钢结构安装过程中的变形分析控制
钢结构柱弯曲变形
钢结构柱弯曲变形
钢结构柱弯曲变形的原因主要有两个方面:
1.施工中的变形:在钢结构施工过程中,由于焊接过程中的局部加热、不均匀冷却和应力集中,可能会导致钢结构柱的弯曲变形。
变形的种类有纵向收缩、横向收缩、角变形、弯曲变形、波浪变形等。
2.受力变形:当钢杆、钢柱等构件受到外界荷载作用时,可能会出现失稳现象而发生弯曲变形,这可能会造成严重的安全事故。
这种变形通常称为屈曲。
为了防止和减少钢结构柱的弯曲变形,可以采取以下措施:
1.减小焊缝截面积,合理布置焊缝,避免焊缝密集和不对称。
2.选择合适的焊接方法,控制焊接热输入,适当降低预热温度和层间温度。
3.采用多层焊代替单层焊,采用双面对称坡口,并按照对称的焊接顺序进行。
4.采用反变形法,在焊前对构件进行反向弯曲或预留长度,以抵消焊后的变形。
5.采用刚性固定法,在焊前加强构件刚性,使用夹具、支撑、胎具等固定装置,防止构件在自重或外力作用下产生变形。
6.采用施力矫正法,在焊后对构件施加外力,使用千斤顶、螺旋加力器、辊压矫正机等设备进行机械矫正。
7.采用加热矫正法,在焊后对构件进行不均匀加热,使用火焰或电流等方式产生反向的变形。
宜用点状加热方式,以改善加热区的应
力状态。
请注意,以上措施在具体实施时应根据实际情况进行调整和优化。
钢结构的拼装与吊装工程中的质量通病及预防措施
钢结构的拼装与吊装工程中的质量通病及预防措施1、构件刚度差(1)产生原因构件本身有挠度,拼装未拉通线,支撑杆件本身尺寸不准。
(2)预控措施在地面拼装时,必须保证构件平整稳定,以防下挠。
如刚度不够,应采取加固措施,以增强构件的刚度。
拼装时必须拉通线,用电焊点固、焊牢。
严格控制构件的几何尺寸和节间间距尺寸,如发现问题应及时调整准确后再吊装。
严格控制各种支撑杆件尺寸的精度。
2、焊接变形(1)产生原因构件焊接后翘曲变形;焊缝布置不对称,焊接的电流、速度、方向及焊接时采用的装配卡具,对构件变形均有影响。
(2)预控措施为防止和抵消焊接变形,焊前装配时,将工件与焊接变形相反方向预留偏差。
控制焊接顺序防止变形。
采用夹具和专用胎具,将构件固定后再进行施焊。
构件变形翘曲必须进行矫正。
3、安装孔位移(1)产生原因螺栓孔制作超差,孔间的中心距偏移。
(2)预控措施螺孔制作的尺寸、位置必须准确。
部件拼装时严防误差积累,注意控制螺孔组之间的中心距。
结构构件每端至少应有两个安装孔。
4、起拱不准确(1)酿成原因拱度计算不准,不符合设计要求。
起拱构件在运输和吊装时未采取加固措施,导致变形。
(2)预控措施放样、下料时应明确拱度值,并在下料尺寸中放出所需的起拱量。
按设计要求的拱度值,采用正确的加工工艺和拼装方法,严格控制累计偏差值。
必须对起拱构件采取预防变形的保护加固措施。
严防构件在翻转,运输和吊装时产生变形。
5、钢柱位移(1)产生原因柱底部预留孔与预埋螺栓位置错位、不对中。
(2)预控措施浇筑混凝土基础前,应用定型卡盘将预埋螺栓按设计位置卡住,以防浇灌混凝土时发生位移。
柱底钢板预留孔应放大样,确定孔位后采取二次灌浆。
6、钢柱底脚有空隙(1)产生原因基础标高不准,未按测量抄平和找平。
柱底板因焊接受热区产生变形。
(2)预控措施钢柱吊装前,应严格控制基础标高,测量要准确,并按基础测量值对基础表面仔细找平。
采用二次灌浆法,在柱脚底板开浇灌孔(兼作排气孔)。
钢结构框架的刚度设计与变形控制
钢结构框架的刚度设计与变形控制钢结构框架在现代建筑中被广泛应用,其强度高、稳定性好的特点使其成为许多大跨度建筑物的首选结构形式。
然而,在实际应用过程中,钢结构框架的刚度和变形控制是需要重点考虑的问题。
本文将探讨钢结构框架的刚度设计与变形控制的相关技术和方法。
1. 刚度设计的基本原理刚度是指物体抵抗外力产生形变的能力。
钢结构框架的刚度设计需要满足建筑物使用要求和安全标准。
一般来说,刚度设计主要考虑以下几个方面:1.1 材料选择钢结构框架的刚度主要受材料的弹性模量和截面尺寸的影响。
在刚度设计中,一般选择高强度的钢材料,并通过合理的截面设计来增加刚度。
1.2 结构整体刚度结构整体刚度与构件连接方式、构件形状和布置方式等有关。
设计时需根据结构特点选择合适的连接方式,并合理设计构件形状和布置方式,以提高整体刚度。
1.3 支撑设计支撑是钢结构框架保持刚度和稳定的重要因素。
在设计过程中,需要合理设置支撑点,以增加框架的整体稳定性和刚度。
2. 变形控制的方法钢结构框架的变形控制是实现安全和舒适使用的关键。
变形控制一般从以下几个方面考虑:2.1 设计刚度与变形限值的匹配在设计过程中,需要根据建筑物的使用要求和安全标准,合理确定刚度和变形限值的匹配关系。
通过合理的刚度设计,控制结构变形在允许范围内。
2.2 弹性阶段预设变形在建筑物使用过程中,往往会受到气温、荷载变化等因素的影响而引起结构变形。
通过在设计过程中预设一定的弹性变形,使结构在变形后能够恢复到设计的位置,避免过大变形引起的安全隐患。
2.3 非弹性阶段变形控制由于一些特殊荷载作用或材料本身的不均匀性,钢结构框架很容易在非弹性阶段产生较大的变形。
通过合理的剪切墙设置、加强抗剪和抗扭刚度等措施,可以有效控制结构在非弹性阶段的变形。
3. 钢结构框架的刚度设计与变形控制案例分析以下通过一个具体案例来进一步说明钢结构框架的刚度设计与变形控制。
案例:某体育馆在某体育馆的钢结构设计中,设计师考虑到场馆的使用要求和安全标准,采取了以下刚度设计与变形控制措施:3.1 材料选择选用高强度的钢材料,以提高结构的整体刚度。
钢结构设计变形控制
钢结构设计变形控制在建筑工程中,钢结构作为一种重要的构造形式,被广泛应用于高层建筑、桥梁、厂房等工程项目中。
然而,由于钢结构的特殊性质,其存在一定的变形问题,这对工程的安全性和使用寿命造成了影响。
因此,在钢结构的设计中,变形的控制是一个关键的方面。
一、变形的原因分析钢结构存在变形问题的主要原因有以下几方面:1. 施工阶段的变形:在钢结构的施工过程中,由于建筑材料的形变和温度的变化,会对结构造成一定的变形。
2. 荷载作用的变形:由于外部荷载(例如风荷载、地震荷载等)的作用,钢结构会产生一定的变形。
3. 材料本身的变形:钢材具有可塑性和弹塑性,在荷载作用下,在一定的变形范围内,钢材可以发挥其良好的承载性能。
二、变形控制的方法为了控制钢结构的变形,以下是几种常见的方法:1. 结构合理布局:在设计钢结构时,应尽量合理布置结构的构件,以减小变形的影响。
例如,在悬挑结构中,增加悬挑部分的截面尺寸,可以提高结构的刚度,减小变形。
2. 使用刚性连接:在钢结构的连接处,采用刚性连接方式,可以有效地减小结构的变形。
例如,在柱与梁的连接处,采用焊接连接、膨胀连接等方式,可以提高连接的刚度。
3. 引入补偿措施:在设计过程中,可以引入一些特殊的补偿措施,来控制结构的变形。
例如,在悬挑结构中,可以设置预应力索来对结构进行补偿,减小变形。
4. 结构监测与调整:在结构的使用过程中,可以采用结构监测的方法,对结构的变形进行实时的监测,如果发现存在过大的变形,可以采取相应的调整措施。
三、钢结构变形控制的案例分析下面通过一个钢结构变形控制的案例来进一步说明控制变形的方法。
某高层建筑采用了钢结构作为主要的承重结构,在结构设计中注重变形的控制。
首先,在设计阶段就进行了结构布局的合理设计,通过增加柱子与梁之间的连接件,提高了结构的整体刚度。
其次,结构使用了特殊的膨胀连接方式,提高了连接的刚性,减小了变形。
最后,对结构进行了定期的监测,发现结构变形偏大时,及时采取了增加外加支撑的措施进行调整。
钢结构施工工程的难点问题及解决措施
钢结构施工工程的难点问题及解决措施1. 难点问题1.1 施工精度要求高由于钢结构自身重量轻、强度高、刚度大,故对施工精度的要求极高。
如何在施工过程中保证构件的尺寸、位置、安装角度等达到设计要求,是钢结构施工的一大难点。
1.2 焊接质量控制难焊接是钢结构施工中重要的连接方式,焊接质量直接关系到结构的安全性。
然而,焊接过程中温度、焊接材料、焊接方法等多种因素的影响,使得焊接质量的控制难度较大。
1.3 施工过程中的变形控制钢结构在施工过程中,由于各种原因(如温度、湿度、荷载等)容易产生变形,如何控制和减少施工过程中的变形,保证结构的几何尺寸和稳定性,是施工过程中的一个难点。
1.4 施工安全问题钢结构施工过程中,高空作业、大型构件的吊装等环节存在较大的安全风险,如何确保施工过程中的安全,是钢结构施工必须面对的问题。
1.5 施工环境复杂钢结构施工往往发生在城市中心、海边、山区等环境复杂的地方,施工环境对施工技术和施工方案提出了更高的要求。
2. 解决措施2.1 采用先进的技术和设备使用先进的全站仪、激光测距仪等测量设备,提高施工精度。
同时,采用高精度的数控切割和焊接设备,保证构件的制造和连接质量。
2.2 优化施工方案和工艺针对不同的工程特点,制定合理的施工方案和工艺,如采用临时支撑系统、施工监测系统等,保证施工过程中的结构稳定性。
2.3 强化焊接质量管理对焊接人员进行专业培训,提高焊接技能;采用优质的焊接材料,严格控制焊接工艺参数,确保焊接质量。
2.4 施工过程中的变形控制在施工过程中,对构件进行合理的预加载,减小由于温度、湿度等因素引起的变形;对施工过程中的变形进行实时监测,及时调整施工方案。
2.5 加强施工安全管理制定严格的安全管理制度,对施工人员进行安全教育培训,加强施工现场的安全巡查,确保施工安全。
2.6 适应复杂施工环境针对不同的施工环境,采用相应的施工技术和方案,如在风力较大的海边地区,采用防风措施;在山区施工,注意山体稳定性和地质灾害预防。
浅议钢结构制造中焊接变形的控制方法
1 3 # 、1 4 # 零件两端连接 缝进行焊接。焊接完成后进行翻转 。在上逑 操作 完成之后 ,对焊渣进行清洗 ,并补焊不合格位置 。
I 璺 I 1 自动 扶 梯 桁 架 结 构 焊 接 意 图
大焊缝 的焊接作 业。同时,焊接过程 中还需要遵循 以下几个方 面的 基本原 则:( 1 )短缝先于长缝进行焊接 ;( 2 )内侧缝 先于外侧 缝进
的参 考 与 帮助 。
图 1所示 ,先针对 l # 、6 # 、1 0 # 零件两端与弦杆 连接缝进行焊接 。
焊 接 完 成 后 进 行 翻 转 ; 进 而针 对 4 # 、8 # 、1 1 # 、1 2 # 零 件 两 端 连 接 缝 进 行 焊 接 。焊 接 完 成 后 同样 进 行 翻 转 ;最 后 针 对 2 # 、3 # 、7 # 、9 # 、
【 关键词 】 钢 结构 ;桁架 ;焊接变形 ; 机理 ; 控 制方法;分析
产生焊接变形的最主要原因在于 :钢 结构在焊接过 程当中的加 热不够 均匀。在当前技术条件支持 下,焊接变形 是各 类钢 结构制造 过程 中 最 为 普 遍 的 问题 。为 尽 可 能 的保 障钢 结 构 产 品 的 制 造 质 量 , 就需要针对钢结构制造过程 中的焊 接变 形问题进行严格且有效的控 制 。本 文 试 针 对 以上 相 关 问题 做 详 细 分 析 与 说 明 。 1钢 结构 制造中焊 接变形的产生机理 在 当 前技 术条 件 支 持 下 , 钢 结 构 在 应 用 过 程 中有 着 施 工 方 便 、 质量轻 、高强度 、以及高塑性等多个方面的应用优势 ,因此被广泛 应用于各类建筑施 工作业当中 。而在钢结构 的制造过程 当中,焊接 的过程 直观 来说就是一个持续性高温加热 的过程 。在 熔点位 置极限 高热温 度的影响作用之下 ,导致熔 点周边金属无法 实现 自由行的膨 胀,最终于焊接过程 中产生塑性变形 。为最 大限度的保障钢结构制 造质量,就需要相关人员针对焊接变形加 以严格且有效的控制。 2钢结构制 造中焊 接变形 的控 制方法 对于钢结构 ,特别 是桁架结构而言 ,焊接作业 中的变形 问题是 不可避免的 。特别是对 于规模 相对较大 、结构相对复杂的桁架结构 制造作业而 言,若 无法在 实际工作中对焊接变形 问题进行严格且有 效的控制 ,则势 必会对 整个钢结构制造工程 的质量 、工期 、成本等 因素产生极 为不 良的影响 。因此 ,如何在钢结构制造 中,针对 焊接 变形加 以严 格且 有效的控制 ,这一 问题就显得 至关 重要的。结合实 践工作经验 来看 ,需要结合工程实 际,选取 并设计 最合理的焊接方 法 以及焊接 顺序 ,同时需要通过增加约 束力 水平的方式,来实现对 焊 接 变 形 的 有 效 控 制 ,且 配 合 对 焊 接 坡 1 : 3的 有 效 控 制 , 确 保 焊 接 质 量稳定可 靠。具体而言 ,可归纳为 以下几点 : 2 . 1 设 计 并 实 施 合 理 的焊 接 方 法 以及 焊 接 顺 序 本 文 现 结 合 工 程 实 例 , 研 究 焊 接 方 法 以及 焊 接 顺 序 的合 理 性 , 对 桁 架 结 构 焊 接 变 形 控 制 质 量 的 影 响 情 况 。例 :某 自动 扶 梯 桁 架 采 取角钢与槽钢相配合 的方式焊接而成 。焊接过程 中的基本 参数 为: 斜拉角钢 ( L 6 3 m m * 6 m m ) ;槽 钢 ( U 8 O m m ) ;弦 杆 ( L 1 2 5 m m * 8 0 m m * 1 0 m m ) 。 在对桁架结 构进 行焊接之后发现 :受到整个桁架结 构跨度 、长度较 长 的因素影 响,导致焊接变形 问题对整个结 构尺 寸产生了极为深远 的影 响。因此 ,为最大限度的消除桁架结构焊接过程中的变形 问题 , 就需要重 点关注 对焊接方法 以及焊接顺序的合理设计 。 自动扶梯桁架结构焊接 过程中所表现 出的焊缝集中 出现在扶梯 两侧 的单片且偏下部位置 。因此,在针对同一单片进行焊接作业 的 过程当中 ,应 当尽量选 取能够 实现热量分散 、以及对称性分布 的焊 接作业方法 。实 际工 作中可以采取 “ 跳焊 ”作业方式 ,防止在焊接 过程中 ,工件呈 现出局部性的加热集 中问题 ,首先完成对 收缩 量较
钢结构梁柱拼接与变形控制
钢结构梁柱拼接与变形控制钢结构梁柱是建筑领域中常用的结构形式之一,它具有高强度、高刚度和轻质化等优点,在大跨度建筑和高层建筑中得到广泛应用。
然而,在梁柱的拼接和使用过程中,由于外力作用和材料特性等因素,常常会出现一定程度的变形。
本文将重点探讨钢结构梁柱的拼接方式及变形控制方法。
一、钢结构梁柱的拼接方式1. 焊接拼接:焊接是常见的钢结构梁柱拼接方式。
通过焊接可以实现梁柱的连接,提高整体刚度和强度。
常用的焊接方法包括电弧焊接、气体保护焊接和激光焊接等。
焊接拼接的优点是连接牢固、刚性好,但也存在焊缝应力集中和变形较大的问题。
2. 螺栓连接:螺栓连接是另一种常用的梁柱拼接方式。
通过螺栓将梁柱连接在一起,形成整体结构。
螺栓连接具有安装方便、拆卸方便的优点,可以有效减小焊接变形。
同时,螺栓连接还可以实现梁柱的调整和拆卸,方便后期维护和改造。
二、钢结构梁柱的变形控制方法1. 设计优化:在钢结构梁柱的设计过程中,可以通过减小截面尺寸、增加材料厚度等方式来控制变形。
同时,合理设置支撑和剪力墙等结构元素,可以有效减小整体变形。
2. 刚度加强:钢结构梁柱的刚度对变形控制非常重要。
可以通过增加梁柱的截面尺寸、加强梁柱连接处的刚性节点等方式来提高整体刚度。
此外,还可以采用加筋板、加强筋等加固措施来增加梁柱的刚度。
3. 支撑和约束:在钢结构梁柱的安装和使用过程中,设置支撑和约束是一种常用的变形控制方法。
通过设置临时支撑和约束,可以有效限制梁柱的变形,保持结构的稳定性。
4. 预应力控制:预应力技术是一种较为先进的变形控制方法。
通过施加一定的预应力,可以使梁柱在荷载作用下产生一定的压应力,从而减小变形。
预应力技术需要精确计算预应力的大小和施加位置,以确保其效果。
三、结语钢结构梁柱的拼接与变形控制是钢结构工程中的重要问题。
通过合理选择拼接方式、设计优化、刚度加强和支撑约束等措施,可以有效控制梁柱的变形,提高结构的稳定性和安全性。
钢结构安装中常见问题的解决方案
钢结构安装中常见问题的解决方案钢结构作为一种新型的建筑结构体系,具有重量轻、强度高、施工速度快等优点,因此在现代建筑中得到了广泛的应用。
然而,在钢结构安装过程中,也会出现一些常见问题,如何解决这些问题,是保证钢结构安装质量的关键。
本文将从钢结构安装中常见问题的角度出发,为大家介绍一些解决方案。
一、钢结构安装中常见问题1. 焊接质量不合格钢结构安装中,焊接是一个非常重要的环节。
如果焊接质量不合格,会导致钢结构的强度降低,从而影响整个建筑的安全性。
焊接质量不合格的原因可能是焊接工艺不当、焊接材料不合格等。
2. 尺寸偏差过大钢结构的尺寸偏差过大,会导致安装困难,从而影响安装质量。
尺寸偏差过大的原因可能是制造工艺不当、材料质量不合格等。
3. 焊缝开裂焊缝开裂是钢结构安装中常见的问题之一。
焊缝开裂的原因可能是焊接质量不合格、焊接过程中温度过高等。
4. 焊缝内夹杂物焊缝内夹杂物会影响焊接质量,从而影响钢结构的安装质量。
焊缝内夹杂物的原因可能是焊接材料不合格、焊接工艺不当等。
5. 钢结构变形钢结构在运输和安装过程中,可能会发生变形。
如果变形过大,会影响钢结构的安装质量。
钢结构变形的原因可能是运输过程中受到挤压、碰撞等影响。
二、1. 加强焊接质量控制为了保证焊接质量,需要加强焊接质量控制。
具体措施包括:选择合适的焊接工艺、使用合格的焊接材料、加强焊接工人的培训等。
2. 控制尺寸偏差为了控制尺寸偏差,需要加强制造工艺控制,选择合格的材料,加强质量检验等。
3. 加强焊接工艺控制为了避免焊缝开裂,需要加强焊接工艺控制。
具体措施包括:控制焊接温度、控制焊接速度、选择合适的焊接材料等。
4. 加强焊接质量检验为了避免焊缝内夹杂物,需要加强焊接质量检验。
具体措施包括:使用合格的焊接材料、加强焊接工艺控制、加强焊接质量检验等。
5. 控制钢结构变形为了控制钢结构变形,需要加强运输和安装过程中的控制。
具体措施包括:加强运输过程中的保护措施、加强安装过程中的控制等。
H型钢结构焊接过程中变形的控制
12 反变 形 _
我公司制作过不少规格 的 H型钢试件 , 试件长 度为 2m,见 图 2。焊毕 冷却后测 出角 变形量 为 a
中心 线
图 3 预 制上拱 度 示意 图
4 6"n( ~ l 角变形量亦可根据经验确定) l n 。利用 l t OO 液压千斤顶 自 制反变形设备 1 ,见图 2 ,根据此 台 c 数据分别对上下水平板进行一定 的反变形 。实践证
在联系 ,搞清各部件相互间的制约关系 。②矫正顺
序要正确。先矫 正主要变形 ,后矫正次要变形 ,多
种矫正方法并用时要注意几种方法 的先后顺序 。热
校 方法 是 :
图 4 焊接 H 型钢 变形矫 正示 意 图
( 、3 1 、2 为加热部位 )
( 挠曲变形的矫正 :采用三角形加热 ,对水平 1 ) 板进行矫正 ,加热位置选在水平板外凸的一侧 ,见
a 件 试
r
角变 形 量 C 反 制 变 形设 备
1H 型钢 的焊接 变形及原 因分析
图 2 焊接 H 型钢反 变形 示意 图 13 上 拱度 .
在一些工程 中钢梁为承重梁 ,设计要求上拱 。
,将焊好的 H型钢梁置于两支座之上 ,定 出 H型钢在制造过程 中,通常发生局部变形 即角 见 图 3 中点 位 置 ,由 中间 向两 边 划 间 隔为 15 左 右 的等 .m 变形 、弯 曲变形及扭 曲变形 ,见图 1 。
3结束语
H型钢 的焊接制造 ,关键是如何保证构件制造
图4 中序号 1 ; 处
( 拱变形的矫正 :在立板上进行三角形加热 , 质量 ,采用 什么措施 防止构件 在制造过程 中的变 2 ) 加 热 位 置应 根 据变 形 情况 而 定 ,在 梁 背 面 的两 道 焊 形 。由于我们在生产实践 中从始至终的进行控制 ,
钢结构的温度变形控制
钢结构的温度变形控制在建筑工程设计和施工中,钢结构被广泛应用于各种场景,因其优良的力学性能、稳定性和耐久性而备受青睐。
然而,钢结构在使用过程中容易受到环境温度的影响,导致温度变形问题的产生。
为了确保钢结构的正常使用和安全性,温度变形控制是至关重要的。
一、温度变形的原因钢结构在受热或冷却时,由于热膨胀和热收缩的作用,会发生尺寸变化,造成温度变形。
主要的原因包括以下几点:1. 热膨胀和热收缩:当温度升高时,钢结构的体积会增大,产生热膨胀;而在温度下降时,钢结构的体积会缩小,产生热收缩。
2. 温差效应:不同部位的钢结构受到的温度变化不一致,产生温差效应,导致结构内部产生应力和变形。
二、温度变形控制的方法为了控制钢结构的温度变形,以下是一些常用的方法:1. 改变结构的尺寸和形状:通过结构的几何形状和尺寸的设计来控制温度变形。
例如,在设计梁时可以考虑采用梁的变截面或变截面厚度来抵消温度变形。
2. 设计补偿装置:在钢结构中引入补偿装置,通过调整其长度或形状来对抗温度变形。
常见的补偿装置包括伸缩节、铰链等。
3. 控制温度梯度:减小温度梯度是控制温度变形的有效方法之一。
可以通过在钢结构表面覆盖绝热材料或采取适当的通风等手段来实现。
4. 选用合适的材料:选择热膨胀系数低的材料可以减小温度变形。
可以通过在钢结构中使用混凝土、玻璃纤维等材料来实现。
5. 控制施工过程中的温度:在施工过程中,钢结构暴露在大气中,受到外界温度的影响更为明显。
因此,控制施工过程中的温度是至关重要的。
可以采取遮阳措施、降低施工时间等措施来减小温度变形。
三、案例分析为了更好地理解钢结构温度变形控制的实际应用,我们以某大型体育馆的屋盖结构为例进行分析。
该体育馆屋盖结构采用了大跨度钢桁架结构,由于室外温度的变化较大,屋盖结构的温度变形问题显得尤为重要。
我们采取了以下措施来控制温度变形:1. 设计了变截面梁:在主梁的设计中,采用了变截面梁的设计,通过在梁的不同位置改变其截面形状和厚度,抵消了温度变形产生的影响。
钢结构制造中焊接变形的控制方法
钢结构制造中焊接变形的控制方法
钢结构制造中焊接变形的控制方法主要包括以下几个方面:
1. 设计合理的焊接接头:在设计焊接结构时,尽量采用简化接头、减小接头长度、采用对称结构等措施,以减少焊接变形的可能性。
2. 控制焊接工艺参数:在焊接过程中,控制焊接电流、焊接速度、预热温度等焊接工艺参数,避免产生过大的热影响区,以减小焊接变形的发生。
3. 采用预应力或预拉伸技术:在焊接前对工件进行预应力或预拉伸处理,可以提前消除部分应力,减小焊接变形。
4. 采用适当的焊接顺序:根据焊接结构的形状和尺寸,合理安排焊接顺序,从而控制焊接变形的产生。
5. 使用焊接辅助物:在焊接过程中,使用一些焊接辅助物,如支撑物、夹具等,来固定和支撑工件,减少焊接变形的发生。
6. 焊后热处理:对已焊接的结构进行合适的热处理,如回火、正火等,可以进一步消除残余应力,控制焊接变形。
以上是钢结构制造中控制焊接变形的一些常用方法,通过合理的设计、控制焊接工艺参数和采用适当的辅助措施,可以有效地减小焊接变形的发生。
钢结构制作中的焊接变形控制
初探钢结构制作中的焊接变形控制裴平义 江苏省工业设备安装集团有限公司摘 要:本文主要论述焊接变形的影响因素与减小焊接变形的措施,基本了解焊接变形的原因及变形的种类,针对焊接变形的原因和控制措施等方面做了重点探讨,为有效防止和减少焊接变形所带来的危害,具有一定的指导意义。
关键词:钢结构;焊接施工;变形控制1 引言钢结构已广泛应用于各种高层建筑中,同时,建筑工程的需求也推动了钢结构的施工工艺需要不断完善和进步。
钢结构主要是指由钢板、热轧型钢、和钢管等构件组合而成的结构。
这些构件在制作过程离不开焊接,焊接必然产生一定量的焊接变形,焊接变形的控制与矫正非常重要。
2 问题的提出通常,钢材的焊接通常采用熔化焊方法,是在接头处局部加热,使被焊接材料与添加的焊接材料熔化成液体金属,形成熔池,随后冷却凝固成固态金属,使原来分开的钢材连接成整体。
由于焊接加热,融合线以外的母材产生膨胀,接着冷却,熔池金属和熔合线附近母材产生收缩,因加热、冷却这种热变化在局部范围急速地进行,膨胀和收缩变形均受到拘束而产生塑性变形。
这样,在焊接完成并冷却至常温后该塑性变形残留下来。
焊接残余变形是影响结构设计完整性、制造工艺合理性和结构使用可靠性的关键因素。
3 钢结构焊接变形的类型焊接变形可分为线性缩短、角变形、弯曲变形、扭曲变形、波浪形失稳变形等。
3.1 线性缩短是指焊件收缩引起的长度缩短和宽度变窄的变形,分为纵向缩短和横向缩短。
3.2 角变形是由于焊缝截面形状在厚度方向上不对称所引起的,在厚度方向上产生的变形。
3.3 波浪变形大面积薄板拼焊时,在内应力作用下产生失稳而使板面产生翘曲成为波浪形变形。
3.4 扭曲变形焊后构件的角变形沿构件纵轴方向数值不同及构件翼缘与腹板的纵向收缩不一致,综合而形成的变形形态。
扭曲变形一旦产生则难以矫正。
主要由于装配质量不好,工件搁置不正,焊接顺序和方向安排不当造成的,特别要引起注意。
构件和结构的变形使其外形不符合设计图纸和验收要求不仅影响最后装配工序的正常进行,而且还有可能降低结构的承载能力。
钢结构安装常见问题和处理方案
钢结构安装常见问题和处理方案一、前言钢结构作为一种新型建筑结构体系,得到了越来越广泛的应用。
但是,在钢结构安装过程中,往往会出现一些常见问题,如何解决这些问题是我们需要重点关注的。
二、常见问题及处理方案1. 基础不平整当基础不平整时,会导致钢柱不垂直或者钢梁扭曲变形。
这时候需要采取以下措施:(1)在基础上加设水泥砂浆垫层;(2)对于较大的基础不平整情况,可采用调整基础高度或者改变柱子位置等方式来解决。
2. 焊接质量不好焊接质量不好会导致连接处强度降低、裂纹等问题。
因此,在焊接过程中应注意以下几点:(1)选择合适的焊材和焊接工艺;(2)严格按照设计图纸进行焊接;(3)对于重要连接处,应进行无损检测。
3. 钢材尺寸偏差过大当钢材尺寸偏差过大时,会导致拼装困难,甚至无法拼装。
此时需要采取以下措施:(1)在制造过程中严格控制尺寸偏差;(2)对于尺寸偏差较大的钢材,可采用加工或者修整的方式来解决。
4. 拼装不精确拼装不精确会导致钢结构整体变形、扭曲等问题。
此时需要采取以下措施:(1)在拼装前进行预检查,确保每个构件的尺寸和位置都符合要求;(2)在拼装过程中,应严格按照设计图纸进行拼接和固定。
5. 安装顺序错误安装顺序错误会导致钢结构整体受力不均衡,从而影响结构的稳定性。
此时需要采取以下措施:(1)在安装前仔细阅读设计图纸,并了解每个构件的功能和作用;(2)按照设计图纸规定的安装顺序进行操作。
6. 立柱垂直度不好立柱垂直度不好会导致整个结构变形、扭曲等问题。
此时需要采取以下措施:(1)在立柱安装前使用水平仪进行检查;(2)对于不垂直的立柱,可采用调整基础高度或者使用水平调整器等方式来解决。
7. 螺栓松动螺栓松动会导致连接处强度降低,从而影响结构的稳定性。
此时需要采取以下措施:(1)在安装过程中,应使用扭矩扳手进行拧紧;(2)在使用一段时间后,应定期检查并重新拧紧螺栓。
三、总结钢结构安装是一个复杂的过程,在实践中会遇到各种各样的问题。
浅谈钢结构工程施工中钢梁变形控制和矫正
浅谈钢结构工程施工中钢梁变形控制和矫正结合实例工程青龙坞流云展演大厅施工中主钢梁过大变形问题,具体从设计、下料、施工等各个环节对其问题进行了探讨,并提出相应的防变形和矫正技术措施,希望对今后类似项目的设计具有一定的指导意义。
标签:钢结构施工方案;钢梁变形;分析原因;加固方案近几年来,随着科学技术的迅速发展,钢结构由于较混凝土结构具有自重轻、施工周期短、整体刚度好、强度高等良好的性能,在工业及民用建筑中的实际应用越来越广泛。
然而钢结构带来的许多实际问题也随之产生,同时对钢结构施工单位技术人员也是一种挑战。
1、工程概况浙江省杭州市桐庐县流云项目---青龙坞展演大厅为钢结构框架结构,屋面分为多块区域且高度不一,斜屋面与平屋面交替连接,柱顶平均高度为6m,柱距宽度平均为10m,跨度为20m。
设计时钢屋架均采用普通焊接工字钢梁与钢柱刚接,局部按照平面井字型排布,工字钢梁之间均刚性连接。
设计中按最不利受力工况计算,最长钢梁长度为15米,跨中扰度为27m(包含上人屋面荷载)。
而设计人员在考察施工现场时发现,施工单位人员仅在安装完工字钢梁和次梁之后,跨中扰度变形就已经达到30mm,如果再加载上人屋面荷载,钢梁变形将大大超过设计要求,所以设计人员,马上对其变形过大问题进行原因分析和矫正控制,使其达到安装范围误差内,方可进行下一部工序。
2、原因分析钢结构施工中造成大跨度钢梁扰度过大的原因很多,设计人员通过对施工现场的实际调查,发现导致钢梁变形异常原因如下:2.1施工过程中未做好设置临时支撑等设施的搭建临时支柱不仅仅是大跨度钢结构施工过程中的有效应用的主要设施,也是实现基于结构承载力为主的相应的受力性能的有效分析,进而将结构的受力状态及相应的临时支承点问题进行分析,从而实现基于构件完整性与安全性的有效分析。
在钢结构未形成空间整体受力体系时,结构在其平面外的稳定性很差,若没有设置临时支撑设施,将会导致结构平面外的整体倾覆和变形;或者平面内由于钢梁跨度过大,平面内也会出现过大变形。
钢结构施工中常见的问题及解决方法
钢结构施工中常见的问题及解决方法钢结构作为一种新型的建筑结构体系,具有轻质、高强、耐久、可重复利用等优点,因此在现代建筑中得到了广泛应用。
然而,在钢结构施工过程中,也会出现一些常见问题,如下:一、钢结构尺寸偏差问题钢结构尺寸偏差问题是钢结构施工中常见的问题之一。
这种问题的出现可能是由于制造、运输、安装等环节中的误差所致。
如果钢结构尺寸偏差过大,将会影响到整个建筑的结构安全和美观度。
解决方法:1.在制造过程中,应该严格按照设计图纸进行制造,确保尺寸精度。
2.在运输过程中,应该采取合适的运输方式,避免钢结构在运输过程中发生变形。
3.在安装过程中,应该使用精密的测量工具,确保钢结构的尺寸精度。
二、钢结构焊接问题钢结构的连接方式主要有螺栓连接和焊接连接两种。
在焊接连接中,常见的问题是焊缝质量不佳、焊接变形等问题。
解决方法:1.在焊接过程中,应该使用高质量的焊接材料,确保焊缝质量。
2.在焊接过程中,应该控制好焊接温度和焊接时间,避免焊接变形。
3.在焊接过程中,应该使用合适的夹具和支撑,避免焊接变形。
三、钢结构防腐问题钢结构在使用过程中容易受到腐蚀的影响,因此需要进行防腐处理。
常见的防腐方式有喷涂、热浸镀锌等。
解决方法:1.在防腐过程中,应该选择合适的防腐方式,根据不同的使用环境选择不同的防腐方式。
2.在防腐过程中,应该使用高质量的防腐材料,确保防腐效果。
3.在防腐过程中,应该严格按照防腐工艺要求进行操作,确保防腐效果。
四、钢结构安装问题钢结构安装是钢结构施工中最重要的环节之一。
常见的问题有安装不平整、安装不牢固等。
解决方法:1.在安装过程中,应该使用合适的安装工具和设备,确保安装精度。
2.在安装过程中,应该使用高质量的安装材料,确保安装牢固。
3.在安装过程中,应该严格按照安装工艺要求进行操作,确保安装质量。
综上所述,钢结构施工中常见的问题主要包括尺寸偏差、焊接问题、防腐问题和安装问题。
针对这些问题,我们可以采取相应的解决方法,确保钢结构施工的质量和安全。
钢结构质量通病原因分析及防治措施
钢结构质量通病原因分析及防治措施钢结构是一种常用的建筑结构,其重要性在于其承载能力、抗震性能和持久性能。
然而,钢结构在使用过程中可能会出现一些质量问题,常见的通病包括钢梁变形、焊缝裂缝、腐蚀等。
本文将就这些通病的原因进行分析,并提出相应的防治措施。
首先,钢梁变形是一种常见的钢结构质量问题。
其原因可能是由于施工过程中的设计问题、材料质量问题或者施工质量问题所导致。
设计不合理可能导致梁的截面尺寸不足,荷载分配不均等问题,材料质量问题则可能是由于选材不当或者材料存在缺陷造成的。
而施工质量问题可能主要包括焊接质量差、施工方法不当等。
针对这些问题,可以采取的防治措施包括:提高设计水平,确保结构合理、安全;加强材料质量管理,确保选用合格材料;严格按照规范施工,注重焊接工艺的操作,确保焊缝质量;加强监理和质量控制,确保施工质量。
其次,焊缝裂缝也是一种常见的钢结构质量问题。
焊缝裂缝可能是由于焊接应力、热应力或者机械应力引起的。
焊接应力是由于熔池形成和冷却过程中的热收缩引起的,热应力是由于焊接区域的温度变化引起的,机械应力则是由于外部荷载引起的。
为防止焊缝裂缝的产生,可以采取的防治措施包括:选择适当的焊接材料和焊接方法,避免产生过大的热应力;进行焊缝预热和后热处理,减轻焊接应力;在施工过程中避免机械应力的集中作用,加强支撑和位移控制。
最后,钢结构的腐蚀也是一种常见的质量问题。
腐蚀主要是由于结构暴露在恶劣的环境中,如海洋气候、工业排放物等,长时间作用下,造成结构表面的金属发生氧化反应。
为防止钢结构的腐蚀,可以采取的防治措施包括:选用抗腐蚀能力强的钢材;进行表面防腐处理,如涂层或者热镀锌等;加强结构的维护和保养,定期检查和维修。
综上所述,钢结构的质量问题可能包括钢梁变形、焊缝裂缝和腐蚀等。
这些问题的原因可能是多方面的,包括设计、材料和施工等因素。
为防止这些问题的产生,应采取相应的防治措施,如提高设计质量、加强材料质量管理、注重焊接工艺操作、加强结构的维护和保养等,以确保钢结构的安全和持久性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.5.3钢结构安装过程中的变形分析控制
5.5.3.1施工步骤的划分
根据施工总进度计划及主体结构施工方案,我们将整个施工过程划分为25个步骤来进行施工模拟分析,以每3层作为一个施工步骤,核心筒施工进度超前外筒约16m标高,具体如下表所示。
5.5.3.2.计算内容
计算各施工阶段结构变形的变化和发展过程。
5.5.3.3.算法及荷载概述
根据施工顺序,我们采用MIDAS/GEN进行施工阶段模拟分析,计算模型为一整体模型,按照施工步骤将结构构件、支座约束、荷载工况划分为25个组,按照施工步骤、工期进度进行施工阶段定义,程序按照控制数据进行分析。
在分析某一施工步骤时,程序将会冻结该施工步骤后期的所有构件及后期需要加载的荷载工况,仅允许该步骤之前完成的构件参与运算,例如第一步骤的计算模型,程序冻结了该步骤之后的所有构件,仅显示第一步骤完成的构件(6层核心筒),参与运算的也只有6层核心筒,计算完成显示计算结果时,同样按照每一步骤完成情况进行显示。
计算过程采用考虑时间依从效果(累加模型)的方式进行分析,得到每一阶段完成状态下的结构内力和变形,在下一阶段程序会根据新的变形对模型进行调整,从而可以真实地模拟施工的动态过程。
计算模型完全按照结构招标图建立,所有构件的截面、材质与招标图完全一致,功能层楼板未直接建板,而采用定义刚性层程序自动默认楼板的存在,楼板自重以恒载的形式
加载到结构梁上。
计算荷载主要考虑结构自重和楼面恒载、施工活荷载,以及塔吊附着力,塔吊附着力将按照塔吊爬升工况,在分析过程中逐步改变加载位置。
5.5.3.4.施工过程模拟分析
每一施工过程中的分项工程,其中包括X、Y、Z三个主轴方向上的位移值(DX,DY,
第1步: 核心筒施工到32.43m,外筒钢结构未施工
ST1: X--方向(DX)
ST1: Y--方向(DY)
ST1: Z--方向(DZ)
X方向最大变形DX为0.04mm, Y方向最大变形DY为0.04mm, Z方向最大变形DZ为0.61mm。
第2步: 核心筒施工到45.10m,外筒钢结构施工到16.18m
ST2: X--方向(DX)
ST2: Y--方向(DY)
ST2: Z--方向(DZ)
X方向最大变形DX为-0.14mm, Y方向最大变形DY为-0.17mm, Z方向最大变形DZ为-1.06mm。
第3步: 核心筒施工到56.80m,外筒钢结构32.43m
ST3: X--方向(DX)
ST3: Y--方向(DY)
ST3: Z--方向(DZ)
X方向最大变形DX为-0.22mm, Y方向最大变形DY为-0.25mm, Z方向最大变形DZ为-1.40mm。
第4步: 核心筒施工到68.50m,外筒钢结构施工到49.00m
ST4: X--方向(DX)
ST4: Y--方向(DY)
ST4: Z--方向(DZ)
X方向最大变形DX为-0.31mm, Y方向最大变形DY为-0.29mm, Z方向最大变形DZ为-1.90mm。