【高教版】4.1《实数指数幂》(2) 优秀教案
实数指数幂及运算法则教案
实数指数幂及运算法则一、教学目标知识目标:1、掌握实数指数幂的运算法则; 2、会用实数指数幂运算法则进行化简; 3、能运用实数指数幂的运算法则及分数指数幂和根式之间的互化进行计算; 能力目标:1、培养学生的观察、分析、归纳等逻辑思维能力; 2、培养学生勇于发现、勇于探索、勇于创新的精神; 3、培养学生用事物之间普遍联系的观点看问题; 二、教学重点、难点1、重点 实数指数幂的运算法则及应用2、难点 运用实数指数幂的运算法则及分数指数幂和根式之间的互化进行计算 三.学法与教具:1.学法:讲授法、讨论法. 2.教具:投影仪 四、教学过程 1、温知(1)0a =1(非零数的零次方等于1)1n na a -=(一个非零数的负指数幂等于它的正指数幂的倒数)(2m na (根式与分数指数幂的互化)练:将下列各根式写成分数指数幂的形式:(1(2将下列各分数指数幂写成根式的形式:(1)323; (2)258-2、新课•=3,即123•123=11223+;4=9,即142(3)=23=1423⨯;……猜想:有理数指数幂的运算法则与整数指数幂的运算法则完全相同. 可以证明对有理数指数幂,原整数指数幂的运算法则保持不变,即 (1)rsr sa a a +=(a>0,r,s ∈Q );同底数幂相乘,底数不变,指数相加. (2)()r srsa a =(a>0,r,s ∈Q ); 幂的乘方,底数不变,指数相乘. (3)()rr rab a b =(a>0,b>0,r ∈Q );积的乘方,等于把积的各个因式分别乘方.显然,整数指数幂的运算法则是有理数指数幂运算法则的特殊情况.3、知识巩固例1求下列各式的值:(1)238;(2)348116⎛⎫⎪⎝⎭;(3)3416-;(4)3•••解:分析先将根式转化为分数指数幂,在计算会更简便快捷.(1)238=233(2)=2332⨯=22=4;(2)348116⎛⎫⎪⎝⎭=34432⎡⎤⎛⎫⎢⎥⎪⎝⎭⎢⎥⎣⎦=34432⨯⎛⎫⎪⎝⎭=332⎛⎫⎪⎝⎭=278;(3)3416-=344(2)-=34()42⨯-=32-=18;(4)3•••=(4)13•123•133•163=11112363+++=23=9.练一练求值:(1)120.01;(2)1232-;(3)1264121-⎛⎫⎪⎝⎭;(4)2327.解:(1)120.01=()1220.1⎡⎤⎣⎦=1220.1⨯=0.1;(2)1532-=155(2)-=15()52⨯-=12-=12;(3)1264121-⎛⎫⎪⎝⎭=122811-⎡⎤⎛⎫⎢⎥⎪⎝⎭⎢⎥⎣⎦=12()2811⨯-⎛⎫⎪⎝⎭=1811-⎛⎫⎪⎝⎭=118;(4)2327=233(3)=2333⨯=23=9.例2计算下列各式(a>0,b>0):(1;(2)2133215(3)a b a b-÷.解:分析系数与系数做运算;同底的幂按法则进行运算;不同底的幂不进行运算.(1=213a a-=213a-=13a-;(2)2133215(3)a b a b-÷=12233153a ba b-=121(3)235a b---=1465a b-.练一练化简下列各式(a>0):(1•(2•解:(1•1134a a•=1134a+=712a;(2•2332a a•=2332a+=496a+=136a.实际上,当底数大于0时,我们可以将指数的取值范围由有理数推广到实数.有理数指数幂和无理数指数幂统称为实数指数幂.有理数指数幂的运算法则同样适用于无理数指数幂. 4、小结(1)实数指数幂的运算法则r s r sa a a+=(a>0,r,s∈Q);()r s rsa a=(a>0,r,s∈Q);()r r rab a b=(a>0,b>0,r∈Q);(2)化简要遵循运算顺序进行,一般“先括号里再括号外,先乘方再乘除,最后加减”;如果有根式,先把根式化成分数指数幂在进行化简;5、作业练习4.1.2 1、2。
高教版中职数学基础模块上册《实数指数幂》教案 (一)
高教版中职数学基础模块上册《实数指数幂》教案 (一)高教版中职数学基础模块上册《实数指数幂》教案一、教学目标1. 理解实数、指数和幂的基本概念及其性质。
2. 掌握实数的运算法则。
3. 熟练掌握指数和幂的运算法则。
4. 初步掌握实际问题中应用指数和幂的方法。
二、教学重难点1. 指数与幂的定义和性质。
2. 指数与幂的运算法则。
3. 实际问题的应用。
三、教学内容及步骤A. 呈现1. 引出实数的概念及表示法。
2. 引出指数与幂的概念及表示法。
B. 模拟与探究1. 通过教师提问和学生讨论,让学生深入理解指数和幂的定义和性质,并进行探究。
2. 教师引导学生进行实数的基本运算。
3. 教师组织学生练习指数和幂的运算法则。
C. 引申与拓展1. 教师引导学生从实际问题中得出指数和幂的应用方法。
2. 教师提供案例,让学生自己解决问题,并进行讨论和分享。
四、教学方法1. 教师引导学生参与讨论,深化对概念的理解。
2. 教师演示指数和幂的运算方法,引导学生模仿操作。
3. 多媒体课件展示案例,引导学生思考和解决问题。
4. 学生个人或小组探究问题,教师辅导和引导。
五、教学过程设计1. 引入部分学生根据教师提供的问题和资料,思考和分享实数、指数和幂的概念,并探究实数的运算规律。
2. 模拟与探究部分2.1 指数和幂的定义和性质:问题:什么是指数?什么是幂?它们有什么性质?探究:学生分组自主探究指数和幂的定义和性质,并通过PPT展示学习成果。
2.2 实数的基本运算:问题:实数的四则运算规则是什么?探究:教师演示实数的基本运算,然后引导学生独立解决一道题。
2.3 指数和幂的运算法则:问题:如何计算指数和幂的运算?探究:教师演示指数和幂的运算法则,让学生跟随操作并练习。
3. 引申与拓展部分3.1 指数和幂的应用:问题:指数和幂在实际问题中有哪些应用?引申:教师通过多媒体课件展示案例,引导学生思考和解决问题。
3.2 学生自主解决问题:问题:使用指数和幂解决一个实际问题。
教学设计2: 实数指数幂及其运算(二)
§3.1.1 实数指数幂及其运算(二)一.教学目标:1.知识与技能:(1)理解分数指数幂的概念;(2)掌握分数指数幂和根式之间的互化; (3)掌握分数指数幂的运算性质; (4)培养学生观察分析、抽象等的能力. 2.过程与方法:通过与初中所学的知识进行类比,分数指数幂的概念,进而学习指数幂的性质. 3.情态与价值(1)培养学生观察分析,抽象的能力,渗透“转化”的数学思想;(2)通过运算训练,养成学生严谨治学,一丝不苟的学习习惯; (3)让学生体验数学的简洁美和统一美. 二.重点、难点1.教学重点:(1)分数指数幂概念的理解;(2)掌握并运用分数指数幂的运算性质; 2.教学难点:分数指数幂概念的理解 三.学法与教具1.学法:讲授法、讨论法、类比分析法及发现法2.教具:多媒体四、教学过程: 提问:1.习初中时的整数指数幂,运算性质?00,1(0),0n a a a a a a a =⋅⋅⋅⋅⋅=≠无意义1(0)n na a a -=≠;()m n m n m n mn a a a a a +⋅== (),()n m mn n n n a a ab a b ==什么叫实数?有理数,无理数统称实数.2.观察以下式子,并总结出规律:a>0①1025a a===②842a a===③1234a a===1025a a===小结:当根式的被开方数的指数能被根指数整除时,根式可以写成分数作为指数的形式,(分数指数幂形式).根式的被开方数不能被根指数整除时,根式是否也可以写成分数指数幂的形式.如:23(0)a a==>12(0)b b==>54(0)c c==>*(0,,1)mna a n N n=>∈>为此,我们规定正数的分数指数幂的意义为:*0,,)mna a m n N=>∈正数的定负分数指数幂的意义与负整数幂的意义相同.即:*1(0,,)mnmna a m n Na-=>∈规定:0的正分数指数幂等于0,0的负分数指数幂无意义.说明:规定好分数指数幂后,根式与分数指数幂是可以互换的,分数指数幂只是根式的一种新的写法,而不是111(0)nm m m ma a a a a=⋅⋅⋅⋅>由于整数指数幂,分数指数幂都有意义,因此,有理数指数幂是有意义的,整数指数幂的运算性质,可以推广到有理数指数幂,即:(1)(0,,)r s r sa a a a r s Q+⋅=>∈(2)()(0,,)r S rsa a a r s Q=>∈(3)()(0,0,)r r ra b a b Q b r Q⋅=>>∈若a>0,P是一个无理数,则(0,)pa a p>是一个无理数该如何理解?为了解决这个问题,引导学生先阅读课本P62——P62.的不足近似值,的.所以,的方向逼近时,的过剩似值从大于时,(如课本图所示)所以,.一般来说,无理数指数幂(0,)pa a p >是一个无理数是一个确定的实数,有理数指数幂的性质同样适用于无理数指数幂.无理指数幂的意义,是用有理指数幂的不足近似值和过剩近似值无限地逼近以确定大小.由以上分析,可知道,有理数指数幂,无理数指数幂有意义,且它们运算性质相同,实数指数幂有意义,也有相同的运算性质,即:(0,,)r s r s a a a a r R s R +⋅=>∈∈ ()(0,,)r s rs a a a r R s R =>∈∈ ()(0,)r r r a b a b a r R ⋅=>∈例1求值:①832;②2521-③(21)-5;④(8116)43-.活动:教师引导学生考虑解题的方法,利用幂的运算性质计算出数值或化成最简根式,根据题目要求,把底数写成幂的形式,8写成23,25写成52,21写成2-1,8116写成(32)4,利用有理数幂的运算性质可以解答,完成后,把自己的答案用投影仪展示出来. 解:①832=(23)32=2323⨯=22=4; ②2521-=(52)21-=5)21(2-⨯=5-1=51; ③(21)-5=(2-1)-5=2-1×(-5)=32;④(8116)43-=(32))43(4-⨯=(32)-3=827.点评:本例主要考查幂值运算,要按规定来解.在进行幂值运算时,要首先考虑转化为指数运算,而不是首先转化为熟悉的根式运算,如832=328=364=4. 例2用分数指数幂的形式表示下列各式. a 3·a ;a 2·32a ;3a a (a >0).活动:学生观察、思考,根据解题的顺序,把根式化为分数指数幂,再由幂的运算性质来运算,根式化为分数指数幂时,要由里往外依次进行,把握好运算性质和顺序,学生讨论交流自己的解题步骤,教师评价学生的解题情况,鼓励学生注意总结. 解:a 3·a =a 3·a 21=a 213+=a 27;a 2·32a =a 2·a 32=a232+=a 38;3a a =(a ·a 31)21=(a 34)21=a 32.点评:利用分数指数幂的意义和有理数指数幂的运算性质进行根式运算时,其顺序是先把根式化为分数指数幂,再由幂的运算性质来运算.对于计算的结果,不强求统一用什么形式来表示,没有特别要求,就用分数指数幂的形式来表示,但结果不能既有分数指数又有根式,也不能既有分母又有负指数.例3计算下列各式(式中字母都是正数): (1)(2a 32b 21)(-6a 21b 31)÷(-3a 61b 65); (2)(m 41n83-)8. 活动:先由学生观察以上两个式子的特征,然后分析,四则运算的顺序是先算乘方,再算乘除,最后算加减,有括号的先算括号内的,整数幂的运算性质及运算规律扩充到分数指数幂后,其运算顺序仍符合我们以前的四则运算顺序,再解答,把自己的答案用投影仪展示出来,相互交流,其中要注意到(1)小题是单项式的乘除运算,可以用单项式的乘除法运算顺序进行,要注意符号,第(2)小题是乘方运算,可先按积的乘方计算,再按幂的乘方进行计算,熟悉后可以简化步骤. 解:(1)原式=[2×(-6)÷(-3)]a612132-+b653121-+=4ab 0=4a ;(2)(m 41n83-)8=(m 41)8(n 83-)8=m 841⨯n883⨯-=m 2n -3=32nm.点评:分数指数幂不表示相同因式的积,而是根式的另一种写法.有了分数指数幂,就可把根式转化成分数指数幂的形式,用分数指数幂的运算法则进行运算了. 本例主要是指数幂的运算法则的综合考查和应用. 变式训练 求值:(1)33·33·63;(2)6463)12527(nm . 解:(1)33·33·63=3·321·331·361=36131211+++=32=9;(2)6463)12527(n m =(6463)12527(n m =(646333)53(n m =646643643643)()5()()3(n m =42259n m =42259-n m . 例4求值或化简. (1)3224ab ba -(a >0,b >0);(2)(41)21-213321)()1.0()4(---b a ab (a >0,b >0);(3)246347625---+-.活动:学生观察,思考,所谓化简,即若能化为常数则化为常数,若不能化为常数则应使所化式子达到最简,对既有分数指数幂又有根式的式子,应该把根式统一化为分数指数幂的形式,便于运算,教师有针对性地提示引导,对(1)由里向外把根式化成分数指数幂,要紧扣分数指数幂的意义和运算性质,对(2)既有分数指数幂又有根式,应当统一起来,化为分数指数幂,对(3)有多重根号的式子,应先去根号,这里是二次根式,被开方数应凑完全平方,这样,把5,7,6拆成(3)2+(2)2,22+(3)2,22+(2)2,并对学生作及时的评价,注意总结解题的方法和规律. 解:(1)3224ab ba -=2224b a -(a 31b 32)21=a -2ba 61b 31=a611-b 34=61134ab .点评:根式的运算常常化成幂的运算进行,计算结果如没有特殊要求,就用根式的形式来表示.(2)(41)21-2133231)()1.0()4(---b a ab =223211044•a 23a 23-b 23-b 23=254a 0b 0=254.点评:化简这类式子一般有两种办法,一是首先用负指数幂的定义把负指数化成正指数,另一个方法是采用分式的基本性质把负指数化成正指数. (3)246347625---+-=222)22()32()23(---+- =3-2+2-3-2+2 =0.点评:考虑根号里面的数是一个完全平方数,千万注意方根的性质的运用. 例5化简下列各式: (1)323222323222--------+--++yxy x yxy x ;(2)(a 3+a -3)(a 3-a -3)÷[(a 4+a -4+1)(a -a -1)].活动:学生观察式子的特点,特别是指数的特点,教师引导学生考虑题目的思路,这两题要注意分解因式,特别是立方和和立方差公式的应用,对有困难的学生及时提示:对(1)考查x 2与x 32的关系可知x 2=(x32)3,立方关系就出来了,公式便可运用,对(2)先利用平方差,再利用幂的乘方转化为立方差,再分解因式,组织学生讨论交流. 解:(1)原式=323222323222--------+--++yxy x yxy x=])())(()[()()(23232322322323232232--------++-+-yyx x yy x x=343234343234)()(---------+-yxy xy xy x=xyxy xy 3322)(2-=--; (2)原式=[(a 3)2-(a -3)2]÷[(a 4+a -4+1)(a -a -1)]=))(1()()(1442222----++-a a a a a a =))(1()1)((1444422-----++++-a a a a a a a a =1212)(----a a a a =a +a -1.点评:注意立方和立方差公式在分数指数幂当中的应用,因为二项和、差公式,平方差公式一般在使用中一目了然,而对立方和立方差公式却一般不易观察到,a 23=(a 21)3还容易看出,对其中夹杂的数字m 可以化为m ·a 21a 21-=m ,需认真对待,要在做题中不断地提高灵活运用这些公式的能力. 知能训练课本P 59习题2.1A 组 3. 利用投影仪投射下列补充练习: 1.化简:(1+2321-)(1+2161-)(1+281-)(1+241-)(1+221-)的结果是( )A.21(1-2321-)-1 B.(1-2321-)-1 C.1-2321- D.21(1-2321-) 分析:根据本题的特点,注意到它的整体性,特别是指数的规律性,我们可以进行适当的变形. 因为(1+2321-)(1-2321-)=1-2161-,所以原式的分子分母同乘以(1-2321-),依次类推,所以321212121)21)(21(----+-=32112121----=21(1-2321-)-1. 答案:A2.计算(297)0.5+0.1-2+(22710)32--3π0+9-0.5+490.5×2-4.解:原式=(925)21+100+(6427)32-3+4921×161=53+100+169-3+31+167=100.3.计算1212--+-+a a a a (a ≥1). 解:原式=|11|11)11()11(22--++-=--++-a a a a (a ≥1).本题可以继续向下做,去掉绝对值,作为思考留作课下练习.4.设a >0,x =21(a n 1-a n 1-),则(x +2x 1+)n 的值为_______.分析:从整体上看,应先化简,然后再求值,这时应看到解:1+x 2=1+41(a n 1-a n 1-)2=41(a n 1+a n 1-)2.这样先算出1+x 2,再算出2x 1+,将x =21(a n 1-a n 1-)代入1+x 2,得1+x 2=1+41(a n 1-a n 1-)2=41(a n 1+a n 1-)2.所以(x +2x 1+)n=[21(a n 1-a n1-)+41(a n 1+a n 1-)2]n=[21(a n 1-a n1-)+21(a n 1+a n 1-)]n=a .答案:a 课堂小结(1)无理指数幂的意义.一般地,无理数指数幂a α(a >0,α是无理数)是一个确定的实数. (2)实数指数幂的运算性质:对任意的实数r ,s ,均有下面的运算性质: ①a r ·a s =a r +s (a >0,r ,s ∈R ). ②(a r )s =a rs (a >0,r ,s ∈R ). ③(a ·b )r =a r b r (a >0,b >0,r ∈R ). (3)逼近的思想,体会无限接近的含义. 作业课本P 60习题2.1 B 组 2.。
实数指数幂教案
实数指数幂教案实数指数幂教案一、教学目标:1.了解实数的定义和性质;2.学习实数指数幂的概念和运算法则;3.掌握实数指数幂的计算方法;4.培养学生的逻辑思维和数学运算能力。
二、教学内容:1.实数的定义和性质;2.实数指数幂的概念和运算法则;3.实数指数幂的计算方法。
三、教学重难点:1.实数指数幂的概念和运算法则;2.实数指数幂的计算方法。
四、教学过程:1.引入新知识:引导学生回顾并总结实数的定义和性质。
2.概念讲解:教师以一些经典题目为例,引导学生了解实数指数幂的概念和运算法则。
3.运算练习:设计一些实际问题,要求学生通过计算实数指数幂来解决问题。
4.归纳总结:学生通过练习,归纳总结实数指数幂的计算方法和规律。
5.巩固练习:设计一些综合性的题目,要求学生进行实数指数幂的计算。
6.拓展应用:引导学生思考实数指数幂在实际生活中的应用,并设计相应的问题进行讨论。
7.总结归纳:学生通过讨论,总结实数指数幂的概念、运算法则、计算方法和应用。
五、教学方法:1.情景教学法:通过引导学生回忆和总结实数的定义和性质,了解实数指数幂的概念和运算法则。
2.归纳演绎法:通过解决实际问题,引导学生归纳总结实数指数幂的计算方法和规律。
3.讨论交流法:通过讨论实数指数幂在实际生活中的应用,培养学生的逻辑思维和应用能力。
六、教学工具:黑板、白板、多媒体教学设备。
七、教学评价:1.通过学生的回答问题和讨论来评价学生的理解程度和学习成效;2.通过学生的实际应用能力来评价学生的综合能力和创新思维。
八、教学反思:实数指数幂是高中数学中的一个重点难点,学生需要理解实数的定义、性质和指数幂的概念及其运算法则,还需要掌握实数指数幂的计算方法。
因此,在教学中要注重启发学生的兴趣,引导学生进行积极的思考和讨论,培养学生的逻辑思维和数学运算能力。
同时,要根据学生的实际情况,合理设置教学内容和方法,提高教学效果。
实数指数幂及运算法则教案
一、教学目标1. 知识与技能:(1)理解实数指数幂的概念;(2)掌握实数指数幂的运算法则;(3)能够运用实数指数幂及运算法则解决实际问题。
2. 过程与方法:(1)通过观察、分析、归纳实数指数幂的运算法则;(2)培养学生的逻辑思维能力和运算能力。
3. 情感态度与价值观:(1)激发学生对数学的兴趣和好奇心;(2)培养学生的团队合作精神。
二、教学重点与难点1. 教学重点:(1)实数指数幂的概念;(2)实数指数幂的运算法则;(3)运用实数指数幂及运算法则解决实际问题。
2. 教学难点:(1)实数指数幂的运算法则的推导和理解;(2)运用实数指数幂及运算法则解决实际问题。
三、教学准备1. 教师准备:(1)实数指数幂的相关知识;(2)实数指数幂的运算法则的例题和练习题;(3)实数指数幂的实际问题。
2. 学生准备:(1)掌握实数的基本概念;(2)具备一定的数学运算能力。
四、教学过程1. 导入:(1)复习实数的基本概念;(2)引导学生思考实数指数幂的概念。
2. 知识讲解:(1)讲解实数指数幂的概念;(2)推导和讲解实数指数幂的运算法则;(3)运用实际例子解释实数指数幂及运算法则的应用。
3. 课堂练习:(1)让学生独立完成练习题;(2)讲解练习题的解题思路和方法。
4. 课堂小结:(1)回顾本节课所学内容;(2)强调实数指数幂及运算法则的重要性和应用。
五、课后作业1. 复习本节课所学内容;2. 完成课后练习题;3. 思考和解决实际问题。
六、教学评估1. 课堂讲解评估:(1)观察学生对实数指数幂概念的理解程度;(2)评估学生对实数指数幂运算法则的掌握情况;(3)评价学生的课堂参与度和提问回答情况。
2. 课堂练习评估:(1)检查学生练习题的完成情况;(2)分析学生解题思路和方法的正确性;(3)针对学生易错点进行讲解和辅导。
七、教学反思1. 反思教学内容:(1)是否全面讲解了实数指数幂的概念和运算法则;(2)是否结合实际例子让学生更好地理解实数指数幂的应用;(3)是否注重了学生的课堂参与和思维能力的培养。
实数指数幂及运算法则教案
实数指数幂及运算法则教案一、教学目标1. 理解实数指数幂的概念,掌握有理数指数幂的性质。
2. 掌握实数指数幂的运算法则,能够熟练进行相关计算。
3. 能够运用实数指数幂及运算法则解决实际问题。
二、教学重点与难点1. 教学重点:实数指数幂的概念,有理数指数幂的性质,实数指数幂的运算法则。
2. 教学难点:实数指数幂的运算法则的应用。
三、教学方法1. 采用讲授法,讲解实数指数幂的概念、性质和运算法则。
2. 利用例题解析,让学生掌握实数指数幂的运算方法。
3. 开展小组讨论,引导学生探索实数指数幂的运算法则的应用。
四、教学内容1. 实数指数幂的概念2. 有理数指数幂的性质3. 实数指数幂的运算法则4. 实数指数幂的运算法则在实际问题中的应用五、教学安排1. 第一课时:实数指数幂的概念、有理数指数幂的性质2. 第二课时:实数指数幂的运算法则、例题解析3. 第三课时:实数指数幂的运算法则的应用、小组讨论4. 第四课时:课堂小结、作业布置5. 第五课时:作业批改与讲解、课后辅导六、教学过程1. 导入新课:回顾上一节课的内容,引出实数指数幂的运算法则。
2. 讲解实数指数幂的运算法则:引导学生通过观察、分析、归纳实数指数幂的运算法则。
3. 例题解析:讲解典型例题,让学生掌握实数指数幂的运算方法。
4. 小组讨论:让学生探讨实数指数幂的运算法则的应用,分享解题心得。
5. 课堂小结:对本节课的内容进行总结,强调实数指数幂的运算法则的重要性。
七、课后作业1. 复习实数指数幂的运算法则。
2. 完成课后练习题,巩固所学知识。
3. 思考实际问题,运用实数指数幂的运算法则解决问题。
八、作业批改与讲解1. 及时批改学生作业,了解学生掌握情况。
2. 针对学生作业中出现的问题,进行讲解和辅导。
3. 鼓励学生提问,解答学生心中的疑惑。
九、课后辅导1. 针对学习有困难的学生,进行个别辅导。
2. 组织课后讨论小组,帮助学生巩固实数指数幂的运算法则。
实数指数幂及运算法则教案
实数指数幂及运算法则教案一、教学目标1. 理解实数指数幂的概念,掌握有理数指数幂的运算性质。
2. 掌握实数指数幂的运算法则,能够运用运算法则解决实际问题。
3. 培养学生的数学思维能力,提高学生的数学素养。
二、教学重点与难点1. 教学重点:实数指数幂的概念,有理数指数幂的运算性质,实数指数幂的运算法则。
2. 教学难点:实数指数幂的运算法则的应用。
三、教学方法采用问题驱动法、案例分析法、分组讨论法等多种教学方法,引导学生主动探究、合作学习,提高学生解决问题的能力。
四、教学准备1. 教师准备:实数指数幂的相关知识,运算法则的案例,教学PPT等。
2. 学生准备:预习实数指数幂的相关知识,准备好笔记本。
五、教学过程1. 导入新课教师通过复习实数的基本概念,引导学生进入实数指数幂的学习。
2. 知识讲解(1)实数指数幂的概念教师讲解实数指数幂的定义,引导学生理解指数幂的意义。
(2)有理数指数幂的运算性质教师讲解有理数指数幂的运算性质,引导学生掌握运算规律。
(3)实数指数幂的运算法则教师讲解实数指数幂的运算法则,引导学生掌握运算法则。
3. 案例分析教师展示实数指数幂的运算案例,引导学生运用运算法则解决问题。
4. 课堂练习教师布置课堂练习题,学生独立完成,教师进行讲解和辅导。
5. 总结与拓展教师对本节课的知识进行总结,引导学生思考实数指数幂在实际问题中的应用。
6. 课后作业教师布置课后作业,巩固所学知识。
六、教学反思教师在课后对教学情况进行反思,针对学生的掌握情况,调整教学策略,以提高教学效果。
七、教学评价通过课堂表现、课后作业和课堂练习,评价学生对实数指数幂及运算法则的掌握程度。
八、教学时间本节课计划用2课时完成。
九、教学资源1. 教学PPT2. 实数指数幂的案例分析资料3. 课堂练习题十、教学拓展引导学生学习实数指数幂在实际问题中的应用,如科学计算、经济学等领域。
六、教学活动设计1. 导入新课:通过复习实数的乘方概念,引导学生自然过渡到实数指数幂的学习。
实数指数幂及运算法则教案
实数指数幂及运算法则教案一、教学目标1. 知识与技能:(1)理解实数指数幂的概念;(2)掌握实数指数幂的运算法则;(3)能够运用实数指数幂及运算法则解决实际问题。
2. 过程与方法:(1)通过实例引入实数指数幂的概念;(2)引导学生发现并归纳实数指数幂的运算法则;(3)运用运算法则进行变形和求解。
3. 情感态度与价值观:(1)培养学生对数学的兴趣和好奇心;(2)培养学生主动探索、合作学习的意识;(3)培养学生运用数学知识解决实际问题的能力。
二、教学内容1. 实数指数幂的概念:(1)引入平方根、立方根的概念;(2)引导学生理解实数指数幂的概念,即a^n 表示n 个a 相乘。
2. 实数指数幂的运算法则:(1)同底数幂的乘法:a^m a^n = a^(m+n);(2)同底数幂的除法:a^m / a^n = a^(m-n);(3)幂的乘方:a^m^n = a^(mn);(4)积的乘方:(ab)^n = a^n b^n;(5)零指数幂:a^0 = 1(a ≠0);(6)负指数幂:a^-n = 1 / a^n(a ≠0)。
三、教学重点与难点1. 教学重点:(1)实数指数幂的概念;(2)实数指数幂的运算法则。
2. 教学难点:(1)实数指数幂的运算法则的应用;(2)解决实际问题中指数幂的运用。
四、教学方法1. 实例引入:通过实际问题引入实数指数幂的概念;2. 引导发现:引导学生发现并归纳实数指数幂的运算法则;3. 练习巩固:运用运算法则进行变形和求解;4. 实际应用:解决实际问题,巩固知识。
五、教学步骤1. 导入新课:通过实际问题引入实数指数幂的概念;2. 讲解与演示:讲解实数指数幂的概念,演示运算法则的运用;3. 练习与讨论:学生独立练习,小组讨论,共同解决问题;4. 总结与拓展:总结实数指数幂的运算法则,拓展相关知识;5. 作业布置:布置练习题,巩固所学知识。
六、教学评估1. 课堂问答:通过提问了解学生对实数指数幂概念和运算法则的理解程度;2. 练习题:布置课堂练习题,检查学生掌握运算法则的情况;3. 小组讨论:观察学生在小组讨论中的参与程度和合作能力;4. 课后作业:检查课后作业的完成质量,了解学生对知识的掌握和运用能力。
高教版中职数学基础模块上册:4.1《实数指数幂》优秀教案
18 苏州园林知识与能力1.积累“轩榭、败笔、丘壑、嶙峋、镂空”等词语,掌握其音义,并用词造句。
2.整体感知内容,概括苏州园林的特征,分析本文的结构特点。
3.掌握本文运用的说明方法,品味说明语言的多样性。
过程与方法运用多种媒体,创设丰富情境,引导学生感知园林的画意美,感受园林文化的艺术美。
情感态度与价值观1.领略中国园林的建筑美,逐步培养学生的艺术鉴赏力。
2.了解我国园林建筑的成就,激发热爱祖国的思想。
3.感受写作大师的语言美,增强热爱母语的感情。
教学重点作者是如何抓住苏州园林的特征,并突出这个特征的。
教学难点理解绘画与园林建筑的联系。
2课时第一课时一、新课导入《中国石拱桥》让我们领略到了我国桥梁事业的伟大成就,今天,我们从桥上走下来,进入另一种建筑物——园林。
在我国的园林中,苏州园林具有独一无二的特征和地位,它是中国各地园林的标本。
现在,让我们去苏州园林游览一番,看看那儿的园林建筑。
二、自主预习1.作者介绍叶圣陶(1894—1984),原名叶绍钧,现代著名作家、教育家,有“优秀的语言艺术家”之称,代表作是长篇小说《倪焕之》。
他曾在小学、中学、大学教过书,对语文教学的改革和教材的建设有重大贡献。
20年代和30年代是他创作道路上的重要阶段。
这个时期他的作品很多,最有名的有长篇小说《倪焕之》,童话集《稻草人》《古代英雄的石像》。
他原籍江苏苏州吴县,所以对苏州园林很熟悉,又有深刻的研究。
2.背景资料叶圣陶先生自小生长在苏州,他对苏州的一草一木充满了深厚的感情,特别是与驰名中外的苏州园林结下了不解之缘。
1979年初,香港一家出版社邀请叶圣陶为其出版的《苏州园林》图册作序,叶圣陶欣然允诺。
序文即此篇(略有删节)。
后来图册因故未能出版,序文被《百科知识》所用,原题为《拙政诸园寄深眷——谈苏州园林》。
3.知识链接中国四大古典名园:颐和园、避暑山庄、拙政园、留园苏州四大古典名园:沧浪亭、狮子林、拙政园、留园 4.检查预习 (1)订正字音 轩榭..(xu ānxi è) 池沼.(zh ǎo) 丘壑.(h è) 嶙峋..(l ínx ún) 蔷薇..(qi ángw ēi) 镂.空(l òu) 斟酌..(zh ēnzhu ó) 重峦叠嶂.(zh àng) 屈曲..(q ūq ū) 鉴.赏(ji àn) 栏.杆(l án) 相间.(ji àn) 依傍.(b àng) 单调.(di ào) 蔓⎩⎪⎨⎪⎧m àn 蔓延w àn 藤蔓m án蔓菁模⎩⎪⎨⎪⎧m ó模范m ú模样(2)词语释义因地制宜:根据不同地区的具体情况规定适宜的方法。
实数指数幂--参考教案
树立事物之间存在着相互联系又可以相互转化的思想,培养学生的创新思维.
教学
重难点
教学重点:实数指数幂的运算,掌握其运算法.
教学难点:运用实数指数幂的运算法则及分数指数幂和根式之间的互化进行计算.
第1课时
教学过程
教学活动
学生活动
设计思路
一、创设情境
在学习了有理数指数幂的基础上,我们可以将 中指数x的取值范围从有理数拓展到实数,此时 的意义是什么呢?如 、( ,它们是一个确定的数吗?能否计算出结果呢?其实,指数从有理数推广到实数后,x为无理数时, 也是有意义的, 、( 都是确定的数,虽然它们的精确值只能用近似值来逼近.
例2化简(式中字母均为正实数)
(1) ;(2) .
分析两个小题我们首先需要将根式转化为分数指数幂,然后再化简运算.
解(1)
(2)
=
=
=
=a
例3计算
分析原代数式中每一项都是前面一项的2倍(除第1项外),可考虑将该代数式中的每项乘2后再与原代数式相减.
解令S= (1)
将(1)式两边同时乘以2,得到
2S= (2)
第七单元4.1《实数指数幂》教案
授课题目
实数指数幂
授课课时
1
课型
讲授
教学
目标
知识与技能:
1.了解实数指数幂的含义.
2.在分数指数幂的基础上,掌握实数指数幂的运算法则.
3.进一步巩固分数指数幂和根式之间的互化进行计算.
过程与方法:
实数指数幂是分数指数幂的深化,是以后学习指数函数的基础,在具体的运算中,学会用抽象的符号或字母的进行运算,提高运算能力.
2.预习
3.调查实践,探究
中职教材数学(基础模块 高教版)上册电子教案:4.1 实数指数幂(2)
【课题】4.1实数指数幂(2)【教学目标】知识目标:⑴掌握实数指数幂的运算法则;⑵通过几个常见的幂函数,了解幂函数的图像特点.能力目标:⑴正确进行实数指数幂的运算;⑵培养学生的计算技能;⑶通过对幂函数图形的作图与观察,培养学生的计算工具使用能力与观察能力.【教学重点】有理数指数幂的运算.【教学难点】有理数指数幂的运算.【教学设计】⑴在复习整数指数幂的运算中,学习实数指数幂的运算;⑵通过学生的动手计算,巩固知识,培养计算技能;⑶通过“描点法”作图认识幂函数的图像,通过利用软件的大量作图,总结图像规律;⑷通过知识应用巩固有理数指数幂的概念.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】将下列各根式写成分数指数幂:;20过 程行为 行为 意图 间解 函数y =x 3的定义域为R ,函数y =x 21的定义域为),0[+∞.分别设值列表如下:以表中的每组,x y 的值为坐标,描出相应的点),(y x ,再用光滑的曲线依次联结这些点,分别得到函数y =x 3和函数21x y =的图像,如下图所示.总结:这两个函数的定义域不同,在定义域内它们都是增函数.两个函数的图像都经过坐标原点和点(1,1). 例7 指出幂函数2y x -=的定义域,并作出函数图像. 分析 考虑到221x x-=,因此定义域为00-∞+∞(,)(,),由于2211()x x=-,故函数为偶函数.其图像关于y 轴对称,可以先作出区间(0,)+∞内的图像,然后再利用对称性作出函数在区间(,0)-∞内的图像.解 2y x -=的定义域为00-∞+∞(,)(,).由分析过程知道函x… −2 −1 0 1 2 … y=x 3 …−8−1 018…x 0 41 1 4 9 … y =21x21123…强调引领讲解 引领归纳 质疑 分析主动 求解 领会 了解 观察 体会 思考进一 步使 学生 感知 幂函 数的 图像 特点 引导 学生 掌握 描点 作图 的方 法 突出 数形 结合 的数 学思 想 注意 是否 理解 知识过 程行为 行为 意图 间数为偶函数.在区间(0,)+∞内,设值列表如下:以表中的每组,x y 的值为坐标,描出相应的点),(y x ,再用光滑的曲线依次联结各点,得到函数在区间(0,)+∞内的图像.再作出图像关于y 轴对称图形,从而得到函数2-=x y 的图像,如下图所示.总结:这个函数在(0,)+∞内是减函数;函数的图像不经过坐标原点,但是经过点(1,1).x … 12 1 2 …y…4114… 强调讲解 引领归纳理解 主动 求解 领会 观察 体会 点 可以 适当 交给 学生 自我 探究 引导 学生 总结 函数 图像 的特 点 70 *理论升华 整体建构一般地,幂函数y x α=具有如下特征:(1) 随着指数α取不同值,函数y x α=的定义域、单调性和奇偶性会发生变化;(2) 当α>0时,函数图像经过原点(0,0)与点(1,1);当α<0时,函数图像不经过原点(0,0),但经过(1,1)点. 引领 总结 强调 领会 理解 记忆 及时 总结 例题 中的 规律75 *运用知识 强化练习 教材练习4.1.31.用描点法作出幂函数4y x =的图像并指出图像具有怎样的对称性?提问 巡视动手 求解了解 学生 知识。
实数指数幂及运算法则教案
实数指数幂及运算法则教案第一章:实数指数幂的概念与性质1.1 实数指数幂的定义解释实数指数幂的概念,如a^n 表示a 乘以自身n 次。
强调正实数指数幂表示正数的乘方,负实数指数幂表示分数的概念。
1.2 实数指数幂的性质介绍实数指数幂的基本性质,如a^n a^m = a^(n+m),(a^n)^m = a^(nm),以及a^n / a^m = a^(n-m)。
解释零指数幂和无穷大指数幂的性质,如a^0 = 1 和a^∞= ∞。
第二章:实数指数幂的运算规则2.1 同底数幂的乘法讲解同底数幂相乘的规则,即a^n a^m = a^(n+m)。
提供多个例子进行解释和练习。
2.2 同底数幂的除法解释同底数幂相除的规则,即a^n / a^m = a^(n-m)。
提供多个例子进行解释和练习。
第三章:幂的乘方与积的乘方3.1 幂的乘方介绍幂的乘方规则,即(a^n)^m = a^(nm)。
提供多个例子进行解释和练习。
3.2 积的乘方解释积的乘方规则,即(ab)^n = a^n b^n。
第四章:实数指数幂的指数函数4.1 指数函数的定义解释指数函数的概念,如f(x) = a^x,其中a 是底数,x 是指数。
强调指数函数的图像和性质,如当a > 1 时,函数是增函数;当0 < a < 1 时,函数是减函数。
4.2 指数函数的性质介绍指数函数的性质,如f(x) = a^x 的导数为f'(x) = a^x ln(a)。
提供多个例子进行解释和练习。
第五章:实数指数幂的应用5.1 指数幂在科学计算中的应用解释指数幂在科学计算中的应用,如放射性衰变、人口增长等。
提供实际例子进行解释和练习。
5.2 指数幂在代数表达式求值中的应用讲解如何使用指数幂的性质和运算法则来求解代数表达式。
提供多个例子进行解释和练习。
第六章:对数与指数幂的关系6.1 对数与指数幂的定义解释对数的概念,如log_a(b) 表示以a 为底数,b 的对数。
实数指数幂及运算法则教案
实数指数幂及运算法则教案一、教学目标:1. 理解实数指数幂的概念,掌握有理数指数幂的运算性质。
2. 能够运用实数指数幂及运算法则解决实际问题。
3. 培养学生的逻辑思维能力,提高学生对数学知识的运用能力。
二、教学内容:1. 实数指数幂的定义与性质2. 有理数指数幂的运算性质3. 实数指数幂在实际问题中的应用三、教学重点与难点:1. 实数指数幂的定义与性质2. 有理数指数幂的运算性质3. 实数指数幂在实际问题中的应用四、教学方法:1. 采用讲授法,讲解实数指数幂的定义与性质,有理数指数幂的运算性质。
2. 利用案例分析法,分析实数指数幂在实际问题中的应用。
3. 组织学生进行小组讨论,分享学习心得。
五、教学步骤:1. 引入实数指数幂的概念,讲解实数指数幂的定义与性质。
2. 讲解有理数指数幂的运算性质,引导学生进行实际例子的计算。
3. 分析实数指数幂在实际问题中的应用,引导学生运用所学知识解决实际问题。
5. 对本节课的内容进行复习,布置作业,巩固所学知识。
六、教学评价:1. 课堂讲解的准确性,学生的理解程度。
2. 学生作业的完成情况,对实数指数幂及运算法则的掌握程度。
3. 学生小组讨论的活跃程度,对实际问题分析的能力。
七、教学资源:1. 教材《数学》2. 教案3. PPT4. 习题八、教学时间:1课时(45分钟)九、课后作业:1. 复习实数指数幂及运算法则,整理课堂笔记。
2. 完成课后习题,巩固所学知识。
3. 思考实数指数幂在实际问题中的应用,准备课堂分享。
十、板书设计:实数指数幂及运算法则教案一、教学目标:1. 理解实数指数幂的概念,掌握有理数指数幂的运算性质。
2. 能够运用实数指数幂及运算法则解决实际问题。
3. 培养学生的逻辑思维能力,提高学生对数学知识的运用能力。
二、教学内容:1. 实数指数幂的定义与性质2. 有理数指数幂的运算性质3. 实数指数幂在实际问题中的应用三、教学重点与难点:1. 实数指数幂的定义与性质2. 有理数指数幂的运算性质3. 实数指数幂在实际问题中的应用四、教学方法:1. 采用讲授法,讲解实数指数幂的定义与性质,有理数指数幂的运算性质。
实数指数幂 教案
实数指数幂教案教案标题:实数指数幂教案目标:1. 理解实数指数幂的概念和性质。
2. 掌握实数指数幂的计算方法。
3. 能够应用实数指数幂解决实际问题。
教案步骤:引入(5分钟):1. 创设情境,引发学生对实数指数幂的兴趣。
例如,提问:“你知道什么是指数幂吗?实数指数幂又是什么意思?”2. 引导学生回忆并复习指数的基本概念和运算法则。
探究(15分钟):1. 提供一些实数指数幂的例子,让学生观察并总结规律。
例如,2^3、2^2、2^1、2^0、2^(-1)等。
2. 引导学生思考并讨论实数指数幂的性质,例如,正指数幂大于1时,底数越大结果越大;负指数幂小于1时,底数越大结果越小等。
3. 引导学生猜想并验证实数指数幂的运算法则,例如,a^m * a^n = a^(m+n),a^m / a^n = a^(m-n)等。
讲解与练习(20分钟):1. 结合学生的猜想和验证结果,讲解实数指数幂的运算法则,并通过示例进行说明。
2. 提供一些练习题,让学生巩固运算法则的应用能力。
3. 引导学生分析和解决实际问题,例如,计算物体的体积、面积等。
拓展与应用(10分钟):1. 提供一些拓展题,让学生运用实数指数幂的知识解决更复杂的问题。
2. 引导学生思考实数指数幂在科学、工程等领域的应用,并展示相关实例。
总结与评价(5分钟):1. 对本节课的内容进行总结,并强调实数指数幂的重要性和应用价值。
2. 鼓励学生对所学知识进行评价和反思,提出问题和疑惑。
3. 布置相关作业,巩固学生对实数指数幂的理解和应用能力。
教学资源:1. 实数指数幂的示例和练习题。
2. 计算器、白板、彩色粉笔等教学工具。
3. 相关实际问题的案例和资料。
教学评估:1. 教师观察学生在课堂上的表现,包括参与讨论、解答问题的能力等。
2. 针对学生的理解情况,布置相应的作业,检验学生对实数指数幂的掌握程度。
3. 学生之间互相交流和讨论,提出问题并解答。
教学反思:1. 教师根据学生的表现和反馈,及时调整教学策略和方法,确保教学效果。
实数指数幂及运算法则教案
实数指数幂及运算法则教案一、教学目标1. 知识与技能:(1)理解实数指数幂的概念;(2)掌握实数指数幂的运算法则;(3)能够运用实数指数幂及运算法则解决实际问题。
2. 过程与方法:(1)通过观察、探究、归纳实数指数幂的运算法则;(2)培养学生的逻辑思维能力和运算能力。
3. 情感态度与价值观:(1)激发学生对数学的兴趣;(2)培养学生的团队合作精神。
二、教学重点与难点1. 教学重点:(1)实数指数幂的概念;(2)实数指数幂的运算法则。
2. 教学难点:(1)实数指数幂的运算法则的灵活运用;(2)解决实际问题。
三、教学准备1. 教具准备:(1)黑板;(2)粉笔;(3)多媒体教学设备。
2. 学具准备:(1)练习本;(2)计算器。
四、教学过程1. 导入新课(1)复习相关知识:幂的定义、运算法则;(2)提出问题:实数指数幂是什么?它有哪些运算法则?2. 自主探究(1)学生自主探究实数指数幂的定义;(2)学生分组讨论实数指数幂的运算法则;(3)各组汇报讨论成果。
3. 课堂讲解(1)讲解实数指数幂的定义;(2)讲解实数指数幂的运算法则;(3)举例说明实数指数幂的运算法则的应用。
4. 巩固练习(1)学生自主完成练习题;(2)教师点评答案,解答疑问。
5. 课堂小结(1)回顾本节课所学内容;(2)强调实数指数幂的运算法则的运用。
五、课后作业1. 完成练习册相关题目;2. 运用实数指数幂及运算法则解决实际问题。
六、教学拓展1. 对比实数指数幂与整数指数幂的差异;2. 探讨实数指数幂在实际问题中的应用,如放射性衰变、人口增长等。
七、实践操作1. 学生分组,利用计算器验证实数指数幂的运算法则;2. 每组选取一个实际问题,运用实数指数幂及运算法则求解,并分享解题过程。
八、课堂互动1. 教师提问,学生回答;2. 学生互相提问,共同解答;3. 教师点评互动过程,解答疑问。
九、总结反思1. 学生总结本节课所学内容;2. 学生分享自己在实践操作中的收获;3. 教师点评学生表现,总结实数指数幂及运算法则的重要性和实际应用。
实数指数幂教案
实数指数幂教案教案标题:实数指数幂教案教案目标:1. 理解实数指数幂的概念和性质。
2. 掌握实数指数幂运算的基本规则。
3. 能够在实际问题中应用实数指数幂进行计算和解决问题。
教案步骤:1. 引入(5分钟)- 通过一个简单的问题引起学生对实数指数幂的兴趣,如:你知道如何计算2的平方吗?如果是2的立方呢?请举例说明。
- 提问学生,他们对实数指数幂有什么了解,是否知道其他实数的指数幂是如何计算的。
2. 理解实数指数幂的概念(10分钟)- 介绍实数指数幂的概念,解释底数和指数的含义。
- 通过示例演示如何计算实数指数幂,如2的3次方等于2乘以2乘以2。
- 引导学生发现实数指数幂的规律,如正指数幂和负指数幂的区别。
3. 掌握实数指数幂运算的基本规则(15分钟)- 介绍实数指数幂运算的基本规则,如幂的乘法法则、幂的除法法则和幂的幂法则。
- 通过示例演示如何应用这些规则进行实数指数幂的运算,如2的3次方乘以2的2次方等于2的5次方。
- 给学生一些练习题,让他们运用这些规则进行计算。
4. 应用实数指数幂解决问题(15分钟)- 给学生提供一些实际问题,如计算物体的面积、体积或者利润的变化等,让他们运用实数指数幂进行计算。
- 引导学生思考如何将实际问题转化为实数指数幂的计算,如将边长为2的正方形的面积计算为2的2次方。
- 鼓励学生在解决问题的过程中提出自己的思路和方法。
5. 总结与拓展(5分钟)- 总结实数指数幂的概念和运算规则。
- 引导学生思考实数指数幂在数学和实际生活中的应用,如科学计数法和指数函数等。
- 鼓励学生继续探索实数指数幂的更多应用和相关知识。
教案评估:1. 在课堂上观察学生的参与程度和对实数指数幂的理解程度。
2. 布置一些练习题,检验学生对实数指数幂运算规则的掌握情况。
3. 给学生一个实际问题,让他们应用实数指数幂进行计算和解决问题。
教案扩展:1. 引导学生探索负数指数幂的概念和运算规则。
2. 引导学生学习其他类型的指数幂,如分数指数幂和零指数幂。
《实数指数幂》教案全面版
《实数指数幂》教案教学目标:使学生理解分数指数幂的概念,了解实数指数幂的概念,掌握实数指数幂的运算法则,掌握根式与分数指数幂的相互转化,理解对立、统一的辨证关系.教学重点:掌握根式与分数指数幂的相互转化,实数指数幂的运算法则.教学难点:对分数指数幂概念的理解及根式与分数指数幂的互化.教学过程:一、复习1.零指数、负整数指数的概念,以及它们之间的关系.2.浓缩后的3条法则是什么?怎样浓缩好?二、新课引入与讲解在初中已学过,若是大于1的整数,是的整数倍,那么若不是的整数倍,那么上式中右端的就是一个分数了(引入自然,合理)例如,当=2,=3时,,显然不能用正整数指数幂来解释,所以必须对的分数指数幂重新定义,为此规定,在不是的整数倍时也适用,自然应把看成是根式的另一种记法,对于底为什么要使,须回忆应分几种情况:1.零指数与负整数的底均不能为零.2.正分数指数幂,当指数的分子,分母互质时,分母为奇数,底数可以为任意实数;分母为偶数时底数为非负实数.3.负分数指数幂,当指数的分子与分母互质时,分母为奇数、底数不能为零,分母为偶数,底数为正实数.总之,当正实数为底时,指数可为任意实数.以上这几点均可举例说明.关于运算法则仍然成立,可以通过特殊值加以验证,克服心理障碍.假如,设=,=验证第一条∵ ,∴ 成立.它不仅让学生从心理上承认在指数概念推广后,运算法则仍然有效,同时也能启发学生在解繁杂根式运算时,用幂的运算法则更为简便.当时,(、∈,且为既约分数);(、∈且为既约分数).这样当指数推广到分数指数幂以后当,为有理数时,表示一个确定的实数.当,为无理数时,是否还表示一个确定的实数?答案是肯定的,它是在的以值不足近似值为指数的所有幂与以的以的过剩近似值为指数的所有的幂中间的一个实数,这样就使中的可取一切实数了.为学习指数函数做好了必要准备.由此得可以验证与证明;;,其中,,、为任意实数.三、课堂练习(1)(2)(3)(4)(5)(6)(7)(8)利用计算器计算(精确到0.001)①;②;③.(请同学按课本上的方式按键计算,如学生手中的计算器按键方式不同,教师需给予辅导).课堂小结:1.分数指数幂的概念,明确他是根式的一种写法(记号).2.零的正分数指数幂为零.零的负分数指数幂无意义.3.4.3条法则.5.对于计算结果,不强求统一.没有特别时要求时一般用分数指数幂的形式表示,但结果中不能同时含根号与分数指数,也不能即有分母又含有负指数,系数一般不用负指数来表示.课后作业:1.预习、复习3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【课题】4.1实数指数幂(2)
【教学目标】
知识目标:
⑴掌握实数指数幂的运算法则;
⑵通过几个常见的幂函数,了解幂函数的图像特点.
能力目标:
⑴正确进行实数指数幂的运算;
⑵培养学生的计算技能;
⑶通过对幂函数图形的作图与观察,培养学生的计算工具使用能力与观察能力.
【教学重点】
有理数指数幂的运算.
【教学难点】
有理数指数幂的运算.
【教学设计】
⑴在复习整数指数幂的运算中,学习实数指数幂的运算;
⑵通过学生的动手计算,巩固知识,培养计算技能;
⑶通过“描点法”作图认识幂函数的图像,通过利用软件的大量作图,总结图像规律;
⑷通过知识应用巩固有理数指数幂的概念.
【教学备品】
教学课件.
【课时安排】
2课时.(90分钟)
【教学过程】。