用空间向量法进行求解. 18.已知函数3()sin cos 22f x x x ωω=+(其中0>ω). (1)若函数()f x 的最小正周期为3π,求ω的值,并求函数()f x 的单调递增区间; (2)若2ω=,0α<<π,且3()2f α=,求α的值. 【答案】(1)23ω=,递增区间332k k π⎡⎤π-ππ+⎢⎥⎣⎦,(k Z ∈);(2)12πα=或4π.【解析】 【分析】(1)利用辅助角公式化简,根据函数f (x )的最小正周期为3π,即可求ω的值和单调递增区间; (2)将ω=2,可得f (x )解析式,0<α<π,由()32f α=,利用三角函数公式即可求α的值. 【详解】解:(1)函数()322f x sin x x ωω=+=sin (ωx 6π+), ∵函数f (x )的最小正周期为3π,即T =3π2πω=∴ω23=那么:()236f x x π⎛⎫=+ ⎪⎝⎭,由2222362k x k πππππ-≤+≤+,k ∈Z , 得:332k x k ππππ-≤≤+∴函数f (x )的单调递增区间为332k k ππππ⎡⎤-++⎢⎥⎣⎦,,k ∈Z ;(2)函数()32f x sin x x ωω=+=(ωx 6π+),∵ω=2∴f (x)=(2x 6π+), ()32f α=,可得sin (2α6π+)=∵0<α<π,∴6π≤(2α6π+)136π≤2α63ππ+=或23π解得:α4π=或α12π=.【点睛】本题主要考查三角函数的图象和性质,利用三角函数公式将函数进行化简是解决本题的关键.19.已知等差数列{}n a 的前n 项和为n S ,满足2*1()2nn a S n N +⎛⎫=∈ ⎪⎝⎭.数列{}n b 的前n 项和为n T ,满足*2()n n T b n N =-∈.(1)求数列{}n a 和{}n b 的通项公式;(2)求数列2n n a b ⎧⎫⎨⎬⎩⎭的前n 项和'n S . 【答案】(1)21n a n =-,112n n b -⎛⎫ ⎪⎝⎭=;(2)23'32n nn S +=-. 【解析】 【分析】(1)根据题意,求得12,a a ,然后求得公差,即可求出数列{}n a 的通项,再利用11,1,2n n n T n b T T n -=⎧=⎨-≥⎩ 求得{}n b 的通项公式; (2)先求出2n n a b ⎧⎫⎨⎬⎩⎭的通项,然后利用数列求和中错位相减求和'n S . 【详解】解:(1)由212n n a S +⎛⎫= ⎪⎝⎭,得211112a S a +⎛⎫== ⎪⎝⎭,解得11a =. 由222122112a S a a a +⎛⎫=+=+= ⎪⎝⎭,解得23a =或21a =-.若21a =-,则2d =-,所以33a =-.所以2331312a S +⎛⎫=-≠= ⎪⎝⎭,故21a =-不合题意,舍去. 所以等差数列{}n a 的公差212d a a =-=, 故21n a n =-.数列{}n b 对任意正整数n ,满足2n n T b =-. 当1n =时,1112b T b ==-,解得11b =;当1n >时,()()11122n n n n n n n b T T b b b b ---=-=---=-, 所以()1122n n b b n -=≥. 所以{}n b 是以首项11b =,公比12q =的等比数列, 故数列{}n b 的通项公式为112n n b -⎛⎫= ⎪⎝⎭.(2)由(1)知2122n n n a b n -=, 所以2311352321'...22222n n nn n S ---=+++++,①所以2311132321' (22222)n nn n n S +--=++++,② ①-②,得2311122221'...222222n n n n S +-=++++-211111121 (22222)n n n -+-⎛⎫=++++- ⎪⎝⎭ 111112212112212n n n -+⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭-⎢⎥⎣⎦=+--1111211222n n n -+-⎛⎫=+--⎪⎝⎭, 所以23'32n nn S +=-. 【点睛】本题主要考查了数列的综合(包含数列通项的求法,以及求和中错位相减),易错点在于是否检验n=1的情况,以及计算的失误,属于中档题.20.已知椭圆C :22221x y a b +=()0a b >>的离心率2e =,左、右焦点分别是1F 、2F ,且椭圆上一动点M 到2F1,过2F 的直线l 与椭圆C 交于A ,B 两点. (1)求椭圆C 的标准方程;(2)当1F AB ∆以1F AB ∠为直角时,求直线AB 的方程;(3)直线l 的斜率存在且不为0时,试问x 轴上是否存在一点P 使得OPA OPB ∠=∠,若存在,求出P 点坐标;若不存在,请说明理由.【答案】(1)2212x y +=(2)直线AB 的方程为1y x =-+或1y x =-(3)存在,()2,0P【解析】 【分析】(1)由椭圆C的离心率2e =,且椭圆上一动点M 到2F1,列出方程组,求得,a b 的值,即可得到椭圆的标准方程;(2)设直线AB l :()1y k x =-,则1AF l :()11y x k=-+,联立方程组,求得k 的值,即可求得直线的方程;(3)设AB l :()1y k x =-,联立方程组,根据根与系数的关系,求得12x x +,12x x ,再由斜率公式和以0AP BP k k +=,即可求解点P 的坐标,得到答案.【详解】(1)由题意,椭圆C的离心率e =,且椭圆上一动点M 到2F1,可得22221c e a a c a b c ⎧==⎪⎪⎪+=⎨⎪=+⎪⎪⎩,解得11a cb ⎧=⎪=⎨⎪=⎩,所以椭圆的标准方程为2212x y +=.(2)由题意可知,当k 不存在时,1F AB ∆不符合题意. 设直线AB l :()1y k x =-,则1AF l :()11y x k=-+, ∴()()111y k x y x k ⎧=-⎪⎨=-+⎪⎩,得()2211k x k +=-,∴22212,11k k A k k ⎛⎫-- ⎪++⎝⎭∴()()()222222218211k k kk-+=++,427610k k --=,∴21k =,直线AB 的方程为1y x =-+或1y x =-.(3)设(),0P m ,()11,A x y ,()22,B x y ,AB l :()1y k x =-,()22122y k x x y ⎧=-⎨+=⎩∴()2222124220k x k x k +-+-=, ∴2122412k x x k +=+,21222212k x x k-=+, ∵11AP y k x m =-,22BP y k x m =-,所以()()()()1221120AP BPy x m y x m k k x m x m -+-+==--, ∴()1221120y x y x m y y +-+=,∴()()1212220kx x k mk x x km -+++=, ∴24km k =,2m =,∴()2,0P .【点睛】本题主要考查椭圆的标准方程的求解、及直线与圆锥曲线的位置关系的综合应用,解答此类题目,通常联立直线方程与椭圆(圆锥曲线)方程,应用一元二次方程根与系数的关系进行求解,此类问题易错点是复杂式子的变形能力不足,导致错解,能较好的考查考生的逻辑思维能力、运算求解能力、分析问题解决问题的能力等. 21.已知函数1()ln f x a x x=-,a R ∈. (1)若曲线()y f x =在点处的切线与直线20x y +=垂直,求a 的值;(2)求函数()f x 的单调区间;(3)当1a =,且2x ≥时,证明:(1)25f x x -≤-. 【答案】(1)1(2)见解析(3)见解析 【解析】【详解】(1)函数()f x 的定义域为{}0x x ,21()a f x x x '=+. 又曲线()y f x =在点处的切线与直线20x y +=垂直,所以(1)12f a '=+=,即1a =.(2)由于21()ax f x x ='+. 当0a ≥时,对于,有()0f x '>在定义域上恒成立,即()f x 在上是增函数.当0a <时,由()0f x '=,得.当时,()0f x '>,()f x 单调递增;、 当时,()0f x '<,()f x 单调递减.(3)当1a =时,1(1)ln(1)1f x x x -=---,.、令1()ln(1)251g x x x x =---+-. 2211(21)(2)()21(1)(1)x x g x x x x --=+-=----'. 当2x >时,()0g x '<,()g x 在单调递减. 又(2)0=g ,所以()g x 在恒为负.所以当时,()0g x ≤.即1ln(1)2501x x x ---+≤-. 故当1a =,且2x ≥时,(1)25f x x -≤-成立. 22.在平面直角坐标系xOy 中,直线l 的参数方程为1cos sin x t y t αα=+⎧⎨=⎩(其中t 为参数,且0)απ<<,在以O为极点、x 轴的非负半轴为极轴的极坐标系(两种坐标系取相同的单位长度)中,曲线C 的极坐标方程为22tan cos ρθθ=,设直线l 经过定点P ,且与曲线C 交于A 、B 两点. (Ⅰ)求点P 的直角坐标及曲线C 的直角坐标方程; (Ⅱ)求证:不论a 为何值时,2211||||+PA PB 为定值.【答案】(Ⅰ)直角坐标为(1,0),22(0)y x x =≠;(Ⅱ)见解析 【解析】 【分析】(Ⅰ)根据题意,令直线l 的参数方程中0t =即可求出点P 的直角坐标,整理化简曲线C 的极坐标方程,结合cos ,sin x y ρθρθ==,即可得到曲线C 的直角坐标方程;(Ⅱ)将直线l 的参数方程代入曲线C 的直角坐标方程,根据参数t 的几何意义,利用韦达定理即可证明2211||||+PA PB 为定值. 【详解】(Ⅰ)因为直线l 的参数方程为1cos sin x t y t αα=+⎧⎨=⎩(其中t 为参数,且0)απ<<, 所以当0t =时,得点(1,0)P ,即点P 的直角坐标为(1,0);又曲线C 的极坐标方程为22tan cos ρθθ=, 2sin 2cos 0ρθθ∴=≠,22sin 2cos 0ρθρθ∴=≠,Q cos ,sin x y ρθρθ==,22(0)y x x ∴=≠,即曲线C 的直角坐标方程为22(0)y x x =≠;(Ⅱ)证明:将直线l 的参数方程1cos sin x t y t αα=+⎧⎨=⎩代入22(0)y x x =≠, 整理得22sin 2cos 20t t αα--=,其中0απ<<,所以判别式△2224cos 8sin 44sin 0ααα=+=+>,由韦达定理可得,1222cos sin t t αα+=,1222sin t t α-=, 由参数方程中参数的几何意义可得,2221212222221212()211114cos 4sin 1||||()4t t t t PA PB t t t t αα+-++=+===, 即不论a 为何值时,2211||||+PA PB 都为定值1. 【点睛】本题考查极坐标方程与直角坐标方程的互化及参数方程中参数的几何意义;利用参数方程中参数的几何意义是证明2211||||+PA PB 为定值的关键;属于中档题、常考题型. 23.已知不等式|2||1|5x x -++…的解集为M .(Ⅰ)求M ;(Ⅱ)设m 为M 中的最大元素,正数a ,b 满足a b m +=【答案】(Ⅰ){|23}M x x =-剟;(Ⅱ)【解析】【分析】(Ⅰ)利用分段讨论法,分12x -<<,1x ≤-,2x ≥三种情况分别去绝对值解不等式,然后再取并集即可; (Ⅱ)由(Ⅰ)知,3a b +=,先平方,利用均值不等式求出2的最大值,然后再开方即可。
2020届河北省衡水金卷新高考冲刺模拟考试(五)文科数学
2020届河北省衡水金卷新高考冲刺模拟考试(五)数学(文)试卷★祝考试顺利★注意事项:1、考试范围:高考范围。
2、试题卷启封下发后,如果试题卷有缺页、漏印、重印、损坏或者个别字句印刷模糊不清等情况,应当立马报告监考老师,否则一切后果自负。
3、答题卡启封下发后,如果发现答题卡上出现字迹模糊、行列歪斜或缺印等现象,应当马上报告监考老师,否则一切后果自负。
4、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
5、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。
6、主观题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。
如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
7、保持答题卡卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。
8、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
一、选择题:1.已知集合{}0A x x =>,{}21B x x =-<<,则A B =U ( )A. ()2,0-B. ()0,1C. ()2,-+∞D. ()1,+∞ 【答案】C【解析】【分析】根据并集的定义计算可得. 【详解】解:{}0A x x =>Q ,{}21B x x =-<< {}()|22,A B x x ∴⋃=>-=-+∞故选:C【点睛】本题考查集合的运算,属于基础题.2.()23z i i +=-,则z =( )A. 1B. 2C. 3D. 2【答案】B【解析】【分析】 根据复数代数形式的除法运算计算出z ,再根据复数模的公式计算可得.【详解】解:()23z i i +=-Q()()()()232363212225i i i i i i z i i i i -----+∴====-++- ()22112z ∴=+-=故选:B【点睛】本题考查复数代数形式的运算,以及复数的模,属于基础题.3.中华文化博大精深,源远流长,每年都有大批外国游客入境观光旅游或者学习等,下面是2014年至2018年三个不同年龄段外国入境游客数量的柱状图:下面说法错误的是:( )A. 2014年至2018年外国入境游客中,2544-岁年龄段人数明显较多B. 2015年以来,三个年龄段的外国入境游客数量都在逐年增加C. 2015年以来,2544-岁外国入境游客增加数量大于4564-岁外国入境游客增加数量D. 2017年,2544-岁外国入境游客增长率大于1524-岁外国入境游客增长率【答案】D【解析】【分析】根据柱状图一一判断可得.【详解】解:根据柱状图可知,2544-岁年龄段人数明显多于其它年龄段的人数,故A 正确;三个年龄段的外国入境游客数量都在逐年增加,其中2544-岁每年都将近增加了450万人次,增加最多,故B 、C 正确;从柱状图可看出,2017年,2544-岁外国入境游客增长率小于1524-岁外国入境游客增长率,故D 错误;故选:D【点睛】本题考查统计图表的应用,学会分析图表,属于基础题.4.已知椭圆22:143x y C +=的右焦点、右顶点、上顶点分别为,,F A B ,则FAB S =△( )A. 12 B. 2 C. 2 D.【答案】B【解析】【分析】根据椭圆方程求出点的坐标,即可求出三角形的面积. 【详解】解:22143x y +=Q2a ∴=,b =1c =()1,0F ∴,()2,0A ,(B11122FAB S FA OB ∴==⨯=△ 故选:B【点睛】本题考查椭圆的简单几何性质,属于基础题.5.已知角α的顶点在原点,始边与x 轴的非负半轴重合,终边经过点()1,2-,则cos2=α( )A. 35- B. 35 C. 45- D. 45【答案】A【解析】【分析】根据任意角的三角函数的定义求出sin α,再由二倍角公式求解.【详解】解:因为角α的终边经过点()1,2-,所以sin 5α-==223cos 212sin 1255αα⎛⎫-∴=-=-=- ⎪ ⎪⎝⎭故选:A【点睛】本题考查任意角的三角函数的定义,二倍角公式的应用,属于基础题.6.设,x y 满足约束条件1,1,33,x y x y x y -≥-⎧⎪+≥⎨⎪-≥⎩则2z x y =-的最小值为( )A. 2-B. 1-C. 1D. 2【答案】C【解析】【分析】由约束条件作出可行域,由图得到最优解,求出最优解的坐标,数形结合得答案.【详解】解:由约束条件1,1,33,x y x y x y -≥-⎧⎪+≥⎨⎪-≥⎩作出可行域如图,由图可知,最优解为A ,联立133x y x y -=-⎧⎨-=⎩,解得()2,3A.2z x y ∴=-的最小值为2231⨯-=.故选:C .【点睛】本题考查了简单的线性规划,考查了数形结合的解题思想方法,属于基础题.7.已知ln a π=,3log 2b =,20.3c = )A. a b c >>B. a c b >>C. c b a >>D. b c a>>【答案】A【解析】【分析】根据对数函数的单调性及指数函数的性质比较大小.【详解】解:ln ln 1a e π=>=Q ,3331log 3log 2log 312=<=,即112b <<,2210.090.30.30.30.3=<<=,即00.3c <<所以a b c >>故选:A【点睛】本题考查指数函数、对数函数的性质,属于基础题.8.已知1a =r ,2b =r ,0a b ⋅=r r ,若23c a b =r r ,则a r 与c r 的夹角为( ) A. 6π B. 3π C. 23π D. 56π【答案】B【解析】【分析】首先求出向量c r 的模,再求出a c ⋅r r ,最后根据夹角公式计算可得.【详解】解:23c a b =-r r r Q ()222222234343413243016c a b a b a b ∴=-=+-⋅=⨯+⨯-⨯=r r r r r r r 4c ∴=r()223232a c a a b a a b ∴⋅=⋅-=-⋅=r r r r r r r r 设a r 与c r 的夹角为θ 所以21cos 142a c a c θ⋅===⨯⋅r r r r ,[]0,θπ∈Q 3πθ∴=故选:B【点睛】本题考查向量的数量积的计算,向量的夹角的运算,属于基础题.9.函数sin ln y x x =⋅的部分图象大致为( )A. B. C. D.【答案】D【解析】【分析】首先求出函数的定义域,再判断函数的奇偶性,即可排除A 、C ,又根据当0x →时,函数值趋近于零,即可得出答案.【详解】解:()sin ln y f x x x ==⋅Q 定义域为()(),00,-∞⋃+∞()()()sin ln sin ln f x x x x x f x -=-⋅-=⋅=所以()f x 为偶函数,图象关于y 轴对称,故排除A 、C , 又0x →时, sin 0x →,ln x →-∞,()sin ln 0y f x x x ∴==⋅→即可排除B ,故选:D【点睛】本题考查函数图象的识别,判断函数的图象可以通过定义域、值域、单调性、奇偶性以及特殊值进行排除.一般不需要直接列表描点作图,属于基础题.10.已知双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别为12,F F ,过1F 作C 的一条渐近线的垂线,垂足为P ,2PF 交另一条渐近线于Q ,且Q 为2PF 的中点,则C 的离心率为( )C. 2【答案】A【解析】【分析】 设一渐近线方程为b y x a=,则1F P 的方程为0()a y x c b -=-+,代入渐近线方程求得P 的坐标,由中点公式求得中点Q 的坐标,再把点Q 的坐标代入渐近线方程求得离心率. 【详解】解:由题意可知,一渐近线方程为b y x a =,则1F P 的方程为0()a y x c b -=-+,代入渐近线方程b y x a=可得 P 的坐标为2,a ab c c ⎛⎫-- ⎪⎝⎭,故2PF 的中点2,22a c ab c Q c ⎛⎫- ⎪- ⎪ ⎪ ⎪⎝⎭,根据中点Q 在双曲线的渐近线b y x a =-上, ∴222a c b ab c a c --⋅=-,∴222c a =,故c a =故选:A .【点睛】本题考查双曲线的标准方程,以及双曲线的简单性质的应用,求出2F P 的中点Q 的坐标是解题的关键,属于基础题.11.在边长为2的正方体1111ABCD A B C D -中,过AB 中点E 的直线l 与直线11A D ,直线1BC 分别交于点,M N ,则MN 的长为( )A. 5B. C. 6D. 【答案】C【解析】【分析】先判断l 与11A D 的交点N 与1D 重合,延长1D E ,与1C B 的延长线交于M ,结合E 是AB 的中点,可确定M 位置,进而可得结果. 【详解】因为直线l 过E 与11A D 相交,所以l ⊂平面11A D E ,因为直线l 过E 与1BC 相交,所以l ⊂平面1BC E ,即l ⊂平面11BC D E ,所以l 是两平面的交线,而平面11A D E ⋂平面111BC D E D E =,所以l 与1D E 重合,l 与11A D 的交点N 与1D 重合,延长1D E ,与1C B 的延长线交于M ,因为E 是AB 的中点,所以B 是1C M 的中点,因为正方体的棱长为2122242MC ∴=⨯= ()2214226MN MD ∴==+= 故选:C【点睛】本题考查学生作图能力和计算能力,空间想象能力.解题的关键在于确定直线l 过E 点与异面直线11A D ,1BC 的交点M 、N 两点,属于难.12.关于曲线22:1C x xy y -+=有下述三个结论:①曲线C 关于y 轴对称②曲线C 上任意一点的横坐标不大于1③曲线C 2其中所有正确结论个数是( )A. 0B. 1C. 2D. 3【答案】B【解析】【分析】 根据曲线方程,将x 换成x -即可判断①;再将曲线方程看成关于y 的方程,利用根的判别式求出x 的取值范围,即可判断②;再根据基本不等式可判断③;【详解】解:曲线22:1C x xy y -+=将x 换成x -,则()()221x x y y ---+=整理得221x xy y ++=,故曲线22:1C x xy y -+=不关于y 轴对称,故①错误;由221x xy y -+=得2210y xy x -+-=()()22410x x ∴∆=---≥解得33x -≤≤,故②错误;设(),P x y 为曲线上的一点,则P 到原点的距离为:OP =221x xy y -+=Q222212x y x y xy +∴+-=≤(当x y =时取等号) 222x y ∴+≤OP ∴=C故③正确故选:B【点睛】本题考查曲线方程及命题的真假判断与应用,属于中档题.二、填空题:13.曲线x y e =在点()1,e 处的切线方程为__________. 【答案】3122y ex e =- 【解析】【分析】首先求出函数的导数,再求导函数在1x =处的导数值,即切线的斜率,再用点斜式求出切线方程.【详解】解:12x x y e x e ==Q ()1111222212x x x x y x e x e x e x e -'⎛⎫''∴=+=+ ⎪⎝⎭ 111122113|1122x y e e e -='∴=⋅⋅+⋅= 所以切线方程为:()312y e e x -=-即3122y ex e =- 故答案为:3122y ex e =- 【点睛】本题考查导数的几何意义,利用导数求在一点处的切线方程,属于基础题.14.记n S 为等差数列{}n a 的前n 项和.已知30a =,848S =,则公差d =__________.【答案】4【解析】【分析】设等差数列{}n a 的首项为1a ,公差为d ,根据所给条件列出方程组,解得.【详解】解:设等差数列{}n a 的首项为1a ,公差为d ,30a =Q ,848S =()11208818482a d a d +=⎧⎪∴⎨⨯-+=⎪⎩解得184a d =-⎧⎨=⎩ 故答案为:4【点睛】本题考查等差数列通项公式,求和公式的应用,属于基础题.15.设函数()()sin 06f x x πωω⎛⎫=-> ⎪⎝⎭在区间,2ππ⎛⎫ ⎪⎝⎭内有零点,无极值点,则ω的取值范围是_______. 【答案】1145,,6333⎛⎫⎡⎤⎪⎢⎥⎝⎭⎣⎦U 【解析】【分析】依题意首先求出ω的大致范围,再根据在区间,2ππ⎛⎫⎪⎝⎭内有零点,无极值点, 得到不等式组22662k k k k ππππωπππππωπ⎧-+≤-<⎪⎪⎨⎪<-≤+⎪⎩,()k Z ∈,即可求出ω的取值范围.【详解】解:()()sin 06f x x πωω⎛⎫=-> ⎪⎝⎭Q 依题意得22πT π-≤ T π∴≥ 2T πω=Q02ω∴<≤,2πx π⎛⎫∈ ⎪⎝⎭Q , 2666x ππππωωπω∴-<-<-因为函数()()sin 06f x x πωω⎛⎫=-> ⎪⎝⎭在区间,2ππ⎛⎫⎪⎝⎭内有零点,无极值点, 22662k k k k ππππωπππππωπ⎧-+≤-<⎪⎪∴⎨⎪<-≤+⎪⎩,()k Z ∈,解得2122331263k k k k ωω⎧-+≤<+⎪⎪∴⎨⎪+<≤+⎪⎩,()k Z ∈,当0k =时,1163ω<<满足条件, 当1k =时,4533ω≤≤满足条件,当2k ≥时,显然不满足条件, 综上可得1145,,6333ω⎛⎫⎡⎤∈ ⎪⎢⎥⎝⎭⎣⎦U故答案为:1145,,6333⎛⎫⎡⎤⎪⎢⎥⎝⎭⎣⎦U 【点睛】本题考查三角函数的性质,综合性强,难度比较大,属于难题.16.《周髀算经》是我国最古老的天文学与数学著作,书中讨论了测量“日高”(太阳高度)的方法.大意为:“在,A B 两处立表(古代测望用的杆子,即“髀”),设表高均为h ,测得表距为d ,两表日影长度差为()0εε>,则可测算出日高”由所学知识知,日高H =__________.(用,h d 表示)【答案】()h d εε+【解析】 【分析】如图,由题意可知AD BC h ==,AB d =,设EF H =,AE x =,1AA y =则1BB y ε=+,由题可知11A AD A EF ∆∆∽且11B BC B EF ∆∆∽,利用三角形相似得到边的比例关系,再化简即可得到.【详解】解:如图,由题意可知AD BC h ==,AB d =, 设EF H =,AE x =,1AA y =则1BB y ε=+ 由题可知11A AD A EF ∆∆∽且11B BC B EF ∆∆∽11A E EF AD A A ∴=,11B EEF BC B B= 即H x y h y +=,H x y d h y εε+++=+ 即()Hy h x y =+①,()()()()H y h x y d h x y h d εεε+=+++=+++②, ②减①得()H h d εε=+()h d H εε+∴=故答案为:()h d εε+【点睛】本题考查解三角形的应用,题目新颖,属于难题.三、解答题:17.某市为创建全国文明城市,推出“行人闯红灯系统建设项目”,将针对闯红灯行为进行曝光.交警部门根据某十字路口以往的监测数据,从穿越该路口的行人中随机抽查了200人,得到如图示的列联表:闯红灯不闯红灯合计年龄不超过45岁 6 74 80年龄超过45岁 2496 120合计 30 170200(1)能否有97.5%的把握认为闯红灯行为与年龄有关?(2)下图是某路口监控设备抓拍的5个月内市民闯红灯人数的统计图.请建立y 与x 的回归方程ˆˆˆybx a =+,并估计该路口6月份闯红灯人数.附:()()()()()22n ad bc K a b c d a c b d -=++++1221ˆni ii n i i x ynx ybx nx==-=-∑∑,ˆˆay bx =-参考数据:521685ii y==∑,511966i i i x y ==∑【答案】(1)有97.5%的把握认为闯红灯行为与年龄有关(2)ˆ8.9163.7yx =-+,估计该路口6月份闯红灯人数为110(111也可) 【解析】 【分析】(1)由列联表计算出卡方,与所给数据对比即可得出结论.(2)根据所给数据计算出x ,y ,b$,$a ,即可得到回归方程,代入计算可得. 【详解】(1)由列联表计算()2220069674243017080120K ⨯-⨯=⨯⨯⨯ 5.882 5.024≈>,所以有97.5%的把握认为闯红灯行为与年龄有关. (2)由题意得,()11234535x =++++=,()11581431341301201375y =++++= 51522155i ii i i x y x ybx x==-∴==-∑∑$1966531378.95559-⨯⨯=--⨯137ay bx ∴=-=$$()8.93163.7--⨯= 8.9163.7yx ∴=-+$当6x =时,8.96163.7110.3y=-⨯+=$ 所以估计该路口6月份闯红灯人数为110(111也可) 【点睛】本题考查独立性检验,回归方程的计算,属于基础题. 18.记n S 为数列{}n a 的前n 项和.已知12n n S a +=. (1)求{}n a 的通项公式;(2)求使得22020n n a S >+的n 的取值范围.【答案】(1)12n n a -=(2)7n ≥,n N ∈【解析】 【分析】(1)根据11,1,2n nn S n a S S n -=⎧=⎨-≥⎩计算可得;(2)由(1)可得2122n n a -=,21nn S =-,从而得到不等式解得.【详解】(1)由题知,12n n S a +=①,当1n =时,11a =当2n ≥时,1112n n S a --+=② ①减②得,12n n a a -=,故{}n a 是以1为首项,2为公比的等比数列,所以12n n a -=(2)由(1)知,2122n n a -=,21n n S =-22020n n a S >+即210221202n n --+> 等价于()2224038nn->易得()222nn-随n 的增大而增大而6n =,()2224038nn-<,7n =,()2224038n n ->故7n ≥,n N ∈【点睛】本题考查作差法求数列的通项公式,等比数列的前n 项和公式的应用,属于基础题. 19.ABC V 的内角,,A B C 的对边分别为,,a b c ,已知()()sin cos bA B A B a=+-+. (1)求A ; (2)若2b =+,求cos B .【答案】(1)4π(2)4【解析】【分析】(1)由正弦定理将边化角,再利用两角和差的正弦公式化简可得;(2)利用正弦定理将边化角,利用三角恒等变换可得sin 42B π⎛⎫-= ⎪⎝⎭,从而求出角B ,再用两角和的余弦公式计算可得.【详解】(1)由正弦定理得:sin sin cos sin BC C A=+ sin sin sin sin cos B A C A C ∴=+即()sin sin sin sin cos A C A C A C +=+ 整理,得cos sin sin sin A C A C =因为sin 0C ≠,则cos sin A A = 又()0,A π∈Q ,4A π∴=(2)由正弦定理得:2sin B A C =+2sin 4B π∴=+4B π⎛⎫+ ⎪⎝⎭6sin cos B B ∴-=3sin 42B π⎛⎫∴-= ⎪⎝⎭ 304B π<<Q ,442B πππ∴-<-<,43B ππ∴-= 即43B ππ=+,所以212326cos cos cos cos sin sin 434343222B ππππππ-⎛⎫=+=-=⨯-⨯=⎪⎝⎭【点睛】本题考查正弦定理的应用,三角恒等变换的化简求值,属于基础题.20.如图,DA ⊥平面ABEF ,四边形ABEF 为矩形,AB CD ∥,4AB =,2AF AD CD ===,,M N 分别为,DF BC 的中点.(1)证明:MN ∥平面ABEF ; (2)求点F 到平面MBC 的距离. 【答案】(1)证明见解析(2)21111h =【解析】 【分析】(1)取AD 中点O ,连结,OM ON ,依题意可知//OM AF ,//OM AB ,即可得到平面//OMN 平面ABEF ,从而得到线面平行;(2)连结,AM OB ,可证AF ⊥平面ABCD ,从而得到MO OB ⊥,即可求出MBC S △, 设点F 到平面MBC 的距离为h .由题可得,AM ⊥平面CDFE ,13F MBC MBC V S h -=⋅△,13A FMC FMC V S AM -=⋅△,利用等体积法求出线面距.【详解】(1)证明:取AD 中点O ,连结,OM ON .由题知,//OM AF ,//OM AB ,又OM ON O =I ,AF AB A ⋂=,OM ON ⊂平面OMN ,,AB AF ⊂平面ABEF则平面//OMN 平面ABEF ,而MN ⊂平面OMN 所以//MN 平面ABEF (2)连结,AM OB .由题知,AF AB ⊥,AF AD ⊥且,AB AD ⊂平面ABCD ,AB AD A ⋂= 所以AF ⊥平面ABCD ,OB ⊂Q 平面ABCD则AF OB ⊥故MO OB ⊥,可得22211432MB =++=在MBC ∆中,32MB =6MC =,22BC =可得11MBC S =△设点F 到平面MBC 的距离为h . 由题可得,AM ⊥平面CDFE13F MBC MBC V S h -=⋅△,13A FMC FMC V S AM -=⋅△而F MBC B FMC A FMC V V V ---==,可得21111h =【点睛】本题考查线面平行,面面平行的证明,等体积法的应用,点面距的计算,属于中档题. 21.设抛物线2:4C x y =的焦点为F ,P 为直线:2l y =-上的动点,过P 作C 的两条切线,切点分别为,M N .(1)若P 的坐标为()0,2-,求MN ; (2)证明:2PFMF NF =⋅.【答案】(1)MN =2)证明见解析 【解析】 【分析】(1)求出函数的导数,设切点坐标为2001,4x x ⎛⎫ ⎪⎝⎭,则切线斜率02xk =,因为P 为直线:2l y =-上的动点,从而求出0x =±MN(2)设()11,M x y ,()22,N x y ,(),2P t -则切线PM 方程为:()21111142y x x x x -=- 又直线PM 过点P ,则有21111224x t x -=-,即211112042x tx --=,即可得到12,x x 是方程2112042x tx --=的两个根,列出韦达定理,根据()()1211MF NF y y ⋅=+⋅+化简即可得证. 【详解】(1)24x y =Q 即24x y =2x y '∴=设切点坐标为2001,4x x ⎛⎫ ⎪⎝⎭,则切线斜率02xk =,切线方程为()2000142x y x x x -=-又因为切线过点P ,则20124x -=-,0x =±所以MN =(2)设()11,M x y ,()22,N x y ,(),2P t -则切线PM 方程为:()21111142y x x x x -=- 又直线PM 过点P ,则有21111224x t x -=-,即211112042x tx --=同理有222112042x tx --= 于是12,x x 是方程2112042x tx --=的两个根,则122x x t +=,128x x =-229PF t ∴=+()()1211MF NF y y ⋅=+⋅+=()()22121211164x x x x ++2121192x x t -+=+ 2PF MF NF ∴=⋅【点睛】本题考查抛物线的简单几何性质,导数的应用,属于中档题. 22.已知函数()()1xf x x a e =+-.(1)证明:()f x 存在唯一零点;(2)若0x ≥时,()2f x ax ≥,求a 的取值范围. 【答案】(1)证明解析(2)[)1,+∞ 【解析】 【分析】(1)求出函数的导数,由()0f x '=,得1x a =--,当1x a <--时,()0f x <,又()1110a f a e ----=--<,且当1x a >--时, ()f x 单调递增,只需说明函数在1x a >--部分存在大于零的函数值,即可说明函数存在唯一零点.(2)设()()2g x f x ax =-=()21xxa e x xe -+-,再设()()20xh x e x x =-≥,利用导数求出()h x 的最小值,可知最小值大于零,由()00g ≥,可得1a ≥,再验证1a ≥时()0g x ≥恒成立即可. 【详解】(1)()()1xf x x a e '=++,由()0f x '=,得1x a =-- 当1x a <--时,()0f x <当1x a >--时,()0f x '>,()f x 单调递增()1110a f a e ----=--<Q取b 满足0b >且1b a >-+,则()()1b f b b a e =+-10b e >->故()f x 存在唯一零点(2)设()()2g x f x ax =-=()21x x a e x xe -+-设()()20x h x e x x =-≥,则()2x h x e '=-,令()20x h x e '=-=则ln 2x =且当ln 2x >时,()0h x '>,即()h x 在()ln 2,+∞上单调递增,当0ln 2x ≤<时,()0h x '<,即()h x 在[)0,ln 2上单调递减,易得()()min ln 2h x h ≥=()21ln 20->由题知,()00g ≥,可得1a ≥当1a ≥时,()()21x x g x e x xe ≥-+-()121121x x x e x +⎛⎫=+- ⎪+⎝⎭设()()11021x x x e x x ϕ+=-≥+,()()2223021x x xx e x ϕ+'=≥+(仅当0x =取等号)则()x ϕ在[)0,+∞递增,所以()()00x ϕϕ≥=,可得()()()210g x x x ϕ≥+≥因此a 的范围是[)1,+∞【点睛】本题考查利用导数研究函数的单调性、极值、最值,利用导数证明不等式恒成立,属于难题.。
河北省衡水市2019-2020学年中考数学第五次调研试卷含解析
河北省衡水市2019-2020学年中考数学第五次调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,Rt △AOB 中,∠AOB=90°,OA 在x 轴上,OB 在y 轴上,点A 、B 的坐标分别为(3,0),(0,1),把Rt △AOB 沿着AB 对折得到Rt △AO′B ,则点O′的坐标为( )A .3522(,)B .3322(,)C .23532(,)D .43332(,) 2.在数轴上标注了四段范围,如图,则表示8的点落在( )A .段①B .段②C .段③D .段④3.如图,已知函数3y x =-与k y x =的图象在第二象限交于点()1,A m y ,点()21,B m y -在k y x =的图象上,且点B 在以O 点为圆心,OA 为半径的O e 上,则k 的值为( )A .34-B .1-C .32-D .2-4.如图,点D(0,3),O(0,0),C(4,0)在⊙A 上,BD 是⊙A 的一条弦,则cos ∠OBD =( )A .12B .34C .45D .355.方程x 2﹣3x+2=0的解是( )A .x 1=1,x 2=2B .x 1=﹣1,x 2=﹣2C .x 1=1,x 2=﹣2D .x 1=﹣1,x 2=26.已知:如图,点P 是正方形ABCD 的对角线AC 上的一个动点(A 、C 除外),作PE ⊥AB 于点E ,作PF ⊥BC 于点F ,设正方形ABCD 的边长为x ,矩形PEBF 的周长为y ,在下列图象中,大致表示y 与x 之间的函数关系的是( )A .B .C .D .7.将一把直尺与一块三角板如图所示放置,若140∠=︒则∠2的度数为( )A .50°B .110°C .130°D .150°8.一次函数y ax c =+与二次函数2y ax bx c =++在同一平面直角坐标系中的图像可能是( ) A . B . C . D .9.某微生物的直径为0.000 005 035m ,用科学记数法表示该数为( )A .5.035×10﹣6B .50.35×10﹣5C .5.035×106D .5.035×10﹣510.某商场试销一种新款衬衫,一周内售出型号记录情况如表所示: 型号(厘米)38 39 40 41 42 43 数量(件) 25 30 36 50 28 8 商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最有意义的是( ) A .平均数 B .中位数 C .众数 D .方差11.如图,边长为2a 的等边△ABC 中,M 是高CH 所在直线上的一个动点,连接MB ,将线段BM 绕点B 逆时针旋转60°得到BN ,连接HN .则在点M 运动过程中,线段HN 长度的最小值是( )A .12aB .aC .32aD .3a12.化简2(21)÷-的结果是( )A .221-B .22-C .12-D .2+2二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在△ABC 中,∠A=70°,∠B=50°,点D ,E 分别为AB ,AC 上的点,沿DE 折叠,使点A 落在BC 边上点F 处,若△EFC 为直角三角形,则∠BDF 的度数为______.14.若一个多边形的内角和是900º,则这个多边形是 边形.15.A 、B 两地之间为直线距离且相距600千米,甲开车从A 地出发前往B 地,乙骑自行车从B 地出发前往A 地,已知乙比甲晚出发1小时,两车均匀速行驶,当甲到达B 地后立即原路原速返回,在返回途中再次与乙相遇后两车都停止,如图是甲、乙两人之间的距离s (千类)与甲出发的时间t (小时)之间的图象,则当甲第二次与乙相遇时,乙离B 地的距离为_____千米.16.算术平方根等于本身的实数是__________.17.已知二次函数21y ax bx c =++与一次函数()20y kx m k =+≠的图象相交于点()2,4A -,()8,2.B 如图所示,则能使12y y >成立的x 的取值范围是______.18.抛物线y =x 2﹣4x+2m 与x 轴的一个交点的坐标为(1,0),则此抛物线与x 轴的另一个交点的坐标是______. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分) (1)如图,四边形ABCD 为正方形,BF AE ⊥,那么BF 与AE 相等吗?为什么? (2)如图,在Rt ACB ∆中,BA BC =,90ABC ∠=︒,D 为BC 边的中点,BE AD ⊥于点E ,交AC 于F ,求:AF FC 的值(3)如图,Rt ACB ∆中,90ABC ∠=︒,D 为BC 边的中点,BE AD ⊥于点E ,交AC 于F ,若=3AB ,4BC =,求CF .20.(6分)如图,在电线杆CD 上的C 处引拉线CE 、CF 固定电线杆,拉线CE 和地面所成的角∠CED=60°,在离电线杆6米的B 处安置高为1.5米的测角仪AB ,在A 处测得电线杆上C 处的仰角为30°,求拉线CE 的长(结果保留小数点后一位,参考数据:2 1.41,?3 1.73≈≈).21.(6分)如图,两座建筑物的水平距离BC 为60m .从C 点测得A 点的仰角α为53°,从A 点测得D 点的俯角β为37°,求两座建筑物的高度(参考数据:3433437,37 37, 534 53?35)55453sin cos tan sin cos tan ≈≈≈≈≈≈o o o o o o ,,,22.(8分)如图,矩形ABCD为台球桌面,AD=260cm,AB=130cm,球目前在E点位置,AE=60cm.如果小丁瞄准BC边上的点F将球打过去,经过反弹后,球刚好弹到D点位置.求BF的长.23.(8分)如图,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,将△DEF与△ABC重合在一起,△ABC不动,△DEF运动,并满足:点E在边BC上沿B到C的方向运动,且DE始终经过点A,EF与AC交于M点.(1)求证:△ABE∽△ECM;(2)探究:在△DEF运动过程中,重叠部分能否构成等腰三角形?若能,求出BE的长;若不能,请说明理由;(3)当线段AM最短时,求重叠部分的面积.24.(10分)某水果批发市场香蕉的价格如下表购买香蕉数(千克) 不超过20千克20千克以上但不超过40千克40千克以上每千克的价格6元5元4元张强两次共购买香蕉50千克,已知第二次购买的数量多于第一次购买的数量,共付出264元,请问张强第一次,第二次分别购买香蕉多少千克?25.(10分)在一个不透明的布袋里装有4个标有1、2、3、4的小球,它们的形状、大小完全相同,李强从布袋中随机取出一个小球,记下数字为x,王芳在剩下的3个小球中随机取出一个小球,记下数字为x,yy,这样确定了点M的坐标()()1画树状图列表,写出点M所有可能的坐标;。
河北省衡水市2020年3月高三年级第五次调研考试理科数学试题(含解析)
2019~2020学年高三年级第五次调研考试数学试题(理科)考试时间:120分钟 满分:150分一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的.)1.()Z M 表示集合M 中整数元素的个数,设集合{}18A x x =-<<,{}5217B x x =<<,则()Z A B =I ( )A .3B .4C .5D .62.已知复数z 满足(12i)43i z +=+,则z 的共轭复数是( )A .2i -B .2i +C .12i +D .12i - 3.已知函数()f x 是定义在R 上的偶函数,且在()0,+∞上单调递增,则( ) A .()()()0.633log 132f f f -<-< B .()()()0.6332log 13f f f -<<- C .()()()0.632log 133f f f <-<-D .()()()0.6323log 13f f f <-<4.宋代诗词大师欧阳修的《卖油翁》中有一段关于卖油翁的精湛技艺的细节描写:“(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌油沥之,自钱孔入,而钱不湿.”如果铜钱是直径为5cm 的圆,钱中间的正方形孔的边长为2cm ,则卖油翁向葫芦内注油,油正好进入孔中的概率是( )A .25 B .425 C .25π D .1625π5.命题:p ,x y ∈R ,222x y +<,命题:q ,x y ∈R ,||||2x y +<,则p 是q 的( ) A .充分非必要条件 B .必要非充分条件 C .必要充分条件 D .既不充分也不必要条件6.已知数列{}n a 中,11a =,1n n a a n +=+,若利用如图所示的程序框图计算该数列的第2020项,则判断框内的条件是( ) A .2018?n „ B .2019?n „ C .2020?n „ D .2021?n „ 7.函数2sin ()2xf x x x x=+-的大致图象为( ) A . B .输出S1n=1,S=1结束开始C .D .8.若函数()()sin f x A x ωϕ=+(其中0A >,π2ϕ<)图象的一个对称中心为π,03⎛⎫⎪⎝⎭,其相邻一条对称轴方程为7π12x =,该对称轴处所对应的函数值为1-,为了得到()cos2g x x =的图象,则只要将()f x 的图象( ) A .向右平移π6个单位长度B .向左平移π12个单位长度 C .向左平移π6个单位长度D .向右平移π12个单位长度9.已知AB 是圆()22:11C x y -+=的直径,点P 为直线10x y -+=上任意一点,则PA PB ⋅u u u r u u u r的最小值是( )A .1B .0 CD110.圆锥SD (其中S 为顶点,D 为底面圆心)的侧面积与底面积的比是2:1,则圆锥SD 与它外接球(即顶点在球面上且底面圆周也在球面上)的体积比为( ) A .9:32 B .8:27 C .9:22 D .9:2811.已知直线()0y kx k =≠与双曲线()222210,0x y a b a b -=>>交于A ,B 两点,以AB 为直径的圆恰好经过双曲线的右焦点F ,若ABF △的面积为24a ,则双曲线的离心率为( )ABC .2 D12.若对于任意的120x x a <<<,都有211212ln ln 1x x x x x x ->-,则a 的最大值为( )A .2eB .eC .12D .1二.填空题(本大题共4小题,每题5分,共20分.)13.在nx x ⎪⎭⎫ ⎝⎛-23的二项展开式中,所有项的二项式系数之和为256,则常数项等于 .14.在ABC △中,角A 、B 、C 的对边分别为a 、b 、c,若b =3c =,2B C =,则cos2C 的值为 .15.正四棱锥S ABCD -底面边长为2,高为1,E 是边BC 的中点,动点P 在四棱锥表面上运动,并且总保持0PE AC ⋅=u u u r u u u r,则动点P 的轨迹的周长为 .16.定义在()0,+∞上的函数()f x 满足()0f x >,()()f x f x '为的导函数,且()()()23f x xf x f x '<<对()0,x ∈+∞恒成立,则()()23f f 的取值范围是 . 三.解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.)17.(本小题12分)在公差为d 的等差数列{}n a 中,221212a a a a +=+.(1)求d 的取值范围;(2)已知1d =-,试问:是否存在等差数列{}n b ,使得数列21n n a b ⎧⎫⎨⎬+⎩⎭的前项和为1nn +?若存在,求{}n b 的通项公式;若不存在,请说明理由. 18.(本小题12分)如图1,梯形ABCD 中,AB CD ∥,过A ,B 分别作AE CD ⊥,BF CD ⊥,垂足分别为E 、F .2AB AE ==,5CD =,已知1DE =,将梯形ABCD 沿AE ,BF 同侧折起,得空间几何体ADE BCF -,如图2. (1)若AF BD ⊥,证明:DE ⊥平面ABFE ;(2)若DE CF ∥,3CD =,线段AB 上存在一点P ,满足CP 与平面ACD 所成角的正弦值为5,求AP 的长.19.(本小题12分)《山东省高考改革试点方案》规定:从2017年秋季高中入学的新生n开始,不分文理科;2020年开始,高考总成绩由语数外3门统考科目和物理、化学等六门选考科目构成.将每门选考科目的考生原始成绩从高到低划分为A 、B +、B 、C +、C 、D +、D 、E 共8个等级.参照正态分布原则,确定各等级人数所占比例分别为3%、7%、16%、24%、24%、16%、7%、3%.选考科目成绩计入考生总成绩时,将A 至E 等级内的考生原始成绩,依照等比例转换法则,分别转换到[]91,100、[]81,90、[]71,80、[]61,70、[]51,60、[]41,50、[]31,40、[]21,30八个分数区间,得到考生的等级成绩.某校高一年级共2000人,为给高一学生合理选科提供依据,对六个选考科目进行测试,其中物理考试原始成绩基本服从正态分布()60,169N . (1)求物理原始成绩在区间()47,86的人数;(2)按高考改革方案,若从全省考生中随机抽取3人,记X 表示这3人中等级成绩在区间[]61,80的人数,求X 的分布列和数学期望.(附:若随机变量()2,N ξμσ~,则()0.682P μσξμσ-<<+=,()220.954P μσξμσ-<<+=,()330.997P μσξμσ-<<+=)20.(本小题12分)已知椭圆()2222:10x y C a b a b +=>>,点()1,e 和⎭都在椭圆C 上,其中e 为椭圆C 的离心率. (1)求椭圆C 的方程;(2)若过原点的直线1:l y kx =与椭圆C 交于A ,B 两点,且在直线22:20l kx y k -+-=上存在点P ,使得PAB △是以P 为直角顶点的直角三角形,求实数k 的取值范围.21.(本小题12分)已知函数()()21ln 2f x x x ax a =++∈R ,()23e 2x g x x x =+-.(1)讨论()f x 的单调性;(2)定义:对于函数()f x ,若存在0x ,使()00f x x =成立,则称0x 为函数()f x 的不动点.如果函数()()()F x f x g x =-存在不动点,求实数a 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.(本小题10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1C 的方程为cos sin x y αα==⎧⎨⎩(α为参数).以坐标原点O 为极点,x轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2cos ρθ=. (1)求1C ,2C 交点的直角坐标;(2)设点A 的极坐标为4,π3⎛⎫⎪⎝⎭,点B 是曲线2C 上的点,求AOB △面积的最大值.23. (本小题10分)选修4-5:不等式选讲 已知函数()121f x x x =++-.(1)解不等式()2f x x ≤+;(2)若()3231g x x m x =-+-,对1x ∀∈R ,2x ∃∈R ,使()()12f x g x =成立,求实数m 的取值范围.2019~2020学年高三第二学期3月模块诊断数学(理科)参考答案1.【解答】∵()1,8A =-,517,22B ⎛⎫= ⎪⎝⎭,∴5,82A B ⎛⎫= ⎪⎝⎭I ,∴()5Z A B =I .故选C .2.【解答】由()12i 43i z +=+,得43i2i 12iz +==-+,所以2i z =+.故选B . 3.【解答】根据题意,函数()f x 是定义在R 上的偶函数,则()()33f f -=,()()33log 13log 13f f -=,有0.63322log 13log 273<<<=,又由()f x 在()0,+∞上单调递增,则有()()()0.632log 133f f f <-<-,故选C .4.【解答】由题2525=π=π24S ⎛⎫⋅ ⎪⎝⎭圆,=4S 正方形,所以1625πS P S ==正方形圆.故选D . 5.【解答】在平面直角坐标系中作出满足,p q 的区域,如图所示,则p 是q 的充分不必要条件.故选A .6.【解答】 由递推式1n n a a n +=+, 可得11n n a a n -=+-,122n n a a n --=+-,…322a a =+,211a a =+.将以上()1n -个式子相加,可得11231n a n =+++++-L , 则202011232019a =+++++L .①由程序框图可知,当判断框内的条件是()*?n k k ∈N …时, 则输出的1123S k =+++++L ,②.综合①②可知,若要想输出①式的结果,则2019k =.故选B . 7.【解答】()1sin112sin110f =+-=-<,排除B ,C ,当0x =时,sin 0x x ==,则0x →时,sin 1xx→,()101f x →+=,排除A ,故选D . 8.【解答】根据已知函数()()sin f x A x ωϕ=+(其中0A >,π2ϕ<)的图象过点π,03⎛⎫⎪⎝⎭,7π,112⎛⎫- ⎪⎝⎭,可得1A =,12π7π41π23ω⋅=-,解得2ω=.再根据五点法作图可得2ππ3ϕ⋅+=,可得π3ϕ=,可得函数解析式为()sin 2π3f x x ⎛⎫=+ ⎪⎝⎭,故把()sin 2π3f x x ⎛⎫=+ ⎪⎝⎭的图象向左平移π12个单位长度,可得sin 2cos236ππy x x ⎛⎫=++= ⎪⎝⎭的图象,故选B .9.【解答】如图所示,()()2214PA PB PC CB PC CA PC AB ⋅=+⋅+=-u u u r u u u r u u u r u u u r u u u r u u u r ,所以PA PB⋅u u u r u u u r 取最小值时,即PC 取最小值,即PC 与直线10x y -+=垂直,此时PC =,则()min 12414PA PB ⋅=-⨯=u u u r u u u r .故选A .10.【解答】设圆锥底面圆的半径为r ,圆锥母线长为l ,则侧面积为πrl ,侧面积与底面积的比为2π2πrl lr r ==,则母线2l r =,圆锥的高为h =,则圆锥的体积为231π3r h r =,设外接球的球心为O ,半径为R ,截面图如图, 则OB OS R ==,OD h R R =-=-,BD r =,在直角三角形BOD 中,由勾股定理得222OB OD BD =+,即)222R r R =+-,展开整理得R =,∴外接球的体积为33344ππ33R ==,故所求体积比为339332r=.故选A . 11.【解答】由题意可得图像如右图所示:F '为双曲线的左焦点, ∵AB 为圆的直径,∴90AFB ∠=︒,根据双曲线、圆的对称性可知:四边形AFBF '为矩形,∴12ABF AFBF FAF S S S ''==△△,又2224tan45FAF b S b a '===︒△,可得225c a =,∴25e e =⇒=.故选D . 12.【解答】由120x x <<,得120x x -<,211212ln ln 1x x x x x x ->-化为211212ln ln x x x x x x -<-,即1212ln 1ln 1x x x x ++<, 即函数()ln 1x f x x +=在()0,a 上单调递增,()()221ln 1ln x x x x f x x x ⋅-+'==-, 令()0f x '>,得01x <<,故a 的最大值为1.故选D .二.填空题(本大题共4小题,每小题5分,共20分)13.112 14.59 1516.84,279⎛⎫⎪⎝⎭13.【解答】该二项式的二项式系数之和为2256n=,得8n =.该二项式的展开式通项为()8483882C 2C rrrr rr x x --⎛⎫-=- ⎪⎝⎭,令8403r -=,得2r =,则常数项为()2282C 112-=.14.【解答】由正弦定理可得:sin sin b cB C=,即sin sin 22sin cos 2cos cos sin sin sin b B C C C C C c C C C =====⇒,∴275cos22cos 12199C C =-=⨯-=.15.【解答】如图所示,取SC ,DC 的中点M ,F ,则//EF BD ,//ME SB ,所以平面//SBD 平面MEF ,而AC ⊥平面SBD ,所以AC ⊥平面MEF ,则动点P 在四棱锥表面上运动的轨迹为△MEF ,则动点P 的轨迹的周长为(1122MFE SDB l l ===△△16.【解答】由()()2f x xf x '<,得()()()22220f x x xf x x '->,令()()2f xg x x=, 则()()()()22220f x x xf x g x x '-'=>,所以()g x 在()0,+∞上单调递增,得()()32g g >,即()()222323f f <,得()()2439f f <. FM SEDCBA由()()3xf x f x '<,得()()()322330f x x x f x x '-<,令()()3f x h x x =, 则()()()()322330f x x x f x h x x '-'=<,所以函数()h x 在()0,+∞上单调递减,得()()32h h <,即()()332323f f >,得()()28327f f >. 综上所述,()()2842739f f <<.故填84,279⎛⎫⎪⎝⎭.三.解答题(本大题共6小题,共70分.) 17.(本小题满分12分)【解答】(1)∵,∴, 整理得,…………2分则,解得,则的取值范围为.…………5分(2)∵,∴,即,则.…………6分 假设存在等差数列,则,即,解得,从而,…………8分此时,…………9分,…………11分故存在等差数列,且,使得数列的前项和为.…………12分 18.(本小题满分12分) 【解答】(1)由已知得四边形ABFE 是正方形,且边长为2,在图2中,AF BE ⊥, ……1分由已知得AF BD ⊥,BE BD B =I ,∴AF ⊥平面BDE ,…………2分 又DE ⊂平面BDE ,∴AF DE ⊥, …………3分221212a a a a +=+()221112a a d a d ++=+()22112210a d a d d +-+-=()()224180d d d ∆=---≥11d -≤≤d []1,1-1d =-2112420a a -+=11a =2n a n =-{}n b 2112211221121123a b a b a b ⎧=⎪+⎪⎨⎪+=⎪++⎩12111211223b b ⎧=⎪+⎪⎨⎪+=⎪⎩1216b b =⎧⎨=⎩54n b n =-2211111n n n n a b n n ==-+++222112211111111111223111n nnn n n n a b a b a b ++⋅⋅⋅+=-+-+⋅⋅⋅+-=-=++++++{}n b 54n b n =-21nn a b ⎧⎫⎪⎪⎨⎬+⎪⎪⎩⎭n 1nn +又AE DE ⊥,AE AF A =I ,∴DE ⊥平面ABFE .…………5分(2)在图2中,AE DE ⊥,AE EF ⊥,DE EF E =I ,即AE ⊥面DEFC , 在梯形DEFC 中,过点D 作DM EF ∥交CF 于点M ,连接CE ,由题意得2DM =,1CM =,由勾股定理可得DC CF ⊥,则π6CDM ∠=,2CE =,过E 作EG EF ⊥交DC 于点G ,可知GE ,EA ,EF 两两垂直,以E 为坐标原点,以EA u u u r ,EF u u u r ,EG u u u r分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,…………7分则()2,0,0A ,()2,2,0B,(C,10,2D ⎛- ⎝⎭,(AC =-u u u r,12,2AD ⎛=-- ⎝⎭u u u r . 设平面ACD 的一个法向量为(),,x y z =n ,由00AC AD ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u r n n得201202x y x y z ⎧-+=⎪⎨--=⎪⎩,取1x =得(1,=-n , …………9分 设AP m =,则()2,,0P m ,()02m ≤≤,得(2,1,CP m =-u u u r…………10分设CP 与平面ACD 所成的角为θ,2sin cos 3,CP m θ===u u u rn . ∴23AP =. …………12分 19.(本小题满分12分)【解答】(1)因为物理原始成绩()260,13N ξ~, 所以()()()478647606086P P P ξξξ<<=<<+≤<()()1160136013602136021322P P ξξ=-<<++-⨯≤<+⨯ 0.6820.95422=+0.818=.…………3分 所以物理原始成绩在()47,86的人数为20000.8181636⨯=(人).…………5分 (2)由题意得,随机抽取1人,其成绩在区间[]61,80内的概率为25.所以随机抽取三人,则X 的所有可能取值为0,1,2,3,且23,5X B ⎛⎫~ ⎪⎝⎭,…………7分所以()332705125P X ⎛⎫=== ⎪⎝⎭;()21323541C 55125P X ⎛⎫==⋅⋅=⎪⎝⎭; ()22323362C 55125P X ⎛⎫==⋅⋅= ⎪⎝⎭;()32835125P X ⎛⎫=== ⎪⎝⎭.所以X 的分布列为…………11分所以数学期望()26355E X =⨯=. …………12分20. (本小题满分12分)【解答】(1)由题设知222a b c =+,ce a=.由点()1,e 在椭圆上,得222211c a a b+=,解得21b =,又点⎭在椭圆上,222112a b ∴+=. 即21112a +=,解得24a =,所以椭圆的方程是2214x y +=.…………4分(2)【法1】设()11,A x y 、()22,B x y ,由2214y kxx y =+=⎧⎪⎨⎪⎩,得22414x k =+, 120x x ∴+=,122414x x k =-+,120y y +=,2122414k y y k =-+, …………6分设()00,P x y ,则0022y kx k =+-,依题意PA PB ⊥,得1PA PB k k =-⋅,010201021y y y y x x x x --∴⋅=---, 即()()220120120120120y y y y y y x x x x x x -+++++-+=,…………8分 220012120y x y y x x ∴+++=,()()()()22220024114422014k k x k k x k k +∴++-+--=+有解,()()()()222222411624142014kΔkk kk k ⎡⎤+⎢⎥=--+--≥⎢⎥+⎣⎦, …………10分化简得2340k k +≥,0k ∴≥或43k ≤-. …………12分【法2】设()11,A x y 、()22,B x y ,由2214y kxx y =+=⎧⎪⎨⎪⎩,得22414x k =+,不妨设1x =2x =则12AB x =-=…………7分设原点O 到直线2l 的距离为d,则d =…………8分若存在满足条件的点P ,则以AB 为直径的圆与2l 有公共点,故2ABd ≤≤…………10分化简得2340k k +≥,0k ∴≥或43k ≤-. …………12分21. (本小题满分12分)【解答】(1)()f x 的定义域为()0,+∞,()()210x ax f x x x'++=>,…………1分对于函数210y x ax =++≥,①当240Δa =-≤时,即22a -≤≤时,210x ax ++≥在0x >恒成立.()210x ax f x x++∴=≥'在()0,+∞恒成立,()f x ∴在()0,+∞为增函数; ………2分②当0Δ>,即2a <-或2a >时, 当2a <-时,由()0f x '>,得x <或x >,0<()f x ∴在⎛ ⎝⎭为增函数,⎝⎭减函数,⎫⎪+∞⎪⎝⎭为增函数, …………4分 当2a >时,由()210x ax f x x++=>'在()0,+∞恒成立,()f x ∴在()0,+∞为增函数.…………5分综上,当2a <-时,()f x在⎛ ⎝⎭为增函数,⎝⎭减函数,⎫⎪+∞⎪⎝⎭为增函数; 当2a ≥-时,()f x 在()0,+∞为增函数.(2)()()()()22213ln e ln e 022x x F x f x g x x x ax x x x x ax x x =-=++--+=-++->,()F x Q 存在不动点,∴方程()F x x =有实数根,即2ln e x x x a x-+=有解,…………7分令()()2n 0e l x x xh x x x+-=>,()()()()()()2211ln 1ln 11e e x x x x x x x x x h x x x ++-+-+++-='=,…………8分令()0h x '=,得1x =,当()0,1x ∈时,()0h x '<,()h x 单调递减;当()1,x ∈+∞时,()0h x '>,()h x 单调递增, …………10分()()1e 1h x h ∴≥=+,…………11分当e 1a ≥+时,()F x 有不动点,a ∴的范围为[)e 1,++∞.…………12分 22.(本小题满分10分)【解答】(1)2211:C x y +=, …………1分22:cos C ρθ=,∴22cos ρρθ=,∴222x y x +=.…………3分联立方程组得222212x y x y x⎧+=+=⎪⎨⎪⎩,解得1112x y ⎧⎪⎪⎨==⎪⎪⎩2212x y ⎧⎪==⎨⎪⎪⎪⎩,∴所求交点的坐标为12⎛ ⎝⎭,1,2⎛ ⎝⎭.…………5分 (2)设(),B ρθ,则2cos ρθ=.…………6分∴AOB △的面积11sin 4sin 4cos sin 223π3πS OA OB AOB ρθθθ⎛⎫⎛⎫=⋅⋅⋅∠=⋅-=- ⎪ ⎪⎝⎭⎝⎭2cos 26πθ⎛⎫=++ ⎪⎝⎭,…………8分∴当11π12θ=时,max 2S =…………10分23.( 本题满分 10 分)【解答】(1)不等式等价于132x x x ≤--≤+⎧⎨⎩或11222x x x -<⎧≤-+≤+⎪⎨⎪⎩或1232x x x >≤+⎧⎪⎨⎪⎩,…………3分 解得x ∈∅或102x ≤≤或112x <≤,所以不等式()2f x x ≤+的解集为{}01x x ≤≤.…………5分(2)由()3,112,1213,2x x f x x x x x ⎧⎪-≤-⎪⎪=-+-<≤⎨⎪⎪>⎪⎩知,当12x =时,()min 1322f x f ⎛⎫== ⎪⎝⎭; (7)分()()()323121g x x m x m ≥---=-,…………8分当且仅当()()32310x m x --≤时取等号, 所以3212m -≤,解得1544m -≤≤.故实数m 的取值范围是15,44⎡⎤-⎢⎥⎣⎦.…………10分。
2020届河北衡水金卷新高考押题仿真模拟(五)文科数学
2020届河北衡水金卷新高考押题仿真模拟(五)数学(文)试题★祝你考试顺利★注意事项:1、考试范围:高考考查范围。
2、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
3、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。
4、主观题的作答:用0.5毫米黑色签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非主观题答题区域的答案一律无效。
5、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。
6、保持卡面清洁,不折叠,不破损。
7、本科目考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数52i -的共轭复数是( ) A. 2i + B. 2i -C. 2i -+D. 2i --【答案】C 【解析】 【分析】先化简复数代数形式,再根据共轭复数概念求解. 【详解】因为522i i =---,所以复数52i -的共轭复数是2i -+,选C. 【点睛】本题考查复数运算以及共轭复数概念,考查基本求解能力.2.已知集合2{|1}M x x ==,{|1}N x ax ==,若N M ⊆,则实数a 的取值集合为( ) A. {1} B. {1,1}-C. {1,0}D. {1,1,0}-【答案】D 【解析】【分析】先求出集合M={x |x 2=1}={﹣1,1},当a=0时,N=∅,成立;当a ≠0时,N={1a },由N ⊆M ,得11a=-或1a=1.由此能求出实数a 的取值集合. 【详解】∵集合M={x |x 2=1}={﹣1,1},N={x |ax=1},N ⊆M , ∴当a=0时,N=∅,成立;当a ≠0时,N={1a }, ∵N ⊆M ,∴11a =-或1a=1.解得a=﹣1或a=1,综上,实数a 的取值集合为{1,﹣1,0}. 故选D .【点睛】本题考查实数的取值范围的求法,考查子集、不等式性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.3.定义某种运算:S m n ⊗=⊗的运算原理如右边的流程图所示,则6547⊗-⊗=( )A. 3B. 1C. 4D. 0【答案】A 【解析】 【分析】根据流程图知运算为分段函数,根据分段函数进行计算.【详解】由流程图得656(51)24,477(41)21,⊗=⨯-=⊗=⨯-= 所以654724213⊗-⊗=-=,选A.【点睛】算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.4.某景区在开放时间内,每个整点时会有一趟观光车从景区入口发车,某人上午到达景区入口,准备乘坐观光车,则他等待时间不多于10分钟的概率为( ) A.110B.16C.15D.56【答案】B 【解析】由题意,此人在50分到整点之间的10分钟内到达,等待时间不多于10分钟,所以概率101606P ==.故选B . 5.函数()2lg 54y x x =++的零点是1tan x α=和2tan x β=,则()tan αβ+=( ) A.53B. 53-C.52D. 52-【答案】C 【解析】 【分析】利用韦达定理求得tan tan αβ+和tan tan αβ⋅的值,再利用两角和的正切公式求得()tan tan tan 1tan ?tan αβαβαβ++=-的值.【详解】因为函数()2lg 54y x x =++的零点是1tan x α=和2tan x β=,所以tan α和tan β是2541x x ++=的两个实数根,所以tan tan 5αβ+=-,tan ?tan 3αβ=,则()tan tan 5tan 1tan ?tan 2αβαβαβ++==-,故选C.【点睛】本题主要考查了根与系数的关系及两角和的正切展开,着重考查了学生公式的应用,属于基础题.6.若实数a ,b 满足1a b >>,()log log a a m b =,()2log a n b =,2log a l b =,则m ,n ,l 的大小关系为( ) A. m l n >> B. l n m >> C. n l m >> D. l m n >>【答案】B 【解析】 【分析】先利用对数函数的性质求出m,n ,l 的范围,再比较l 和n 的大小关系.【详解】∵实数a ,b 满足1a a a b m log log b=>>,(),2()a n log b =,2a l logb =, 01110a a a a a a log log b log a m log log blog ∴==∴==<<,()<,0< 2()a n log b = 1<,1> 2a l log b = 2a log b => 2()a n log b =.∴m ,n ,l 的大小关系为l n m >>. 故选B .【点睛】(1)本题主要考查对数函数的图像和性质及对数的运算,意在考查学生对这些知识的掌握水平和分析推理能力.(2)比较实数的大小,一般先和“0”比,再和“±1”比,比较时常用作差法. 7.在ABC ∆中,“tan tan 1B C >”是“ABC ∆为钝角三角形”的( ) A. 充分非必要条件 B. 必要非充分条件C. 充要条件D. 既不充分也不必要条件【答案】C 【解析】分析:从两个方向去判断,先看tan tan 1A B >能推出三角形的形状是锐角三角形,而非钝角三角形,从而得到充分性不成立,再看当三角形是钝角三角形时,也推不出tan tan 1A B >成立,从而必要性也不满足,从而选出正确的结果.详解:由题意可得,在ABC ∆中,因为tan tan 1A B >, 所以sin sin 1cos cos A BA B>,因为0,0A B ππ<<<<,所以sin sin 0A B >,cos cos 0A B >,结合三角形内角的条件,故A,B 同为锐角,因为sin sin cos cos A B A B >, 所以cos cos sin sin 0A B A B -<,即cos()0A B +<,所以2A B ππ<+<,因此02C <<π,所以ABC ∆是锐角三角形,不是钝角三角形,所以充分性不满足,反之,若ABC ∆是钝角三角形,也推不出“tan tan 1B C >,故必要性不成立, 所以为既不充分也不必要条件,故选D.点睛:该题考查的是有关充分必要条件的判断问题,在解题的过程中,需要用到不等式的等价转化,余弦的和角公式,诱导公式等,需要明确对应此类问题的解题步骤,以及三角形形状对应的特征.8. 为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是 A.13B.12C.23D.56【答案】C 【解析】试题分析:将4种颜色的花种任选2种种在一个花坛中,余下2种种在另一个花坛中,有6种种法,其中红色和紫色的花不在同一个花坛的种数有4种,故所求概率为23,选C. 【考点】古典概型【名师点睛】作为客观题形式出现的古典概型试题,一般难度不大,解答中的常见错误是在用列举法计数时出现重复或遗漏,避免此类错误发生的有效方法是按照一定的标准进行列举. 【此处有视频,请去附件查看】9.若实数x ,y 满足2x y +≥,则222M x y x =+-的最小值为( )A. 2-B. 0C.12- D. 12-【答案】D 【解析】 【分析】先确定2x y +≥所表示区域,再根据M 表示区域内点到定点(1,0)距离平方减去1求最小值 【详解】()2222211M x y x x y =+-=-+-,而2x y +≥表示正方形及其外部(如图),所以222M x y x =+-的最小值为点(1,0)到AB :y=-x+2的距离平方减去1,即21021()122--+-=-,选D.【点睛】线性规划问题,首先明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.10.如图,在平面四边形ABCD 中,,,120,1,AB BC AD CD BAD AB AD ⊥⊥∠===o 若点E 为边CD 上的动点,则AE BE ⋅u u u r u u u r的最小值为 ( )A .2116B.32C.2516D. 3【答案】A 【解析】【详解】分析:由题意可得ABD △为等腰三角形,BCD V 为等边三角形,把数量积AE BE ⋅u u u v u u u v分拆,设(01)DE tDC t =≤≤u u u v u u u v,数量积转化为关于t 的函数,用函数可求得最小值.详解:连接BD,取AD 中点为O,可知ABD △为等腰三角形,而,AB BC AD CD ⊥⊥,所以BCD V 为等边三角形,BD =设(01)DE tDC t =≤≤u u u v u u u vAE BE ⋅u u u v u u u v 223()()()2AD DE BD DE AD BD DE AD BD DE BD DE DE =+⋅+=⋅+⋅++=+⋅+u u uv u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v=233322t t -+(01)t ≤≤所以当14t =时,上式取最小值2116,选A.点睛:本题考查的是平面向量基本定理与向量的拆分,需要选择合适的基底,再把其它向量都用基底表示.同时利用向量共线转化为函数求最值. 11.函数()2sin()(0)3f x x πωω=+>的图象在[0,1]上恰有两个最大值点,则ω的取值范围为( )A. [2,4]ππB. 9[2,)2ππ C. 1325[,)66ππD. 25[2,)6ππ 【答案】C 【解析】 【分析】由三角函数图象确定ω满足条件,解得结果. 【详解】由题意得591325,323266ππππππωωω+≥+<∴≤<,选C. 【点睛】本题考查三角函数图象与性质,考查基本求解能力.12.已知,,A F P 分别为双曲线22221(0,0)x y a b a b-=>>左顶点、右焦点以及右支上的动点,若2PFA PAF ∠=∠恒成立,则双曲线的离心率为( )A.B. C. 2D. 1【答案】C 【解析】 分析:设P 点坐标为(,)x y ,写出直线PA 、PF 的斜率,利用2PFA PAF ∠=∠及它们与斜率的关系可建立,x y 的方程,此即为P 点的轨迹方程与双曲线标准方程比较可得,a c 关系,从而得离心率.详解:设(,)P x y ,又(,0),(,0)A a F c -,∵2PFA PAF ∠=∠,∴tan PA y k x a α==+,tan 2PF y k x c α==--, 又22tan tan21tan ααα=-,∴2221()yy x a y x cx a ⨯+-=---,整理得22232(2)2x a c x y ac a +--=-, 这是P 点的轨迹方程,又P 点轨迹方程为22221x y a b-=,∴20a c -=,∴22c a e a a===, 故选C. 点睛:求双曲线的离心率,一般要求出,,a b c 的一个关系等式,这可从双曲线的几何性质分析得出,本题中由于已知是2PFA PAF ∠=∠,而这两个角可以与相应直线的斜率有关,因此可以通过正切的二倍角公式建立P 点的轨迹方程,这应该是双曲线的标准方程,比较后得出,a c 的关系.这种方法比较特殊,可以体会学习.二、填空题:本题共4小题,每小题5分,共20分.13.已知πtan()24α+=-,则1sin 2cos 2αα-=_______ 【答案】12-【解析】 【分析】先根据二倍角公式化简1sin2cos2αα-,再根据弦化切,最后根据条件求结果.【详解】因为2221sin 2(sin cos )cos sin 1tan cos 2cos sin cos sin 1tan αααααααααααα----===-++, 又因为tan 1tan()241tan πααα++==--所以1sin 21cos 22αα-=-.【点睛】三角函数求值的三种类型(1)给角求值:关键是正确选用公式,以便把非特殊角的三角函数转化为特殊角的三角函数. (2)给值求值:关键是找出已知式与待求式之间的联系及函数的差异. ①一般可以适当变换已知式,求得另外函数式的值,以备应用; ②变换待求式,便于将已知式求得的函数值代入,从而达到解题的目的.(3)给值求角:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角.14.过双曲线2222:1(,0)x y E a b a b-=>的右焦点,且斜率为2的直线与E 的右支有两个不同的公共点,则双曲线离心率的取值范围是________. 【答案】(1,5) 【解析】 【分析】根据双曲线渐近线性质得渐近线斜率范围,即得离心率取值范围. 【详解】由题意得22222224,4511 5.bb ac a a e e e a<∴<-<∴∴<<Q 【点睛】解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于,,a b c 的方程或不等式,再根据,,a b c 的关系消掉b 得到,a c 的关系式,而建立关于,,a b c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.15.《九章算术》中对一些特殊的几何体有特定的称谓,例如:将底面为直角三角形的直三棱柱称为堑堵,将一堑堵沿其一顶点与相对的棱刨开,得到一个阳马(底面是长方形,且有一条侧棱与底面垂直的四棱锥)和一个鳖臑(四个面均为直角三角形的四面体).在如图所示的堑堵111ABC A B C -中,15,3,4AA AC AB BC ====,则阳马111C ABB A -的外接球的表面积是_________________【答案】50S π=【解析】 【分析】根据堑堵定义以及长方体性质可得阳马111C ABB A -的外接球的直径为1A C ,再根据球的表面积公式求结果.【详解】由于1CB,,BA BB 两两相互垂直,所以阳马111C ABB A -的外接球的直径为1A C ,即2R ==2450R ππ=.【点睛】若球面上四点,,,P A B C 构成的三条线段,,PA PB PC 两两互相垂直,且,,PA a PB b PC c ===,一般把有关元素“补形”成为一个球内接长方体,利用22224R a b c =++求解.16.定义在R 上的函数()f x 满足()()f x f x -=,且当0x ≥21,01,()22,1,xx x f x x ⎧-+≤<=⎨-≥⎩若任意的[],1x m m ∈+,不等式(1)()f x f x m -≤+恒成立,则实数m 的最大值是 ____________ 【答案】13- 【解析】 【分析】先根据解析式以及偶函数性质确定函数单调性,再化简不等式()()1f x f x m -≤+,分类讨论分离不等式,最后根据函数最值求m 取值范围,即得结果.【详解】因为当0x ≥时 ()21,01,22,1,xx x f x x ⎧-+≤<=⎨-≥⎩为单调递减函数,又()()f x f x -=,所以函数()f x 为偶函数,因此不等式()()1f x f x m -≤+恒成立,等价于不等式()()1f x fx m -≤+恒成立,即1x x m -≥+,平方化简得()2211m x m +≤-,当10m +=时,x R ∈;当10m +>时,12m x -≤对[],1x m m ∈+恒成立,11111233m m m m -+≤∴≤-∴-<≤-; 当10m +<时,12m x -≥对[],1x m m ∈+恒成立,1123m m m -≥∴≥(舍);综上113m -≤≤-,因此实数m 的最大值是13-.【点睛】解函数不等式:首先根据函数的性质把不等式转化为()()()()f g x f h x >的形式,然后根据函数的单调性去掉“f ”,转化为具体的不等式(组),此时要注意()g x 与()h x 的取值应在外层函数的定义域内.三、解答题:共70分。
2020届河北衡水金卷新高考原创考前信息试卷(五)文科数学
2020届河北衡水金卷新高考原创考前信息试卷(五)文科数学★祝考试顺利★ 注意事项:1、考试范围:高考范围。
2、试题卷启封下发后,如果试题卷有缺页、漏印、重印、损坏或者个别字句印刷模糊不清等情况,应当立马报告监考老师,否则一切后果自负。
3、答题卡启封下发后,如果发现答题卡上出现字迹模糊、行列歪斜或缺印等现象,应当马上报告监考老师,否则一切后果自负。
4、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
5、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。
6、主观题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。
如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
7、保持答题卡卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。
8、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
第Ⅰ卷(选择题 共60分)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{4,5,7,9}M =,{3,4,7,8,9}N =,全集U M N =⋃,则集合()U M N ⋂ð中的元素共有( ) A .3个B .4个C .5个D .6个2.在复平面内,复数21(1)ii +-对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限3.若0a b <<,则下列不等式中不成立的是( ) A .||||a b >B .22ab >C.11a b> D .11a b a>- 4.总体由编号为01,02,…19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( )A .01B .02C .07D .085.已知函数()cos 221f x x x =++,则下列判断错误的是( ) A .()f x 的最小正周期为πB .()f x 的值域为[1,3]-C .()f x 的图象关于直线6x π=对称 D .()f x 的图象关于点,04π⎛⎫-⎪⎝⎭对称 6.已知平面α内一条直线l 及平面β,则“l β⊥”是“αβ⊥”的( ) A .充分必要条件 B .充分不必要条件 C .必要不充分条件D .既不充分也不必要条件7.设2,(10)()[(6)],(10)x x f x f f x x -≥⎧=⎨+<⎩则(5)f 的值为( )A .10B .11C .12D .138.在直角ABC △中,2C π∠=,4AB =,2AC =,若32AD AB =u u u r u u u r,则CD CB ⋅=u u u r u u u r ( )A .18-B .63-C .18D .639.如图是我国古代建筑中的一种装饰图案,形若铜钱,寓意富贵吉祥.在圆内随机取一点,则该点取自阴影区域内(阴影部分由该圆的四条四分之一圆弧围成)的概率是( )A .12B .13C .41π-D .42π-10.函数||()2sin 2x f x x =⋅的图像大致是( )A .B .C .D .11.若直线220(0,0)ax by a b -+=>>始终平分圆222410x y x y ++-+=的圆周,则12a b+的最小值为( )A.322+B.323+C.4D.512.对于实数x ,规定[]x 表示不大于x 的最大整数,那么不等式24[]36[]450x x -+<成立的x 的范围是( )A.315,22⎛⎫⎪⎝⎭ B.[2,8] C.[2,8) D.[2,7]第Ⅱ卷(非选择题 共90分)二、填空题:本题共4小题,每小题5分,共20分.3.已知双曲线2221(0)3x y a a -=>的离心率为2,则a =_____. 14.在ABC △中,内角,,A B C 的对边分别是,,a b c ,若223a b bc -=,sin 23sin C B =,则A =____.15.三棱锥P ABC -中,PA ⊥底面ABC ,22PA =,底面ABC △中4BAC π∠=,边2BC =,则三棱锥P ABC -外接球的体积等于______.16.已知函数2()ln f x ax x x =-在1,e⎡⎫+∞⎪⎢⎣⎭上单调递增,则实数a 的取值范围是______.三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分17.设等差数列{}n a 满足39a =-,105a =. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)求{}n a 的前n 项和n S 及使得n S 最小的n 的值.18.如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,AB AD ⊥,点E 在线段AD 上,且CE AB P .(Ⅰ)求证:CE ⊥平面PAD ;(Ⅱ)若1PA AB ==,3AD =,2CD =,45CDA ∠=︒,求四棱锥P ABCD -的正弦值.19.眼保健操是一种眼睛的保健体操,主要是通过按摩眼部穴位,调整眼及头部的血液循环,调节肌肉,改善眼的疲劳,达到预防近视等眼部疾病的目的.某学校为了调查推广眼保健操对改善学生视力的效果,在应届高三的全体800名学生中随机抽取了100名学生进行视力检查,并得到如图的频率分布直方图. (1)若直方图中后三组的频数成等差数列,试估计全年级视力在5.0以上的人数;(2)为了研究学生的视力与眼保健操是否有关系,对年级不做眼保健操和坚持做眼保健操的学生进行了调查,得到下表中数据,根据表中的数据,能否在犯错的概率不超过0.005的前提下认为视力与眼保健操有关系?是否做操是否近视不做操做操近视 44 32 不近视618 附:22()()()()()n ad bc K a b c d a c b d -=++++()2P k k ≥0.10 0.05 0.025 0.010 0.005k2.7063.841 5.024 6.635 7.87920.如图,椭圆22221(0)x y a b a b+=>>的长轴长为4,点,,A B C 为椭圆上的三个点,A 为椭圆的右端点,BC过中心O ,且||2||BC AB =,3ABC S =△.(1)求椭圆的标准方程;(2)设,P Q 是椭圆上位于直线AC 同侧的两个动点(异于,A C ),且满足PBC QBA ∠=∠,试讨论直线BP 与直线BQ 斜率之间的关系,并求证直线PQ 的斜率为定值.21.已知函数3211()(,)32a f x x x bx a ab +=-++∈R ,且其导函数()f x '的图像过原点. (1)若存在0x <,使得()9f x '=-,求a 的最大值;(2)当0a >时,求函数()f x 的零点个数.(二)选考题:共10分.请考生在22、23题任选一题作答.如果多做,则按所做的第一题计分. 22.[选修4-4:坐标系与参数方程]已知曲线C 的极坐标方程为4cos ρθ=,直线l 的参数方程为31212x t y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数). (1)求曲线C 的直角坐标方程与直线l 的普通方程;(2)已知点(1,0)M ,直线l 与曲线C 交于A B 、两点,求||MA MB -‖‖. 23.[选修4-5:不等式选讲] 已知函数()|2|f x x a a =-+(1)当2a =时,求不等式()6f x ≤的解集;(2)设函数()|21|g x x =-.当x R ∈时,()()3f x g x +≥,求a 的取值范围.文科数学参考答案一、选择题:二、填空题13.1 14.6π 15.323π 16.1,2⎡⎫+∞⎪⎢⎣⎭三、解答题17解:(1)设等差数列{}n a 的公差为d ,由1(1)n a a n d =+-及39a =-,105a =得112995a d a d +=-⎧⎨+=⎩ 解得1132a d =-⎧⎨=⎩数列{}n a 的通项公式为215n a n =- (2)由(1)知214n S n n =-因为2(7)49n S n =-- 所以7n =时,n S 取得最小值.18解:(1)证明 因为PA ⊥平面ABCD ,CE ⊂平面ABCD ,所以PA CE ⊥. 因为AB AD ⊥,CE AB P ,所以CE AD ⊥.又PA AD A ⋂=,所以CE ⊥平面PAD .(2)解:由(1)可知CE AD ⊥在Rt CDE △中,cos451DE CD =⋅︒=,sin451CE CD =⋅︒=所以2AE AD ED =-=.又因为1AB CE ==,CE AB P ,所以四边形ABCE 为矩形.所以12ECD ABCE ABCD S S S AB AE CE DE =+=⋅+⋅△矩形四变形 15121122=⨯+⨯⨯=又PA ⊥平面ABCD ,1PA =,115513326ABCD P ABCD V S PA -=⋅=⨯⨯=四边形四棱锥19.解:(1)由图可知,第一组有3人,第二组7人,第三组27人, 因为后三组的频数成等差数列,共有100(3727)63-++=(人)所以后三组频数依次为24,21,18, 所以视力在5.0以上的频率为0.18,故全年级视力在5.0以上的人数约为8000.18144⨯=人(2)22100(4418326)50507624k ⨯⨯-⨯=⨯⨯⨯1507.8957.87919=≈> 因此能在犯错误的概率不超过0.005的前提下认为视力与眼保健操有关系.21.解:3211()32a f x x x bx a +=-++,2()(1)f x x a x b '=-++ 由(0)0f '=得0b =,()(1)f x x x a '=--.(1)存在0x <,使得()(1)9f x x x a '=--=-,991()6a x x x x ⎛⎫--=--=-+-≥= ⎪⎝⎭,7a ≤-,当且仅当3x =-时,7a =-. 所以a 的最大值为7-. (2)当1a >时,x ,()f x ',()f x 的变化情况如上表: ()f x 的极大值(0)0f a =>,()f x 的极小值2331111(1)(1)306624f a a a a a ⎡⎤⎛⎫+=-+=-+-+<⎢⎥ ⎪⎝⎭⎢⎥⎣⎦又14(2)03f a -=--<,213()(1)32f x x x a a ⎡⎤=-++⎢⎥⎣⎦,3(1)02f a a ⎛⎫+=> ⎪⎝⎭. 所以函数()f x 在区间(2,0)-,(0,1)a +,31,(1)2a a ⎛⎫++ ⎪⎝⎭内各有一个零点,故函数()f x 共有三个零点.22.解:(1)对于曲线C 的极坐标方程为4cos ρθ=,可得24cos ρρθ=,又由cos sin x y ρθρθ=⎧⎨=⎩,可得224x y x +=,即22(2)4x y -+=,所以曲线C 的直角坐标方程为22(2)4x y -+=.由直线l的参数方程为112x y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),消去参数可得, 直线l的普通方程为1)3y x =-,即33y x =-. (2)设,A B 两点对应的参数分别为12,t t ,将直线l的参数方程112x y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数)代入曲线22:40C x y x +-=中,可得22114104t ⎛⎫⎛⎫++-+= ⎪ ⎪⎝⎭⎝⎭.化简得230t --=,设点,A B 所对应的参数分别是12,t t故12t t +=12t t ⋅=所以1212||||||||||MA MB t t t t -=-=+=‖23.解:(1)当2a =时,()|22|2f x x =-+.解不等式|22|26x -+„得13x -剟.因此()6f x „的解集为{|13}x x -剟.(Ⅱ)当x R ∈时,()()|2||12||212||1|f x g x x a a x x a x a a a +=-++--+-+=-+…, 所以当x R ∈时,()()3f x g x +…等价于|1|3a a -+≥.①当1a „时,①等价于13a a -+…,无解.当1a >时,①等价于13a a -+…,解得2a …. 所以a 的取值范围是[2,)+∞.。
河北省衡水市2020年3月高三年级第五次调研考试理科数学试题(含解析)(1)
2019~2020学年高三年级第五次调研考试数学试题(理科)考试时间:120分钟 满分:150分一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的.)1.()Z M 表示集合M 中整数元素的个数,设集合{}18A x x =-<<,{}5217B x x =<<,则()Z A B =I ( )A .3B .4C .5D .62.已知复数z 满足(12i)43i z +=+,则z 的共轭复数是( )A .2i -B .2i +C .12i +D .12i - 3.已知函数()f x 是定义在R 上的偶函数,且在()0,+∞上单调递增,则( ) A .()()()0.633log 132f f f -<-< B .()()()0.6332log 13f f f -<<- C .()()()0.632log 133f f f <-<-D .()()()0.6323log 13f f f <-<4.宋代诗词大师欧阳修的《卖油翁》中有一段关于卖油翁的精湛技艺的细节描写:“(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌油沥之,自钱孔入,而钱不湿.”如果铜钱是直径为5cm 的圆,钱中间的正方形孔的边长为2cm ,则卖油翁向葫芦内注油,油正好进入孔中的概率是( ) A .25 B .425 C .25π D .1625π5.命题:p ,x y ∈R ,222x y +<,命题:q ,x y ∈R ,||||2x y +<,则p 是q 的( )A .充分非必要条件B .必要非充分条件C .必要充分条件D .既不充分也不必要条件 6.已知数列{}n a 中,11a =,1n n a a n +=+,若利用如图所示的程序框图计算该数列的第2020项,则判断框内的条件是( ) A .2018?n „ B .2019?n „ C .2020?n „ D .2021?n „1n=1,S=1开始7.函数2sin ()2xf x x x x=+-的大致图象为( ) A . B .C .D .8.若函数()()sin f x A x ωϕ=+(其中0A >,π2ϕ<)图象的一个对称中心为π,03⎛⎫⎪⎝⎭,其相邻一条对称轴方程为7π12x =,该对称轴处所对应的函数值为1-,为了得到()cos2g x x =的图象,则只要将()f x 的图象( ) A .向右平移π6个单位长度B .向左平移π12个单位长度 C .向左平移π6个单位长度D .向右平移π12个单位长度 9.已知AB 是圆()22:11C x y -+=的直径,点P 为直线10x y -+=上任意一点,则PA PB ⋅u u u r u u u r的最小值是( )A .1B .0C 2D 21 10.圆锥SD (其中S 为顶点,D 为底面圆心)的侧面积与底面积的比是2:1,则圆锥SD 与它外接球(即顶点在球面上且底面圆周也在球面上)的体积比为( ) A .9:32 B .8:27 C .9:22 D .9:28 11.已知直线()0y kx k =≠与双曲线()222210,0x y a b a b-=>>交于A ,B 两点,以AB 为直径的圆恰好经过双曲线的右焦点F ,若ABF △的面积为24a ,则双曲线的离心率为( )ABC .2 D12.若对于任意的120x x a <<<,都有211212ln ln 1x x x x x x ->-,则a 的最大值为( )A .2eB .eC .12D .1 二.填空题(本大题共4小题,每题5分,共20分.)13.在nx x ⎪⎭⎫ ⎝⎛-23的二项展开式中,所有项的二项式系数之和为256,则常数项等于 .14.在ABC △中,角A 、B 、C 的对边分别为a 、b 、c,若b =3c =,2B C =,则cos2C 的值为 .15.正四棱锥S ABCD -底面边长为2,高为1,E 是边BC 的中点,动点P 在四棱锥表面上运动,并且总保持0PE AC ⋅=u u u r u u u r,则动点P 的轨迹的周长为 .16.定义在()0,+∞上的函数()f x 满足()0f x >,()()f x f x '为的导函数,且()()()23f x xf x f x '<<对()0,x ∈+∞恒成立,则()()23f f 的取值范围是 . 三.解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.)17.(本小题12分)在公差为d 的等差数列{}n a 中,221212a a a a +=+.(1)求d 的取值范围;(2)已知1d =-,试问:是否存在等差数列{}n b ,使得数列21n n a b ⎧⎫⎨⎬+⎩⎭的前n 项和为1nn +?若存在,求{}n b 的通项公式;若不存在,请说明理由.18.(本小题12分)如图1,梯形ABCD 中,AB CD ∥,过A ,B 分别作AE CD ⊥,BF CD ⊥,垂足分别为E 、F .2AB AE ==,5CD =,已知1DE =,将梯形ABCD 沿AE ,BF 同侧折起,得空间几何体ADE BCF -,如图2. (1)若AF BD ⊥,证明:DE ⊥平面ABFE ; (2)若DE CF ∥,3CD =,线段AB 上存在一点P ,满足CP 与平面ACD 所成角的正弦值为5,求AP 的长.19.(本小题12分)《山东省高考改革试点方案》规定:从2017年秋季高中入学的新生开始,不分文理科;2020年开始,高考总成绩由语数外3门统考科目和物理、化学等六门选考科目构成.将每门选考科目的考生原始成绩从高到低划分为A 、B +、B 、C +、C 、D +、D 、E 共8个等级.参照正态分布原则,确定各等级人数所占比例分别为3%、7%、16%、24%、24%、16%、7%、3%.选考科目成绩计入考生总成绩时,将A 至E 等级内的考生原始成绩,依照等比例转换法则,分别转换到[]91,100、[]81,90、[]71,80、[]61,70、[]51,60、[]41,50、[]31,40、[]21,30八个分数区间,得到考生的等级成绩.某校高一年级共2000人,为给高一学生合理选科提供依据,对六个选考科目进行测试,其中物理考试原始成绩基本服从正态分布()60,169N . (1)求物理原始成绩在区间()47,86的人数;(2)按高考改革方案,若从全省考生中随机抽取3人,记X 表示这3人中等级成绩在区间[]61,80的人数,求X 的分布列和数学期望.(附:若随机变量()2,N ξμσ~,则()0.682P μσξμσ-<<+=,()220.954P μσξμσ-<<+=,()330.997P μσξμσ-<<+=)20.(本小题12分)已知椭圆()2222:10x y C a b a b +=>>,点()1,e 和⎭都在椭圆C 上,其中e 为椭圆C 的离心率.(1)求椭圆C 的方程;(2)若过原点的直线1:l y kx =与椭圆C 交于A ,B 两点,且在直线22:20l kx y k -+-=上存在点P ,使得PAB △是以P 为直角顶点的直角三角形,求实数k 的取值范围.21.(本小题12分)已知函数()()21ln 2f x x x ax a =++∈R ,()23e 2x g x x x =+-. (1)讨论()f x 的单调性;(2)定义:对于函数()f x ,若存在0x ,使()00f x x =成立,则称0x 为函数()f x 的不动点.如果函数()()()F x f x g x =-存在不动点,求实数a 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.(本小题10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1C 的方程为cos sin x y αα==⎧⎨⎩(α为参数).以坐标原点O 为极点,x轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2cos ρθ=. (1)求1C ,2C 交点的直角坐标;(2)设点A 的极坐标为4,π3⎛⎫⎪⎝⎭,点B 是曲线2C 上的点,求AOB △面积的最大值.23. (本小题10分)选修4-5:不等式选讲 已知函数()121f x x x =++-. (1)解不等式()2f x x ≤+;(2)若()3231g x x m x =-+-,对1x ∀∈R ,2x ∃∈R ,使()()12f x g x =成立,求实数m 的取值范围.2019~2020学年高三第二学期3月模块诊断数学(理科)参考答案1.【解答】∵()1,8A =-,,22B ⎛⎫= ⎪⎝⎭,∴,82A B ⎛⎫= ⎪⎝⎭I ,∴()5Z A B =I .故选C .2.【解答】由()12i 43i z +=+,得43i2i 12iz +==-+,所以2i z =+.故选B . 3.【解答】根据题意,函数()f x 是定义在R 上的偶函数,则()()33f f -=,()()33log 13log 13f f -=,有0.63322log 13log 273<<<=,又由()f x 在()0,+∞上单调递增,则有()()()0.632log 133f f f <-<-,故选C .4.【解答】由题2525=π=π24S ⎛⎫⋅ ⎪⎝⎭圆,=4S 正方形,所以1625πS P S ==正方形圆.故选D . 5.【解答】在平面直角坐标系中作出满足,p q 的区域,如图所示,则p 是q 的充分不必要条件.故选A .6.【解答】 由递推式1n n a a n +=+, 可得11n n a a n -=+-,122n n a a n --=+-,…322a a =+, 211a a =+.将以上()1n -个式子相加,可得11231n a n =+++++-L , 则202011232019a =+++++L .①由程序框图可知,当判断框内的条件是()*?n k k ∈N …时, 则输出的1123S k =+++++L ,②.综合①②可知,若要想输出①式的结果,则2019k =.故选B . 7.【解答】()1sin112sin110f =+-=-<,排除B ,C , 当0x =时,sin 0x x ==,则0x →时,sin 1xx→,()101f x →+=,排除A ,故选D . 8.【解答】根据已知函数()()sin f x A x ωϕ=+(其中0A >,π2ϕ<)的图象过点π,03⎛⎫ ⎪⎝⎭,7π,112⎛⎫- ⎪⎝⎭,可得1A =,12π7π41π23ω⋅=-,解得2ω=.再根据五点法作图可得2ππ3ϕ⋅+=,可得π3ϕ=, 可得函数解析式为()sin 2π3f x x ⎛⎫=+ ⎪⎝⎭,故把()sin 2π3f x x ⎛⎫=+ ⎪⎝⎭的图象向左平移π12个单位长度,可得sin 2cos236ππy x x ⎛⎫=++= ⎪⎝⎭的图象,故选B .9.【解答】如图所示,()()2214PA PB PC CB PC CA PC AB ⋅=+⋅+=-u u u r u u u r u u u r u u u r u u u r u u u r ,所以PA PB⋅u u u r u u u r 取最小值时,即PC 取最小值,即PC 与直线10x y -+=垂直,此时PC =,则()min12414PA PB⋅=-⨯=u u u r u u u r.故选A . 10.【解答】设圆锥底面圆的半径为r ,圆锥母线长为l ,则侧面积为πrl ,侧面积与底面积的比为2π2πrl lr r ==,则母线2l r =,圆锥的高为h =,则圆锥的体积为231π3r h r =,设外接球的球心为O ,半径为R ,截面图如图,则OB OS R ==,OD h R R =-=-,BD r =, 在直角三角形BOD 中,由勾股定理得222OB OD BD =+,即)222R r R =+-,展开整理得R =,∴外接球的体积为33344ππ33R ==,故所求体积比为339332r=.故选A . 11.【解答】由题意可得图像如右图所示:F '为双曲线的左焦点, ∵AB 为圆的直径,∴90AFB ∠=︒,根据双曲线、圆的对称性可知:四边形AFBF '为矩形,∴12ABF AFBF FAF S S S ''==△△,又2224tan45FAF b S b a '===︒△,可得225c a =,∴25e e =⇒.故选D .12.【解答】由120x x <<,得120x x -<,211212ln ln 1x x x x x x ->-化为211212ln ln x x x x x x -<-,即1212ln 1ln 1x x x x ++<, 即函数()ln 1x f x x +=在()0,a 上单调递增,()()221ln 1ln x x x x f x x x⋅-+'==-, 令()0f x '>,得01x <<,故a 的最大值为1.故选D .二.填空题(本大题共4小题,每小题5分,共20分)13.112 14.59 1516.84,279⎛⎫⎪⎝⎭13.【解答】该二项式的二项式系数之和为2256n=,得8n =.该二项式的展开式通项为()8483882C 2C rrrr rr x x --⎛⎫-=- ⎪⎝⎭,令8403r -=,得2r =,则常数项为()2282C 112-=.14.【解答】由正弦定理可得:sin sin b cB C=,即sin sin 22sin cos 2cos cos sin sin sin b B C C C C C c C C C =====⇒,∴275cos22cos 12199C C =-=⨯-=.15.【解答】如图所示,取SC ,DC 的中点M ,F ,则//EF BD ,//ME SB ,所以平面//SBD 平面MEF ,而AC ⊥平面SBD ,所以AC ⊥平面MEF ,则动点P 在四棱锥表面上运动的轨迹为△MEF ,则动点P的轨迹的周长为M S(1122MFE SDB l l ===△△16.【解答】由()()2f x xf x '<,得()()()22220f x x xf x x '->,令()()2f x g x x=, 则()()()()22220f x x xf x g x x '-'=>,所以()g x 在()0,+∞上单调递增,得()()32g g >,即()()222323f f <,得()()2439f f <. 由()()3xf x f x '<,得()()()322330f x x x f x x '-<,令()()3f x h x x=,则()()()()322330f x x x f x h x x '-'=<,所以函数()h x 在()0,+∞上单调递减,得()()32h h <,即()()332323f f >,得()()28327f f >. 综上所述,()()2842739f f <<.故填84,279⎛⎫ ⎪⎝⎭.三.解答题(本大题共6小题,共70分.) 17.(本小题满分12分)【解答】(1)∵221212a a a a +=+,∴()221112a a d a d ++=+, 整理得()22112210a d a d d +-+-=,…………2分 则()()224180d d d ∆=---≥,解得11d -≤≤,则d 的取值范围为[]1,1-.…………5分(2)∵1d =-,∴2112420a a -+=,即11a =,则2n a n =-.…………6分 假设存在等差数列{}n b ,则2112211221121123a b a b a b ⎧=⎪+⎪⎨⎪+=⎪++⎩,即12111211223b b ⎧=⎪+⎪⎨⎪+=⎪⎩,解得1216b b =⎧⎨=⎩,从而54n b n =-,…………8分 此时2211111n n n n a b n n ==-+++,…………9分 222112211111111111223111n nnn n n n a b a b a b ++⋅⋅⋅+=-+-+⋅⋅⋅+-=-=++++++,…………11分故存在等差数列{}n b ,且54n b n =-,使得数列21n n a b ⎧⎫⎪⎪⎨⎬+⎪⎪⎩⎭的前n 项和为1nn +.…………12分18.(本小题满分12分) 【解答】(1)由已知得四边形ABFE 是正方形,且边长为2,在图2中,AF BE ⊥, ……1分由已知得AF BD ⊥,BE BD B =I ,∴AF ⊥平面BDE ,…………2分 又DE ⊂平面BDE ,∴AF DE ⊥, …………3分 又AE DE ⊥,AE AF A =I ,∴DE ⊥平面ABFE .…………5分(2)在图2中,AE DE ⊥,AE EF ⊥,DE EF E =I ,即AE ⊥面DEFC , 在梯形DEFC 中,过点D 作DM EF ∥交CF 于点M ,连接CE , 由题意得2DM =,1CM =,由勾股定理可得DC CF ⊥,则π6CDM ∠=,2CE =, 过E 作EG EF ⊥交DC 于点G ,可知GE ,EA ,EF 两两垂直,以E 为坐标原点,以EA u u u r ,EF u u u r ,EG u u u r分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,…………7分则()2,0,0A ,()2,2,0B ,(3C ,130,2D ⎛- ⎝⎭,(3AC =-u u u r ,132,2AD ⎛=-- ⎝⎭u u u r . 设平面ACD 的一个法向量为(),,x y z =n ,由00AC AD ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u r n n 得23013202x y z x y z ⎧-+=⎪⎨--=⎪⎩,取1x =得(1,3=-n , …………9分 设AP m =,则()2,,0P m ,()02m ≤≤,得(2,1,3CP m =--u u u r…………10分设CP 与平面ACD 所成的角为θ,()252sin cos 371,5m CP m m θ===⇒=⋅+-u u u rn . ∴23AP =. …………12分 19.(本小题满分12分)【解答】(1)因为物理原始成绩()260,13N ξ~, 所以()()()478647606086P P P ξξξ<<=<<+≤< ()()1160136013602136021322P P ξξ=-<<++-⨯≤<+⨯ 0.6820.95422=+0.818=.…………3分 所以物理原始成绩在()47,86的人数为20000.8181636⨯=(人).…………5分 (2)由题意得,随机抽取1人,其成绩在区间[]61,80内的概率为25.所以随机抽取三人,则X 的所有可能取值为0,1,2,3,且23,5X B ⎛⎫~ ⎪⎝⎭,…………7分所以()332705125P X ⎛⎫=== ⎪⎝⎭;()21323541C 55125P X ⎛⎫==⋅⋅= ⎪⎝⎭; ()22323362C 55125P X ⎛⎫==⋅⋅= ⎪⎝⎭;()32835125P X ⎛⎫=== ⎪⎝⎭. 所以X 的分布列为…………11分所以数学期望()26355E X =⨯=. …………12分 20. (本小题满分12分)【解答】(1)由题设知222a b c =+,ce a=. 由点()1,e 在椭圆上,得222211c a a b +=,解得21b =,又点⎭在椭圆上,222112a b ∴+=. 即21112a +=,解得24a =, 所以椭圆的方程是2214x y +=.…………4分(2)【法1】设()11,A x y 、()22,B x y ,由2214y kxx y =+=⎧⎪⎨⎪⎩,得22414x k =+, 120x x ∴+=,122414x x k =-+,120y y +=,2122414k y y k =-+, …………6分 设()00,P x y ,则0022y kx k =+-,依题意PA PB ⊥,得1PA PB k k =-⋅,010201021y y y y x x x x --∴⋅=---, 即()()220120120120120y y y y y y x x x x x x -+++++-+=,…………8分 220012120y x y y x x ∴+++=,()()()()22220024114422014k k x k k x k k +∴++-+--=+有解,()()()()222222411624142014k Δkk kk k ⎡⎤+⎢⎥=--+--≥⎢⎥+⎣⎦, …………10分化简得2340k k +≥,0k ∴≥或43k ≤-. …………12分【法2】设()11,A x y 、()22,B x y ,由2214y kxx y =+=⎧⎪⎨⎪⎩,得22414x k =+,不妨设1x =2x =则12AB x =-=…………7分设原点O 到直线2l 的距离为d,则d =…………8分若存在满足条件的点P ,则以AB 为直径的圆与2l 有公共点,故2ABd ≤≤…………10分化简得2340k k +≥,0k ∴≥或43k ≤-. …………12分21. (本小题满分12分)【解答】(1)()f x 的定义域为()0,+∞,()()210x ax f x x x'++=>,…………1分对于函数210y x ax =++≥,①当240Δa =-≤时,即22a -≤≤时,210x ax ++≥在0x >恒成立.()210x ax f x x++∴=≥'在()0,+∞恒成立,()f x ∴在()0,+∞为增函数; ………2分②当0Δ>,即2a <-或2a >时,当2a <-时,由()0f x '>,得x <或x >,0<()f x ∴在⎛ ⎝⎭为增函数,⎝⎭减函数,⎫⎪+∞⎪⎝⎭为增函数, …………4分 当2a >时,由()210x ax f x x++=>'在()0,+∞恒成立,()f x ∴在()0,+∞为增函数.…………5分综上,当2a <-时,()f x 在⎛ ⎝⎭为增函数,⎝⎭减函数,⎫⎪+∞⎪⎝⎭为增函数;当2a ≥-时,()f x 在()0,+∞为增函数.(2)()()()()22213ln e ln e 022x x F x f x g x x x ax x x x x ax x x =-=++--+=-++->,()F x Q 存在不动点,∴方程()F x x =有实数根,即2ln e x x x a x -+=有解,…………7分令()()2n 0e l x x xh x x x+-=>,()()()()()()2211ln 1ln 11e e xx x x xx x x x h x x x ++-+-+++-='=,…………8分令()0h x '=,得1x =,当()0,1x ∈时,()0h x '<,()h x 单调递减;当()1,x ∈+∞时,()0h x '>,()h x 单调递增, …………10分()()1e 1h x h ∴≥=+,…………11分当e 1a ≥+时,()F x 有不动点,a ∴的范围为[)e 1,++∞.…………12分 22.(本小题满分10分)【解答】(1)2211:C x y +=, …………1分22:cos C ρθ=,∴22cos ρρθ=,∴222x y x +=.…………3分联立方程组得222212x y x y x⎧+=+=⎪⎨⎪⎩,解得1112x y ⎧⎪⎪⎨==⎪⎪⎩2212x y ⎧⎪==⎨⎪⎪⎪⎩,∴所求交点的坐标为12⎛ ⎝⎭,1,2⎛ ⎝⎭.…………5分 (2)设(),B ρθ,则2cos ρθ=.…………6分∴AOB △的面积11sin 4sin 4cos sin 223π3πS OA OB AOB ρθθθ⎛⎫⎛⎫=⋅⋅⋅∠=⋅-=- ⎪ ⎪⎝⎭⎝⎭2cos 26πθ⎛⎫=++ ⎪⎝⎭,…………8分∴当11π12θ=时,max 2S =…………10分 23.( 本题满分 10 分)【解答】(1)不等式等价于132x x x ≤--≤+⎧⎨⎩或11222x x x -<⎧≤-+≤+⎪⎨⎪⎩或1232x x x >≤+⎧⎪⎨⎪⎩,…………3分解得x ∈∅或102x ≤≤或112x <≤, 所以不等式()2f x x ≤+的解集为{}01x x ≤≤.…………5分 (2)由()3,112,1213,2x x f x x x x x ⎧⎪-≤-⎪⎪=-+-<≤⎨⎪⎪>⎪⎩知,当12x =时,()min 1322f x f ⎛⎫== ⎪⎝⎭; (7)分()()()323121g x x m x m ≥---=-,…………8分当且仅当()()32310x m x --≤时取等号,所以3212m -≤,解得1544m -≤≤.故实数m 的取值范围是15,44⎡⎤-⎢⎥⎣⎦.…………10分。
2020届河北省衡水金卷高三第五次调研考试语文
2020届河北省衡水金卷高三第五次调研考试高三语文试题★祝考试顺利★注意事项:1、考试范围:高考范围。
2、试题卷启封下发后,如果试题卷有缺页、漏印、重印、损坏或者个别字句印刷模糊不清等情况,应当立马报告监考老师,否则一切后果自负。
3、答题卡启封下发后,如果发现答题卡上出现字迹模糊、行列歪斜或缺印等现象,应当马上报告监考老师,否则一切后果自负。
4、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B铅笔将答题卡上试卷类型A后的方框涂黑。
5、选择题的作答:每个小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。
6、主观题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。
如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
7、保持答题卡卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。
8、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
一、现代文阅读(36分)(一)论述类文本阅读(本题共3小题,9分)阅读下面的文字,完成1~3题。
陈寅恪说:“所谓真了解者,必神游冥想,与立说之古人,处于同一境界始能批评其学说之是非得失,而无隔阂肤廓之论。
”这表明学术研究还需借助于历史的想象力,但历史想象与艺术想象有所不同,我们切不可拿“想象”作“证据”“误认天上的浮云为天际的树林”。
这也是治学者应当牢记的“信条”。
治学须以历史学为根基。
李大钊说:“纵观人间的过去者便是历史,横观人间的现在者便是社会。
”也就是说,要洞察现实的社会,就不能不研究过去的历史。
胡适之则把这种认识的思路,比作“祖孙的方法”。
这一方法从来不把事物看作一个孤立的东西,而把它视为“历史”的一个“中段”:“上头有他的祖父,下头有他的孙子。
2020届河北省衡水中学高三第五次调研考试数学(文)试题
2020届河北省衡水中学高三第五次调研考试数学(文)★祝考试顺利★ 注意事项:1、考试范围:高考范围。
2、试题卷启封下发后,如果试题卷有缺页、漏印、重印、损坏或者个别字句印刷模糊不清等情况,应当立马报告监考老师,否则一切后果自负。
3、答题卡启封下发后,如果发现答题卡上出现字迹模糊、行列歪斜或缺印等现象,应当马上报告监考老师,否则一切后果自负。
4、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
5、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。
6、主观题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。
如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
7、保持答题卡卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。
8、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
1. 选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的,把答案填在题后的表格中。
1. 已知命题3:0,0P x x ∀>>,那么P ⌝是( )A. 30,0x x ∃≤≤ B. 30,0x x ∀>≤ C. 30,0x x ∃>≤ D. 30,0x x ∀<≤ 2.已知集合{}|20M x x =-<,{}|N x x a =<,若M N ⊆,则实数a 的取值范围是( ) A. [2,)+∞ B. ()2,+∞ C. (),0-∞ D. (,0]-∞3、已知i 是虚数单位,则复数131ii-=+ ( ) A .2i + B .2i - C .12i -- D .12i -+4.等差数列{}n a 的前n 项和为n S ,且336,0S a ==,则公差d 等于( )A. 1-B. 1C. 2D. 2-5、设函数()f x 为偶数,当(0,)x ∈+∞时,()2log f x x =,则(f = ( ) A .12-B .12C .2D .-26、已知cos ,,(,)2k k R πααπ=∈∈,则sin()πα+= ( )A.. D .k -7、在C ∆A B 中,角A ,B ,C 所对的边分别是a ,b ,c ,若1c =,45B =,3cos 5A =,则b 等于( ) A .53 B .107 C .57D.148、若双曲线C:22221x y a b -=的一条渐近线倾斜角为6π,则双曲线C 的离心率为( )A .2C .2D .2 9、已知定义在R 上的函数()f x 满足()()351f f -==,()'f x 是()f x 的导函数,且函数()'y f x =的图象如右图所示,则不等式()1f x <的解集是( ) A. ()3,0- B. ()3,5- C. ()0,5 D. ()(),35,-∞-+∞10、在棱长为3的正方体1111ABCD A B C D -中,P 在线段BD 1上,且112BP PD =,M 为线段11B C 上的动点,则三棱锥M PBC -的体积为( ) A .1 B .32 C .92D .与M 点的位置有关 11、如图,(),x y M M M ,(),x y N N N 分别是函数()()sin f x x ωϕ=A +(0A >,0ω>)的图象与两条直线1:l y m =,2:l y m =-(0m A ≥≥)的两个交点,记S x x N M =-,则()S m 图象大致是( )12.在Rt ABC ∆中,3CA CB ==,,M N 是斜边AB 上的两个动点,且MN =,则CM CN ⋅的取值范围为( )A. []3,6B. []4,6 C. 52,2⎡⎤⎢⎥⎣⎦ D. []2,413. 已知数列{}n a 是等比数列,若143,62a a ==,则10a = . 14、若1,2,3,4,m 这五个数的平均数为3,则这五个数的方差为 . 15、已知平面向量,a b 的夹角为2,2,13a b π==,则a b += . 16、已知直三棱柱111C C AB -A B 中,C 90∠BA =,侧面11CC B B 的面积为2,则直三棱柱111C C AB -A B 外接球表面积的最小值为 .3.解答题:共70分。