详解STM32定时器
STM32定时器配置(TIM1、TIM2、TIM3、TIM4、TIM5、TIM8)高级定时。。。
STM32定时器配置(TIM1、TIM2、TIM3、TIM4、TIM5、TIM8)⾼级定时。
⽂章结构:——> ⼀、定时器基本介绍——> ⼆、普通定时器详细介绍TIM2-TIM5——> 三、定时器代码实例⼀、定时器基本介绍之前有⽤过野⽕的学习板上⾯讲解很详细,所以直接上野⽕官⽅的资料吧,作为学习参考笔记发出来⼆、普通定时器详细介绍TIM2-TIM52.1 时钟来源计数器时钟可以由下列时钟源提供:·内部时钟(CK_INT)·外部时钟模式1:外部输⼊脚(TIx)·外部时钟模式2:外部触发输⼊(ETR)·内部触发输⼊(ITRx):使⽤⼀个定时器作为另⼀个定时器的预分频器,如可以配置⼀个定时器Timer1⽽作为另⼀个定时器Timer2的预分频器。
由于今天的学习是最基本的定时功能,所以采⽤内部时钟。
TIM2-TIM5的时钟不是直接来⾃于APB1,⽽是来⾃于输⼊为APB1的⼀个倍频器。
这个倍频器的作⽤是:当APB1的预分频系数为1时,这个倍频器不起作⽤,定时器的时钟频率等于APB1的频率(36MHZ);当APB1的预分频系数为其他数值时(即预分频系数为2、4、8或16),这个倍频器起作⽤,定时器的时钟频率等于APB1的频率的2倍。
{假如APB1预分频为2(变成36MHZ),则定时器TIM2-5的时钟倍频器起作⽤,将变成2倍的APB1(2x36MHZ)将为72MHZ给定时器提供时钟脉冲。
⼀般APB1和APB2的RCC时钟配置放在初始化函数中例如下⾯的void RCC_Configuration(void)配置函数所⽰,将APB1进⾏2分频,导致TIM2时钟变为72MHZ输⼊。
如果是1分频则会是36MHZ输⼊,如果4分频:CKINT=72MHZ/4x2=36MHZ; 8分频:CKINT=72MHZ/8x2=18MHZ;16分频:CKINT=72MHZ/16x2=9MHZ}1//系统时钟初始化配置2void RCC_Configuration(void)3 {4//定义错误状态变量5 ErrorStatus HSEStartUpStatus;6//将RCC寄存器重新设置为默认值7 RCC_DeInit();8//打开外部⾼速时钟晶振9 RCC_HSEConfig(RCC_HSE_ON);10//等待外部⾼速时钟晶振⼯作11 HSEStartUpStatus = RCC_WaitForHSEStartUp();12if(HSEStartUpStatus == SUCCESS)13 {14//设置AHB时钟(HCLK)为系统时钟15 RCC_HCLKConfig(RCC_SYSCLK_Div1);16//设置⾼速AHB时钟(APB2)为HCLK时钟17 RCC_PCLK2Config(RCC_HCLK_Div1);18 //设置低速AHB时钟(APB1)为HCLK的2分频(TIM2-TIM5输⼊TIMxCLK频率将为72MHZ/2x2=72MHZ输⼊)19 RCC_PCLK1Config(RCC_HCLK_Div2);20//设置FLASH代码延时21 FLASH_SetLatency(FLASH_Latency_2);22//使能预取指缓存23 FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable);24//设置PLL时钟,为HSE的9倍频 8MHz * 9 = 72MHz25 RCC_PLLConfig(RCC_PLLSource_HSE_Div1, RCC_PLLMul_9);26//使能PLL27 RCC_PLLCmd(ENABLE);28//等待PLL准备就绪29while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET);30//设置PLL为系统时钟源31 RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK);32//判断PLL是否是系统时钟33while(RCC_GetSYSCLKSource() != 0x08);34 }35//允许TIM2的时钟36 RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2,ENABLE);37//允许GPIO的时钟38 RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB,ENABLE);39 }APB1的分频在STM32_SYSTICK的学习笔记中有详细描述。
stm32定时器原理
stm32定时器原理STM32定时器是一种非常重要的硬件模块,能够实现精确的时间控制和周期性操作。
本文将介绍STM32定时器的原理,包括定时器的基本功能、定时器的分频器、定时器的计数器、定时器的中断、定时器的输出比较和定时器的输入捕获等。
首先介绍定时器的基本功能,STM32定时器可以产生一个特定的周期性信号,在一定的时间间隔内产生触发事件,例如控制LED闪烁、蜂鸣器发声等等。
此外,定时器还可以通过设定特定的计数值来实现定时功能,如延时、计时器等等。
其次介绍定时器的分频器,STM32定时器的分频器可以设置定时器的工作频率,通常是通过将系统时钟分频来实现。
分频器的设置可以通过修改寄存器的值来实现,通常是通过设置预分频器和分频器来实现。
接着介绍定时器的计数器,STM32定时器的计数器是用来记录分频器的计数值,通过相应的计数值来确定定时器的工作周期。
定时器的计数器可以在特定的条件下自动重置或停止,以实现特定的计时或延时功能。
然后介绍定时器的中断,STM32定时器的中断可以在定时器计数器达到特定的值时触发,然后执行中断服务程序。
在中断服务程序中可以实现特定的操作,例如控制IO口状态、改变定时器的工作频率等。
接下来介绍定时器的输出比较,STM32定时器的输出比较可以将定时器的输出信号与预设的比较值进行比较,以实现特定的操作。
例如可以控制LED的亮度、PWM信号、电机控制等等。
最后介绍定时器的输入捕获,STM32定时器的输入捕获可以在外部信号产生时捕获定时器的计数值,可以用于测量脉冲宽度、频率等等。
定时器的输入捕获通常需要设置定时器的捕获模式和捕获通道等参数。
综上所述,STM32定时器是一种非常重要的硬件模块,应用广泛,我们需要充分理解其原理和应用,以实现精确的时间控制和周期性操作。
STM32通用定时器原理及应用
一、通用定时器原理STM32系列的CPU,有多达8个定时器,其中TIM1和TIM8是能够产生三对PWM 互补输出的高级定时器,常用于三相电机的驱动,它们的时钟由APB2的输出产生。
其它6个为普通定时器,时钟由APB1的输出产生。
下图是STM32参考手册上时钟分配图中,有关定时器时钟部分的截图:实际上STM32的CPU文档给出的图与这个图略有区别。
但是我们还是想研究这个图。
原因是这个图对我们思路的理解比较有帮助。
从图中可以看出,定时器的时钟不是直接来自APB1或APB2,而是来自于输入为APB1或APB2的一个倍频器,图中的蓝色部分。
下面以通用定时器2的时钟说明这个倍频器的作用:当APB1的预分频系数为1时,这个倍频器不起作用,定时器的时钟频率等于APB1的频率;当APB1的预分频系数为其它数值(即预分频系数为2、4、8或16)时,这个倍频器起作用,定时器的时钟频率等于APB1的频率两倍。
可能有同学还是有点不理解,OK,我们举一个例子说明。
假定AHB=36MHz,因为APB1允许的最大频率为36MHz,所以APB1的预分频系数可以取任意数值;当预分频系数=1时,APB1=36MHz,TIM2~7的时钟频率=36MHz(倍频器不起作用);当预分频系数=2时,APB1=18MHz,在倍频器的作用下,TIM2~7的时钟频率=36MHz。
有人会问,既然需要TIM2~7的时钟频率=36MHz,为什么不直接取APB1的预分频系数=1?答案是:APB1不但要为TIM2~7提供时钟,而且还要为其它外设提供时钟;设置这个倍频器可以在保证其它外设使用较低时钟频率时,TIM2~7仍能得到较高的时钟频率。
再举个例子:当AHB=72MHz时,APB1的预分频系数必须大于2,因为APB1的最大频率只能为36MHz。
如果APB1的预分频系数=2,则因为这个倍频器,TIM2~7仍然能够得到72MHz 的时钟频率。
能够使用更高的时钟频率,无疑提高了定时器的分辨率,这也正是设计这个倍频器的初衷。
stm32 timer 用法
stm32 timer 用法摘要:1.引言2.STM32定时器简介3.STM32定时器工作原理4.STM32定时器配置与使用5.STM32定时器应用实例6.总结正文:1.引言STM32是一款广泛应用于嵌入式系统的微控制器,拥有丰富的外设资源。
其中,定时器(Timer)是STM32外设中非常关键的部分,它在系统时钟、输入捕捉、输出比较、PWM等功能中起着举足轻重的作用。
本文将详细介绍STM32定时器的用法。
2.STM32定时器简介STM32定时器主要包括基本定时器(Basic Timer)、高级定时器(Advanced Timer)和看门狗定时器(Watchdog Timer)。
其中,基本定时器主要用于系统时钟的生成和控制;高级定时器具有更多的功能,如输入捕捉、输出比较、PWM等;看门狗定时器用于检测系统的运行状态,防止系统崩溃。
3.STM32定时器工作原理STM32定时器的工作原理主要基于计数器、预分频器和比较器。
计数器用于记录定时器滴答(Tick)的数量;预分频器用于控制定时器滴答频率;比较器用于产生定时器溢出信号。
当定时器溢出时,定时器硬件会自动产生中断,通过编程可以设置相应的中断处理程序,实现特定功能。
4.STM32定时器配置与使用配置STM32定时器主要包括以下步骤:(1)使能定时器:通过设置相应寄存器位,使能定时器;(2)配置定时器工作模式:根据需求选择定时器工作模式,如计数模式、PWM模式等;(3)配置定时器时钟源:选择定时器时钟源,如内部时钟、外部时钟等;(4)配置定时器预分频器:设置定时器预分频器值,以满足定时器滴答频率要求;(5)配置比较器:设置比较器值,以产生定时器溢出信号;(6)配置中断:根据需求配置定时器中断,如使能中断、设置优先级等。
5.STM32定时器应用实例以下是一个简单的STM32定时器应用实例:使用STM32F103C8T6微控制器实现一个LED闪烁的程序。
(1)配置定时器:使能定时器TIM2,设置工作模式为计数模式,时钟源为内部时钟,预分频器值为72000,比较器值为65536。
STM32之TIM通用定时器
STM32之TIM通⽤定时器本⽂介绍如何使⽤STM32标准外设库配置并使⽤定时器,定时器就是设置⼀个计时器,待计时时间到之后产⽣⼀个中断,程序接收到中断之后可以执⾏特定的程序,跟现实中的闹钟功能类似。
与延时功能不同,定时器计时过程中程序可以执⾏其他程序。
最简单直观的应⽤为定时翻转指定IO引脚。
本例程使⽤通⽤定时器TIM3,每100ms翻转GPIOB的Pin5输出,如果该引脚外接有LED灯,可以看到LED灯周期性的闪烁。
STM32F103VE系列共有8个定时器,分为基本定时器、通⽤定时器和⾼级定时器,其中通⽤定时器包括TIM2/3/4/5共4个,如果⼀个定时器不够⽤,可以启动其他⼏个定时器。
本⽂适合对单⽚机及C语⾔有⼀定基础的开发⼈员阅读,MCU使⽤STM32F103VE系列。
TIM通⽤定时器分为两部分,初始化和控制。
1. 初始化分两步:通⽤中断、TIM。
1.1. 通⽤中断:优先级分组、中断源、优先级、使能优先级分组:设定合适的优先级分组中断源:选择指定的TIM中断源:TIM3_IRQn优先级:设定合适的优先级使能:调⽤库函数即可1.2. TIM:时钟、预分频器、定时器周期、分频因⼦、计数模式、初始化定时器、开启定时器中断、使能计数器。
结构体:typedef struct{uint16_t TIM_Prescaler;uint16_t TIM_CounterMode;uint16_t TIM_Period;uint16_t TIM_ClockDivision;uint8_t TIM_RepetitionCounter;} TIM_TimeBaseInitTypeDef;时钟:需要使能定时器时钟//开启定时器时钟,即内部时钟CK_INT=72MRCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE);预分频器:默认定时器时钟频率为72M,那么预分频器设置为71,那么⼀次计数为1us//时钟预分频数为71,则计数器计数⼀次时间为1usTIM_TimeBaseStructure.TIM_Prescaler = 71;定时器周期:设置为999,那么产⽣⼀次定时器中断的时间为1ms//⾃动重装载寄存器为999,则产⽣⼀次中断时间为1msTIM_TimeBaseStructure.TIM_Period = 1000 - 1;计数模式:⼀般选择向上计数模式// 计数器计数模式,选择向上计数模式TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;时钟分频因⼦:⼀般选择1分频// 时钟分频因⼦,选择1分频TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1;重复计数器的值:仅对⾼级定时器有效,⽆需设置初始化定时器:调⽤库函数即可//初始化定时器TIM_TimeBaseInit(TIM3, &TIM_TimeBaseStructure);开启定时器中断//开启计数器中断TIM_ITConfig(TIM3, TIM_IT_Update, ENABLE);使能计数器//使能计数器TIM_Cmd(TIM3, ENABLE);2. 处理2.1. 中断服务函数定时器TIM3的中断服务函数名称为TIM3_IRQHandler ()。
stm32定时器
STM32定时器定时器功能简介区别于SysTick一般只用于系统时钟的计时,STM32的定时器外设功能非常强大。
STM32一共有8个都为16位的定时器。
其中TIM6、TIM7是基本定时器;TIM 2、TIM3、TIM4、TIM5是通用定时器;TIM1和TIM8是高级定时器。
这些定时器使STM32具有定时、信号的频率测量、信号的PWM测量、PWM输出、三相6步电机控制及编码器接口等功能,都是专门为工控领域量身定做的。
定时器工作分析基本定时器基本定时器TIM6和TIM7只具备最基本的定时功能,就是累加的时钟脉冲数超过预定值时,能触发中断或触发DMA请求。
这两个基本定时器使用的时钟源都是TIMxCLK,时钟源经过PSC预分频器输入至脉冲计数器TIMx_CNT,基本定时器只能工作在向上计数模式,在重载寄存器TIMx_ARR中保存的是定时器的溢出值。
工作时,脉冲计数器TIMx_CNT由时钟触发进行计数,当TIMx_CNT的计数值X等于重载寄存器TIMx_ARR中保存的数值N时,产生溢出事件,可触发中断或DMA请求。
然后TIMx_CNT的值重新被置为0,重新向上计数。
通用定时器相比之下,通用定时器TIM2~TIM5就比基本定时器复杂得多了。
除了基本的定时,它主要用在测量输入脉冲的频率、脉冲宽与输出PWM脉冲的场合,还具有编码器的接口。
通用定时器的基本计时功能与基本定时器的工作方式是一样的,同样把时钟源经过预分频器输出到脉冲计数器TIMx_CNT累加,溢出时就产生中断或DMA请求。
而通用定时器比基本定时器多出的强大功能,就是因为通用定时器多出了一种寄存器----捕获/比较寄存器TIMx_CRR(capture/compareregister)它在输入时被用于捕获(存储)输入脉冲在电平发生翻转时脉冲计数器TI Mx_CNT的当前计数值,从而实现脉冲的频率测量;在输出时被用来存储一个脉冲数值,把这个数值用于与脉冲计数器TIMx_CNT的当前计数值进行比较,根据比较结果进行不同的电平输出定时器的时钟源从时钟源方面来说,通用定时器比基本定时器多了一个选择,它可以使用外部脉冲作为定时器的时钟源。
STM32的定时器定时时间计算(计数时间和中断定时时间)
STM32的定时器定时时间计算(计数时间和中断定时时间)时基单元可编程⾼级控制定时器的主要部分是⼀个16位计数器和与其相关的⾃动装载寄存器。
这个计数器可以向上计数、向下计数或者向上向下双向计数。
此计数器时钟由预分频器分频得到。
计数器、⾃动装载寄存器和预分频器寄存器可以由软件读写,即使计数器还在运⾏读写仍然有效。
时基单元包含:●计数器寄存器(TIMx_CNT)●预分频器寄存器 (TIMx_PSC)●⾃动装载寄存器 (TIMx_ARR)●重复次数寄存器 (TIMx_RCR)⾃动装载寄存器是预先装载的,写或读⾃动重装载寄存器将访问预装载寄存器。
根据在TIMx_CR1寄存器中的⾃动装载预装载使能位(ARPE)的设置,预装载寄存器的内容被⽴即或在每次的更新事件UEV时传送到影⼦寄存器。
当计数器达到溢出条件(向下计数时的下溢条件)并当TIMx_CR1寄存器中的UDIS位等于0时,产⽣更新事件。
更新事件也可以由软件产⽣。
随后会详细描述每⼀种配置下更新事件的产⽣。
计数器由预分频器的时钟输出CK_CNT驱动,仅当设置了计数器TIMx_CR1寄存器中的计数器使能位(CEN)时,CK_CNT才有效。
(更多有关使能计数器的细节,请参见控制器的从模式描述)。
注意,在设置了TIMx_CR寄存器的CEN位的⼀个时钟周期后,计数器开始计数。
预分频器描述预分频器可以将计数器的时钟频率按1到65536之间的任意值分频。
它是基于⼀个(在TIMx_PSC寄存器中的)16位寄存器控制的16位计数器。
因为这个控制寄存器带有缓冲器,它能够在运⾏时被改变。
新的预分频器的参数在下⼀次更新事件到来时被采⽤。
尤其注意的是当发⽣⼀个更新事件时,所有的寄存器都被更新,硬件同时(依据URS位)设置更新标志位(TIMx_SR寄存器中的UIF位)。
●重复计数器被重新加载为TIMx_RCR寄存器的内容。
●⾃动装载影⼦寄存器被重新置⼊预装载寄存器的值(TIMx_ARR)。
STM32通用定时器
STM32通用定时器一、定时器的基础知识三种STM32定时器区别通用定时器功能特点描述:STM3 的通用 TIMx (TIM2、TIM3、TIM4 和 TIM5)定时器功能特点包括:位于低速的APB1总线上(APB1)16 位向上、向下、向上/向下(中心对齐)计数模式,自动装载计数器(TIMx_CNT)。
16 位可编程(可以实时修改)预分频器(TIMx_PSC),计数器时钟频率的分频系数 为 1~65535 之间的任意数值。
4 个独立通道(TIMx_CH1~4),这些通道可以用来作为:①输入捕获②输出比较③ PWM 生成(边缘或中间对齐模式)④单脉冲模式输出可使用外部信号(TIMx_ETR)控制定时器和定时器互连(可以用 1 个定时器控制另外一个定时器)的同步电路。
如下事件发生时产生中断/DMA(6个独立的IRQ/DMA请求生成器):①更新:计数器向上溢出/向下溢出,计数器初始化(通过软件或者内部/外部触发)②触发事件(计数器启动、停止、初始化或者由内部/外部触发计数)③输入捕获④输出比较⑤支持针对定位的增量(正交)编码器和霍尔传感器电路⑥触发输入作为外部时钟或者按周期的电流管理STM32 的通用定时器可以被用于:测量输入信号的脉冲长度(输入捕获)或者产生输出波形(输出比较和 PWM)等。
使用定时器预分频器和 RCC 时钟控制器预分频器,脉冲长度和波形周期可以在几个微秒到几个毫秒间调整。
STM32 的每个通用定时器都是完全独立的,没有互相共享的任何资源。
定时器框图:倍频得到),外部时钟引脚,可以通过查看数据手册。
也可以是TIMx_CHn,此时主要是实现捕获功能;框图中间的时基单元框图下面左右两部分分别是捕获输入模式和比较输出模式的框图,两者用的是同一引脚,不能同时使用。
二、定时器相关的寄存器和寄存器操作库函数时钟选择, 计数器时钟可以由下列时钟源提供:时钟选择①内部时钟(CK_INT)②外部时钟模式1:外部输入脚(TIx)③外部时钟模式2:外部触发输入(ETR)④内部触发输入(ITRx):使用一个定时器作为另一个定时器的预分频器,如可以配置一个定时器Timer1而作为另一个定时器Timer2的预分频器。
stm32定时器的使用流程
STM32定时器的使用流程1. 简介STM32定时器是STM32系列微控制器中重要的外设之一。
定时器可以用于生成特定的定时器事件,实现计时、测量时间间隔、产生PWM信号等功能。
本文将介绍STM32定时器的使用流程。
2. STM32定时器的基本工作原理STM32定时器通常由一个或多个计数器和若干个通道组成。
计数器用于计算时间的流逝,而通道用于控制输出。
计数器的计数范围和分辨率可以根据需求进行配置。
通常情况下,定时器通过外部时钟源进行计数,也可以使用内部时钟源。
3. STM32定时器的使用流程使用STM32定时器通常需要以下步骤:3.1 初始化定时器在使用定时器之前,需要初始化定时器的相关参数,包括计数器的计数范围、分频系数等。
通常可以通过寄存器的设置来完成初始化工作。
使用HAL库的话,可以使用HAL_TIM_Base_Init()函数进行初始化。
3.2 配置定时器的工作模式定时器可以根据需求配置为不同的工作模式,常见的模式包括单脉冲模式、连续模式、PWM输出模式等。
可以使用TIM_CR1、TIM_CR2等寄存器进行配置。
使用HAL库的话,可以使用相应的函数进行配置。
3.3 配置定时器的中断和DMA定时器可以配置中断和DMA功能,在特定的条件下触发相应的中断或DMA请求。
可以使用TIM_DIER寄存器进行配置。
使用HAL库的话,可以使用相应的函数进行配置。
3.4 启动定时器在配置完成后,需要启动定时器开始计数。
可以使用TIM_CR1寄存器进行配置。
使用HAL库的话,可以使用相应的函数进行配置。
3.5 处理定时器中断如果配置了定时器中断,当定时器达到设定的计数值时,会触发中断。
在中断服务函数中可以根据需求进行相应的处理。
3.6 设置定时器输出如果配置了定时器的通道输出模式,可以在定时器计数到一定值时,通过通道输出相应的信号。
可以使用TIM_CCR1、TIM_CCR2等寄存器进行配置。
3.7 停止定时器如果需要停止定时器的计数,可以使用TIM_CR1寄存器进行配置。
stm32高级定时器 多通道控制步进电机 标准函数
标题:STM32高级定时器多通道控制步进电机标准函数一、STM32高级定时器简介1.1 STM32高级定时器的概念STM32系列微控制器中的高级定时器是一种功能强大的定时器,可以实现多通道控制、高精度定时等功能。
1.2 高级定时器的特点高级定时器具有多通道控制、PWM波形发生、编码器接口、定时周期计数等特点,非常适合用于控制步进电机。
二、多通道控制步进电机2.1 步进电机控制原理步进电机是一种将电能转化为机械能的设备,通过对电流的控制来驱动电机旋转。
多通道控制可以实现单步控制、微步控制等功能。
2.2 高级定时器在步进电机控制中的应用高级定时器的多通道控制功能可以实现对步进电机的精确控制,通过定时器的定时周期和占空比设置,可以实现步进电机的旋转角度控制。
三、标准函数的应用3.1 标准函数库的介绍STM32标准函数库是由ST公司提供的一套功能丰富的软件库,其中包含了丰富的功能函数和驱动程序,可以大大简化开发者的开发流程。
3.2 标准函数在高级定时器中的应用开发者可以通过调用标准函数库中提供的函数来实现对高级定时器的初始化、配置和控制,从而实现对步进电机的精确控制。
结语:通过本文对STM32高级定时器多通道控制步进电机标准函数的介绍,可以看出高级定时器在步进电机控制中具有重要的应用价值。
通过合理的设置定时器参数和调用标准函数库中的函数,开发者可以实现对步进电机的精确控制,为实际应用提供了便利。
希望本文能够帮助读者更深入地了解高级定时器多通道控制步进电机标准函数的应用,并且在实际开发中加以应用。
很抱歉,我似乎在给出的回复中存在了重复。
以下是补充的新内容:四、高级定时器的多通道控制方式4.1 多通道控制原理STM32的高级定时器可以实现多通道控制,将一个定时器的计时和控制功能分配给多个通道,实现多个功能的控制。
4.2 多通道控制的优势通过多通道控制,可以实现对多个外设设备的并行控制,减少了对多个定时器的占用,提高了系统资源的利用效率。
STM32高级定时器详解
高级定时器(TIM1和TIM8)由一个16位的自动装载计数器组成,它由一个可编程的预分频器驱。
它适合多种用途,包含测量输入信号的脉冲宽度(输入捕获),或者产生输出波形(输出比较、PWM、嵌入死区时间的互补PWM等)。
使用定时器预分频器和RCC时钟控制预分频器,可以实现脉冲宽度和波形周期从几个微秒到几个毫秒的调节。
高级控制定时器和通用定时器是完全独立的,它们不共享任何资源。
它们可以同步操作。
Table 457. TIM寄存器寄存器描述CR1 控制寄存器1CR2 控制寄存器2SMCR 从模式控制寄存器DIER DMA/中断使能寄存器SR 状态寄存器EGR 事件产生寄存器CCMR1 捕获/比较模式寄存器1CCMR2 捕获/比较模式寄存器2CCER 捕获/比较使能寄存器CNT 计数器寄存器PSC 预分频寄存器APR 自动重装载寄存器CCR1 捕获/比较寄存器1CCR2 捕获/比较寄存器2CCR3 捕获/比较寄存器3CCR4 捕获/比较寄存器4DCR DMA控制寄存器DMAR 连续模式的DMA地址寄存器Table 458. 例举了TIM的库函数Table 458. TIM库函数函数名描述TIM_DeInit 将外设TIMx寄存器重设为缺省值TIM_TimeBaseInit根据TIM_TimeBaseInitStruct中指定的参数初始化TIMx的时间基数单位TIM_OCInit 根据TIM_OCInitStruct 中指定的参数初始化外设TIMxTIM_ICInit 根据TIM_ICInitStruct 中指定的参数初始化外设TIMxTIM_TimeBaseStructInit 把TIM_TimeBaseInitStruct 中的每一个参数按缺省值填入TIM_OCStructInit 把TIM_OCInitStruct 中的每一个参数按缺省值填入TIM_ICStructInit 把TIM_ICInitStruct 中的每一个参数按缺省值填入TIM_Cmd 使能或者失能TIMx 外设TIM _ITConfig 使能或者失能指定的TIM 中断TIM_DMAConfig 设置TIMx的DMA接口TIM_DMACmd 使能或者失能指定的TIMx 的DMA请求TIM_InternalClockConfig 设置TIMx 内部时钟TIM_ITRxExternalClockConfig 设置TIMx 内部触发为外部时钟模式TIM_TIxExternalClockConfig 设置TIMx 触发为外部时钟TIM_ETRClockMode1Config 配置TIMx 外部时钟模式1TIM_ETRClockMode2Config 配置TIMx 外部时钟模式2TIM_ETRConfig 配置TIMx 外部触发TIM_SelectInputTrigger 选择TIMx 输入触发源TIM_PrescalerConfig 设置TIMx 预分频TIM_CounterModeConfig 设置TIMx 计数器模式TIM_ForcedOC1Config 置TIMx 输出1 为活动或者非活动电平TIM_ForcedOC2Config 置TIMx 输出2 为活动或者非活动电平TIM_ForcedOC3Config 置TIMx 输出3 为活动或者非活动电平TIM_ForcedOC4Config 置TIMx 输出4 为活动或者非活动电平TIM_ARRPreloadConfig 使能或者失能TIMx在ARR 上的预装载寄存器TIM_SelectCCDMA 选择TIMx 外设的捕获比较DMA源TIM_OC1PreloadConfig 使能或者失能TIMx在CCR1 上的预装载寄存器TIM_OC2PreloadConfig 使能或者失能TIMx在CCR2 上的预装载寄存器TIM_OC3PreloadConfig 使能或者失能TIMx在CCR3 上的预装载寄存器TIM_OC4PreloadConfig 使能或者失能TIMx在CCR4 上的预装载寄存器TIM_OC1FastConfig 设置TIMx 捕获比较1 快速特征。
stm32定时器原理
stm32定时器原理
STM32定时器是一个硬件计数器,可用于计算时间间隔、触发外
设或执行定期任务等。
它的基本工作原理是通过一个时钟源来驱动计
数器,当计数器达到一个预设值时,就会产生一个中断或触发外设。
STM32的定时器包括多个不同类型的定时器,其中最常用的是通用定时器(TIM)和高级定时器(TIM)。
通用定时器具有多个计数通道和各种计数模式,可用于生成PWM
信号、测量时间间隔、定期触发DMA传输等。
通用定时器通常具有16
位或32位计数器,可以配置为计数器模式、定时器模式或PWM输出模式。
配置定时器时,需要设置时钟源、计数器分频器、计数器周期等
参数。
通常使用的时钟源包括内部时钟、外部时钟和GPIO输入,计数
器分频器可以用来降低时钟频率以适应不同的计数范围,计数器周期
则可以用来设置定时器的时间间隔。
高级定时器主要用于复杂的PWM和定时器应用,它具有更多的计
数通道和计数模式,并支持定制化的计数器功能。
与通用定时器不同,高级定时器通常具有16位和32位计数器,并且可以独立工作或耦合
在一起使用,以实现更高精度的计时和PWM生成。
配置高级定时器时,需要设置时钟源、计数器分频器、计数器周期、PWM占空比等参数。
同时,高级定时器还支持多种触发模式、中断模式和DMA传输模式,可
用于实现各种复杂的功能。
STM32定时器定时时间配置总结
STM32定时器定时时间配置总结STM32系列微控制器内置了多个定时器模块,它们可以用于各种定时功能,如延时、周期性触发、脉冲计数等。
在使用STM32定时器之前,我们需要进行定时时间配置,本文将总结一下STM32定时器定时时间配置的相关知识,包括定时器工作模式、定时器时钟源选择、定时器时钟分频、定时器计数器重载值以及定时器中断配置等内容。
首先,我们需要选择定时器的工作模式。
STM32定时器支持多种工作模式,包括基本定时器模式、高级定时器模式、输入捕获模式和输出比较模式等。
基本定时器模式适用于简单的定时和延时操作,输入捕获模式适用于捕获外部事件的时间参数,输出比较模式适用于产生精确的PWM波形。
根据具体的应用需求,选择合适的工作模式。
其次,我们需要选择定时器的时钟源。
STM32定时器的时钟源可以选择内部时钟源(如系统时钟、HCLK等)或外部时钟源(如外部晶体)。
内部时钟源的稳定性较差,适用于简单的定时操作,而外部时钟源的稳定性较好,适用于要求较高的定时操作。
然后,我们需要选择定时器的时钟分频系数。
定时器的时钟分频系数决定了定时器的时钟频率,从而影响了定时器的计数速度。
我们可以通过改变时钟分频系数来调整定时器的计数速度,从而实现不同的定时时间。
时钟分频系数的选择需要考虑定时器的最大计数周期和所需的定时精度。
接着,我们需要配置定时器的计数器重载值。
定时器的计数器从0开始计数,当计数器达到重载值时,定时器将重新开始计数。
通过改变计数器重载值,可以实现不同的定时时间。
计数器重载值的选择需要考虑定时器的时钟频率和所需的定时时间。
最后,我们需要配置定时器的中断。
定时器中断可以在定时器计数达到重载值时触发,用于通知CPU定时器已经计数完成。
在定时器中断中,我们可以执行相应的中断服务程序,比如改变一些IO口的状态,实现定时操作。
通过配置定时器的中断使能和中断优先级,可以实现不同的中断操作。
需要注意的是,不同型号的STM32微控制器的定时器模块可能略有不同,具体的配置方法和寄存器设置也可能不同,请参考相应的数据手册和参考手册进行具体操作。
STM32定时器基本计数原理解析
STM32定时器基本计数原理解析
概述
STM32的TIM定时器分为三类:基本定时器、通用定时器和高级定时器。
从分类来看就知道STM32的定时器功能是非常强大的,但是,功能强大了,软件配置定时器就相对复杂多了。
很多初学者甚至工作了一段时间的人都不知道STM32最基本的计数原理。
虽然STM32定时器功能强大,也分了三类,但他们最基本的计数部分原理都是一样的,也就是我们常常使用的延时(或定时)多少us、ms等。
接下来我会讲述关于STM32最基本的计数原理,详细讲述如何做到(配置)计数1us的延时,并提供实例代码供大家参考学习。
TIM计数原理描述
定时器可以简单的理解为:由计数时钟(系统时钟或外部时钟)一个一个计数,直到计数至我们设定的值,这个时候产生一个事件,告诉我们计数到了。
上面简单的描述懂了之后就是需要理解它们每一步骤的细节,比如:提供的时钟频率是多少、分频是多少等。
基本TIM框图:
通用TIM框图:
上面两图截取“STM32F4x5、x7参考手册”建议下载手册参看。
从上面两个TIM框图可以看得出来,通用TIM是包含了基本TIM的功能。
也可以说基本定时器是定时器最基本的计数部分,我们该文主要就是围绕这部分来讲述,后续会其他更通用、高级的功能给大家讲述。
重要的几个参数(信息):
1.CK_INT时钟:一般由RCC提供(注意:其频率大部分都是系统时钟的一半,在程序中有一个除2的部分,详情请见RCC部分)。
第八章 STM32定时器
GPIO_ResetBits(GPIOC,GPIO_Pin_0); GPIO_ResetBits(GPIOC,GPIO_Pin_1); GPIO_ResetBits(GPIOC,GPIO_Pin_2); GPIO_ResetBits(GPIOC,GPIO_Pin_3); }
TIM_Perscaler:用户设定的预分频系数, 其值范围从0~65535,为1999
8.7 TIM2应用实例概述
void Timer_Configuration(void) { /*定义TIM结构体变量*/ TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure; TIM_DeInit(TIM2); TIM_TimeBaseStructure.TIM_Period=35999; TIM_TimeBaseStructure.TIM_Prescaler=1999; TIM_TimeBaseStructure.TIM_ClockDivision =TIM_CKD_DIV1; TIM_TimeBaseStructure.TIM_CounterMode =TIM_CounterMode_Up; TIM_TimeBaseInit(TIM2,&TIM_TimeBaseStructure); TIM_ClearFlag(TIM2,TIM_FLAG_Update); TIM_Cmd(TIM2,ENABLE);
8.7 TIM2应用实例概述
4.定时器的初始化
定时时间T的计算公式: T=(TIM_Period+1)*(TIM_Prescaler+1)/TIMxCLK =(35999+1)*(1999+1)/72MHz=1s
第六章STM32 定时器的使用
}
}
步骤五:配置main函数,实现定时器控制跑马灯。
volatile u32 time;
int i=0;
int main(void) { SystemInit(); //配置系统时钟为72控制跑马灯(P190)
1.理解STM32通用定时器的结构和基本工作原理; 2.掌握STM32通用定时器初始化和操作方法; 3.理解中断概念; 4.掌握STM3中断服务程序的写法。
硬件设计 硬件连接图如下,实验板上stm32f103x处理器
通过配置GPIO实现如下功能:D3~D6轮流点亮,点亮时 间持续1秒。
软件设计 步骤一:添加库函数,以及操作函数。 添加相应库函数:
操作函数有:USER/main.c ;stm32f10x_it.c ;led.h; led.c ;timer.h;timer.c;TIM2_IRQHandler()。 步骤二:在timer.h函数中设置宏定义和函数声明:
void TIM2_NVIC_Config(void); void TIM2_Config(void);
TIN_TimBaseInitTypeDef TIM_TimeBaseStructure;
TIM_TimeBaseStructure.TIM_Period = (10000 - 1); //自动重装的计数值
TIM_TimeBaseStructure.TIM_Prescaler =7200-1 ; // 预分频系数
立即加载计数器(ARPE=0)
更新事件时加载计数器(ARPE=0)
6.2.2 计数器模式 1. 向上计数模式:计数器从0计数到设定的数值,然 后重新从0开始计数并且产生一个计数器溢出事件。
计数器时序图(内部时钟分频因子为1)
STM32-主从定时器-输出固定数量脉冲
在仪器仪表计量、步进电机驱动等领域,有时需要控制电路输出固定数量的PWM ,常规方法一般为中断计数法,即将单片机定时器配置成PWM 输出模式,然以在PWM 中断中对脉冲进行计数,当脉冲数量达到设定值时即关断PWM 输出,这种方法程序上比较简单,但是当输出频率较高时,计数中断会频繁打断系统的正常运行,对系统运行效率会产生一定影响。
另一种输出方式是利用主从定时器的原理,本文就介绍下该种方式。
1输出原理介绍STM32单片机具有定时器同步功能,可以配置多个定时器在内部相连,当一个定时器配置为主模式时,可以对另一个配置成从模式的定时器进行复位、启动、停止或提供时钟的操作。
而主从定时器输出固定脉冲就是利用了一个定时器充当另一个定时器的预分频的原理实现的。
1.1使用一个定时器作为另一个定时器的预分频器上图为基本框图,将定时器1配置成定时器2的预分频后,定时器1负责输出PWM ,每个输出脉冲的边沿在内部作为定时器2的输入时钟,通过配置定时器2的溢出值即可实现对定时器1脉冲输出个数的检测。
1.1.1配置思路:1)配置定时器1为主模式,它可以在每一个更新事件UEV 时输出一个周期性的触发信号。
在TIM1_CR2寄存器的MMS=’010’时,每当产生一个更新事件时在TRGO1上输出一个上升沿信号。
STM32-主从定时器-输出固定数量脉冲2)连接定时器1的TRGO1输出至定时器2,设置TIM2_SMCR 寄存器的TS=’000’,配置定时器2为使用ITR1作为内部触发的从模式。
3)把从模式控制器置于外部时钟模式1(TIM2_SMCR 寄存器的SMS=111),这样定时器2即可由定时器1周期性的上升沿(即定时器1的计数器溢出)信号驱动。
4)设置相应(TIMx_CR1寄存器)的CEN 位分别启动两个定时器。
摘录自手册P278。
1.1.2寄存器配置流程1)配置定时器1为主模式,送出它的更新事件UEV 做为触发输出(TIM1_CR2寄存器的MMS=’010’)。
STM32定时器
一、定时器(TIMx)1.关联函数:A.TIM_OC1Init(TIM_TypeDef* TIMx, TIM_OCInitTypeDef* TIM_OCInitStruct) :TIMx通道1配置函数。
B.TIM_OC2Init(TIM_TypeDef* TIMx, TIM_OCInitTypeDef* TIM_OCInitStruct) :TIMx通道2配置函数。
C.TIM_OC3Init(TIM_TypeDef* TIMx, TIM_OCInitTypeDef* TIM_OCInitStruct):TIMx通道3配置函数。
D.TIM_OC4Init(TIM_TypeDef* TIMx, TIM_OCInitTypeDef* TIM_OCInitStruct):TIMx通道4配置函数。
E.TIM_ICInit(TIM_TypeDef* TIMx, TIM_ICInitTypeDef* TIM_ICInitStruct):TIMx捕获输入配置函数F.TI1_Config(TIM_TypeDef* TIMx, uint16_t TIM_ICPolarity, uint16_t TIM_ICSelection,uint16_t TIM_ICFilter):TI1配置函数G.TI2_Config(TIM_TypeDef* TIMx, uint16_t TIM_ICPolarity, uint16_t TIM_ICSelection,uint16_t TIM_ICFilter):TI2配置函数H.TI3_Config(TIM_TypeDef* TIMx, uint16_t TIM_ICPolarity, uint16_t TIM_ICSelection,uint16_t TIM_ICFilter):TI3配置函数I.TI4_Config(TIM_TypeDef* TIMx, uint16_t TIM_ICPolarity, uint16_t TIM_ICSelection,uint16_t TIM_ICFilter):TI4配置函数J.TIM_SetICxPrescaler(TIM_TypeDef* TIMx, uint16_t TIM_ICPSC):配置TIMx输入捕获x的预分频器函数K.TIM_PWMIConfig(TIM_TypeDef* TIMx, TIM_ICInitTypeDef* TIM_ICInitStruct):TIMx的PWM输入模式配置函数L.TIM_BDTRConfig(TIM_TypeDef* TIMx, TIM_BDTRInitTypeDef *TIM_BDTRInitStruct)配置刹车, 死区时间, 锁定级别, OSSI,OSSR 状态和自动输出函数. M.TIM_Cmd(TIM_TypeDef* TIMx, FunctionalState NewState)typedef enum {DISABLE = 0, ENABLE = !DISABLE} FunctionalState; TIMx功能的开关状态N.TIM_CtrlPWMOutputs(TIM_TypeDef* TIMx, FunctionalState NewState)typedef enum {DISABLE = 0, ENABLE = !DISABLE} FunctionalState; TIMx的PWM功能的开关状态O.TIM_ITConfig(TIM_TypeDef* TIMx, uint16_t TIM_IT, FunctionalState NewState)TIMx中断和DMA开启与关断函数P.TIM_GenerateEvent(TIM_TypeDef* TIMx, uint16_t TIM_EventSource)事件产生配置函数Q.TIM_DMAConfig(TIM_TypeDef* TIMx, uint16_t TIM_DMABase, uint16_tTIM_DMABurstLength)TIMx的DMA基本配置函数R.TIM_DMACmd(TIM_TypeDef* TIMx, uint16_t TIM_DMASource, FunctionalState NewState)TIMx的DMA发送函数【说明:】函数体中,tmpccmrx 、tmpccer 、tmpcr2 为中间变量,先读取当前寄存器的配置数据,再使用&=配置相关位的数值以便保留当前配置数据。
stm32定时器原理
stm32定时器原理STM32定时器是一种用于计时和计数的重要功能模块,广泛应用于各种嵌入式系统中。
本文将介绍STM32定时器的原理及其应用。
一、STM32定时器的基本原理STM32定时器是基于计数器的工作原理,通过内部时钟源的驱动,实现对计数器的计数和定时功能。
STM32定时器主要有以下几个核心组件:1.1 时钟源:STM32定时器可以选择多种时钟源,如内部时钟、外部时钟或外部时钟源经过分频后的时钟。
时钟源的选择取决于应用的需要和系统的设计。
1.2 预分频器:预分频器用于将时钟源的频率进行分频,以获得更低的计数频率。
预分频器的分频系数可以通过配置来设置,从而满足不同的计数需求。
1.3 自动重装载寄存器(ARR):ARR用于设置定时器的计数周期,即定时器从0开始计数到ARR的值时就会触发中断或产生某种事件。
通过设置ARR的值,可以实现不同的定时功能。
1.4 计数器:计数器是STM32定时器的核心部件,用于进行实际的计数操作。
计数器的位数根据不同型号的STM32芯片而有所不同,常见的有16位和32位两种。
1.5 输出比较单元(OCU):OCU用于产生定时器的输出信号。
可以通过配置OCU的工作模式、比较值和输出极性等参数,实现各种不同的输出功能。
二、STM32定时器的应用STM32定时器广泛应用于各种嵌入式系统中,常见的应用场景包括:2.1 定时中断:通过设置定时器的ARR值和使能中断,可以实现定时中断功能,用于周期性地执行某些任务或操作。
例如,可以利用定时中断来定时采样、定时发送数据或定时更新显示等。
2.2 脉冲计数:通过配置STM32定时器的输入捕获单元(ICU),可以实现对外部脉冲信号的计数。
这在一些需要测量脉冲频率或脉冲宽度的应用中非常有用,如测速仪、计时器等。
2.3 PWM输出:通过配置STM32定时器的输出比较单元,可以实现PWM信号的输出。
PWM信号广泛应用于电机控制、LED调光、音量控制等场景,具有调节精度高、功耗低的特点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.STM32的Timer简介STM32中一共有11个定时器,其中2个高级控制定时器,4个普通定时器和2个基本定时器,以及2个看门狗定时器和1个系统嘀嗒定时器。
其中系统嘀嗒定时器是前文中所描述的SysTick,看门狗定时器以后再详细研究。
今天主要是研究剩下的8个定时器。
其中TIM1和TIM8是能够产生3对PWM互补输出的高级登时其,常用于三相电机的驱动,时钟由APB2的输出产生。
TIM2-TIM5是普通定时器,TIM6和TIM7是基本定时器,其时钟由APB1输出产生。
由于STM32的TIMER功能太复杂了,所以只能一点一点的学习。
因此今天就从最简单的开始学习起,也就是TIM2-TIM5普通定时器的定时功能。
2.普通定时器TIM2-TIM52.1时钟来源计数器时钟可以由下列时钟源提供:·内部时钟(CK_INT)·外部时钟模式1:外部输入脚(TIx)·外部时钟模式2:外部触发输入(ETR)·内部触发输入(ITRx):使用一个定时器作为另一个定时器的预分频器,如可以配置一个定时器Timer1而作为另一个定时器Timer2的预分频器。
由于今天的学习是最基本的定时功能,所以采用内部时钟。
TIM2-TIM5的时钟不是直接来自于APB1,而是来自于输入为APB1的一个倍频器。
这个倍频器的作用是:当APB1的预分频系数为1时,这个倍频器不起作用,定时器的时钟频率等于APB1的频率;当APB1的预分频系数为其他数值时(即预分频系数为2、4、8或16),这个倍频器起作用,定时器的时钟频率等于APB1的频率的2倍。
APB1的分频在STM32_SYSTICK的学习笔记中有详细描述。
通过倍频器给定时器时钟的好处是:APB1不但要给TIM2-TIM5提供时钟,还要为其他的外设提供时钟;设置这个倍频器可以保证在其他外设使用较低时钟频率时,TIM2-TIM5仍然可以得到较高的时钟频率。
2.2计数器模式TIM2-TIM5可以由向上计数、向下计数、向上向下双向计数。
向上计数模式中,计数器从0计数到自动加载值(TIMx_ARR计数器内容),然后重新从0开始计数并且产生一个计数器溢出事件。
在向下模式中,计数器从自动装入的值(TIMx_ARR)开始向下计数到0,然后从自动装入的值重新开始,并产生一个计数器向下溢出事件。
而中央对齐模式(向上/向下计数)是计数器从0开始计数到自动装入的值-1,产生一个计数器溢出事件,然后向下计数到1并且产生一个计数器溢出事件;然后再从0开始重新计数。
2.3编程步骤1.配置系统时钟;2.配置NVIC;3.配置GPIO;4.配置TIMER;其中,前3项在前面的笔记中已经给出,在此就不再赘述了。
第4项配置TIMER有如下配置:(1)利用TIM_DeInit()函数将Timer设置为默认缺省值;(2) TIM_InternalClockConfig()选择TIMx来设置内部时钟源;(3) TIM_Perscaler来设置预分频系数;(4) TIM_ClockDivision来设置时钟分割;(5) TIM_CounterMode来设置计数器模式;(6) TIM_Period来设置自动装入的值(7) TIM_ARRPerloadConfig()来设置是否使用预装载缓冲器(8) TIM_ITConfig()来开启TIMx的中断其中(3)-(6)步骤中的参数由TIM_TimerBaseInitTypeDef结构体给出。
步骤(3)中的预分频系数用来确定TIMx所使用的时钟频率,具体计算方法为:CK_INT/(TIM_Perscaler+1)。
CK_INT是内部时钟源的频率,是根据2.1中所描述的APB1的倍频器送出的时钟,TIM_Perscaler是用户设定的预分频系数,其值范围是从0 – 65535。
步骤(4)中的时钟分割定义的是在定时器时钟频率(CK_INT)与数字滤波器(ETR,TIx)使用的采样频率之间的分频比例。
TIM_ClockDivision的参数如下表:数字滤波器(ETR,TIx)是为了将ETR进来的分频后的信号滤波,保证通过信号频率不超过某个限定。
步骤(7)中需要禁止使用预装载缓冲器。
当预装载缓冲器被禁止时,写入自动装入的值(TIMx_ARR)的数值会直接传送到对应的影子寄存器;如果使能预加载寄存器,则写入ARR的数值会在更新事件时,才会从预加载寄存器传送到对应的影子寄存器。
ARM中,有的逻辑寄存器在物理上对应2个寄存器,一个是程序员可以写入或读出的寄存器,称为preload register(预装载寄存器),另一个是程序员看不见的、但在操作中真正起作用的寄存器,称为shadow register(影子寄存器);设计preload register和shadow register 的好处是,所有真正需要起作用的寄存器(shadow register)可以在同一个时间(发生更新事件时)被更新为所对应的preload register的内容,这样可以保证多个通道的操作能够准确地同步。
如果没有shadow register,或者preload register和shadow register是直通的,即软件更新preload register时,同时更新了shadow register,因为软件不可能在一个相同的时刻同时更新多个寄存器,结果造成多个通道的时序不能同步,如果再加上其它因素(例如中断),多个通道的时序关系有可能是不可预知的。
虽然TIM2 是属于低速总线的,这条总线最高只能到36M 的速度,但芯片内部还有一个*2 的倍频器,用于把这个低速的36M 倍频成72M,3.0的库中已经默认实现了这一步.所以我们使用的TIM2,速度依旧是72M.程序中采取了7200 的分频值,分频后的结果就是,定时器速度为10K.计数器为向上计数,8000 溢出,所以溢出时间就是8000/10K=0.8 秒.3.程序源代码本例实现的是通过TIM2的定时功能,使得LED灯按照1s的时间间隔来闪烁#include "stm32f10x_lib.h"void RCC_cfg();void TIMER_cfg();void NVIC_cfg();void GPIO_cfg();int main(){RCC_cfg();NVIC_cfg();GPIO_cfg();TIMER_cfg();//开启定时器2TIM_Cmd(TIM2,ENABLE);while(1);}void RCC_cfg(){//定义错误状态变量ErrorStatus HSEStartUpStatus;//将RCC寄存器重新设置为默认值RCC_DeInit();//打开外部高速时钟晶振RCC_HSEConfig(RCC_HSE_ON);//等待外部高速时钟晶振工作HSEStartUpStatus = RCC_WaitForHSEStartUp();if(HSEStartUpStatus == SUCCESS){//设置AHB时钟(HCLK)为系统时钟RCC_HCLKConfig(RCC_SYSCLK_Div1);//设置高速AHB时钟(APB2)为HCLK时钟RCC_PCLK2Config(RCC_HCLK_Div1);//设置低速AHB时钟(APB1)为HCLK的2分频RCC_PCLK1Config(RCC_HCLK_Div2);//设置FLASH代码延时FLASH_SetLatency(FLASH_Latency_2);//使能预取指缓存FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable); //设置PLL时钟,为HSE的9倍频 8MHz * 9 = 72MHzRCC_PLLConfig(RCC_PLLSource_HSE_Div1, RCC_PLLMul_9);//使能PLLRCC_PLLCmd(ENABLE);//等待PLL准备就绪while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET);//设置PLL为系统时钟源RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK);//判断PLL是否是系统时钟while(RCC_GetSYSCLKSource() != 0x08);}//允许TIM2的时钟RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2,ENABLE);//允许GPIO的时钟RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB,ENABLE); }void TIMER_cfg(){TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;//重新将Timer设置为缺省值TIM_DeInit(TIM2);//采用内部时钟给TIM2提供时钟源TIM_InternalClockConfig(TIM2);//预分频系数为36000-1,这样计数器时钟为72MHz/36000 = 2kHz TIM_TimeBaseStructure.TIM_Prescaler = 36000 - 1;//设置时钟分割TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1;//设置计数器模式为向上计数模式TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; //设置计数溢出大小,每计2000个数就产生一个更新事件TIM_TimeBaseStructure.TIM_Period = 2000 - 1;//将配置应用到TIM2中TIM_TimeBaseInit(TIM2,&TIM_TimeBaseStructure);//清除溢出中断标志TIM_ClearFlag(TIM2, TIM_FLAG_Update);//禁止ARR预装载缓冲器TIM_ARRPreloadConfig(TIM2, DISABLE);//开启TIM2的中断TIM_ITConfig(TIM2,TIM_IT_Update,ENABLE);}void NVIC_cfg(){NVIC_InitTypeDef NVIC_InitStructure;//选择中断分组1NVIC_PriorityGroupConfig(NVIC_PriorityGroup_1);//选择TIM2的中断通道NVIC_InitStructure.NVIC_IRQChannel = TIM2_IRQChannel;//抢占式中断优先级设置为0NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;//响应式中断优先级设置为0NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;//使能中断NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;NVIC_Init(&NVIC_InitStructure);}void GPIO_cfg(){GPIO_InitTypeDef GPIO_InitStructure;GPIO_InitStructure.GPIO_Pin = GPIO_Pin_5; //选择引脚5GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; //输出频率最大50MHz GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; //带上拉电阻输出GPIO_Init(GPIOB,&GPIO_InitStructure);}在stm32f10x_it.c中,我们找到函数TIM2_IRQHandler(),并向其中添加代码void TIM2_IRQHandler(void){u8 ReadValue;//检测是否发生溢出更新事件if(TIM_GetITStatus(TIM2, TIM_IT_Update) != RESET){//清除TIM2的中断待处理位TIM_ClearITPendingBit(TIM2 , TIM_FLAG_Update);//将PB.5管脚输出数值写入ReadValueReadValue = GPIO_ReadOutputDataBit(GPIOB,GPIO_Pin_5);if(ReadValue == 0){GPIO_SetBits(GPIOB,GPIO_Pin_5);}else{GPIO_ResetBits(GPIOB,GPIO_Pin_5);}}}。