2018年七年级数学竞赛入围试卷(含答案)

合集下载

2018年全国初中数学联合竞赛试题(含解答)

2018年全国初中数学联合竞赛试题(含解答)

2018年全国初中数学联合竞赛试题(含解答)2018年全国初中数学联合竞赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准。

第一试,选择题和填空题只设7分和0分两档;第二试各题,请严格按照本评分标准规定的评分档次给分,不要再增加其他中间档次。

如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数。

第一试一、选择题(本题满分42分,每小题7分)1.已知$x,y,z$满足$\frac{2355x-y}{y+2z}=\frac{x}{z-z^2}$,则$\frac{y+2z}{3x-y-z}$的值为()A) 1.(B) $\frac{5}{3}$。

(C) $-\frac{1}{3}$。

(D) $-\frac{3}{5}$.答】B.解:由$\frac{2355x-y}{y+2z}=\frac{x}{z-z^2}$,得$5x-3y=3xz-3xz^2$,即$y=\frac{5}{3}x-\frac{3}{3}z+\frac{3}{3}xz^2$,所以$\frac{y+2z}{3x-y-z}=\frac{\frac{5}{3}x+\frac{1}{3}z}{\frac{4}{3}x-\frac{2}{3}z}=\frac{5}{3}$,故选(B)。

注:本题也可用特殊值法来判断。

2.当$x$分别取值$1,\frac{1}{2},\frac{1}{3},\cdots,\frac{1}{2005},\frac{1}{2006}, \frac{1}{2007}$时,计算$\frac{1}{2007}+\frac{x}{21+x^2}$代数式的值,将所得的结果相加,其和等于()A) $-1$。

(B) $1$。

(C) $0$。

(D) $2007$.答】C.解:$\frac{1}{2007}+\frac{x}{21+x^2}=\frac{1}{21}\left(\frac{21}{ 2007}+\frac{21x}{21+x^2}\right)=\frac{1}{21}\left(\frac{1}{1+x ^{-2}}\right)$,所以当$x=1,\frac{1}{2},\frac{1}{3},\cdots,\frac{1}{2005},\frac{1}{200 6},\frac{1}{2007}$时,计算所得的代数式的值之和为$0$,故选(C)。

2018年全国初中数学联合竞赛初一组试题第二试(A)(解析版)

2018年全国初中数学联合竞赛初一组试题第二试(A)(解析版)

2018年全国初中数学联合竞赛初一组试题(解析版)第二试(A )一、(本题满分20分)如果a b c d e f g <<<<<<是连续的正整数,b c d e f ++++为完全平方数,a b c d e f g ++++++为完全立方数.求正整数d 的最小值.【解析】:由题意,可知5b c d e f d ++++=为完全平方数7a b c d e f g d ++++++=为完全立方数………………………………………………………………………………………………(5分)由于b c d e f ++++为完全平方数,a b c d e f g ++++++为完全立方数,令235,7,d m d n ==其中m n 、均为正整数.………………………………………………………………………………………………(10分)再由简单的整除知识可得,5,m 进而5,d 即有5,n 故而可知35.d 同理,我们可知7,n 进而27.d 于是我们有3257,d ⨯故而可知d 的最小值为32576125.⨯=………………………………………………………………………………………………(20分)二、(本题满分25分)在等腰梯形ABCD 中,a BC AB DA ===,a CD 2=,E 为CD 中点,联结AC ,过E 作AD EF ⊥于F ,G 为AB 上靠近B 侧三等分点,CD 上有H 使得3:2:=∆∆ABC BHE S S .(1)求证:DG BH EF AC ,,,相交形成一个平行四边形;(2)求(1)中所围成图形面积与原梯形面积比.【解析】(1)由题易知︒=∠=∠60BCD ADC ,BEC ∆为正三角形.a AD BE DE AB ==== ABED ∴为平行四边形………………………………………………………………………………………………(5分)BEAC AD EF ⊥⊥∴,ACEF //∴………………………………………………………………………………………………(10分)3:2:=∆∆ABC BHE S S 2:1:=∴HE DH BHDG //∴PQRS ∴为平行四边形………………………………………………………………………………………………(15分)(2) 在BEQ ∆中,M 是BE 中点,且EQRM //∴R 是BQ 中点,同理P 是SD 中点∴PDSP RQ BR === 2:1:=HE DH ∴PD HQ 32=………………………………………………………………………………………………(20分)∴ABCD ABED BGDH SPQR S S S S 1133=⋅==………………………………………………………………………………………………(25分)三、(本题满分25分)设a b c 、、为两两不同的实数,证明()()()2223337.a b b c c a ⎡⎤⎡⎤⎡⎤---++>⎢⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦【解析】:作代换,令,,a b c x y z a b b c c a===---①则由①中三式自身特性可知,()()()111.b c a x y z a b b c c a a b c a b b c c axyz ---=---=---= 化简得 1.x y z xy yz zx ++=+++②………………………………………………………………………………………………(10分)记()()()222333,a b b c c a A ⎡⎤⎡⎤⎡⎤---=++⎢⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦将①代入代数式A 的右边可知2222221112223,4A x y z x y z x y z ⎛⎫⎛⎫⎛⎫=+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=++++++………………………………………………………………………………………………(15分)将②式代入上式可知()()()2221117.2224A x y y z z x =++++++………………………………………………………………………………………………(20分)特别地,令2,,.x m y m z m ==-=-则2222117222473.4A m m m m =+++=+当m 无限的趋近于0时,可知7.4A >………………………………………………………………………………………………(25分)。

2018年广东省中山市初中数学教师解题比赛试卷(PDF版,含解析)

2018年广东省中山市初中数学教师解题比赛试卷(PDF版,含解析)

2018年广东省中山市初中数学解题竞赛试卷一、选择题(本大题共8小题,每小题3分,满分24分.请将唯一正确的答案代号填在题后括号内)1.(3分)下列各数中,最大的有理数是()A.0B.﹣1C.﹣3D.2.(3分)把抛物线y=﹣x2向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为()A.y=﹣(x﹣1)2﹣3B.y=﹣(x+1)2﹣3C.y=﹣(x﹣1)2+3D.y=﹣(x+1)2+33.(3分)下列命题正确的是()A.对角线相等且互相平分的四边形是菱形B.对角线相等且互相垂直的四边形是菱形C.对角线相等且互相平分的四边形是矩形D.对角线相等的四边形是等腰梯形4.(3分)一个袋子里装有2000个红球,1000个黑球,10个黄球,这些球仅颜色不同,要保证摸出的球中有1000个颜色相同,至少应摸出多少个球()A.1010个B.2000个C.2008个D.2009个5.(3分)如图,在△ABC中,AB=10,AC=8,BC=6,经过点C且与边AB相切的动圆与CB,CA分别相交于点E,F,则线段EF长度的最小值是()A.B.4.75C.5D.4.86.(3分)满足方程|x﹣1|﹣2|x﹣2|+3|x﹣3|=4的有理数x有多少个()A.1B.2C.3D.无数7.(3分)在反比例函数y=的图象中,阴影部分的面积不等于4的是()A.B.C.D.8.(3分)二次函数y=ax2+bx+c的图象如图所示.下列结论正确的是()A.3|a|+|c|>2|b|B.3|a|+|c|=2|b|C.3|a|+|c|<2|b|D.3|a|+|c|≤2|b|二、填空题(本大题共8小题,每小题4分,满分32分.请将最简结果直接填在题后横线上).9.(4分)函数中,自变量x的取值范围是.10.(4分)已知,则代数式的值为.11.(4分)甲、乙、丙三人同时玩“石头、剪刀、布”的游戏,游戏规则是:石头胜剪刀,剪刀胜布,布胜石头.则甲获胜(并列不计)的概率是.12.(4分)若实数a,b满足a+b2=1,则2a2+7b2的最小值是.13.(4分)如图,△ABC内接于⊙O,点P是弧AC上任意一点(不与A、C重合),∠ABC=55°,则∠POC的取值范围是.14.(4分)若2x2﹣6y2+xy+kx+6能分解为两个一次因式的积,则整数k的值是.15.(4分)关于x的方程(a≠0)的解为.16.(4分)如图,在反比例函数y=(x>0)的图象上,有点P1,P2,P3,P4,它们的横坐标依次为1,2,3,4.分别过这些点作x轴与y轴的垂线,图中所构成的阴影部分的面积从左到右依次为S1,S2,S3,则S1+S2+S3=.三、解答题(本大题共6小题,满分64分,解答应写出必要文字说明、演算步骤和证明过程)17.(10分)已知正实数x、y、z、w满足2007x2=2008y2=2009z2=2010w2,且,求之值.18.(10分)设正方形ABCD的中心为O,在以五个点A、B、C、D、O为顶点所构成的所有三角形中任意取出两个,求它们的面积恰好相等的概率.19.(10分)已知a、b、c、d为不同的实数,且a、c是方程x2+ax﹣b=0的根,b、d是方程x2+cx+d=0根.求a、b、c、d的值.20.(10分)已知函数y=k2x2+k(2x﹣3x2)+2x2﹣2x+1的图象不经过第四象限,求常数k的取值范围.21.(12分)如图,在矩形ABCD中,点E、F、G、H分别在边AB、BC、CD、DA上,点P在矩形ABCD内,若AB=4,BC=6,AE=CG=3,BF=DH=4,四边形AEPH的面积为5,求四边形PFCG的面积.22.(12分)如图,△ABC的外心O关于三边的对称点分别为A′、B′、C′.求证:(1)AA′、BB′、CC′交于一点P;(2)设△ABC三边中点分别为A1、B1、C1,则P为△A1B1C1的外心.参考答案一、选择题(本大题共8小题,每小题3分,满分24分.请将唯一正确的答案代号填在题后括号内)1.解:∵负数都小于0,正数大于一切负数,∴排除B和C;∵是无理数,故四个数0,﹣1,﹣3,有理数最大的是0.故选:A.2.解:当y=﹣x2向左平移1个单位时,顶点由原来的(0,0)变为(﹣1,0),当向上平移3个单位时,顶点变为(﹣1,3),则平移后抛物线的解析式为y=﹣(x+1)2+3.故选:D.3.解:A、错误,例如等腰梯形;B、错误,例如对角线互相垂的梯形;C、正确;D、错误,例如矩形.故选:C.4.解:最坏情况考虑就行了,摸出10个黄球,摸出另二色中一色的999个球,最后再摸出最后一色的1000个球,这时可以保证至少有1000个颜色相同,即最少要摸:10+999+1000=2009个球,故选:D.5.解:如图,∵∠ACB=90°,∴EF是直径,设EF的中点为O,圆O与AB的切点为D,连接OD,CO,CD,则OD⊥AB.∵AB=10,AC=8,BC=6,∴∠ACB=90°,∴EF为直径,OC+OD=EF,∴CO+OD>CD=4.8,∵当点O在直角三角形ABC的斜边AB的高上CD时,EF=CD有最小值∴由三角形面积公式得:CD=BC•AC÷AB=4.8.故选:D.6.解:当x﹣1≥0,x﹣2≥0,x﹣3<0时,x﹣1﹣2(x﹣2)+3(3﹣x)=4,x=2,当x﹣1≥0,x﹣2≥0,x﹣3>0时,x﹣1﹣2(x﹣2)+3(x﹣3)=4,x=5,当x﹣1≥0,x﹣2<0,x﹣3<0时,x﹣1﹣2(2﹣x)+3(3﹣x)=4原方程有无数解,当x﹣1≤0,x﹣2<0,x﹣3<0时,1﹣x﹣2(2﹣x)+3(3﹣x)=4,x=1,∴满足方程|x﹣1|﹣2|x﹣2|+3|x﹣3|=4的有理数x有无数个.故选:D.7.解:A、图形面积为|k|=4;B、阴影是梯形,面积为6;C、D面积均为两个三角形面积之和,为2×(|k|)=4.故选:B.8.解:由函数图象可知a<0,c<0,由对称轴x=﹣>0,可知b>0,∴3|a|+|c|﹣2|b|=﹣(3a+2b+c),∵当x=1时,y=a+b+c>0,①又对称轴x=﹣>1,解得2a+b>0,②①+②得3a+2b+c>0,∴﹣(3a+2b+c)<0,∴3|a|+|c|<2|b|.故选:C.二、填空题(本大题共8小题,每小题4分,满分32分.请将最简结果直接填在题后横线上).9.解:根据题意得,3﹣x≥0且x﹣1≠0,解得x≤3且x≠1.故答案为:x≤3且x≠1.10.解:解法一:∵﹣=﹣=3,即x﹣y=﹣3xy,则原式===4.解法二:将原式的分子和分母同时除以xy,===4故答案为:4.11.解:甲要获胜,另外两人的出法就确定了,比如甲出石头,乙丙必须都出剪刀.而乙丙的出法共有3×3=9种,对于任意的甲的出法,只有其中一种满足条件.所以甲获胜的概率就是:.故答案为:.12.解:∵a+b2=1,∴a=1﹣b2∴2a2+7b2=2(1﹣b2)2+7b2=2b4+3b2+2=2(b2+)2+2﹣=2(b2+)2+,∵b2≥0,∴2(b2+)2+>0,∴当b2=0,即b=0时,2a2+7b2的值最小.∴最小值是2.方法二:∵a+b2=1,∴b2=1﹣a,∴2a2+7b2=2a2+7(1﹣a)=2a2﹣7a+7=2(a﹣)2+,∵b2≥0,∴1﹣a≥0,∴a≤1,∴当a=1,即b=0时,2a2+7b2的值最小.∴最小值是2.13.解:连接AO,则∠AOC=2∠B=110°,∴∠POC的取值范围是:0°<∠POC<110°.14.解:设2x2﹣6y2+xy+kx+6能分解成:(x+ay+c)(2x+by+d),即2x2+aby2+(2a+b)xy+(2c+d)x+(ad+bc)y+cd,∴cd=6,∵6=1×6=2×3=(﹣2)(﹣3)=(﹣1)(﹣6),∴①c=1,d=6时,ad+bc=6a+b=0,与2a+b=1联立求解得,,或c=6,d=1时,ad+bc=a+6b=0与2a+b=1联立求解得,,②c=2,d=3时,ad+bc=3a+2b=0,与2a+b=1联立求解得,,或c=3,d=2时,ad+bc=2a+3b=0,与2a+b=1联立求解得,,③c=﹣2,d=﹣3时,ad+bc=﹣3a﹣2b=0,与2a+b=1联立求解得,,或c=﹣3,d=﹣2,ad+bc=﹣2a﹣3b=0,与2a+b=1联立求解得,,④c=﹣1,d=﹣6时,ad+bc=﹣6a﹣b=0,与2a+b=1联立求解得,,或c=﹣6,d=﹣1时,ad+bc=﹣a﹣6b=0,与2a+b=1联立求解得,,∴c=2,d=3时,c=﹣2,d=﹣3时,符合,∴k=2c+d=2×2+3=7,k=2c+d=2×(﹣2)+(﹣3)=﹣7,∴整数k的值是7,﹣7.故答案为:7,﹣7.15.解:方程的两边同乘(x﹣1),得ax2﹣2a(x﹣1)=(a2+1)(x﹣1),解得x1=a+1,x 2=∴原方程的解为:x1=a+1,x 2=.故答案为:x1=a+1,x 2=.16.解:由题意,可知点P1、P2、P3、P4坐标分别为:(1,2),(2,1),(3,),(4,).解法一:∵S1=1×(2﹣1)=1,S2=1×(1﹣)=,S3=1×(﹣)=,∴S1+S2+S3=1++=.解法二:∵图中所构成的阴影部分的总面积正好是从点P1向x轴、y轴引垂线构成的长方形面积减去最下方的长方形的面积,∴1×2﹣×1=.故答案为:.三、解答题(本大题共6小题,满分64分,解答应写出必要文字说明、演算步骤和证明过程)17.解:设2007x2=2008y2=2009z2=2010z2=A,∴2007x=,2008y=,2009z=,2010w=,=,=,=,=,+++=+++=1,=+++∴2007x+2008y+2009z+2010w=+++,=A(+++),∵,∴2007x+2008y+2009z+2010w=A.∴==+++.18.解:如图所示:在正方形ABCD中,O为AC和BD的交点,则所有的三角形分别为:△AOB、△AOD、△BOC、△COD、△ABC、△ACD、△BCD、△ABD,根据正方形的性质,我们知道:△AOB、△AOD、△BOC、△COD的面积相等,△ABC、△ACD、△BCD、△ABD的面积相等,所以从所有三角形中任意取出两个,它们的面积相等的概率为==.19.解:∵a、c是方程x2+ax﹣b=0的根,b、d是方程x2+cx+d=0根,∴a+c=﹣a①,ac=﹣b②,b+d=﹣c③,bd=d④,由④得b=1,(若d=0,由③得b=﹣c,代入②得ac=c可得c=0,a=0这与a、b、c、d为不同的实数不符或a=1代入①得c=﹣2,a、c代入②得b=2,b、c代入③得d=0,即a=1,b=2,c=﹣2,d=0)则ac=﹣1,由①得c=﹣2a,∴﹣2a2=﹣1,解得a=±,∴当a=时,c=﹣,d=﹣c﹣b=﹣1;当a=﹣时,c=,d=﹣c﹣b=﹣﹣1;所以a=,b=1,c=﹣,d=﹣1或a=﹣,b=1,c=,d=﹣﹣1.20.解:y=k2x2+k(2x﹣3x2)+2x2﹣2x+1,=k2x2+2kx﹣3kx2+2x2﹣2x+1,=(k2﹣3k+2)x2+(2k﹣2)x+1,当k2﹣3k+2=0,∴(k﹣1)(k﹣2)=0,∴k=1或k=2,当k=1时,y=1,是平行于x轴的直线,不经过第四象限,当k=2时,y=2x+1,图象经过第一、二、三象限,不经过第四象限,当k2﹣3k+2≠0,∴函数是二次函数,图象经过一、二象限,或一、二、三象限,∴图象对称轴在x轴负半轴,开口向上,a,b同号,∴k2﹣3k+2>0,(k﹣1)(k﹣2)>0,∴k﹣1>0,k﹣2>0或k﹣1<0,k﹣2<0,解得k>2或k<1,∴常数k的取值范围是:函数是二次函数时:k>2或k<1,函数是一次函数时:k=1或k=2.21.解:解法一、连接AP,CP,设△AHP在AH边上的高为x,△AEP在AE边上的高为y.则△CFP在CF边上的高为4﹣x,△CGP在CG边上的高为6﹣y.∵AH=CF=2,AE=CG=3,∴S四边形AEPH=S△AHP+S△AEP,=AH×x+AE×y,=×2x+×3y=5,即2x+3y=10,S四边形PFC G=S△CGP+S△C FP=CF×(4﹣x)×+CG×(6﹣y)×,=2(4﹣x)×+3(6﹣y)×,=(26﹣2x﹣3y)×,=(26﹣10)×,=8.解法二、连接HE、EF、FG、GH,证△DHG≌△BFE,推出HG=EF,同理:HE=GF,则四边形EFGH由条件知是平行四边形,面积为4×6﹣×3×2﹣×3×2﹣×4×1﹣×4×1=14,由平行四边形性质知:S△HEP+S△FGP=S平行四边形EFGH=7,∵△AEH的面积为×3×2=3,△CGF的面积为×3×2=3,四边形AEPH的面积为5,∴△HEP的面积是5﹣3=2,△PGF的面积是7﹣2=5,∴四边形PFCG的面积S=S△PGF+S△CGF=5+3=8.答:四边形PFCG的面积是8.22.证明:(1)设圆O半径为R.由△ABC的外心O关于三边的对称点分别为A′、B′、C′,知:BC′=B′C=R,∠C′BA=∠C′AB=∠OAB,∠B′CA=∠B′AC=∠OAC,∴∠C′BA+∠B′CA=∠OAB+∠OAC=∠BAC,∴∠C′BC+∠B′CB=∠BAC+∠ABC+∠BCA=180°,∴BC′∥B′C,∴BB′,CC′互相平分,交于中点,同理CC′,AA′互相平分,交于中点,∴AA′、BB′、CC′交于一点P;(2)∵P为CC′中点,A1为BC中点,∴PA1=B′C=R,同理PB1=R,PC1=R,∴PA1=PB1=PC1,∴P是△A1B1C1的外心.。

2018年全国初中数学竞赛(初一组)初赛试题参考答案

2018年全国初中数学竞赛(初一组)初赛试题参考答案

第1页(共1页)一、1.A 2.C 3.B 4.D 5.B 6.D二、7.-18.30°9.3或-110.221三、11.(1)19×11=12×æèöø19-111;………………………………………………………………………………5分(2)1()2n -1()2n +1;12×æèöø12n -1-12n +1;…………………………………………………………………………………………………………10分(3)a 1+a 2+a 3+…+a 100=12×æèöø1-13+12×æèöø13-15+12×æèöø15-17+12×æèöø17-19+⋯+12×æèöø1199-1201=12×æèöø1-13+13-15+15-17+17-19+⋯+1199-1201……………………………………………15分=12×æèöø1-1201=12×200201=100201.…………………………………………………………………………………………………20分四、12.(1)130°.…………………………………………………………………………………………………5分(2)∠APC =∠α+∠β.理由:过点P 作PE ∥AB ,交AC 于点E .……………………………………………………………10分因为AB ∥CD ,所以AB ∥PE ∥CD .所以∠α=∠APE ,∠β=∠CPE .所以∠APC =∠APE +∠CPE =∠α+∠β.…………………………………………………………15分(3)当点P 在BD 延长线上时,∠APC =∠α-∠β;……………………………………………………20分当点P 在DB 延长线上时,∠APC =∠β-∠α.……………………………………………………25分五、13.(1)根据题意,得t =æèöø120-12050×550+5×2+12050≈6.3()h .答:三人都到达B 地所需时间约为6.3h.………………………………………………………………5分(2)有,设甲从A 地出发将乙载到点D 行驶x 千米,放下乙后骑摩托车返回,此时丙已经从A 地出发步行至点E ,继续前行后与甲在点F 处相遇,甲骑摩托车带丙径直驶向B,恰好与乙同时到达.…………………………………………………………………………………………………………10分根据题意,得2∙x -x 50∙550+5+120-x 50=120-x 5.…………………………………………………………15分解得x ≈101.5.…………………………………………………………………………………………20分则所用总时间为t =101.550+120-101.55≈5.7()h .答:有,方案如下:甲从A 地出发载乙,同时丙步行前往B 地,甲载乙行驶101.5千米后放下乙,乙步行前往B 地,并甲骑摩托车返回,与一直步行的丙相遇.随后甲骑摩托车载丙径直驶向B 地,恰好与步行的乙同时到达,所需时间为5.7h.………………………………………………………………………25分。

2018年全国中学生数学能力竞赛(决赛)试题(七年级)

2018年全国中学生数学能力竞赛(决赛)试题(七年级)

2018年全国中学生数学能力竞赛(决赛)试题七年级(初一)组(试题总分120分;答题时间120分钟)一、画龙点睛(本大题共8小题,每小题3分,总计24分)1.现在儿子的年龄是8岁,父亲的年龄是儿子年龄的4倍,()年后父亲的年龄是儿子年龄的3倍。

2.如果(a+5)x|a+4|+8=0是关于x的一元一次方程,那么a2+a-x=()。

3.已知a2+bc=14,b2-2bc=-6,则3a2+4b2-5bc=( )。

4.一串有黑有白其排列有一定规律的珠子,被盒子遮住一部分(如图所乐),则这串珠子被盒子遮住的部分有()颗。

第4题图5.探究数字“黑洞”:“黑洞”原指非常奇怪的天体,它体积小,密度大,吸引力强,任何物体到了它那里都别想再“爬”出来,无独有偶,数字中也有类似的“黑洞”。

满足某种条件的所有数,通过一种运算,都能被它吸进去,无一能逃脱它的魔掌。

譬如:任意找一个3的倍数的数,先把这个数的每一个数位上的数字都立方,再相加,得到一个新数,然后把这个新数的每一个数位上的数字再立方,再求和……重复运算下去,就能得到一个固定的数T=()。

我们称之为数字“黑洞”。

6.如图,4个半径为1cm的圆相靠着放在一个正方形内,则阴影部分的面积是( )cm2。

(π取3.14).第6题图7.已知A,B,C,D,E代表1至9中不同的数字,ABCD+EEE=2018,则ABCD•EEE的最大值等于()。

8.已知三角形的内角和是180°,如果一个三角形的三个内角的度数都是小于120的质数,则这个三角形三个内角的度数分别是()。

二、一锤定音(本大题共4道小题,每小题3分,总计12分)9.甲、乙、丙三个人,一个姓张,一个姓李,一个姓王。

他们一个是银行职员,一个是计算机程序员,一个是秘书。

已知甲既不是银行职员也不是秘书;丙不是秘书;张不是银行职员;王不是乙,也不是丙。

请问:甲、乙、丙三人的姓氏依次是()。

A.李,王,张B.张,王,李C.王,李,张D.王,张,李10.如图,小圆圈表示网络的结点,结点之间的线段表示它们有网线相连。

2018年全国初中数学联赛试题参考答案和评分标准(A卷和B卷)

2018年全国初中数学联赛试题参考答案和评分标准(A卷和B卷)
所以, ( x, y, z ) (2,2,0) 或 (2,0,2) 或 (0,2,2) 或 (0,0,0) ,故共有 4 个符合要求的整数组. 2018 年初中数学联赛试题参考答案及评分标准 第 2 页(共 10 页)
6.设 M A.60. 【答】B. 因为 M
1 1 1 1 1 ,则 的整数部分是 2018 2019 2020 2050 M
2 2
即 (a b) 2[(a b) 4ab] (a b)[(a b) 3ab] 0 , 又 a b 2 ,所以 2 2[4 4ab] 2[4 3ab] 0 ,解得 ab 1.所以 a b (a b) 2ab 6 ,
x 1 1, x 1 1, x 1 1, x 1 1, y 1 1, 或 y 1 1, 或 y 1 1, 或 y 1 1, z 1 1, z 1 1, z 1 1, z 1 1,
2018 年‫ޘ‬ഭ初中数学联赛试题参考答案及评分标准
说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设 7 分和 0 分两档;第二试各题, 请按照本评分标准规定的评分档次给分.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在 评卷时请参照本评分标准划分的档次,给予相应的分数.
2 2

A.1. 【答】B.
B.2.
C.3.
D.4.
2018 年初中数学联赛试题参考答案及评分标准
第 1 页(共 10 页)
设 p 5 pq 4q m ( m 为自然数) ,则 ( p 2q) pq m ,即
2
2
2

2018年全国初中数学竞赛(初一组)初赛试题及答案

2018年全国初中数学竞赛(初一组)初赛试题及答案

2018年全国初中数学竞赛(初一组)初赛试题参考答案和评分标准一、1. A 2. C 3. B 4. D 5. B 6. D10. 221二、7. -1 9 × 11 = 2 8. 30° ⎭ 9. 3 或-15三、11. () 1 1 ⎛ 1 1 ⎫; 厖厖厖厖厖厖厖厖厖厖厖厖厖厖厖 分 () n 1 n ) ;1 ⎛ 1 1 ⎫;2 ( )( 2 2n - 1 ⎭2 - 1 2 + 1 10 ………………………………………………………………………………………………………… 分(3)a 1 + a 2 + a 3 + … + a 100 1 1 ⎛ 1 1 1 ⎛ 1 1 1 ⎛ 1 1= 1 × ⎛ 1 ⎫ 1 ⎛ 1 ⎫ ⎫ + ⎫ ⎫2 ⎝1 -3 ⎭ + 2 × ⎝ 3 - 5 ⎭ + 2 × ⎝ 5 - 7 ⎭ 2 × ⎝ 7 - 9 ⎭ + ⋯ + 2 × ⎝ 199 - 201 ⎭ 153 + ⎭1 ⎛ 1 1 1 1 1 1 1 1 1 ⎫ …………………………………………… 分= 1 × ⎛ 1 ⎫2 ⎝1 - 201 ⎭= 1 × 200 2 201= 100201. 20 分 四、12. (1)130? . 厖厖厖厖厖厖厖厖厖厖厖厖厖厖厖厖厖厖? 5 分(2)∠APC = ∠? + ∠β. 10理由:过点P 作PE ∥AB ,交AC 于点E . 厖厖厖厖厖厖厖厖厖厖厖? 分因为 AB ∥CD ,所以 AB ∥PE ∥CD .所以∠?=∠APE,∠?=∠CPE.15所以∠APC=∠APE+∠CPE=∠?+∠?.…………………………………………………………分(3)当点P在BD延长线上时,∠APC=∠?-∠?;厖厖厖厖厖厖厖厖厖厖20分当点P在DB延长线上时,∠APC=∠?-∠?.厖厖厖厖厖厖厖厖厖厖25分⎛120⎫五、13.()根据题意,得t⎝120 -50× 5⎭120( )=50 + 5× 2 +150≈ 6.3 h .答:三人都到达B地所需时间约为6.3h.……………………………………………………………… 5 分(2)有,设甲从A地出发将乙载到点D行驶x千米,放下乙后骑摩托车返回,此时丙已经从A地出发步行至点E,继续前行后与甲在点F处相遇,甲骑摩托车带丙径直驶向B,恰好与乙同时到达.10…………………………………………………………………………………………………………分2∙x+50=5.1550 + 5根据题意,得x -50∙5120 - x120 - x…………………………………………………………20分解得x≈ 101.5.厖厖厖厖厖厖厖厖厖厖厖厖厖厖厖厖厖分则所用总时间为t=101.5120 - 101.5≈ 5.7( ) 50+5h .答:有,方案如下:甲从A地出发载乙,同时丙步行前往B地,甲载乙行驶101.5千米后放下乙,乙步行前往B地,并甲骑摩托车返回,与一直步行的丙相遇.随后甲骑摩托车载丙径直驶向B地,恰好与步行的乙同时到达,所需时间为5.7 h.………………………………………………………………………25分第1页(共1页)。

2018年全国初中七年级数学联合竞赛答案

2018年全国初中七年级数学联合竞赛答案

2018年全国初中数学联合竞赛(初一年级)参考答案与评分标准一、选择题(1)B ;(2)C;(3)A;(4)C ;(5)A ;(6)B ;(7)B;(8)D.二、填空题(9)3-;(10)3;(11)d b a c >>>;(12)36.(13)14-;(14)9.第二试一、(本题满分15分)解:设A B 、两地间的距离为x km,根据题意得4224x -+=⨯解得=10x …………………………………………………………………12分答:A B 、两地间的距离为10km.………………………………………………………15分二、(本题满分15分)解:30(1)410(2)a b c a b c =⎧⎨=-⎩K K +2-2+-6由(2)×2—(1)得=24a c -(3)…………………………………………………3分把(3)代入(2)得=62b c -…………………………………………………6分因为a b c 、、均为非负数,所以240200a c b c c =-≥⎧⎪=-≥⎨⎪≥⎩6,23c ≤≤.……………………10分336S a b c c ==--+-7………………………………………………………………12分max 12S =-,min 15S =-,xy =180…………………………………………………15分三、(本题满分20分)解:设每船可装a 升汽油,则每升油可行驶300a 海里,设两船用了x 升汽油返回,根据题意得22a x a x a x a -+-+-=…………………………………………………………12分解得25a x =.……………………………………………………………………………14分12300()21025a a a⨯+⨯=………………………………………………………………19分答:第3艘船最远可巡逻至210海里处.………………………………………………20分四、(本题满分20分)解:不妨设a b c >>,则111a b c<<,因为6665ab bc ca abc ++=,所以11156a b c ++=,………………………………………………………………………5分所以11113c a b c c<++<,……………………………………………………………………8分所以1536c c <<,所以61855c <<,所以=2c 或3.…………………………………12分当=2c 时,111=3a b +,1112b a b b <+<,所以1123b b <<,所以36b <<,所以=4b 或5.若=4b ,则=12a ;若=5b ,则15=2a (舍).…………………………………16分当=3c 时,111=3a b +,1112b a b b <+<,……………………………………………18分所以1122b b<<,所以24b <<,所以=4b (舍).所以=18a b c ++.……………20分。

人教版2018-2019学年七年级数学竞赛试卷B(含答案)

人教版2018-2019学年七年级数学竞赛试卷B(含答案)

绝密★启用前2018-2019学年人教版七年级数学竞赛试卷B注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)请点击修改第I卷的文字说明一.选择题(共6小题,4*6=24)1.有一拉面师傅首先把一个面团搓成1.6米长的圆柱形面棍,对折,再拉长到1.6米;再对折,再拉长到1.6米;…这样对折10次,再拉长到1.6米,就做成了拉面.此时,若将手中的面条伸展开,把面条看作粗细均匀的圆柱形,它的粗细(直径)是原来面棍粗细(直径)的()A.B.C.D.2.某靶场有红、绿靶标共100个,其中红靶标的数量不到绿靶标数量的三分之一,若打中一个红靶标得10分,打中一个绿靶标得8.5分,小明打中了全部绿靶标和部分红靶标,在计算他所得的总分时,发现总分与红靶标的总数无关(包括打中的和没有打中的),则靶场有红靶标()个.A.22 B.20 C.18 D.163.编号为1到101的101个小球分放在两个盒子A和B中,40号小球在盒子A中,把这个小球从盒子A中移至盒子B中,这时盒子A中小球号码数的平均数增加了,B中小球号码数的平均数也增加了,则原来在盒子A中的小球个数为()A.70 B.71 C.72 D.734.小王沿街匀速行走,发现每隔6分钟从背后驶过一辆18路公交车,每隔3分钟从迎面驶来一辆18路公交车.假设每辆18路公交车行驶速度相同,而且18路公交车总站每隔固定时间发一辆车,那么发车间隔的时间是()A.3分钟B.4分钟C.5分钟D.6分钟5.将正整数按如图所示的位置顺序排列,根据图中的排列规律,2008应在()A.A位B.B位C.C位D.D位6.如图,一只青蛙在圆周上标有数字的五个点上跳,若它停在奇数点上,则下一次沿顺时针方向跳两个点;若停在偶数点上,则下一次沿逆时针方向跳一个点.若青蛙从5这点开始跳,则经2011次跳后它停在的点所对应的数为()A.1 B.2 C.3 D.5第Ⅱ卷(非选择题)请点击修改第Ⅱ卷的文字说明二.填空题(共6小题,4*6=24)7.现有长度分别12,3,4,7,8,9,10,13,14,15的线段各一条.若从中选出若干条(不截取)来拼接成正方形,则共有种不同的拼接法.8.袋中有红、黄、黑三种颜色的球各若干个,黄色球上标有数字5,黑色球上标有数字6,红色球上标的数字看不清.现从袋中拿出8个球,其中黄色球和黑色球的个数分别少于红色球的个数.已知8个球上的数字和是39,那么红色球上标的数字是;拿出黑色球的个数是.9.世界著名的莱布尼兹三角形如图所示,其排在第8行从左边数第3个位置上的数是.10.粉笔是校园中最常见的必备品.图1是一盒刚打开的六角形粉笔,总支数为50支.图2是它的横截面(矩形ABCD),已知每支粉笔的直径为12mm,由此估算矩形ABCD的周长约为mm.(,结果精确到1mm)11.已知a=2005x+2006,b=2005x+2007,c=2005x+2008,则a2+b2+c2﹣ab﹣ac﹣bc=.12.一年共有12个月,闰年的二月是29天,又有4个小月,7个大月,所以闰年共有29×1+30×4×31×7=366(天).反过来思考:如果非负整数a,b,c满足等式:29a+30b+31c=366(*),那么a+b+c=,这样的数组(a,b,c)共有组,它们分别是.三.解答题(共4小题,52分)13.(12分)某仓库有50件同一规格的某种集装箱,准备委托运输公司送到码头,运输公司有每次可装运1件、2件、3件这种集装箱的三种型号的货车,这三种型号的货车每次收费分别为120元、160元、180元,现要求安排20辆货车刚好一次装运完这些集装箱.问这三种型号的货车各需多少辆?有多少种安排方式?哪些安排方式所需的运费最少?最少运费是多少?14.(12分)将正整数1、2、3、4、5、6…按下列规律进行排列:首先将这些数从“1”开始每隔一数取出,形成一列数:1、3、5、7排成一行;然后在剩下的数2、4、6、8…中从第一个数“2”开始每隔一数取出,形成第二列数:2、6、10、…排成第二行;照此下去,第三排的数由剩下的4、8、12、16、…中从第一个数“4”开始每隔一数取出4、12、20、…;如此一直继续下去,我们可以排成一张表如下表所示.(1)问32、42、72分别在表中的第几行?(2)对于表中第3列第n行的数,请你用关于n的代数式表示出来;(3)176在这个表中的第几行第几列.15.(14分)已知:五位数满足下列条件:(1)它的各位数字均不为零;(2)它是一个完全平方数;(3)它的万位上的数字a是一个完全平方数,干位和百位上的数字顺次构成的两位数以及十位和个位上的数字顺次构成的两位数也都是完全平方数.试求出满足上述条件的所有五位数.16.(14分)一只青蛙在平面直角坐标系上从点(1,1)开始,可以按照如下两种方式跳跃:①能从任意一点(a,b),跳到点(2a,b)或(a,2b);②对于点(a,b),如果a>b,则能从(a,b)跳到(a﹣b,b);如果a<b,则能从(a,b)跳到(a,b﹣a).例如,按照上述跳跃方式,这只青蛙能够到达点(3,1),跳跃的一种路径为:(1,1)→(2,1)→(4,1)→(3,1).请你思考:这只青蛙按照规定的两种方式跳跃,能到达下列各点吗?如果能,请分别给出从点(1,1)出发到指定点的路径;如果不能,请说明理由.(1)(3,5);(2)(12,60);(3)(200,5);(4)(200,6).参考答案1.解:第一次对折后长度为1.6×2米,第二次对折后长度为1.6×2×2米,第三次对折后长度为1.6×23米,第四次对折后长度为1.6×24米,第十次对折后长度为1.6×210米,设原来直径为r,则原体积为1.6πr2,现在的体积为1.6×210πR2=1.6πr2,∴==,即它的粗细(直径)是原来面棍粗细(直径)的.故选:B.2.解:设红靶x个,则绿靶(100﹣x)个,打中红的数目为k,打中了全部绿靶标得分:S=8.5(100﹣x)=850﹣8.5x,又总分=S+10x=85+10k﹣8.5x为一常数,所以10k=8.5x,又由“靶标的数量不到绿靶标数量的三分之一“知:x<即x<25,又x,k为自然数,所以x=20,k=17,即靶场有红靶标20个.故选:B.3.解:设原来盒子A中有弹珠x个,则盒子B中有弹珠(101﹣x)个.又记原来A中弹珠号码数的平均数为a,B中弹珠号码数的平均数为b.则由题意得:,由②得:a=(159+x),由③得:b=(58+x),将a、b代入①解得:x=73,即原来盒子A中有73个弹珠.故选:D.4.解:设18路公交车的速度是x米/分,小王行走的速度是y米/分,同向行驶的相邻两车的间距为s米.每隔6分钟从背后开过一辆18路公交车,则6x﹣6y=s.①每隔3分钟从迎面驶来一辆18路公交车,则3x+3y=s.②由①,②可得s=4x,所以.即18路公交车总站发车间隔的时间是4分钟.故选:B.5.解:被4除余数是1的排在D位,被4除余数是2的排在A位,被4除余数是3的排在B位,被4整除的排在C位.2008÷4=502,所以2008排在C位.故选:C.6.解:由5起跳,5是奇数,沿顺时针下一次能跳2个点,落在2上.由2起跳,2是偶数,沿逆时针下一次只能跳一个点,落在1上1是奇数,沿顺时针跳两个点,落在3上.由3起跳,是奇偶数,沿顺时针跳两个点,落在5上.2﹣1﹣3﹣5﹣2,周期为4;又由2011=4×502+3,∴经过2011次跳后它停在的点所对应的数为3.故选:C.7.解:12+3+4+7+8+9+10+13+14+15=95,故正方形的边长最多为23,而组成的正方形需要4个边长,故边长最小为22.22=10+12=9+13=8+14=7+15,22=10+12=9+13=8+14=3+4+15,23=10+13=9+14=8+15=12+4+7,故边长为22的正方形有2个,边长为23的正方形有1个,共3个.故答案为3.8.解:∵黄色球和黑色球的个数分别少于红色球的个数,∴红色球只可能有4、5、6个,∴①若红色球6个,则黄色球1个,黑色球1个,则红色球标的数字为:=(舍去);②若红色球5个,黄色球1个,黑色球2个,则红色球标的数字为:=(舍去);③若红色球5个,黄色球2个,黑色球1个,则红色球标的数字为:=(舍去);④若红色球4个,黄色球1个,黑色球3个,则红色球标的数字为:=4;⑤若红色球4个,黄色球2个,黑色球2个,则红色球标的数字为:=(舍去);⑥若红色球4个,黄色球3个,黑色球1个,则红色球标的数字为:=(舍去).∴红色球上标的数字是4;拿出黑色球的个数是3.故答案为:4,3.9.解:∵第8行最后一个数是,第7行最后一个数是,第6行最后一个数是,∴第7行倒数第二个数是﹣=,第8行倒数第二个数是﹣=,∴第8行倒数第三个数是﹣=,故答案是:.10.解:作B′M′∥C′D′,C′M′⊥B′M′于点M′.粉笔的半径是6mm.则边长是6mm.∵∠M′B′C′=60°∴B′M′=B′C′•cos60°=6×=3.边心距C′M′=6sin60°=3mm.则图(2)中,AB=CD=11×3=33mm.AD=BC=5×6+5×12+3=93mm.则周长是:2×33+2×93=66+186≈300mm.故答案是:300mm.11.解:∵a=2005x+2006,b=2005x+2007,c=2005x+2008,∴a﹣b=﹣1,a﹣c=﹣2,b﹣c=﹣1,则原式=(2a2+2b2+2c2﹣2ab﹣2ac﹣2bc)=[(a﹣b)2+(a﹣c)2+(b﹣c)2]=3.故答案为:3.12.解:∵一年是12个月,∴a+b+c=12∴由题意得:由②×29,得29a+29b+29c=348 ③由①﹣③,得b+2c=18∴b=18﹣2c∴0≤18﹣2c≤12∴3≤c≤9且为整数.当c=3时,b=12,a=﹣3,不符合题意,应舍去.当c=4时,b=10,a=﹣2,不符合题意,应舍去.当c=5时,b=8,a=﹣1,不符合题意,应舍去.当c=6时,b=6,a=0.当c=7时,b=4,a=1.当c=8时,b=2,a=2.当c=9时,b=0,a=3.∴原方程组的解为:,,,共4组.故答案为:12,4,(0,6,6),(1,4,7),(2,2,8),(3,0,9).13.解:设需要装运1件、2件、3件集装箱的货车分别为x辆、y辆、z辆,根据题意得.,①×3﹣②得2x+y=10则因为y≥0,所以0≤x≤5,故x只能取0、1、2、3、4、5共有、、、、、,这六种安排方法:设总运费为F元,则F=120x+160y+180z=120x+160(10﹣2x)+180(10+x),所以F=3400﹣20x,当x=5时,总运费最低,最低运费为F=3400﹣20×5=3300元.14.解:(1)∵32=1×25,∴32在第6行,∵42=2×21=21×21,∴42在第2行,∵72=8×9=9×23,∴72在第4行;(2)由分析(1)可知,第3列第n行的数为5×2n﹣1;(3)∵176=11×24,∴176必在第5行,第6列.15.解:设,且a=m2(一位数),(两位数),(两位数),则M2=m2×104+n2×102+t2①由式①知M2=(m×102+t)2=m2×104+2mt×102+t2②比较式①、式②得n2=2mt.因为n2是2的倍数,故n也是2的倍数,所以,n2是4的倍数,且是完全平方数.故n2=16或36或64.当n2=16时,得mt=8,则m=l,2,4,8,t=8,4,2,1,后二解不合条件,舍去;故M2=11664或41616.当n2=36时,得mt=18.则m=2,3,1,t=9,6,18.最后一解不合条件,舍去.故M2=43681或93636.当n2=64时,得mt=32.则m=1,2,4,8,t=32,16,8,4都不合条件,舍去.因此,满足条件的五位数只有4个:11664,41616,43681,93636.16.解:(1)能到达点(3,5)和点(200,6).从(1,1)出发到(3,5)的路径为:(1,1)→(2,1)→(4,1)→(3,1)→(3,2)→(3,4)→(3,8)→(3,5).从(1,1)出发到(200,6)的路径为:(1,1)→(1,2)→(1,4)→(1,3)→(1,6)→(2,6)→(4,6)→(8,6)→(16,6)→(10,6)→(20,6)→(40,6)→(80,6)→(160,6)→(320,6)→(前面的数反复减20次6)→(200,6);(2)不能到达点(12,60)和(200,5).理由如下:∵a和b的公共奇约数=a和2b的公共奇约数=2a和b的公共奇约数,∴由规则①知,跳跃不改变前后两数的公共奇约数.∵如果a>b,a和b的最大公约数=(a﹣b)和b的最大公约数,如果a<b,a和b的最大公约数=(b﹣a)和b的最大公约数,∴由规则②知,跳跃不改变前后两数的最大公约数.从而按规则①和规则②跳跃,均不改变坐标前后两数的公共奇约数.∵1和1的公共奇约数为1,12和60的公共奇约数为3,200和5的公共奇约数为5.∴从(1,1)出发不可能到达给定点(12,60)和(200,5).。

2018年太原市初中数学竞赛试题(含答案)

2018年太原市初中数学竞赛试题(含答案)

2018年太原市初中数学竞赛一、选择题(每小题7分,共42分)1.若x+y=1,x3+y3=13,则x5+y5的值是().(A)11311131 ()()() 8181243243B C D2.已知(x>0),则222241629x xy yx xy y+-+-的值是().(A)241616 ()()() 392527B C D3.在凸多边形中,四边形有两条对角线,五边形有5条对角线.观察探索凸十边形有()条对角线.(A)29 (B)32 (C)35 (D)384.已知△ABC中,AD=8,则△ABC外接圆的半径为().(A)8 (B)9 (C)10 (D)125.若一个正整数能表示为两个正整数的平方差,则称这个正整数为“智慧数”(如3=22-12,16=52-32).已知智慧数按从小到大顺序构成如下数列:3,5,7,8,9,11,12,13,15,16,17,19,20,21,23,24,25,….则第2 006年智慧数是()(A)2 672 (B)2 675 (C)2 677 (D)2 6806.图1是山西省某古宅大院窗棂图案:图形构成10×21的长方形,•空格与实木的宽度均为1,那么,这种窗户的透光率(即空格面积与全部面积之比)是().(A)25(B)345()()7911C D二、填空题(每小题7分,共42分)1.如图2,已知正方形ABCD 的顶点坐标为A (1,1),B (3,1),C (3,3),D (1,3),直线y=2x+b 交AB 于点E ,交CD 于点F .则直线在y 轴上的截距b 的变化范围是_______. 2.一次函数y=ax+b•的图像L 1关于直线y=•-•x•轴对称的图像L 2的函数解析式是____________. 3.不论m 取任何实数,抛物线y=x 2+2mx+m 2+m-1的顶点都在一条直线上,则这条直线的函数解析式是_______. 4.当a<0时,方程x │x │+│x │-x-a=0的解为__________.5.某广场地面铺满了边长为36cm 的正六边形地砖.现在向上抛掷半径为的圆碟,圆碟落地后与地砖间的间隙不相交的概率大约是________.6.将红、白、黄三种小球,装入红、白、黄三个盒子中,•每个盒子中装有相同颜色的小球.已知:(1)黄盒中的小球比黄球多; (2)红盒中的小球与白球不一样多; (3)白球比白盒中的球少.则红、白、黄三个盒子中装有小球的颜色依次是________.三、(16分)将一个三位数abc 的中间数码去掉,成为一个两个数ac ,且满足abc =9ac +4c (•如155=9×15+4×5).试求出所有这样的三位数.四、(16分)已知二次函数y=a x2+4ax+4a-1的图像是C1.(1)求C1关于点R(1,0)中心对称的图像C2的函数解析式;(2)设曲线C1、C2与y轴的交点分别为A、B,当│AB│=18时,求a的值.五、(17分)求方程2x2+5xy+2y2=2 006的所有正整数解.六、(17分)如图3,已知AB为⊙O的弦,M为AB的中点,P为⊙O上任意一点,以点P 为圆心、2MO为半径作圆并交⊙O于点C、D,AC、BD交于点Q,请问:(1)点Q是△PAB的什么“心”?(2)点Q是否在⊙P上?试证明你的结论.提示:(1)三角形的三条高线交于一点,称为垂心定理,此点称为垂心.(2)三角形有内心、外心、重心、垂心等.参考答案一、1.A.由x3+y3=(x+y)(x2-xy+y2)=13,x+y=1,有x2-xy+y2=13.又因x2+2xy+y2=1,则3xy=23,xy=29.由21,,321,.93x y xxyy⎧+==⎧⎪⎪⎪⎨⎨=⎪⎪=⎩⎪⎩解得故x5+y5=321331124324324381+==.2.D由原方程得2(xy)-2=0.=t,则方程变形为2t2-3t-2=0,即(2t+1)(t-2)=0.解得t1=2,t2=-12(舍去),故xy=4.将x=4y代入分式,得222241629x xy yx xy y+-+-=22(161616)16(3249)27yy+-=+-.3.C 画图观察探索知多边形:四五六七八九十对角线条数: 2 5 9 14 20 27 35规律是: 2+3 5+4 9+5 14+6 20+7 27+8 4.D如图,延长AD交外接圆于点E,则AE为直径.联结BE,知△ABE•为直角三角形,•有AB2=AD·AE.因此,半径为12.5.C观察探索规律,知全部智慧数从小到大可按每三个数分一组,从第2•组开始每组的第一个数都是4的倍数.归纳可得第n组的第一个数为4n(n≥2).因2 006=3×668+2,所以,第2 006个智慧数是第669组中的第2•个数,•即为4•×669+1=2 677.6.B观察图1的结构规律,知长方形面积为10×21=210,空格图形面积为2(9+8+7+6+5+4+3+2+1)=90.则透光率=903 2107=.二、1.-3≤b≤-1.由直线y=2x+b随b的数值不同而平行移动,知当直线通过点A时,得b=-1;• 当直线通过点C时,得b=-3.故-3≤b≤-1.2.y=1ax+ba.直线y=ax+b与x轴、y轴的交点分别为A1(-ba,0),B(0,b),则点A1、B2关于直线y=-x•轴对称的点为A2(0,ba),B2(-b,0),利用待定系数法或斜率、截距关系知,过点A2、B2的直线为y=1ax+ba.故一次函数y=ax+b的图像关于直线y=-x轴对称的图像的函数解析式为y=1ax+ba.3.y=-x-1.将二次函数变形为y=(x+m)2+m-1,知抛物线的顶点坐标为,1. x my m=-⎧⎨=-⎩.消去m,得x+y=-1.4.当a<0时,若x≥0,方程为x2-a=0,得x2=a<0,无解;若x<0,方程为-x2-2x-a=0,即 x2+2x+a=0.此时,△=4-4a>0.解得=-15.49欲使圆碟不压地砖间的间隙,则圆碟的圆心必须落在与地砖同中心、•且边与地砖边彼此平行、距离为的小正六边形内(如图).作OC1⊥A1A2,且C1C2.因A1A2=A2O=36,A2C1=18,所以,C12则C2O=C1O-C1C2=又因C22O,所以,B22.而B1B2=B2O,则小正六边形的边长为24cm.故所求概率为P=221222122436B BA A==小正六边形的面积正六边形地砖面积=49.6.黄、红、白.由条件(2)知红盒不装白球,由条件(3)知白盒不装白球,故黄盒装白球.假设白盒装黄球,由条件(3)知白球比黄球少,这与条件(1)矛盾,故白盒装红球,红盒装黄球.三、因abc=100a+10b+c=,ac=10a+c,由题意得100a+10b+c=9(10a+c)+4c.化简得5(a+b )=6c . 这里0≤a 、b 、c ≤9,且a ≠0. 因为5是质数,所以,5,1,2,3,4,5,6,6.5,4,3,2,1,0.c a a b b ==⎧⎧⎨⎨+==⎩⎩故 则abc =155,245,335,425,515,605.四、(1)由y=a (x+2)2-1,可知抛物C 1的顶点为M (-2,-1).由图知点M (-2,-1)关于点R (1,0)中心对称的点为N (4,1),以N (4,1)为顶点,与抛物线C 1关于点R (1,0)中心对称的图像C 2也是抛物线,且C 1与C 2的开口方向相反,故抛物线C 2的函数解析式为y=-a (x-4)2+1,即y=-a x 2+8ax-16a+1.(2)令x=0,得抛物线C 1、C 2与y 轴的交点A 、B 的纵坐标分别为4a-1和-16a+1,故│AB │=│(4a-1)-(-16a+1)│=│20a-2│. 注意到│20a-2│=18.当a ≥110时,有20a-2=18,得a=1; 当a<110时,有2-20a=18,得a=-45.五、方程两端分解因式得(2x+y )(x+2y )=2×17×59. 不妨先设x ≥y ≥1,则有 ① 2x+y ≥x+2y>x+y>1. 由此,只有三种情况: 259,2118,21003,234,217,2 2.x y x y x y x y x y x y +=+=+=⎧⎧⎧⎨⎨⎨+=+=+=⎩⎩⎩或或 由式②、③得x+y=31. 再由31,28259,3;x y x x y y +==⎧⎧⎨⎨+==⎩⎩解得由式④、⑤得x+y=45,与式①矛盾;由式⑥、⑦得x+y=335,与式①矛盾.故原方程的正整数解为2833;28. x xy y==⎧⎧⎨⎨==⎩⎩.六、分析:当点P在弦AB的垂直平分线MO上时,点Q也在直线MO上,此时,PQ⊥AB,•故考虑Q为△PAB的垂心.(1)如图,作⊙O的直径BE,联结PD、DE、EA.因为∠BAE=90°,所以,AE∥MO.因M为AB中点,则AE=2MO.于是,有AE=PD.故四边形APDE为等腰梯形,DE∥PA.又因为∠BDE=90°,BD⊥DE,所以,BD⊥PA,即点Q在△PAB的顶点B到底边PA•的垂线上.联结PE、PC.因AE=PC=2MO,则四边形ACPE也为等腰梯形,所以,PE∥AC.又∠BPE=90°,PE⊥PB,则AC⊥PB,即点Q在△PAB的顶点A到底边PB的垂线上.因Q是△PAB两条高的交点,故Q为△PAB的垂心.(2)联结PQ.根据垂心定理知PQ⊥AB,但AE⊥AB,则PQ∥AE.又因PE∥AC,即有PE∥AQ,则四边形AQPE为平行四边形.所以,PQ=AE=PC=2MO.故点Q在⊙P上.。

朝晖初中2018年初一年级数学竞赛试卷(含答案)

朝晖初中2018年初一年级数学竞赛试卷(含答案)

(第6题图)(第7题图) 朝晖初中2018年初一年级数学竞赛试卷竞赛时间:5月22日8:30~10:30一、选择题(每小题6分,共48分;以下每题的4个结论中,仅有一个是正确的,请 将正确答案的英文字母填在题后的圆括号内.)1.如果a 是有理数,代数式112++a 的最小值是--------------------------( ) (A) 1 (B) 2 (C) 3 (D) 42.正五边形的对称轴有--------------------------------------------------( ) (A )10条 (B )5条 (C )1条 (D )0条3.已知等腰三角形的两边长分别为是3和6,,则这个三角形的周长是--------( )(A )9 (B )12 (C )15 (D )12或154.从一幅扑克牌中抽出5张红桃,4张梅花,3张黑桃放在一起洗匀后,从中一次随机抽出10张,恰好红桃、梅花、黑桃3种牌都抽到,这件事情---------------( ) (A )可能发生 (B )不可能发生 (C )很有可能发生 (D )必然发生 5.如果1=++cc bb aa ,则abcabc 的值为---------------------------( )(A )1- (B )1 (C )1± (D )不确定6.棱长是1cm 的小立方体组成如图所示的几何体,那么这个几何体的表面积是( )(A )36cm 2 (B )33cm 2 (C )30cm 2 (D )27cm 27.如图是一块矩形ABCD 的场地,长AB =102m ,宽AD =51m ,从A 、B 两处入口的中路宽都为1m ,两小路汇合处路宽为2m ,其余部分种植草坪,则草坪面积为-----------( )(A )5050m 2 (B )4900m 2 (C)5000m 2 (D)4998m 28.如果一个方程有一个解是整数,我们称这个方程有整数解. 请你观察下面的四个方程:(1)1346=+y x (2)1073=+y x (3)4)2)(3(=+-y x(4)2005111=+y x 其中有整数解的方程的个数是-------------------------------------( ) (A) 1 (B) 2 (C) 3 (D) 4 二、填空题(每小题6分,共42分) 9.观察下列算式:4 × 1 × 2+1=324 × 2 × 3+l=524 × 3 × 4+l=724 × 4 × 5+1=92用代数式表示上述的规律是 .10.七0一班连班主任一起共48人到公园去划船. 每只小船坐3人,租金20元,每只大船坐5人,租金30元. 他们租船要付的最少租金是 元.11.2005减去它的21,再减去剩余数的31,再减去剩余数的41,…,依此类推,一直到减去剩余数的20051,那么最后剩余的数是 .12.一个正n 边形恰好有n 条对角线,那么这个正n 边形的一个内角是 度.13.如图,DE 是△ABC 的AB 边的垂直平分线,分别交AB 、BC 于D 、E ,AE 平分∠BAC ,若∠B=30°,则∠C= 度.14.设∆ABC 的三边长分别为a ,b ,c ,其中a ,b 满足0)2(42=+-+-+b a b a ,则第三边的长c 的取值范围是 .15.根据下列5个图形及相应点的个数的变化规律,则在第100个图形中有 个点.三、解答题(共60分)16.(15分)如图,∆ABC 中,AB=6,BD=3,AD ⊥BC 于D ,∠B=2∠C ,求CD 的长.17.(15分)两个代表团从甲地乘车往乙地,每车可乘35人。

2018年全国初中数学联赛(初三组)初赛试卷含答案

2018年全国初中数学联赛(初三组)初赛试卷含答案

2018年全国初中数学联赛(初三组)初赛试卷含答案2018年全国初中数学联赛(初三组)初赛试卷(考试时间:2018年3月14日下午3:00—5:00)一、选择题(本题满分42分,每小题7分)1、已知实数$a$、$b$满足$|a-3|+|b-2|+1-a+a=3$,则$a+b$等于()A、$-1$B、$2$C、$3$D、$5$2、如图,点$D$、$E$分别在$\triangle ABC$的边$AB$、$AC$上,$BE$、$CD$相交于点$F$,设四边形$EADF$、$\triangle BDF$、$\triangle BCF$、$\triangle CEF$的面积分别为$S_1$、$S_2$、$S_3$、$S_4$,则$\frac{S_1S_3}{S_2S_4}$的大小关系为()A、$S_1S_3>S_2S_4$B、$S_1S_3=S_2S_4$C、$S_1S_3<S_2S_4$ D、不能确定3、对于任意实数$a$,$b$,$c$,$d$,有序实数对$(a,b)$与$(c,d)$之间的运算“$\ast$”定义为:$(a,b)\ast(c,d)=(ac-bd,ad+bc)$。

如果对于任意实数$m$,$n$都有$(m,n)\ast(x,y)=(n,-m)$,那么$(x,y)$为()A、$(1,-1)$B、$(-1,1)$C、$(1,1)$D、$(-1,-1)$4、如图,已知三个等圆$\odot O_1$、$\odot O_2$、$\odot O_3$有公共点$O$,点$A$、$B$、$C$是这些圆的交点,则点$O$一定是$\triangle ABC$的()A、外心B、重心C、内心D、垂心5、已知关于$x$的方程$(x-2)^2-4|x-2|-k=0$有四个根,则$k$的范围为()A、$-1<k<\pi$B、$-\pi<k<\pi$C、$-\frac{\pi}{4}<k<\frac{\pi}{4}$ D、不能确定6、设在一个宽度为$w$的小巷内搭梯子,梯子的脚位于$P$点,小巷两边的墙体垂直于水平的地面。

2018七年级数学竞赛试卷(含答案)

2018七年级数学竞赛试卷(含答案)

七年级数学竞赛[总分(150+20)分]一.选择题(每小题6分,共60分)1、有理数a 等于它的倒数,则a 2012是( )A 、最大的负数B 、最小的非负数C 、绝对值最小的整数D 、最小的正整数2、已知a 、b 、c 都是负数,并且│x-a │+│y+b │+│z-c │=0,则xyz 是( ).(A)负数 (B)非负数 (C)正数 (D)非正数3、 (-0.125)2011×(-8)2012的值为( )A 、-4B 、4C 、-8D 、84、a 是三位数,b 是一位数,如果把b 放到a 的右边,那么所成的四位数( )A. abB.1000a+bC. 10a+bD.a+b5、当代数式x 2+3x +5的值等于7时,代数式3x 2+9x -2的值等于( )A 、4B 、0C 、-2D 、-46、蜗牛在井里距井口 1米处,它每天白天向上爬行30cm ,但每天晚上又下滑20cm .蜗牛爬出井口需要的天数是( )A 、8天B 、9天C 、10天D 、11天7、据报道目前用超级计算机找到的最大质数是2859433-1,这个质数的末尾数字是 [ ]A .1B .3.C .7D .98、若a=一20032004,b=-20022003,c=-20012002,则( ) A .a<b<c B . c<b<a C .c<a<b D .b<a<c9、设“●,▲,■”分别表示三种不同的物体,如下图所示,前两架天平保持平衡,如果要使第三架天平也平衡,那么“?”处应放“■”的个数为 ( )A 、5B 、4C 、3D 、210、一家商店将某种服装按成本提高40%标价,又以8折优惠卖出,结果每件服装仍可获利15元,则这种服装每件的成本价是:( )A 、120元;B 、125元;C 、 135元;D 、 140元.二、填空题(每小题4分,共48分)11、—13的倒数的相反数是________; ●● ▲■●■ ▲ ●▲ ? (1) (2)(3)12、若|x+y -1|与|x —y+3|互为相反数.则(x+y)2001=13、如果223x x +=,那么432781315x x x x ++-+=__________。

2018年全国初中数学联赛试题参考答案和评分标准 精品

2018年全国初中数学联赛试题参考答案和评分标准 精品

2018年全国初中数学联赛试题参考答案和评分标准精品2018年全国初中数学联合竞赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准。

第一试,选择题和填空题只设7分和0分两档;第二试各题,请按照本评分标准规定的评分档次给分。

如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数。

第一试一、选择题:(本题满分42分,每小题7分)1.已知$a=1+\frac{1}{2+1}$,$b=3-2$,$c=6-2$,那么$a,b,c$的大小关系是()A。

$a<b<c$B。

$a<c<b$XXX<a<c$D。

$b<c<a$答】C.因为 $\frac{1}{2+1}=\frac{1}{3}$,所以$a=1+\frac{1}{3}=\frac{4}{3}$,$b=1$,$c=4$。

因为 $\frac{1}{3}<1$,所以$a<\frac{4}{3}+1=\frac{7}{3}<c$,所以 $b<a<c$。

2.方程$x^2+2xy+3y^2=34$的整数解$(x,y)$的组数为()A。

3B。

4C。

5D。

6答】B.方程即$(x+y)^2+2y^2=34$,显然$x+y$必须是偶数,所以可设$x+y=2t$,则原方程变为$2t^2+y^2=17$。

因为$2t^2\leq 16$,所以$t=\pm 2$,从而可求得原方程的整数解为$(x,y)=(-7,3),(1,3),(7,-3),(-1,-3)$,共4组。

3.已知正方形ABCD的边长为1,E为BC边的延长线上一点,$CE=1$,连接AE,与CD交于点F,连接BF并延长与线段DE交于点G,则BG的长为()A。

$\frac{65}{26}$B。

$\frac{3}{3}$C。

$\frac{2}{5}$D。

$\frac{9}{4}$答】D.过点C作$CP\parallel BG$,交DE于点P。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年七年级数学竞赛入围试卷
(满分:120分,时间:80分钟)
一、选择题(每小题5分,共30分):
1、已知数轴上三点A 、B 、C 分别表示有理数a 、1、-1,那么1+a 表示( ) (A )A 、B 两点的距离 (B )A 、C 两点的距离
(C )A 、B 两点到原点的距离之和 (D )A 、C 两点到原点的距离之和 2、王老伯在集市上先买回5只羊,平均每只a 元,稍后又买回3只羊,平均每只b 元,后来他以每只
2
b
a +的价格把羊全部卖掉了,结果发现赔了钱,赔钱的原因是( ) (A )
b a > (B )b a < (C )b a = (D )与a 、b 的大小无关 3、两个正数的和是60,它们的最小公倍数是273,则它们的乘积是( ) (A )273 (B )819 (C )1199 (D )1911
4、某班级共48人,春游时到杭州西湖划船,每只小船坐3人,租金16元,每只大船坐5人,租金24元,则该班至少要花租金( )
(A )188元 (B )192元 (C )232元 (D )240元 5、若a 与它的绝对值的和为零,则a a 2-=( )
(A )a (B )-a (C )-3a 元 (D )3a
6、两个相同的瓶子装满酒精溶液,一个瓶子中酒精与水的容积之比为m :1,另一个瓶子中酒精与水的容积之比是n :1,把两瓶溶液混在一起,混合液中酒精与水的容积之比是 ( )
(A )2n m + (B ))
(3)(222n m n mn m +++
(C )n
m n m ++2
2 (D )22++++n m mn n m
二、填空题(每小题5分,共40分):
7、拉林贾伊蒂斯是希腊的一位雄辩家,他生于公元前30年7月4日,死于公元30年7
月4日,他活了 岁。

8、已知1=a ,2=b ,3=c ,且a >b >c , 则c b a +-= ;
9、已知如图,半圆的直径长为D ,则图中阴影部分面积为 ; 10、将正奇数按下表排列成5列:
根据表中的规律,偶数2005应排在第 行,第 列;
11、甲、乙两人从400米的环形跑道上一点A 背向同时出发,8分钟后两人第五次相遇,已知每秒钟甲比乙多走0.1米,那么两人第五次相遇的地点与点A 沿跑道上的最短路程是 米;
12、有人问杨老师:“你班里有多少学生?”,杨老师说:“我班现在有一半学生在参加数学竞赛,四分之一的学生在参加音乐兴趣小组,七分之一的学生在阅览室,还剩三个女同学在看电视”。

则杨老师班里学生的人数是 ; 13、在0≤a <4的条件下,式子| a –2 | + |3–a | 的最小值是 .
14、任给a 、b 两数,按规则c =a +b +ab 扩充一个新数c ,称这样的新数c 为“吉祥数”。

又在a 、b 、c 三个数中任取两数,按规则又可扩充一个“吉祥数”,…,每扩充一个“吉祥数”称为一次操作。

现有数1和4,按上述规则操作三次得到的最大“吉祥数”是_____.
三、解答题:(本题有4小题,15、17、18每题12分)
15、任意写一个3的倍数,把它的各个数字分别立方,并相加,再把新得到的数的每个数字分别立方并相加又得到一个新数,一直重复下去,······.
(1) 分别写出运算式子; (2) 叙述你的发现.
16、用“-6, -0.5, 2, 3 ”四个数计算“24点”.规定:
(1)每个数都必须用;
(2) 每个数只能用一次(包括在指数上使用,如:23就用了2和3两个数);
(3) 绝对值被认为可以无限制地使用;
(4) 符合“交换律”与“结合律”的两个式子,被认为是同一个式子;
(5) 要是你还知道“负指数”和“开方”,那么你就用吧;
(6) 为了配合老师批卷, 你要将演算步骤写仔细;
(7) 你每写对一个算式得3分, 此题的得分可超过12分,但最多不超过20分。

17、在平面上有9条直线,无任何3条交于一点,则这9条直线的位置关系如何,才能使它们的交点恰好是26个,画出所有可能的情况(要求用直尺画正确)。

18、钟表在12点时三针重合,问经过多少分钟秒针第一次将分针和时针的夹角(指锐角)
平分?(用分数表示)
2005年七年级数学竞赛入围试卷
答题卷
(满分:120分,时间:80分钟)
姓名: 班级:
一、选择题(本题有6小题,每小题5分,共30分)
二、填空题(本题有8小题,每小题5分,共40分)
7. ; 8. ;9. ; 10. ;
11. ; 12. ; 13. ; 14. ;
三、解答题(本题有4小题) 15.(12分)
16.( 20分)17.(12分)18.(12分)
参考答案
一、选择题(每小题5分,共30分):BABCDD
二、填空题(每小题5分,共40分):
7、60 8、0或-2 9、1
16
πD2 10、251 ,4
11、176 12、28 13、1 14、499
三、解答题:
15、解:(12分).
(1) 取数3: 立方: 33=27,
各个数字分别立方, 并相加:23+73=8+343=351, (4分)
再把新得到的数的每个数字分别立方并相加: 33+53+13=27+125+1=153,
再把新得到的数的每个数字分别立方并相加: 13+53+33=153,
……; 153; (4分)
(2) 结果将总是153. (4分)
16、解(1) (-6+2)×3÷(-0.5);
(2) 23×(-6)×(-0.5);
(3) 2(-6)×(-0.5)×3;
(4)│-6│×(│-0.5│×2+3);
(5)│(-6)2÷3÷(-0.5)│;
(6)│(-6) +3÷(-0.5)│×2;
(7) (-6)÷(-0.5)3÷2;
(8)│32÷(-0.5)│-(-6);
(9) ·····,
(每写对一个给3分,此题得分可超过12分,但不超过20分)
17、解:有两种情况,(每一种画对得6分)分别如下:
18、解:(12分)显然秒针第一次将分针和时针的夹角平分产生在1分钟后。

设x 分钟时,秒针第一次将分针和时针的夹角平分,则这时时针转过的角度是2
x
度,分针转过的角度是x 6度,秒针转过的角度是x 360度 (3分) 于是有: )1(36062
)1(360--=--x x x
x (5分) 解得:14271440
=
x (3分) 答:经过1427
1440
分钟,秒针第一次将分针和时针的夹角平分。

(1分)。

相关文档
最新文档