七年级数学上册2.4有理数的加法第2课时有理数加法的运算律教学设计2北师大版
七年级数学上册2.4有理数的加法第2课时有理数的加法运算律教学课件(新版)北师大版

这10听罐头的总质量是多少?
解法一:这10罐头的总质量为
444+459+454+459+454+454+449+454+459+464 =4550(克) 解法二:把超过标准质量的克数用正数表示,不足 的用负 数表示,列出10听关头与标准质量的差值表 (单位:克)
这10听罐头的差值和为 (-10)+5+0+5+0+0+(-5)+0+5+10 =[(-10)+10]+[(-5)+5]+5+5
=10(克) 因此,这10听罐头的总质量为
454×10+10
=4540+10
=4550(克)
【展示点评】解法1:直接将10听质量相加获解.解法2:把超过 455克的克数记为正数,不足的记为负数,然后把这些数相加.
【小组讨论2】对于教材,请模仿解决:
8筐白菜,以每筐25千克为准,超过的千克数记作 正数,不足的千克数记作负数,称重的记录如下:1.5, -3,2,-0.5,1,-2,-2,-2.5请问8筐白菜的重 量是多少?
【反思小结】运用有理数的加法解决实际问题,注意先 观察数据特征,再确定合适的解法.
1. 本课知识: 一般具有下列特点的数可以先结合:①互为 相反数的两数可以先相加;②同号的数可以先相 加;③分母相同的分数可以先相加;④相加能凑 整或凑零的数可以先相加.解题时,切忌不顾上述 特点从左算到右,导致出错. 2. 本课典型:灵活运用加法运算律简化运算、 进行大数的求和. 3. 我的困惑:
2.4 有理数的加法
第2课时 有理数的加法运算 律
北师大版七年级数学上册第二章有理数及其运算全章教案(共180页)

第二章有理数及其运算1.理解有理数的意义,能用数轴上的点表示有理数,能比较有理数的大小.2.能借助数轴理解相反数和绝对值的意义,知道|a|的含义(这里a表示有理数).3.理解乘方的意义,掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步以内为主).4.理解有理数的运算定律,能运用运算律简化计算.5.能运用有理数的运算解决简单的问题.1.在求一个数的相反数和绝对值的过程中,让学生掌握求有理数的相反数和绝对值的方法.2.能按照有理数的运算法则进行有理数的加、减、乘、除及混合运算,掌握计算的方法和技巧.3.能用科学记数法表示数,以及用四舍五入法取近似数,掌握其表示的方法.1.在认识数的过程中,体验知识之间的必然联系,激发学生爱数学、学数学的兴趣.2.培养学生养成认真做题的良好习惯,认识数学是解决实际问题和进行交流的重要工具.3.在解决问题的过程中,能对问题提出自己的猜想,树立学好数学的信心.对于负数的引入,教材借助生活中的实例,引进负数,让学生在活动中体会数概念的扩张,了解负数的本质意义,然后再指出可以用正负数表示现实生活中具有相反意义的量,使学生感受到负数的引入源自实际生活的需要,体会数学知识与现实世界的联系.就学生的学习而言,负数的概念、意义有一定的抽象性,为什么要引进负数正是学生理解的困难所在.从数学的发展进程来看,数的出现的主要原因更多的是由于对实际现象(事物)“表示”的需要.所以教材遵循历史发展的过程,采用这样的线索展开:产生的实际背景——有理数的意义——数的表示.对于有理数运算法则的获得,教材没有采用直接给出的方式而是设置了丰富的现实背景,如足球比赛中的净胜球数、气温变化等,以直观形象地解释、归纳、探索的方式,寻求有理数运算法则和运算律.如有理数的加法法则,仅仅借助数轴理解,学生会有一定的困难,所以教材先从知识竞赛中的答对题数与答错题数入手,使学生首先理解(+1)+(- 1)=0和(- 1)+(+1)=0,然后利用“正负抵消”的思想,讨论整数加法的几种情形,最后再由特例归纳出有理数的加法法则,并借助数轴加深理解.基于有理数运算的学习重点是对法则和运算律的理解,所以为了避免因为小数、分数运算的复杂性而冲淡学习的重点,有理数的运算以整数运算的学习为出发点,然后过渡到含有小数、分数的运算.【重点】理解有理数的意义,掌握有理数的运算法则和运算律,会用科学记数法表示较大的数.【难点】利用有理数的加、减、乘、除、乘方等运算解决简单的实际问题.1.负数是一个比较抽象的概念.在教学中应该让学生充分了解引入负数的必要性和实际背景,通过生活中具有相反意义的量的讲解,让学生接受负数的概念.2.本章的重点内容是有理数的运算,所以一定要让学生有足够的练习的机会,只有通过一定量的计算实践,才能真正体会并熟练掌握有理数计算的一些技巧.让学生通过计算、观察、猜测、归纳等数学活动,自己总结出有理数的运算律.3.对绝对值概念的学习也要有一个循序渐进的过程,与绝对值相关的知识,如数轴上两点之间的距离的表示、绝对值不等式等,都是在后续学习中要专门安排的,因此这里不要涉及.本章安排绝对值概念,目的是为有理数的运算作准备,会求一个数的绝对值就达到了本章的要求.教材中用字母表示求一个数的绝对值的结论,只是给出一个数的绝对值的符号表示,教学时不要对这个符号表示进行变式训练,更不要在绝对值中出现字母并加以讨论.4.计算器是一个既简便又实用的计算工具,让学生通过实际操作,掌握计算器的基本用法.5.在本章的学习中,要注意数形结合思想、转化与化归思想、分类讨论思想的运用.1有理数1课时2数轴1课时3绝对值1课时4有理数的加法2课时5有理数的减法1课时6有理数的加减混合运算3课时7有理数的乘法2课时8有理数的除法1课时9有理数的乘方2课时10科学记数法1课时11有理数的混合运算1课时12用计算器进行运算1课时本章概括整合1课时1有理数1.通过实例理解引入负数的必要性和负数应用的广泛性,理解有理数的含义,体会有理数应用的广泛性.2.能用正数和负数表示具有相反意义的量.3.培养逻辑思维能力,以及按一定规律对事物进行分类整理的能力.会判断一个数是正数还是负数,能应用正负数表示生活中具有相反意义的量,能把有理数合理分类和把具体数正确归类.1.通过实例,使学生深刻体会到有理数和负数的实用性,加深对数的理解.2.让学生体会到数学中的基本概念都来源于实际需要.3.让学生进一步了解学习数学对于解决实际生活中各种问题的必要性,增强学习数学知识的兴趣.【重点】负数的意义、特点及实际应用,有理数的概念,能够对学过的数进行分类.【难点】正确用正、负数表示生活中具有相反意义的量,正确理解有理数的概念,会合理进行有理数的分类和把具体数归类到相应的数集.【教师准备】多媒体课件.【学生准备】预习教材P23~24.导入一:师:同学们小学都学过哪些数?生:整数、小数、分数、奇数、偶数……师:原始社会,从打猎记数开始,首先出现自然数,经过漫长岁月,人们用数“0”表示没有,随着人类的不断进步,在丈量土地进行分配时,又用小数使测量结果更加准确,小数也属于分数.那么小学学过的这些数能否满足社会生产生活及数学自身发展的需要呢?[设计意图]通过介绍数的产生与发展,向学生渗透“实践第一”的辩证唯物主义观点,使同学们感到数的每一次发展都是为了满足社会生产与生活的需要,也为讲述有理数概念及其分类做好铺垫.导入二:观察课本P22的图片.珠穆朗玛峰高出海平面8844 m,记作:+8844 m;吐鲁番盆地低于海平面155 m,记作: - 155 m.教师出示图片,并提出问题:1.生活中我们会遇到用负数表示的量,你能说出一些例子吗?2.你在小学的学习中对负数有什么样的认识?3.有了负数,数的运算与过去相比有什么区别和联系?有了负数,能解决哪些实际问题?本章将在小学学习的基础上,进一步学习负数,研究有理数的有关概念及其运算,并利用有理数的知识解决实际问题.[设计意图]通过提供学生熟悉的情境引导学生回顾小学有关负数的知识,三个问题不仅为本节课成功引入,也为本章的学习做了铺垫.学生在对问题的思考与交流中体会负数在生活中的广泛应用,激发了学生学习本章内容的兴趣.(出示课件1)(例题讲解)请同学们完成以下问题,并与同伴交流.某班举行知识竞赛,评分标准是:答对一题加1分,答错一题扣1分,不回答得0分;每个队的基本分均为0分.两个队答题情况如下表:答题情况第一队第二队如果答对题所得的分数用正数表示,那么你能写出每个队答题得分的情况吗?思路一试完成下表:答对题的得分答错题的得分未回答题的得分第一队+6第二队- 2思路二提出思考问题:(1)第一队答对几题?是如何表示的?答错几题?又是如何表示的?(2)第二队答对几题?是如何表示的?答错几题?又是如何表示的?(3)如何理解+6和- 2?(出示课件2)(教材议一议)生活中你见过其他用负数表示的量吗?与同伴进行交流.想一想:根据上面各队分数的计算及2010年全国居民消费价格的上涨情况及温度计上的温度,你能知道正、负数和零的大小关系吗?[处理方式]学生思考交流,完成后再展示说明,学生之间互相补充,教师适时点评.师生总结:“加分与扣分”“上涨量与下跌量”“零上温度与零下温度”等都是具有相反意义的量.为了表示具有相反意义的量,我们把其中一个量规定为正的,用正数来表示,而把与这个意义相反的量规定为负的,用负数来表示.[设计意图]本活动的设计意在引导学生通过自主探究、合作交流,用知识竞赛得分的情境启发学生用正、负数表示相反意义的量.通过练习引导学生举一反三地找出身边可以用正、负数表示的量,从而体会学习负数的必要性.从学生熟悉的情境讨论问题,学生积极参与,在教师的引导下寻找生活实例的过程中充分体会学习负数是生活的需要.探究活动2用正、负数表示生活中具有相反意义的量(出示课件3)(教材例题)(1)某人转动转盘,如果用+5圈表示沿逆时针方向转了5圈,那么沿顺时针方向转了12圈怎样表示?(2)在某次乒乓球质量检测中,一只乒乓球超出标准质量0.02 g 记作+0.02 g,那么- 0.03 g 表示什么?(3)某大米包装袋上标注着“净含量:10 kg±150 g”,这里的“10 kg±150 g”表示什么?[处理方式]学生先独立思考,再小组交流如何用正、负数表示生活中具有相反意义的量.思路一如果用+5圈表示沿逆时针方向转了5圈,那么和逆时针方向具有相反意义的量是,所以沿顺时针方向转了12圈可表示为;一只乒乓球超出标准质量0.02 g记作+0.02 g,那么和超出标准质量具有相反意义的量是,所以- 0.03 g可以表示为;综上所述,“净含量:10 kg±150 g”,这里的“10 kg±150 g”表示.思路二(1)想一想:什么是具有相反意义的量?(2)品一品:如何表示具有相反意义的量?(3)考一考:和逆时针方向具有相反意义的量是,和超出标准质量具有相反意义的量是.【师生活动】学生讨论,教师巡视发现问题,并及时解决.解:(1)沿顺时针方向转了12圈记作- 12圈.(2) - 0.03 g表示乒乓球的质量低于标准质量0.03 g.(3)每袋大米的标准质量应为10 kg,但实际每袋大米可能有150 g的误差,即每袋大米的净含量最多是10 kg+150 g,最少是10 kg - 150 g.反馈练习(出示课件4) (1)在知识竞赛中如果用“+10”表示加10分,那么扣20分记作什么? (2)东、西为两个相反方向,如果 - 4米表示一个物体向西运动4米,那么+2米表示什么?物体原地不动记为什么?(3)某粮库运进面粉7.5吨记作+7.5吨,那么运出3.8吨应记作什么?议一议:你能选定一个高度为标准,用正、负数表示本班每位同学的身高与选定的身高标准的差异吗?你是怎样表示的?与同伴交流.通过例题和练习题的分析,让学生知道用正、负数表示相反意义的量时要明确“基准”.教材例题中各题的基准分别是“转盘静止不动”“一只乒乓球的标准质量”“10 kg ”. “议一议”则联系生活实际让学生学会如何选定“基准”.学生认识当用正、负数表示相反意义的量时要考虑“基准”.“0”是常用的基准,但不是所有的基准都必须为0.探究活动3 有理数的概念及分类1.新的整数、分数概念:引进负数后,数的范围扩大了.过去我们说整数只包括正整数和零,引进负数后,正整数前加上负号的数叫做负整数,因而整数包括正整数、负整数和零,同样分数包括正分数、负分数.整数和分数统称为有理数.(有理数分类结构图如下)有理数{整数{正整数0负整数分数{正分数负分数 2.有理数的分类.问题:为了便于研究某些问题,常常需要将有理数进行分类,需要不同,分类的方法也常常不同,根据有理数的定义可将有理数分成两类:整数和分数.有理数还有没有其他的分类方法呢?待学生思考后,请学生回答、评议、补充.教师小结:按有理数的符号分为三类:正有理数、负有理数和零,并指出,在有理数范围内,正数和零统称为非负数.并向学生强调:对有理数的分类可以根据不同需要,用不同的分类标准,但必须对讨论对象不重不漏地分类.[设计意图] 使学生在原有认知结构的基础上,将数扩充到了有理数的范围.通过练习使学生加深理解有理数的意义.[知识拓展] 对正数和负数的理解要注意以下几点:(1)并不一定必须将某一种量规定为正,若将其中的一种量规定为正,则与其意义相反的量即为负.(2)零既不是正数,也不是负数,这个数十分特殊,随着我们的学习,对于零这个数将有更深刻的认识.(3)负数前面的“一”号,表示这个数的性质,是性质符号,读作“负”号,但正数前面的“+”可以省略.即时巩固将下列各数填入到相应的数集中: - 2015, - 13,14,12, - 513, - 7.3,3,369,0.1,92, - 374.正数集合{ …}; 负数集合{ …}; 正整数集合{ …}; 负整数集合{ …}; 分数集合{ …}; 负分数集合{ …}; 负有理数集合{ …}; 有理数集合{ …}.〔解析〕 小数 - 7.3,0.1都属于分数,369=4不属于分数.(学生口述解答过程,师总结、板演)1.正数与负数都来自于生活实际,用正、负数可以表示实际问题中具有相反意义的量.2.正数前面添上“ - ”号的数是负数;0既不是正数,也不是负数,它表示正、负数的界限.3.有理数的分类方法不是唯一的,可以按整数和分数分成两大类,也可以按正有理数、零、负有理数分成三大类.1.如果将汽车向东行驶3千米记为+3千米,那么记为 - 3千米表示的是 ( )A.向西行驶3千米B.向南行驶3千米C.向北行驶3千米D.向东南方向行驶3千米解析:先根据向东行驶3千米记为+3千米,可确定向西为负,而 - 3千米表示的应是向西行驶3千米.故选A .2.在0,2, - 7, - 513,3.14, - 317, - 3,+0.75中,负数共有 ( )A.1个B.2个C.3个D.4个解析:在正数的前面加上“ - ”号的数即是负数,本题中的 - 7, - 513, - 317, - 3是负数.故选D .3.飞机上升了 - 80米,实际上是 ( ) A.上升80米 B.下降 - 80米C.先上升80米,再下降80米D.下降80米解析:解题的关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.负号表示与上升意义相反,即下降.故选D .4.举一个能用正数、负数表示生活中的量的实例,并解释其中相关数量的含义.解:本题答案不唯一,只要满足题意即可,如:河道中第一天的水位是 - 0.2米,第二天的水位是+0.3米,其中 - 0.2米表示比正常水位低0.2米,+0.3米表示比正常水位高0.3米.1有理数1.认识生活中的负数.2.用正、负数表示生活中具有相反意义的量.3.有理数的概念及分类.一、教材作业【必做题】教材第26页习题2.1的2,3题.【选做题】教材第26页习题2.1的4,5题.二、课后作业【基础巩固】1.下列结论中正确的是()A.0既是正数,又是负数B.0是最小的正数C.0是最大的负数D.0既不是正数,也不是负数2.向东运动记作“+”,向西运动记作“- ”,下列说法正确的是()A. - 5米表示向东运动了5米B.向西运动5米表示向东运动了- 5米C.+5米表示向西运动了5米D.向西运动5米也可以记作向西运动- 5米3.武汉市夏季气温比较高,若以30 ℃为标准,高出标准的为正,低于标准的为负,则38 ℃与28 ℃分别记作()A.+8 ℃- 2 ℃B.+8 ℃+2 ℃C. - 8 ℃- 2 ℃D. - 8 ℃+2 ℃4.某药品说明书上标明药品保存的温度是(20±2)℃,该药品在温度范围内保存才合适.5.请指出下列各数中哪些是正数,哪些是负数.- 18,+227,3.1416,0.2011, - 35, - 0.1010…, - π, - 2,99%.【能力提升】6.如果海平面的高度为0 m,一潜水艇在海平面以下40 m处航行,一条鲨鱼在潜水艇上方10 m 处游动,试用正、负数分别表示潜水艇和鲨鱼的高度.7.用正数和负数表示下列具有相反意义的量.(1)钟表的指针逆时针方向旋转20°记作- 20°,顺时针方向旋转30°记作;(2)运进200箱记作,运出150箱记作- 150箱.【拓展探究】8.某日小明在一条南北方向的公路上跑步,他从A地出发,如果把向北跑1100 m记作- 1100 m,那么他向北跑1100 m时向后转又继续跑了1200 m是什么意思?这时他停下来休息,此时他在A地的什么方向?距A地多远?【答案与解析】1.D(解析:根据0既不是正数,也不是负数,可以判断A,B,C都错误,D正确.故选D.)2.B(解析:A. - 5米表示向西运动了5米,故A错误;C.+5米表示向东运动了5米,故C错误;D.向西运动5米记为- 5米,故D错误.故选B.)3.A (解析:因为以30 ℃为标准,高出标准的为正,低于标准的为负,所以38 ℃与28 ℃分别记作:+8 ℃, - 2 ℃.故选A.)4.18~22 ℃(解析:温度是20 ℃±2 ℃,表示最低温度是20 ℃- 2 ℃=18 ℃,最高温度是20 ℃+2 ℃=22 ℃,即18~22 ℃之间是合适温度.)5.解:正数有:+227,3.1416,0.2011,99%;负数有: - 18, - 35, - 0.1010…, - π, - 2.6.解:因为海平面的高度为0 m,所以低于海平面的高度为负数,由于潜水艇和鲨鱼的高度都在海平面的下方,故分别为- 40 m和- 30 m.7.(1)+30°(2)+200箱8.解:如果把向北跑1100 m 记作 - 1100 m ,那么他向北跑1100 m 时向后转又继续跑了1200 m ,说明小明又向南跑了1200 m ,此时他在A 地的南边,距A 地的距离=1200 - 1100=100(m ).本节课从学生较熟悉的珠穆朗玛峰、气温开始,接下来从具体问题情境出发,使学生感受到现有的数确实不够用了,唤起学生的好奇心和求知欲,然后引出负数、正数和零的概念和实际意义,接着引导学生回顾、总结学过的数,告诉学生有理数的意义,和学生一起探讨有理数的分类,这样学生易于接受,在学习过程中,学生经历了观察、比较、归纳、总结,学会了研究问题、解决问题的方法,加深了对所学知识的理解,完成了从数不够用到数可以表示具有相反意义的量的成长过程。
北师大版-数学-七年级上册-北师大版七年级2.4有理数的加法 课时2教案.

北师大版七年级第二章第四节有理数的加法教案教学目标(一)知识与能力1、有理数加法的运算律2、有理数加法在实际中的运用(二)过程与方法1、经历探索有理数加法运算律的过程,理解有理数的加法运算律。
2、能利用加法运算律简化有理数加法运算。
3、利用运算律进行适当的推理训练,逐步培养学生的逻辑思维能力。
(三)情感态度与价值观1、学生通过交流、归纳、总结有理数加法的运算律,体会新旧知识的联系。
2、通过运用有理数加法法则解决实际问题,来增强学生的应用意识。
教学重点1、有理数加法的运算律2、运用有理数加法解决实际问题教学难点运用加法运算律简化运算教学过程一、引入新课复习回顾有理数的加法法则。
由课本上做一做进一步熟悉有理数的加法法则。
计算:(1)(-8)+(-9),(-9)+(-8);(2)4+(-7),(-7)+4 ;(3)+(-8),2+ ;(4)+(-5),10+;观察计算结果,引导学生发现:两个数相加,交换加数的位置,和不变。
三个数相加,先把前两个数相加或者先把后两个数相加,和也不变。
把此结论同小学学过的加法交换律和加法结合律联系起来,提出问题:有理数运算中,加法的交换律和结合律是否还成立?再换一些数试试,得出结论:有理数运算中,加法的交换律及结合律仍成立。
二、讲授新课小学中运算律的字母表示法是:a +b=b +a,(a +b)+c=a+(b +c)这两个式子是否也可以表示有理数的运算律呢?可以,加法交换律a +b=b +a,加法结合律(a +b)+c=a+(b +c)不过须明白只能说形式一样,字母所代表的意义改变了。
小学中的a、b、c表示的是正整数.正分数.零,而现在的a、b、c表示的是任意有理数。
我们学习运算律是为了简化运算,应灵活的加以应用。
三、应用新知例2、计算:31+(-28)+28+69 14+(-26)+46+(-34)=31+69+ =14+46+=100+0 =60+(-60)=100 =0总结出规律:为了计算方便,经常把正数和负数分别结合在一起,再相加。
【北师大版】七年级数学上册 教案2.4 有理数的加法

2.4 有理数的加法(第1课时)一、学生起点分析学生的知识技能基础:学生在小学已经学习过算术四则运算,而初中的有理数运算是以小学算术四则运算为基础的,不同的是有理数运算多了一个符号问题.符号法则是有理数运算法则的重要组成部分,也是学生学习本章知识和今后学习其他与计算有关的内容时容易出错的知识点之一.学生活动经验基础:在前面相关知识的学习过程中,学生已经经历了一些数学活动,感受到了数的范围的扩大,能借助生活经验对一些简单的实际问题进行有理数的运算,如计算比赛的得分,计算温差等等.同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定数学交流的能力.学生学习中的困难预设:学生学习数学是一种认识过程,要遵循一般的认识规律,而七年级的学生,对异号两数相加从未接触过,与小学加法比较,思维强度增大,需要通过绝对值大小的比较来确定和的符号和加法转化为减法两个过程,要求学生在课堂上短时间内完成这个认识过程确有一定的难度,在教学时应从实例出发,充分利用教材中的正负抵消的思想,用数形结合的观点加以解释,让学生感知法则的由来,以突破这一难点.二、教学任务分析对于有理数的运算,首先在于运算的意义的理解,即首先要回答为什么要进行运算.为此,必须让学生通过具体的问题情境,认识到运算的作用,加深学生对运算本身意义的理解,同时也让学生体会到运算的应用,从而培养学生一定的应用意识和能力.教科书基于学生学习了相反数和绝对值基础之上,提出了本课时的具体学习任务:探索有理数的加法运算法则,进行有理数的加法运算.本课时的教学重点是有理数加法法则的探索过程,利用有理数的加法法则进行计算,教学难点是异号两数相加的法则.教学方法是“引导——分类——归纳”.本课时的教学目标如下:1.经历探索有理数加法法则的过程,理解有理数的加法法则;2.能熟练进行整数加法运算;3.培养学生的数学交流和归纳猜想的能力;4.渗透分类、探索、归纳等思想方法,使学生了解研究数学的一些基本方法.三、教学过程设计本课时设计了六个教学环节:第一环节:复习引入,提出问题;第二环节:活动探究,猜想结论;第三环节:验证明确结论;第四环节:运用巩固;第五环节:课堂小结;第六环节:布置作业.(一)复习引入,提出问题活动内容:1.复习提问:(1)下列各组数中,哪一个较大?(2)一位同学在一条东西方向的跑道上,先向东走了20米,又向西走了30米,能否确定他现在的位置位于出发点的哪个方向,与原来出发的位置相距多少米?若向东记为正,向西记为负,该问题用算式表示为 .活动目的:我们已经熟悉正数的运算,然而实际问题中做加法运算的数有可能超出正数范围.这里先让学生回顾在具体问题中感受正数和负数的加法运算.2.提出问题:某班举行知识竞赛,评分标准是:答对一题加1分,答错一题扣1分,不回答得0分.如果我们用1个表示+1,用1个,那么就表示0,同样也表示0.(1)计算(-2)+(-3).在方框中放进2个和3个:因此,(-2)+(-3)= -5.用类似的方法计算(2)(-3)+ 2323330143----+--与;与;与;-2与;与(3) 3 +(-2)(4) 4+(-4)思考:两个有理数相加,还有哪些不同的情形?举例说明.引导学生列举两个正数相加,如3 + 2,一个数和零相加,如0+(-4),4 + 0.活动目的:通过实际问题情境类比列出两个有理数相加的7种不同情形,两个正数相加、两个负数相加,异号两数相加(根据绝对值又可分为三类)、一个加数为0.进而讨论如何进行一般的有理数加法的运算.活动的实际效果:实际问题情境为学生营造了良好的学习氛围,利于他们积极探究.(二)活动探究,猜想结论:上面我们列出了两个有理数相加的7种不同情形,并根据它们的具体意义得出了它们相加的和.但是,要计算两个有理数相加所得的和,我们总不能一直用这种方法.现在请同学们仔细观察比较这7个算式,你能从中发现有理数加法的运算法则吗?也就是结果的符号怎么定?绝对值怎么算?学生分组进行活动,教师关注学生在活动中的表现,可以根据学生的实际情况给予适当点拨和引导,鼓励学生大胆发表自己的意见,最后形成统一的认识.对“一起探究”,教师可引导学生按以下步骤思考:1、观察列出的具体算式,根据两个加数的符号分类:两个正数相加、两个负数相加,异号两数相加(根据绝对值又可分为三类)、一个加数为0.2、同号两数相加时,和的符号与两个加数的符号有怎样的关系?和的绝对值和加数的绝对值有怎样的关系?异号两数相加时和的符号与两个加数的符号有怎样的关系?和的绝对值和加数的绝对值有怎么样的关系?有一个加数为0时,和是什么?3、从中归纳概括出规律在学生探究的基础上,教师引出规定的加法法则.在活动中,尽可能让学生独立完成,必要时可以交流,教师只在适当的时候给予帮助.同号两数相加,取相同的符号,并把绝对值相加.异号两数相加,绝对值值相等时和为0;绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.一个数同0相加,仍得这个数.活动目的:利用分组讨论、分类归纳帮助学生理解加法运算过程,同时有利于加法运算法则的归纳.活动的实际效果:由于采用了图示的教学手段,在教师的引导下让学生分类观察,发现规律,用自己的语言表达规律,最后由学生对规律进行归纳总结补充,从而得出有理数的加法法则.通过实际问题情境,让学生亲身参加了探索发现,获取知识和技能的全过程.理解有理数加法法则规定的合理性,培养了学生的分类和归纳概括的能力.(三)验证明确结论:例1计算下列算式的结果,并说明理由:(1) 180 +(-10); (2) (-10)+(-1);(3)5+(-5);(4) 0+(-2)活动目的:给学生提供示范,进行有理数加法,可以按照“一观察,二确定,三求和”的步骤进行,一观察是指观察两个加数是同号还是异号,二确定是指确定“和”的符号,三求和是指计算“和”的绝对值.活动的实际效果:通过习题,加深了学生对有理数加法法则的理解.(四)运用巩固:活动内容:1.口答下列算式的结果(1) (+4)+(+3); (2) (-4)+(-3); (3) (+4)+(-3);(4) (+3)+(-4); (5) (+4)+(-4); (6) (-3)+0;(7) 0+(+2); (8) 0+0.活动目的:通过这组练习,让学生进一步巩固有理数加法的法则,达到熟练程度.2.请同学们完成书上的随堂练习:(1)(-25)+(-7); (2)(-13)+5; (3)(-23)+0;(4)45+(-45)全班学生书面练习,四位学生板演,教师对学生板演进行讲评.活动目的:习题的配备上,注意到学生的思维是一个循序渐进的过程,所以由易到难,使学生在练习的过程中能够逐步地提高能力,得到发展.活动的实际效果:通过练习进一步熟悉有理数的加法法则.通过口答、演排纠错,活跃课堂气氛,充分调动学生的积极性,学生在一种比较活跃的氛围中,解决各种问题.(五)课堂小结:活动内容:师生共同总结.1. 两个有理数相加,“一观察,二确定,三求和”,即首先判断加法类型,再确定和的符号,最后确定和的绝对值2. 有理数加法法则及其应用.3. 注意异号的情况.活动目的:课堂小结并不只是课堂知识点的回顾,要尽量让学生畅谈自己的切身感受,教师对于发言进行鼓励,进一步梳理本节所学,更要有所思考,达到对所学知识巩固的目的.活动的实际效果:学生对“一观察,二确定,三求和”的步骤印象较深,达到了本节课的教学目标.(六)布置作业:1.课本习题2.4 1、2、3、4、5、 62.拓展练习:(1)(-0.9)+(-2.7); (2)3.8+(-8.4); (3)(-0.5)+3;(4)3.29+1.78;(5)7+(-3.04);(6)(-2.9)+(-0.31);(7)(-9.18)+6.18; (8)4.23+(-6.77); (9)(-0.78)+0.四、教学设计反思本节课是在前面学习了有理数的意义的基础上进行的,运用数形结合的思想,探索出有理数加法法则.在法则的应用这一环节我又选配了一些变式练习,通过书上的基本练习达到训练双基的目的,通过变式练习达到发展智力、提高能力的目的.“有理数加法法则”的教学,可以有多种不同的设计方案.大体上可以分为两类:一类是较快地由教师给出法则,用较多的时间(30分钟以上)组织学生练习,以求熟练地掌握法则;另一类是适当加强法则的形成过程,从而在此过程中着力培养学生的观察、比较、归纳能力,相应地适当压缩应用法则的练习,如本教学设计.现在,试比较这两类教学设计的得失利弊.第一种方案,教学的重点偏重于让学生通过练习,熟悉法则的应用,这种教法近期效果较好.第二种方案,注重引导学生参与探索、归纳有理数加法法则的过程,主动获取知识.这样,学生在这节课上不仅学懂了法则,而且能感知到研究数学问题的一些基本方法.这种方案减少了应用法则进行计算的练习,所以学生掌握法则的熟练程度可能稍差,这是教学中应当注意的问题.但是,在后续的教学中学生将千万次应用“有理数加法法则”进行计算,加法的训练则贯穿在今后的教学活动中进行.故这种缺陷是可以得到弥补的.第一种方案削弱了得出结论的“过程”,失去了培养学生观察、比较、归纳能力的一次机会.权衡利弊,我们主张采用第二种教学方法.2.4 有理数的加法(第2课时)一、学生起点分析学生在小学学过加法运算,知道加法的交换律和结合律,学生在上一课时已经探索总结出了有理数的加法法则,并进行了一定量的练习,但熟练程度还不够,并且对过去的加法交换律和结合律是否对有理数适用未进行探讨.二、教学任务分析和有理数的加法法则一样,有理数加法运算律的得出也是要学生自主探索,同时通过具体运算体会运算律对计算的简便之处.本课时教学重点是有理数加法运算律,并能运用加法运算律简化运算;教学难点是灵活运用运算律简化运算.具体教学目标如下:知识与技能:1.进一步熟练掌握有理数加法的法则;2.掌握有理数加法的运算律,并能运用加法运算律简化运算.过程与方法:启发引导式教学,能够由特殊到一般、由一般到特殊,体会研究数学的一些基本方法.情感、态度与价值观:1.培养学生的分类与归纳能力.2.强化学生的数形结合思想.3.提高学生的自学以及理解能力,激发学生学习数学的兴趣.三、教学过程设计本节课设计了六个教学环节:第一环节:情境引入,提出问题;第二环节:活动探究,猜想结论;第三环节:验证明确结论;第四环节:运用巩固;第五环节:课堂小结;第六环节:布置作业.(一)情境引入,提出问题活动内容:1.叙述有理数的加法法则.2.计算并比较每组的两个算式的结果:(1)(-8)+(-9),(-9)+(-8);(2) 4 +(-7),(-7) + 4;(3)[2+(-3)]+(-8), 2+[(-3)+(-8)];(4) [10+(-10)]+(-5),10+[(-10)+(-5)].活动目的:复习旧知识,为新的知识内容做准备.活动的实际效果:学生知道了小学的加法运算和有理数加法运算的联系与区别:进行有理数加法运算,先要根据具体情况正确地选用法则,确定“和”的符号,这与小学里学过的数的加法是不同的,而计算“和”的绝对值,用的是小学里学过的加法或减法运算;同时巩固了有理数的加法运算.(二)活动探究,猜想结论活动内容:通过上面练习,引导学生得出:交换律——两个有理数相加,交换加数的位置,和不变.用代数式表示:a + b = b + a.运算律式子中的字母a、b表示任意的一个有理数,可以是正数,也可以是负数或者零.在同一个式子中,同一个字母表示同一个数.结合律——三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.用代数式表示:(a + b) + c = a +(b + c).这里a、b、c表示任意三个有理数.活动目的:通过特例归纳有理数的加法交换律、结合律.活动的实际效果:让学生自己总结,参与教学活动,从而使学生积极主动地学习,并且营造了良好的学习氛围.(三)验证明确结论活动内容:例1计算:(1)16+(-25)+24+(-32).(2)31 +(-28)+ 28 + 69解:(1) 16+(-25)+24+(-32)=16+24+(-25)+(-32) (加法交换律)=(16+24)+[(-25)+(-32)] (加法结合律)=40+(-57) (同号相加法则)=-17 (异号相加法则) (2)31 +(-28)+ 28 + 69=31 + 69 + [(-28)+ 28 ] (加法交换律和结合律)=100+0=100提出问题引起学生反思:此题你是抓住数的什么特点使计算简化的?依据是什么?引导学生发现,在本例(1)中,把正数与负数分别结合在一起再相加,计算比较简便.在本例(2)中,把互为相反数的两个数结合在一起,计算比较简便.总结常用的三个规律:1、一般地,总是先把正数或负数分别结合在一起相加.2、有相反数的可先把相反数相加,能凑整的可先凑整.3、有分母相同的,可先把分母相同的数结合相加.活动目的:体会加法运算律对运算的简化作用,并且根据加法交换律和结合律可以推出:三个以上的有理数相加,可以任意交换加数的位置,也可以先把其中的几个数相加.活动的实际效果:本例先由学生在笔记本上解答,然后教师根据学生解答情况指定几名学生板演,并引导学生发现,简化加法运算一般是三种方法:消去互为相反数的两数(其和为0)、同号结合或凑整数.例2.有一批食品罐头,标准质量为每听454克,现抽取10听样品进行检测,结果如下表(单位:克)7这10听罐头的总质量是多少?解法一:这10听罐头的总质量为444+459+454+459+454+454+449+454+459+464=4550(克)解法二:把超过标准质量的克数用正数表示,不足的用负数表示,列出10听罐头与标准质量的差值表(单位:克):这10听罐头与标准质量差值的和为(-10)+ 5 + 0 + 5 + 0 + 0 +(-5)+ 0 + 5 + 10=[(-10)+10]+[(-5)+5]+5+5=10(克)因此,这10听罐头的总质量为454×10 + 10 = 4540 + 10 = 4550(克)活动目的:通过这个应用题,让学生初步体会有理数加法运算律对加法运算的简便作用,同时让学生感受解决问题的方法的多样性.活动的实际效果:加法运算怎么由繁到简?“解法二”让学生感到很新奇,同时为今后平均数、数据的处理的学习奠定了基础.(四)运用巩固活动内容:1.完成书上随堂练习:(要求注理由)(1)(-3)+ 40+(-32)+(-8);(2) 13 +(-56)+47+(-34);(3) 43+(-77)+27+(-43).2.某潜水员先潜入水下61米,然后又上升32米,这时潜水员处在什么位置?3.有5筐蔬菜,以每筐50千克为准,超过的千克数记为正,不足记为负,称重记录如下:+3,-6,-4,+2,-1,总计超过或不足多少千克?5筐蔬菜的总重量是多少千克?活动目的:通过习题,加深学生对有理数加法运算律的理解.活动的实际效果:教师指定4名学生板演练习1,第2、3两题分别指定两名学生板演,并引导学生发现解题过程中出现的问题,及时解决.(五)课堂小结活动内容: 请同学们谈一谈这节课的体会和收获.1、通过具体有理数的计算,把加法运算律从非负数范围扩大到有理数的范围.2、掌握加法运算律的法则及公式,并适当的运用运算律进行简化计算.3、有理数加法解决实际问题,体会求简意识.(六)布置作业课本习题2.5: 1、2、3、4、5、6、7.四、教学设计反思1.课堂上应当把更多的时间留给学生在课堂教学中应当把更多时间交给学生.本节课中有理数运算律的探究,例题的讲解,习题的完成,知识的总结尽可能的全部由学生完成,教师所起的作用是点拨,评价和指导.这样做,可以更好的体现以学生为中心的教学思想,能更好的提高学生的综合能力.2.不要忽视代数推理对学生的思维训练作用我们一向会错误地认为,推理训练是几何教学的目的,代数可以不讲推理.其实,计算本身就是推理,计算法则、运算性质都是进行计算的根据.学生要知道每进行一步运算都要有根有据.这样通过运算就能逐步培养学生的逻辑思维能力.。
北师大版七年级(上)数学第二章有理数及其运算教案:有理数的加减讲义(含答案)

有理数的加减讲义1.掌握有理数加法运算法则和计算题;2.掌握有理数减法运算法则和计算题;3.掌握有理数加减混合运算的计算技巧.1.(1)加法法则①同号相加,取相同符号,并把绝对值相加.②绝对值不相等的异号两数加减,取___________的符号,并用较大的绝对值________较小的绝对值.③一个数同0相加,仍得这个数.④_______相加结果一定得0。
(2)交换律和结合律有理数的加法同样拥有交换律和结合律(和整数得交换律和结合律一样)用字母表示为: 交换律:a+b=b+a结合律:a+b+c=(a+b)+c=a+(b+c)2.运算要点:(1)同号相加符号不变,异号相加变减.欲问符号怎么定,绝对值大号选。
(2)在进行有理数加法运算时,一般采取:1.互为相反数的先加(抵消);2.同号的先加;3.同分母的先加;4.能凑整数的先加;5.异分母分数相加,先通分,再计算。
3.有理数减法法则:减去一个数,等于加上这个数的________。
其中:两变:减法运算变加法运算,减数变成它的相反数。
一不变:被减数不变。
可以表示成: a -b =a +(-b )。
参考答案:1.(1)绝对值较大,减去,相反数3.相反数1.有理数加法【例1】用“<”号或“>”号填空:(1)若0,0>>n m ,则0________n m +;(2)若0,0<<n m ,则0________n m +;(3)若0,0<>n m ,且n m >,则0________n m +;(4)若0,0><n m ,且n m >,则0________n m +.【解析】考查有理数的加法法则。
【答案】(1) > (2) < (3) > (4)<【例2】(-25)+34+156+(-65)【解析】根据有理数加法法则和加法交换律即可算出结果。
【答案】解:(-25)+34+156+(-65)=(-25)+(-65)+(34+156)=-90+190=100练习1.不改变原式子的值,将6−(+3)−(−7)+(−2)中的减法改成加法并写成省略加号的和应是( )A .−6−3+7−2B .6−3−7−2C .6−3+7−2D .6+3−7−2【答案】C练习2.38+(-22)+(+62)+(-78)【答案】0练习3.(-8.25)+8.25+(-0.25)+(-5.75)+(-7.5)【答案】-13.5练习4.(-8)+47+18+(-27)【答案】302.有理数的减法【例3】 (-20)-(+5)-(-5)-(-12)【解析】根据减法法则,减去一个数等于加上这个数的相反数,即可求出答案。
2、4、2 有理数的加法运算律 2 北师大版七年级数学上册

=0+(-5) =-5
=010+(15)
比较(1)(2)你=-能5 发现什么?
有理数的加法运算律
概括 有理数的加法仍满足交换律和结合律:
加法交换律:两个数相加,交换加数的位置,和不变. a+b=b+a.
加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加 和不变.
(a+b)+c=a+(b+c).
有理数的加法运算律
例1 计算:31+ (-28)+ 28+ 69.
解: 31+ (-28)+ 28+ 69 =31+ 69+[(-28) +28] = 100+ 0 =100.
利用加法交换律: 把异号加法运算变 成同号加法运算,
简化运算.
有理数的加法运算律
变式 训练
计算: (1)( + 26) + (-18) +5 + (-16); (2)(-1.75) +1.5 + (+7.3) +(-2.25) +(-8.5).
实际质量 27 24 23 28 21 26 22 27 与基准数的差 +2 -1 -2 +3 -4 +1 -3 +2 (1)你选取的一个恰当的基准数为___2_5______; (2)根据你选取的基准数,用正负数填写上表; (3)这8筐水果的总质量是多少?
课堂练习
解:25×8+[2+(-1)+(-2)+3+(-4)+1+(-3)+2] =198(千克),
2.4.2有理数的加法 运算律
七年级上册
本节目标
1 回顾小学加法运算律. 2 巩固有理数的加法运算. 3 掌握有理数加法的交换律和结合律
4 熟练运用有理数加法运算律进行加法运算,提高计算能力. 5 会运用加法运算律解决实际问题.
北师大版七年级数学上册 (有理数的加减混合运算)有理数及其运算教学课件(第2课时)

D.-1-(-3)-6-(-8)
4 -2-3+5的读法正确的是( A )
A.负2,负3,正5的和 B.负2,减3,正5的和
C.负2,3,正5的和
D.以上都不对
(来自《典中点》)
知1-练
5 将-3-(+6)-(-5)+(-2)写成省略括号和加号 的和的形式,正确的是( D ) A.-3+6-5-2 B.-3-6+5+2 C.-3-6-5-2 D.-3-6+5-2
1 课堂讲解 有理数的加减运算统一成加法
加法运算律在加减混合运算中的应用
2 课时流程
逐点 导讲练
课堂 小结
作业 提升
复习回顾 加法的交换律: 两个数相加,交换加数的位置,和不变.
ab ba
加法的结合律: 三个数相加,先把前两个数相加或先把 后两个数相加,和不变.
(a b) c a (b c)
55,-40,10,-16,27,-5
今年的小麦总量与去年相比情况如何?
3、某日小明再一条南北:方向的公路上跑步,他从A地出发,每隔 10min记录下自己的跑步情况(向南为正方向,单位:m):
-1008,1100,-976,1010,-827,946
1小时后他停下来休息,此时他在A地什么方向?据A地多远?小明共 跑了多少米?
4、某中学七(1)班学生的平均身高是160厘米 (1)下表给出了该班6名同学的身高情况(单位:厘米),试完成下表.
姓名 身高 身高与平均身高的差值
小明 小彬 小丽 小亮 小颖 小山
159 162 160 154 163 165 -1 +2 0 -6 +3 +5
(2)谁最高?谁最矮? 小山最高,小亮最矮 (3)最高与最矮的学生身高相差多少? 11厘米 (4)求平均身高?
《2.6有理数的加减混合运算》第二课时(教案)北师大版数学七年级上册

第二章有理数及其运算··第二课时教案班级:课时:课型:一、学情分析在对本章的学习过程中,学生已经具备了一定的探究能力,能主动发现、探究一些数学活动.在上一课时学生已经掌握简单的加减混合运算,能应用加减混合运算解决一些简单问题,这为本课学习奠定了基础.二、教学目标1. 能将有理数的加减混合运算统一成加法.2. 能将加法运算写成省略括号及前面加号的形式.3. 能根据具体问题,适当运用运算律简化运算.三、重点难点【教学重点】将有理数的加减混合运算统一成加法及省略加号和括号.【教学难点】能根据具体情况,适当运用运算律简化运算.四、教学过程设计第一环节【复习旧知引入新课】1.有理数的加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加.(2)异号两数相加,绝对值相等时和为0 ;绝对值不等时取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值.(3)一个数同0 相加,仍得这个数.2.有理数的减法法则:减去一个数,等于加上这个数的相反数.3.计算:(1)(-12)+25 = 13 ;(2)17+(-21)= -4 ;(3)(-4)-16 = -20 ;(4)33-(-27)= 60 ;(5)(-37)-(-12)+(-13)+28 = -10 ;(6)(-12)+(-8)+(-6)+5 = -21 .设计意图:有理数的加减法法则是有理数加减混合运算的依据,本环节通过帮学生复习回顾,巩固学生基础,减小新课学习难度.第二环节【合作交流探索新知】一架飞机进行特技表演,起飞后的高度变化如下表:此时飞机比起飞点高了多少千米?教师提问:对于题中的“高度变化”,你是怎么理解的?你能通过列式计算此时飞机的高度吗?学生踊跃发言.教师展示PPT.关于这个问题,国国和粒粒有着不同的解法.国国的解法:粒粒的解法:-- 4.5+(-)+1.1+(-)-= 1.3+1.1+(-)--= 1(km). = 1(km).师:比较以上两种算法,你发现了什么?教师引导学生发现:4.5+(-)+1.1+(-)=--当左边省略加号和括号变成了右边的式子,因此--可以看作4.5、-3.2、1.1、-1.4 这 4 个数的和.师:有理数的加减混合运算可以统一成加法运算.如何将有理数加减法统一成加法呢?例如:(-13)-(-7)+(-8)-(+5)=(-13)+(+7)+(-8)+(-5)在和式中,通常把各个加数的括号和它前面的加号省略不写,写成省略加号的和的形式.即(-13)-(-7)+(-8)-(+5)= -13+7-8-5.师:有理数加减法统一成加法的依据是什么呢?学生思考后回答:有理数减法法则.师:-13+7-8-5按不同的意义有不同的读法.①按这个式子表示的意义来读:可读作“负13、正7、负8、负 5 的和”;②按算式来读:可读作“负13 加7 减8 减5”.--1.4 可以读作?选取一名学生代表回答:“正 4.5、负 3.2、正1.1、负1.4 的和”或“4.5 减3.2 加1.1 减1.4”.师:4.5+(-)+1.1+(-)还有其他计算方法吗?学生猜测是否可以用加法运算律进行简化运算?师生共同进行运算.4.5+(-)+1.1+(-)= 4.5+1.1+[(-)+(-)]= 5.6+(-)= 1.设计意图:本环节主要引导学生思考,通过对两种算法的比较,让学生体会到加减混合运算课统一成加法,理解利用运算律可以简化运算,为进一步学习有理数的加减混合运算做铺垫.第三环节【应用迁移巩固提高】例1.将下列式子写成省略括号和加号的形式,并用两种读法将它读出来.(1)(-12)-(+8)+(-6)-(-5);(2)(-13)-(-7)+(-21)-(+9)+(+32).例2.计算:(1)(-8)-(-15)+(-9)-(-12);(2)5.8432143++⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-; (3)()5.273165.12743--⎪⎭⎫ ⎝⎛-++⎪⎭⎫ ⎝⎛-; (4)⎪⎭⎫ ⎝⎛-+-⎪⎭⎫ ⎝⎛-341531; (5)()()10785612--+⎪⎭⎫ ⎝⎛---; (6)⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-813414215874.例3.下表是某年某市汽油价格的调整情况:注:正号表示比前一次上涨,负号表示比前一次下降.与上一年年底相比,11 月 9 日汽油价格是上升了还是下降了?变化了多少元?设计意图:通过例题教学使学生巩固解决有理数加减混合运算的方法,掌握有理数加减混合运算统一成加法的方法,进一步提高学生的运算能力.【答案】例1.解:(1)(-12)-(+8)+(-6)-(-5)=(-12)+(-8)+(-6)+(+5)= -12-8-6+5;读作负 12 减 8 减 6 加 5 或负 12,负 8,负 6,正 5 的和.(2)(-13)-(-7)+(-21)-(+9)+(+32)=(-13)+(+7) +(-21)+(-9)+(+32)= -13+7-21-9+32.读作负13 加 7 减 21 减 9 加 32 或负 13,正 7,负 21,负 9,正 32 的和.例2.解:(1)原式 =(-8)+15+(-9)+12= 15 +12+[(-8)+(-9)] = 27+(-17)= 10;(2)原式 =5.8432143+++⎪⎭⎫ ⎝⎛- =⎪⎭⎫ ⎝⎛++⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-5.8214343 =0+9=9;(3)原式 =5.273165.12743+⎪⎭⎫ ⎝⎛-++⎪⎭⎫ ⎝⎛- =()5.25.127316743++⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛- =-20+15=-5;(4)原式 =()⎪⎭⎫ ⎝⎛-+-+⎪⎭⎫ ⎝⎛-341531 =()153431-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛- =()1535-+⎪⎭⎫ ⎝⎛- =3216-;(5)原式 =10785612--+- =⎪⎭⎫ ⎝⎛-+--10756812 =2120+- =239-;(6)原式 =813414215874--+⎪⎭⎫ ⎝⎛- =813414215874----++--=()⎪⎭⎫ ⎝⎛--+-+--+-814121873454 =436-- =436-.例3.解:由题意得:-140+290+400+600-220+300-190+480 = 1520,所以与上一年年底相比,11 月 9 日汽油价格上升了,上升了 1520 元/吨.第四环节 【随堂练习 巩固新知】1.(2022秋•新乐市期末)把算式:(-5)-(-4)+(-7)-(+2)写成省略括号的形式,结果正确的是( )A .-5-4+7-2B .5+4-7-2C .-5+4-7-2D .-5+4+7-22.(2022秋•桥西区校级期中)下列式子可读作:“负 1,负 3,正 6,负 8的和”的是( )A .-1+(-3)+(+6)-(-8)B .-1-3+6-8C .-1-(-3)-(-6)-(-8)D .-1-(-3)-6-(-8)3.(2022秋•福田区校级月考)计算:()⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-++85443125.0=( ) A .415 B .4 C .853-D .-44.(2022秋•当涂县期末)8-(+11)-(-20)+(-19)写成省略加号的和的形式是 .5.(2022秋•潍城区期中)一只蜗牛从地面开始爬高为 6 米的墙,向上爬 3 米,然后向下滑 1 米,接着又向上爬 3 米,然后又向下滑1 米,则此时蜗牛离地面的距离为 米.设计意图:本环节为基础练习,让学生能熟练的进行加减混合运算统一成加法的写法,加强学生的运算技能.【答案】2.B3.B4.8-11+20-19.5.4.第五环节 【当堂检测 及时反馈】-32-23 中把省略的“+”号填上应得到( )A .1.17+32+23B .-1.17+(-32)+(-23)C .1.17+(-32)+(-23)-(+32)-(+23)2.(2022秋•点军区期中)a ,b ,c 为三个有理数,下列各式可写成a -b +c 的是( )A .a -(-b )-(+c )B .a -(+b )-(-c )C .a +(-b )+(-c )D .a +(-b )-(+c )3.(2022秋•沙河市期末)为计算简便,把(-)-(-)-()+()+(-)写成省略加号的和的形式,并按要求交换加数的位置正确的是( )A .---3.5B .--3.5C .----3.5D .---0.5+3.54.(2022秋•金堂县校级月考)计算1+(-2)+3+(-4)+5+(-6)+…+19+(-20)得( )A .10B .-10C .20D .-20a = 41-,b = -2,c = 432-,那么|a |+|b |-|c |等于( )A .21-B .211C .21D .211-6.(2022秋•淅川县期中)某件商品原价 18 元,后来又跌 1.5 元,下午又涨价 0.3 元,则这一商品最终价格是( )A .0.3 元B .16.2 元C .16.8 元D .18 元7.(2022秋•海曙区期中)和式431121132+--中第 3 个加数是 ,该和式的运算结果是 .8.数学活动课上,王老师给同学们出了一道题,规定一种新运算“☆”,对于任意有理数a 和b ,有a ☆b = a -b +1,则[2☆(-3)]☆(-2)的值为 .9.计算:--|-2.32|+(-);(2)⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛-+-21775.24335.0;(3)2134317329655-+--.10.(2022秋•槐荫区期中)上海世博会第一天(5 月 1 日)的进园人数为 20.3 万人,以后的 6 天里每天的进园数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数,(单位:万人)①5 月 2 日的进园人数是多少?② 5 月 1 日- 5 月 7 日这 7 天内的进园人数最多的是哪天?最少的是哪天?它们相差多少?③求出这 7 天进园的总人数.设计意图:通过本环节练习,巩固学生对新知识的掌握,同时进一步培养学生分析问题、解决问题的能力.【答案】1. C2.B3.A4.A5.7.311-,611. 8.9.---=(-)-()= 10-20= -10;(2)原式=21743243321++--=⎪⎭⎫⎝⎛--⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-43243321721=7-1=6;(3)原式 =2134317329655--++----=()⎪⎭⎫⎝⎛-+--+-+--2143326531795 =450- =45-.(万人),则 5 月 2 日进园人数为 21.5 万人;②根据题意得:这 7 天的人数分别为:20.3,21.5,13.1,14.5,8.2,10.9,14.8,则 5 月 2 日人数最多,5 日人数最少,-(万人);(万人),则这7 天进园总人数为103.3 万人.第六环节【拓展延伸能力提升】1.若|a|= 3,|b|= 1,|c|= 5,且|a+b|= a+b,|a+c|= -(a+c),求a-b+c的值.2.(1)有1,2,3,…,11,12 共12 个数字,请在每两个数字之间添上“+”或“-”,使它们的和为0;(2)若有1,2,3,…,2007,2008 共2008 个数字,请在每两个数字之间添上“+”或“-”,使它们的和为0;(3)根据(1)(2)的规律,试判断能否在1,2,3,…,2022,2022,共2022 个数字的每两个数字之间添上“+”或“-”,使它们的和为0?若能,请说明添法;若不能,请说明理由.设计意图:本环节为拔高练习,拓展学生的知识面,展现有梯度的教学理念.【答案】1.解:因为|a|= 3,|b|= 1,|c|= 5,且|a+b|= a+b,|a+c|= -(a+c),所以a = 3,b = ±1,c = -5,当a = 3,b = 1,c = -5 时,a-b+c = 3-1+(-5)= -3;当a = 3,b = -1,c = -5 时,a-b+c = 3-(-1)+(-5)= -1;综上所述,a-b+c的值为-3 或-1.2.解:(1)1-2+3-4+5-6-7+8-9+10-11+12 = 0;(2)1-2+3-4+...+1003-1004-1005+1006+ (2007)2008 = 0;(3)不能.因为 1 到2022 的总个数为奇数,每两个数字之间添上“+”或“-”,不能使它们的为和0.第七环节【总结反思知识内化】课堂小结:1.将有理数的加减混合运算统一成加法运算,依据是:有理数的减法法则.2.在把有理数的加减混合运算统一成加法运算的算式中,通常把各个加数的括号和它前面的加号省略不写,从而写成省略加号的和的形式.3. 运用加法交换律和结合律简化运算:(1)同号结合法;(2)凑整法;(3)相反数结合法;(4)同分母结合法;(5)同形结合法;(6)拆项法.设计意图:通过小结,使学生梳理本节课所学内容,把握本节课的核心——有理数的加减混合运算. 第八环节【布置作业夯实基础】。
七年级数学 有理数的加减混合运算(第2课时)教学设计

有理数的加减混合运算(第2课时)教学设计微课名称:有理数的加减混合运算(第2课时)知识点来源:数学学科、七年级、北师大版、第二章第6节录制工具和方法:Camtasia Studia V6.0.2 汉化版设计思路:本节课就是在前面学习的基础上进一步熟练有理数的加减混合运算,体会可以适当地运用加法交换律和结合律来简化运算.通过对一个题目两种解法的比较,对两种算法比较的同时,学生将体会到加减混合运算可以统一成加法,以及加法运算可以省略括号及前面加号的形式(即“代数和”的问题),使学生进一步熟悉有理数加减混合运算.教学设计一、教学目的1.使学生理解有理数的加减法可以互相转化,并了解代数和概念;2.使学生熟练地进行有理数的加减混合运算;3.培养学生的运算能力.二、教学重难点能综合运用有理数及其加法、减法的有关知识,解决简单的实际问题,体会数学与现实生活的联系。
三、教学过程本节课设计了五个教学环节:第一环节:前提补偿(复习回顾);第二环节:导学点拨(讲授新课);第三环节:达标检测(巩固练习);第四环节:课堂小结;第五环节:布置作业。
第一环节:前提补偿计算:27-18+(-7)-32解:原式=27+(-18)+(-7)+(-32)=27+[-(18+7+32)]=27+(-57)=-(57-27)=-30设计目的:通过这个练习,既可以达到让学生复习旧知的目的,也可以为这一节课的学习打下基础。
第二环节:导学点拨活动内容: 比较以上两种算法,你发现了什么?有理数的加减混合运算可以统一成加法运算。
如算式“(-8)-(-15)+(-9)-(-12) ”可以看作-8、15、-9、12这4个数的和,因此在进行加减混合运算时可运用加法交换律和结合律简化运算。
计算:(-8)-(-15)+(-9)-(-12)解:原式=(-8)+(+15)+(-9)+(+12)=-8+15-9+12=-8-9+15+12= (-17)+27 =10学生练习:(-5)-(-7)-(+2)+(-4)活动目的:学生参与教学活动,从而使学生积极主动的学习,学生学习的热情高涨,气氛热烈.活动的实际效果:通过对两种算法的比较,学生将体会加减法混合运算可以统一成加法,以及加法运算可以写成省略括号及前面加号的形式(即“代数和”问题).对“代数和”的学习,重点是让学生通过具体情境加以体会,无须出现“代数和”的名称.学生在学会混合运算运算顺序的前提下,理解利用运算律可以改变运算顺序,从而达到简化计算的目的.第三环节:达标检测活动内容:计算:活动目的: 让学生能进行包括小数、分数在内的有理数的加减混合运算。
北师大版数学七年级上册《有理数的加法运算律》教案

北师大版数学七年级上册《有理数的加法运算律》教案一. 教材分析《有理数的加法运算律》是北师大版数学七年级上册第三章《有理数的混合运算》中的一个重要内容。
本节课主要让学生掌握有理数的加法运算律,并能灵活运用运算律进行简便计算。
教材通过例题和练习,让学生在实际运算中感受运算律的重要性,培养学生的运算能力和逻辑思维能力。
二. 学情分析七年级的学生已经掌握了有理数的基本概念和加法运算,但对运算律的理解和运用还不够熟练。
学生在学习过程中,需要通过实际操作和反复练习,才能更好地理解和掌握运算律。
此外,学生对数学运算的兴趣和积极性也需要激发,以提高学习效果。
三. 教学目标1.让学生掌握有理数的加法运算律,并能灵活运用。
2.培养学生运用运算律进行简便计算的能力。
3.培养学生的运算能力和逻辑思维能力。
4.激发学生对数学运算的兴趣和积极性。
四. 教学重难点1.教学重点:掌握有理数的加法运算律,并能灵活运用。
2.教学难点:理解并运用运算律进行简便计算。
五. 教学方法1.采用问题驱动法,引导学生发现和总结运算律。
2.运用实例讲解,让学生在实际运算中感受运算律的作用。
3.采用分组讨论和合作交流的方式,培养学生的团队协作能力。
4.运用激励评价,激发学生的学习兴趣和积极性。
六. 教学准备1.准备相关例题和练习题,以便进行课堂练习。
2.准备多媒体教学设备,以便进行实例讲解和演示。
七. 教学过程1.导入(5分钟)利用多媒体展示一些实际问题,让学生进行有理数的加法计算。
通过计算,引导学生发现有些问题可以通过改变加法顺序,使得计算更加简便。
从而引出本节课的主题——有理数的加法运算律。
2.呈现(10分钟)讲解有理数的加法运算律,并通过实例进行解释。
让学生明确加法运算律的意义和作用。
3.操练(10分钟)让学生分成小组,进行加法运算律的练习。
每组选一道题目,尝试运用加法运算律进行简便计算。
然后,各组汇报结果,互相交流心得。
4.巩固(10分钟)给学生发放一份练习题,要求学生在规定时间内完成。
《有理数的加法》课堂教学设计

《有理数的加法》课堂教学设计《有理数的加法》课堂教学设计作为一位杰出的教职工,通常需要准备好一份教学设计,编写教学设计有利于我们科学、合理地支配课堂时间。
你知道什么样的教学设计才能切实有效地帮助到我们吗?以下整理的《有理数的加法》课堂教学设计,供大家参考借鉴。
《有理数的加法》课堂教学设计篇1今天我说课的题目是“有理数的加法(一)”,“有理数的加法”说课教案、课堂设计及教后反思。
本节课选自华东师范大学出版社出版的《义务教育课程标准实验教科书》七年级(上),。
这一节课是本册书第二章第六节第一课时的内容。
下面我就从以下四个方面一一教材分析、教材处理、教学方法和教学手段、教学过程的设计向大家介绍一下我对本节课的理解与设计。
一、教材分析分析本节课在教材中的地位和作用,以及在分析数学大纲的基础上确定本节课的教学目标、重点和难点。
首先来看一下本节课在教材中的地位和作用。
1、有理数的加法在整个知识系统中的地位和作用是很重要的。
初中阶段要培养学生的运算能力、逻辑思维能力和空间想象能力以及让学生根据一些现实模型,把它转化成数学问题,从而培养学生的数学意识,增强学生对数学的理解和解决实际问题的能力。
运算能力的培养主要是在初一阶段完成。
有理数的加法作为有理数的运算的一种,它是有理数运算的重要基础之一,它是整个初中代数的一个基础,它直接关系到有理数运算、实数运算、代数式运算、解方程、研究函数等内容的学习。
2、就第二章而言,有理数的加法是本章的一个重点。
有理数这一章分为两大部分----有理数的意义和有理数的运算,有理数的意义是有理数运算的基础,有理数的混合运算是这一章的难点,但混合运算是以各种基本运算为基础的。
在有理数范围内进行的各种运算:加、减法可以统一成为加法,乘法、除法和乘方可以统一成乘法,因此加法和乘法的运算是本章的关键,而加法又是学生接触的第一种有理数运算,学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符合和绝对值),关键是这一节的学习。
《有理数的加法(第2课时)》精品教案

有理数的加法
第2课时有理数加法的运算律
一、教与学目标:
1.使学生能够比较灵活地运用加法的运算律,简化加法运算;
2.体会简便运算的常用策略,渗透字母表示数的意识.
二、教与学重点难点:
使学生能比较灵活的运用加法运算律,简化加法运算.
三、教与学方法:
自主探究、合作交流.
四、教与学过程:
五、课堂小结:
通过本节课的学习,你有哪些收获还有哪些疑惑
加法交换律:两个数相加,交换加数的位置,和()
即 a+b=()
加法结合律:三个数相加,先把前两个数相加,或则先把后两个数相加,和().
即(a+b)+c=a+()
六、作业布置:。
北师大版数学七上 2.4有理数的加法(2)教学设计

七上2.4有理数的加法(2)课标与教材:课标要求理解有理数的运算律,能运用运算律简化运算。
有理数的加法是小学算术加法运算的拓展,是初中数学的起始部分,也是初中数学运算最重要,最基础的内容。
熟练掌握有理数的加法运算是学习有理数其他运算的前提,同时,也为后继学习实数、代数式运算、方程、不等式、函数等知识奠定基础。
有理数的加法运算是建构在生产、生活实例上,有较强的生活价值,体现了数学来源于实践,又反作用于实践。
教学重难点:重点:掌握有理数加法的运算律,并能运用加法运算律简化运算难点:有理数加法的理解和运用。
学情分析:学生在小学学过加法运算,知道加法的交换律和结合律,学生在上一课时已经探索总结出了有理数的加法法则,并进行了一定量的练习,但熟练程度还不够,并且对过去的加法交换律和结合律是否对有理数适用未进行探讨。
教学目标:知识与技能1. 进一步熟练掌握有理数加法的法则;2. 掌握有理数加法的运算律,并能运用加法运算律简化运算;数学思考:建立数感,使学生能清晰地表达自己的想法问题解决:能够由特殊到一般、由一般到特殊,体会研究数学的一些基本方法。
情感、态度:培养学生的分类与归纳能力,强化学生的数形结合思想,提高学生的自学以及理解能力,激发学生学习数学的兴趣。
教学方法与媒体:学案导学与多媒体课件相结合教学过程:活动一.课题引入1、说出有理数加法运算的法则:2.计算下列各题,并说明是根据哪一条运算法则?(1)(-9)+6 = (2)6+(-9) =(3) (-5.3)+(-4.7)= (4) (-4.7) +(-5.3) =(5)[8+(-5)]+(-4)= (6)8+[(-5)+(-4)]=(7)[(-7)+(-10)]+(-11)= (8)(-7)+[(-10)+(-11)]=(9)[(-22)+(-27)]+(+27)= (10)(-22)+[(-27)+(+27)]=通过活动,使学生知道了小学的加法运算和有理数加法运算的联系与区别同时巩固了有理数的加法运算。
七年级上册数学北师版 第2章 有理数及其运算2.4 有理数的加法2.4.2 有理数的加法运算律【教案】

2.4.2 有理数的加法运算律【教学目标】知识与技能理解加法运算律在加法运算中的作用,能运用加法运算律简化加法运算. 过程与方法通过灵活运用加法运算律优化运算过程,培养学生观察、比较、归纳及运算的能力.情感、态度与价值观在优化运算的过程中体验成功的喜悦,培养仔细观察的学习习惯.【教学重难点】重点:有理数加法的运算律.难点:灵活运用运算律使运算简便.【教学过程】一、复习引入师:上节课我们学习了什么,一起来复习一下吧!1.指名学生叙述有理数的加法法则.2.计算:(1)6.18+(-9.18);(2)(+5)+(-12);(3)(-12)+(+5);(4)3.75+2.5+(-2.5);(5)+(-)+(-)+(-).说明:通过练习巩固加法法则,突出计算简化问题,引入新课.二、讲授新课1.发现、总结.(1)提出问题:师:同学们,在小学里,我们曾经学过加法的交换律、结合律,这两个运算律在有理数加法运算中也是成立的吗?(2)探索:任意选择两个有理数(至少有一个是负数),分别填入下列□和○内,并比较两个算式的运算结果.□+○和○+□任意选择三个有理数(至少有一个是负数),分别填入下列□、○和◇内,并比较两个算式的运算结果.(□+○)+◇和□+(○+◇)(3)总结:让学生总结出加法的交换律、结合律.加法交换律:两个数相加,交换加数的位置,和不变,即a+b=b+a.加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变,即(a+b)+c=a+(b+c).这样,多个有理数相加,可以任意交换加数的位置,也可先把其中的几个数相加,使计算简化.2、例题讲解教师板书例题,并和学生共同完成.【例1】计算:(1)(+26)+(-18)+5+(-16);(2)(-2.48)+4.33+(-7.52)+(-4.33);(3)(-1)+(1)+(+7)+(-2)+(-8).解:(1)原式=(26+5)+[(-18)+(-16)]=31+(-34)=-(34-31)=-3;(2)原式=(-2.48)+(-7.52)+4.33+(-4.33)=[(-2.48)+(-7.52)]+[4.33+(-4.33)]=(-10)+0=-10;(3)原式=[(-1)+(-2)]+[1+(-8)]+7=(-4)+(-7)+7=(-4)+[(-7)+7]=(-4)+=-(4-)=-3.从几个例题中你能发现应用运算律时,通常将哪些加数结合在一起可以使运算简便吗?【例2】运用加法运算律计算下列各题:(1)(+66)+(-12)+(+11.3)+(-7.4)+(+8.1)+(-2.5);(2)(+3)+(-2)+(-3)+(-1)+(+5)+(+5);(3)(+6)+(+)+(-6.25)+(+)+(-)+(-).分析:利用运算律将正、负数分别结合,然后相加,可以使运算比较简便;有分数相加时,利用运算律把分母相同的分数结合起来,将带分数拆开,计算比较简便.一定要注意不要遗漏括号.相加的若干个数中出现了相反数时,先将相反数结合起来抵消掉,或通过拆数、部分结合凑成相反数抵消掉,计算比较简便.解:(1)原式=(66+11.3+8.1)+[(-12)+(-7.4)+(-2.5)]=85.4+(-21.9)=63.5;(2)原式=(3+)+(5+)+[-(2+)]+[-(1+)]+(5+)+[-(3+)]=3+5+++(-2)+(-1)+(-)+(-)+5+(-3 )++(-)=7;(3)原式=(+6)+(-6.25)+(+)+(-)+(-)=-.【例3】小明遥控一辆玩具赛车,让它从点A出发,先向东行驶15 m,再向西行驶25 m,然后又向东行驶20 m,再向西行驶35 m.问玩具赛车最后停在何处?一共行驶了多少米?解:规定向东行驶为正.(+15)+(-25)+(+20)+(-35)=(15+20)+[(-25)+(-35)]=35+(-60)=-25(m).|+15|+|-25|+|+20|+|-35|=15+25+20+35=95(m).答:玩具赛车最后停在点A西面25 m处,一共行驶了95 m.在解题过程中,可以画出如下的示意图帮助思考.【例4】有一批食品罐头,标准质量为每听454 g.现抽取10听样品进行检测,结果如下表:这10听罐头的总质量是多少?解法一:这10听罐头的总质量为444+459+454+459+454+454+449+454+459+464=4550(g).解法二:把超过标准质量的克数用正数表示,不足的用负数表示,列出10听罐头与标准质量的差值表:这10听罐头与标准质量差值的和为(-10)+5+0+5+0+0+(-5)+0+5+10=[(-10)+10]+[(-5)+5]+5+5=10(g).因此,这10听罐头的总质量为454×10+10=4540+10=4550(g).三、课堂小结教师引导学生小结:三个以上的有理数相加,可运用加法交换律和结合律任意改变加数的位置,简化运算.常见的技巧有:1.凑零凑整:互为相反数的两个数结合先加;和为整数的加数结合先加.2.同号集中:按加数的正负分成两类分别结合相加,再求和.3.同分母结合:把分母相同或容易通分的结合起来。
2.4 有理数的加法 第2课时 北师大版七年级数学上册同步作业(含答案)

4 有理数的加法第2课时必备知识·基础练(打“√”或“×”)1.两个数相加,交换加数的位置,和也发生了变化. ( × )2.三个数相加,只能先把前两个数相加.( × ) 3.a +(-b)=b +(-a).( × )知识点1 运用运算律简化有理数加法运算1.(2021·北京质检)计算318 +⎝⎛⎭⎪⎫-327 +678 +⎝ ⎛⎭⎪⎫-457 时运算律运用最合理的是( D )A .⎣⎢⎡⎦⎥⎤318+⎝ ⎛⎭⎪⎫-327 +⎣⎢⎡⎦⎥⎤678+⎝ ⎛⎭⎪⎫-457 B .⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫-327+678 +⎣⎢⎡⎦⎥⎤318+⎝ ⎛⎭⎪⎫-457 C .⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-327+678 -⎣⎢⎡⎦⎥⎤318+⎝ ⎛⎭⎪⎫-457 D .⎣⎢⎡⎦⎥⎤318+678 +⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫-327+⎝ ⎛⎭⎪⎫-457 【解析】计算318 +⎝ ⎛⎭⎪⎫-327 +678 +⎝ ⎛⎭⎪⎫-457 时运算律运用最合理的是[318 +678 ]+[⎝⎛⎭⎪⎫-327 +⎝ ⎛⎭⎪⎫-457 ]. 2.下列省略加号和括号的形式中,正确的是( B )A .(-7)+(+6)+(-5)+(-2)=-7++6+-5+-2B .(-7)+(+6)+(-5)+(-2)=-7+6-5-2C .(-7)+(+6)+(-5)+(-2)=-7+6+5+2D .(-7)+(+6)+(-5)+(-2)=-7+6-5+2【解析】A.原式=-7+6-5-2,错误;B .原式=-7+6-5-2,正确;C .原式=-7+6-5-2,错误;D .原式=-7+6-5-2,错误.3.计算:31+(-26)+69+28=__102__.【解析】原式=(31+69)+(-26+28)=100+2=102.4.绝对值大于1而小于3的所有整数和是__0__.【解析】绝对值大于1而小于3的所有整数为-2,2,它们的和为0.5.计算:(-1)+2+(-3)+4+…+50=__25__.【解析】原式=(-1+2)+(-3+4)+…+(-49+50)=1+1+…+1=25.6.计算:(1)(-2.4)+(-3.7)+(-4.6)+5.7;(2)⎝ ⎛⎭⎪⎫-13 +13+⎝ ⎛⎭⎪⎫-23 +17; (3)(-3.14)+(+4.96)+(+2.14)+(-7.96).【解析】(1)原式=-10.7+5.7=-5.(2)原式=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-13+⎝ ⎛⎭⎪⎫-23 +(13+17)=-1+30=29.(3)原式=(-3.14+2.14)+(4.96-7.96)=-1-3=-4.7.阅读下面文字:对于⎝ ⎛⎭⎪⎫-556 +⎝ ⎛⎭⎪⎫-923 +1734 +⎝ ⎛⎭⎪⎫-312可以如下计算:原式=⎣⎢⎡⎦⎥⎤(-5)+⎝ ⎛⎭⎪⎫-56 +⎣⎢⎡⎦⎥⎤(-9)+⎝ ⎛⎭⎪⎫-23 +⎝ ⎛⎭⎪⎫17+34+⎣⎢⎡⎦⎥⎤(-3)+⎝ ⎛⎭⎪⎫-12=⎣⎡⎦⎤(-5)+(-9)+17+(-3) +[⎝ ⎛⎭⎪⎫-56 +⎝ ⎛⎭⎪⎫-23 +34+⎝ ⎛⎭⎪⎫-12 ]=0+⎝ ⎛⎭⎪⎫-114 =-114 .上面这种方法叫拆项法,你看懂了吗?仿照上面的方法,请你计算:⎝ ⎛⎭⎪⎫-112 +⎝ ⎛⎭⎪⎫-2 00056 +4 00034 +⎝ ⎛⎭⎪⎫-1 99923 .【解析】⎝ ⎛⎭⎪⎫-112 +⎝ ⎛⎭⎪⎫-2 00056 +4 00034 +⎝ ⎛⎭⎪⎫-1 99923=-1+⎝ ⎛⎭⎪⎫-12 +(-2 000)+⎝ ⎛⎭⎪⎫-56 +4 000+34 +(-1 999)+⎝ ⎛⎭⎪⎫-23=[-1+(-2 000)+4 000+(-1 999)]+[⎝ ⎛⎭⎪⎫-12 +⎝ ⎛⎭⎪⎫-56 +34 +⎝ ⎛⎭⎪⎫-23 ] =0+⎝ ⎛⎭⎪⎫-54 =-54 . 知识点2 有理数加法的综合运用8.(2021·成都质检)下列说法正确的是( C )A .-a 一定是负数B .两个数的和一定大于每一个加数C .若|m |=2,则m =±2D .若a +b =0,则a =b =0【解析】A.-a 不一定为负数,例如-(-1)=1,故选项错误;B .两个数的和不一定大于每一个加数,例如(-2)+(-1)=-3,故选项错误;C .若|m |=2,则m =±2,故选项正确;D .若a +b =0,则a 与b 互为相反数,故选项错误.9.若a 是最小的正整数,b 是绝对值最小的数,c 是相反数等于它本身的数,d 是到原点的距离等于2的负数,e 是最大的负整数,则a +b +c +d +e =__-2__.【解析】∵a 是最小的正整数,b 是绝对值最小的数,c 是相反数等于它本身的数,d 是到原点的距离等于2的负数,e 是最大的负整数, ∴a =1,b =0,c =0,d =-2,e =-1,∴a +b +c +d +e =1+0+0-2-1=-2.10.已知a 和b 互为相反数,x 的绝对值为1,则a +b +x 的值等于__±1__.【解析】由题意得:a+b=0,|x|=1,则原式=0+x=0±1=±1.11.我们知道,在三阶幻方中每行、每列、每条对角线上的三个数之和都是相等的,在如图的三阶幻方中已经填入了两个数13和19,则图中最左上角的数n应该是__16__.【解析】如图,设相应的方格中的数为a,b,c,d,n+a+b=a+c+13①,n+c+d=b+d+19②,①+②,得:2n+a+b+c+d=a+b+c+d+32,∴2n=32,解得n=16.关键能力·综合练12.若两个非零有理数a,b满足|a|=a,|b|=-b,且a+b<0,则a,b取值符合题意的是(B)A.a=-2,b=-3 B.a=2,b=-3C.a=3,b=-2 D.a=-3,b=2【解析】∵|a|=a,|b|=-b,a+b<0,∴a >0,b <0,且|a |<|b |,在四个选项中只有B 选项符合.13.在数轴上,大于-2且小于5的整数的和是__9__.【解析】大于-2且小于5的所有整数有-1,0,1,2,3,4,和是-1+0+1+2+3+4=9.14.在0,-2,1,12 这四个数中,最大数与最小数的和是__-1__.【解析】在0,-2,1,12 四个数中,最大的数是1,最小的数是-2,它们的和为-2+1=-1.15.若四位数的各个数位上的数字具有如下特征:个位数是其余各个位上的数字之和,则称该四位数是和谐数,如2 013满足3=2+0+1,则2 013是和谐数,又如2 015不是和谐数,因为5≠2+0+1,那么在大于1 000且小于2 025的所有四位数中,和谐数的个数有__48__个.【解析】个位数为1:1 001,合计1个数;个位数为2:1 012,1 102,2 002,合计3个数;个位数为3:1 023,1 203,1 113,2 013,合计4个数;个位数为4:1 034,1 304,1 214,1 124,2 024,合计5个数; 个位数为5:1 045,1 405,1 135,1 315,1 225,合计5个数; 个位数为6:1 056,1 506,1 146,1 416,1 236,1 326,合计6个数;个位数为7:1 067,1 607,1 157,1 517,1 247,1 427,1 337,合计7个数;个位数为8:1 078,1 708,1 168,1 618,1 258,1 528,1 348,1 438,合计8个数;个位数为9:1 089,1 809,1 179,1 719,1 269,1 629,1 359,1 539,1 449,合计9个数;1+3+4+5+5+6+7+8+9=48,所以在大于1 000且小于2 025的所有四位数中,和谐数的个数有48个.16.先阅读第(1)小题,仿照其解法再计算第(2)小题:(1)计算:-156 +⎝ ⎛⎭⎪⎫-523 +2434 +⎝ ⎛⎭⎪⎫-312 原式=⎝ ⎛⎭⎪⎫-1-56 +⎝ ⎛⎭⎪⎫-5-23 +(24+34 )+⎝ ⎛⎭⎪⎫-3-12 =-1-56 -5-23 +24+34 -3-12=[(-1)+(-5)+24+(-3)]+[⎝ ⎛⎭⎪⎫-56 +⎝ ⎛⎭⎪⎫-23 +34 +⎝ ⎛⎭⎪⎫-12 ] =15+⎝ ⎛⎭⎪⎫-54 =1334 . (2)计算(-205)+40034 +⎝⎛⎭⎪⎫-20423 +⎝ ⎛⎭⎪⎫-112 . 【解析】原式=(-205)+400+34 +(-204)+⎝ ⎛⎭⎪⎫-23 +(-1)+⎝ ⎛⎭⎪⎫-12 =(400-205-204-1)+⎝ ⎛⎭⎪⎫34-23-12 =-10512 . 17.(素养提升题)在有些情况下,不需要计算出结果也能把绝对值符号去掉.例如:|6+7|=6+7;|6-7|=7-6;|7-6|=7-6;|-6-7|=6+7.(1)根据上面的规律,把下列各式写成去掉绝对值符号的形式: ①|7-21|=________;②⎪⎪⎪⎪⎪⎪-12-0.8 =________; ③⎪⎪⎪⎪⎪⎪717-718 =________. (2)数a 在数轴上的位置如图所示,则|a -2.5|=________.A .a -2.5B .2.5-aC .a +2.5D .-a -2.5(3)利用上述介绍的方法计算或化简: ①⎪⎪⎪⎪⎪⎪15-12 018 +⎪⎪⎪⎪⎪⎪12 018-12 -⎪⎪⎪⎪⎪⎪-12 +11 009 ; ②⎪⎪⎪⎪⎪⎪15-1a +⎪⎪⎪⎪⎪⎪1a -12 -⎪⎪⎪⎪⎪⎪-12 +2⎝ ⎛⎭⎪⎫1a ,其中a >2. 【解析】(1)①|7-21|=21-7;②⎪⎪⎪⎪⎪⎪-12-0.8 =12 +0.8;③⎪⎪⎪⎪⎪⎪717-718 =717 -718 .答案:①21-7 ②12 +0.8 ③717 -718(2)选B.由数轴得:a <2.5,则|a -2.5|=2.5-a .(3)利用上述介绍的方法计算或化简:①⎪⎪⎪⎪⎪⎪15-12 018 +⎪⎪⎪⎪⎪⎪12 018-12 -⎪⎪⎪⎪⎪⎪-12 +11 009 =15 -12 018 +12 -12 018 -12 +11 009=15 -11 009 +11 009 =15 .②⎪⎪⎪⎪⎪⎪15-1a +⎪⎪⎪⎪⎪⎪1a -12 -⎪⎪⎪⎪⎪⎪-12 +2⎝ ⎛⎭⎪⎫1a ,其中a >2. 当2<a <5时,原式=1a -15 +12 -1a -12 +2a =-15 +2a =10-a5a ,当a ≥5时,原式=15 -1a +12 -1a -12 +2a =15 .易错点:有理数的加法的运算法则【案例】(2021·南通期中)下面的四个说法:①若a +b =0,则|a |=|b |;②若|a |=-a ,则a <0;③若|a |=|b |,则a =b ;④若|a |+|b |=0,则a =b =0,其中正确的是( B )A .①②B .①④C .②③D .③④【解析】若a +b =0,则|a |=|b |,∴①符合题意;若|a |=-a ,则a ≤0,∴②不符合题意;若|a |=|b |,则a =b 或a =-b ,∴③不符合题意;若|a|+|b|=0,则a=b=0,∴④符合题意,∴正确的是:①④.关闭Word文档返回原板块。
北师大版-数学-七年级上册-北京四中2.4 有理数的加法 教案

2.4 有理数的加法(一)教学目标:1、经历探索有理数加法法则的过程,理解有理数的加法法则。
2、能熟练进行整数加法运算教学重点:有理数加法法则;教学难点:异号两数相加的法则。
教学过程:一、创设问题情境,引入课题:问题:请帮小明计算一下他做生意的利润情况:1、第一次盈利2万,第二次又盈利3万,两次合计情况是————————;2、第一次亏损2万,第二次又亏损3万,两次合计情况是————————;3、第一次盈利2万,第二次又亏损3万,两次合计情况是————————。
4、第一次亏损2万,第二次又盈利3万,两次合计情况是————————。
引导学生得出结论后,列出算式:(1)(+2)+(+3)(2)(-2)+(-3)(3)(+2)+(-3)(4)(-2)+(+3)并解释这些算式中符号的区别。
二、探求新知,形成结构1、教师引导学生看书自学课本P44-45 内容。
说明:比赛输了1个球与赢1个球是一对具有相反意义的量;-1与1互为相反数;是用来交流用的。
2、教师引导学生看书自学课本P46 利用数轴表示加法运算的过程,并写出算式、观察算式(区分符号),寻找有理数加法的规律与法则。
议—议:两个有理数相加,和的符号怎样确定?和的绝对值怎样确定?一个有理数同0相加和是多少?(前后桌讨论)有理数加法法则:同号两数相加,取相同的符号,并把绝对值相加。
异号两数相加,绝对值相等是和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
一个数同0相加,仍得这个数。
(强调:做题时要先看看是同号相加,还是异号相加,利用法则运算时,运算要先定号,再求绝对值。
) 问:特殊地,两个相反数相加,结果会怎样? 得出:两个相反数相加,结果为零 三、应用新知识,体验成功1、例1、计算下列各题:(师生共同完成,并由生口述依据)(1)180+(-10); (2)(-10)+(-1) (3)5+(-5); (4)0+(-2) 解:(1)180+(-10)= +(180-10)=170 (2)(-10)+(-1)= -(10+1) (3)5+(-5)=0 (4)0+(-2)= -2 2、课堂练习: (1)P 47 随堂练习1 (2)计算:(+4)+(+6)=_____; (+4)+(-2)=____;(-4)+2-=_______;(-9819)+0=______; (371-)+371=_______; =-+-)41()21( ______.(3)P 51 习题2.5 5、6 3、 逆用加法法则:(+5)+( )=-10 (-8)+( )=-10 (-8)+( )=+10四、小结(鼓励学生用自己的语言归纳法则)本节课主要学习了有理数加法法则,利用法则计算时,要注意先看看是异号两数相加还是同号两数相加,相加时要先定号,再算绝对值。
北师大版七年级数学上册全册教案全集(全册 共92页)

北师大版七年级数学上册全册教案全集(全册共92页)目录1.1生活中的立体图形1.2展开与折叠1.3截一个几何体1.4从三个方向看物体的形状2.1有理数2.2数轴2.3绝对值2.4有理数的加法第1课时有理数的加法法则第2课时有理数加法的运算律2.5有理数的减法2.6有理数的加减混合运算第1课时有理数的加减混合运算及运算律在其中的应用第2课时有理数的加减混合运算的实际应用2.7有理数的乘法第1课时有理数的乘法法则第2课时有理数乘法的运算律2.8有理数的除法2.9有理数的乘方2.10科学记数法2.11有理数的混合运算2.12用计算器进行运算3.1字母表示数3.2代数式第1课时代数式第2课时代数式的求值3.3整式3.4整式的加减第1课时合并同类项第2课时去括号第3课时整式的加减3.5探索与表达规律4.1线段、射线、直线4.2比较线段的长短4.3角4.4角的比较4.5多边形和圆的初步认识5.1认识一元一次方程第1课时一元一次方程第2课时等式的基本性质5.2求解一元一次方程第1课时利用移项与合并同类项解一元一次方程第2课时利用去括号解一元一次方程第3课时利用去分母解一元一次方程5.3应用一元一次方程——水箱变高了5.4应用一元一次方程——打折销售5.5应用一元一次方程-“希望工程”义演5.6应用一元一次方程——追赶小明6.1数据的收集6.2普查和抽样调查6.3数据的表示第1课时扇形统计图第2课时频数直方图6.4统计图的选择1.1生活中的立体图形1.经历从现实世界中抽象出图形的过程,感受图形世界的丰富多彩.2.在具体情境中,认识圆柱、圆锥、正方体、长方体、棱柱、球,并能用自己的语言描述它们的某些特征.3.通过丰富的实例,进一步认识点、线、面,初步感受点、线、面之间的关系.4.在对图形进行观察、操作等活动中,积累处理图形的经验,发展空间观念.一、情境导入我们生活在多姿多彩的图形世界中,许多美丽的图形装点着我们的生活,下面让我们一起来欣赏.二、合作探究探究点一:识别立体图形【类型一】识别立体图形如图,在给出的实物图中,(1)哪些是你学过的长方体、正方体?(2)请你从图中找出与圆锥、圆柱类似的几何体;(3)你还能发现哪些物体的形状与我们学过的几何体相同或相近?解:(1)物体a,d,h,i,n易使人联想起长方体;物体b,p易使人联想起正方体;(2)物体g,m类似于圆柱;物体l类似于圆锥;(3)物体e类似于棱锥;物体f,k类似于球.方法总结:考查了对现实生活中立体图形的初步认识,结合所学几何体的特征,抽象出几何图形.【类型二】立体图形构成的元素观察图形,回答下列问题:(1)图①是由几个面组成的,这些面有什么特征?(2)图②是由几个面组成的,这些面有什么特征?(3)图①中共有多少条线?这些线都是直的吗?图②呢?(4)图①和图②中各有几个顶点?解析:(1)根据长方体的面的特点解答;(2)根据圆锥的面的特点解答;(3)根据长方体和圆锥的线的特点解答;(4)根据长方体和圆锥的顶点情况解答.解:(1)图①是由6个面组成的,这些面都是平的面;(2)图②是由2个面组成的,1个平的面和1个曲的面;(3)图①中共有12条线,这些线都是直的;图②中有1条线,是曲线;(4)图①中有8个顶点,图②中只有1个顶点.方法总结:解答此类问题要联系实物的形状与面的形状作对比,然后作出判断,平面与平面相交成直线,曲面与平面相交成曲线.【类型三】几何体的分类将如图所示的几何体分类:解析:此题作为一道开放型题,分类的方法非常多,只要能说明分类的理由即可.但要注意:按某一标准分类时,要做到不重不漏,分类标准不同时,分类的结果也就不尽相同.解:本题答案不唯一,如按柱体、锥体、球体分类:(2)(3)(5)和(6)都是柱体,(4)(7)是锥体,(1)是球体.方法总结:生活中常见几何体有两种分类:一种按柱体、锥体、球体分类;一种按平面和曲面分类.探究点二:几何体的形成笔尖画线可以理解为点动成线.使用数学知识解释下列生活中的现象:(1)流星划破夜空,留下美丽的弧线;(2)一条拉直的细线切开了一块豆腐;(3)把一枚硬币立在桌面上用力一转,形成一个球.解析:解释现象关键是看其属于什么运动.解:(1)点动成线;(2)线动成面;(3)面动成体.方法总结:生活中的很多现象都可以用数学知识来解释,关键是要找到生活实例与数学知识的连接点,如第(1)题可将流星看作一个点,则“点动成线”.如图所示,将平面图形绕轴旋转一周,得到的几何体是()解析:半圆绕其一条直径所在的直线旋转一周,得到的图形是球.故选A.方法总结:点动成线,线动成面,面动成体,以运动的观点观察静止的点、线、面,就能得到千姿百态的几何图形.解答此题可动手操作,也可以空间想象.三、板书设计生活中的立体图形 ⎩⎪⎪⎨⎪⎪⎧几何体⎩⎪⎨⎪⎧柱体⎩⎪⎨⎪⎧圆柱棱柱锥体⎩⎪⎨⎪⎧圆锥棱锥球体图形的构成元素⎩⎪⎨⎪⎧点:点动成线线:线动成面面:面动成体在本节课的教学设计中,改变以往注重知识传授的倾向,使学生形成积极主动的学习态度,关注学生的学习兴趣和体验.数学学习活动中,应用多媒体给学生创设了生动的学习活动情景,引导学生观察生活中的美妙画面,激发学生的学习兴趣,对点、线、面、体的知识有了初步的认识.在学习中注重让学生主动参与学习活动,观察感受,亲身经历体验图形的变化过程,通过自主、合作、探究学习,感悟知识的形成、变化、发展,激发学生的联想与再创造能力.1.2 展开与折叠1.通过展开与折叠、模型制作等活动,进一步认识棱柱、圆锥和圆柱,发展空间观念,积累数学活动经验.2.了解棱柱、圆柱、圆锥的侧面展开图,能根据展开图判断和制作简单的立体模型,培养空间想象能力.一、情境导入喜羊羊现有涂色方式完全相同的四个正方体,每个正方体的六个面上分别涂上红、黄、蓝、白、黑、绿六种颜色.喜羊羊把这四个正方体拼成如图所示的长方体,并让美羊羊判断红、黄、白三种颜色的对面分别涂着哪一种颜色.你能帮助美羊羊吗?二、合作探究探究点一:展开与折叠【类型一】几何体的表面展开图(长春中考)下列图形中,是正方体表面展开图的是( )解析:选项A是“田”字型,选项B是“凹”字型,选项D是“L”型,它们都不是正方体的表面展开图;只有选项C是“一四一”型,符合正方体的展开图形式,故选C.方法总结:方法1:根据正方体的11种表面展开图逐个进行选项核对;方法2:由于正方体的表面展开图不包括“L”型、“田”字型和“凹”字型,故可采用排除法进行判断.过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图几何体,其正确展开图为()解析:选项A、C、D折叠后都不符合题意,只有选项B折叠后两个剪去的三角形与另一个剪去的三角形交于一个顶点.故选B.方法总结:考查几何体的展开图.解决此类问题,要充分考虑带有各种符号的面的特点及位置.【类型二】正方体的相对面杭州市将举办2016年G20峰会,为了迎接这一盛会,小威特意制作了一个正方体广告牌,并在各个表面上书写了汉字或符号,其表面展开图如图所示,则原正方体中的“州”字所在面的对面所标的是________.解析:将正方体展开图折叠后可知:“杭”与“您”相对,“州”与“迎”相对,“欢”与“!”相对.故填“迎”.方法总结:将正方体的展开图折叠找到相对的面,再判断相应面上应填的字.【类型三】由展开图判断几何体下面的展开图能拼成如图立体图形的是()解析:立体图形是三棱柱,展开图应该是:三个长方形,两个三角形,两个三角形位于三个长方形两侧;A答案折叠后两个长方形重合,故排除;C、D折叠后三角形都在一侧,故排除.故选B.方法总结:此题主要考查了展开图折叠成几何体.通过结合立体图形与平面图形的相互转化,理解和掌握几何体的展开图,要注意多从实物出发,然后再从给定的图形中辨认它们能否折叠成给定的立体图形.探究点二:求立体图形的表面积如图是一张铁皮.(1)计算该铁皮的面积.(2)它能否做成一个长方体盒子?若能,画出它的几何图形,并计算它的体积;若不能,请说明理由.解:(1)该铁皮的面积为(1×3)×2+(2×3)×2+(1×2)×2=22(平方米); (2)能做成一个长方体盒子,如图所示.它的体积为3×1×2=6(立方米).方法总结:能否做成一个长方体盒子,就看相对的面的形状是否相同,大小是否相等. 三、板书设计几何体的展开与折叠⎩⎪⎨⎪⎧棱柱的展开图圆柱的展开图圆锥的展开图教学过程中,强调学生自主探索和合作交流,经历观察、操作、抽象、感受、归纳、积累等思维过程,从中获得数学知识与技能,体验教学活动的方法,发展空间观念,同时升华学生的情感态度和价值观.1.3 截一个几何体1.经历切截几何体的活动过程,体会几何体在切截过程中的变化,在面与体的转换中积累数学活动经验.2.丰富对空间图形的认识和感受,发展空间观念和形象思维能力.一、情境导入 在生活中,随时随地都可以看到或接触到被加工过的物体,这种加工一般要对物体进行切割,通过切割得到不同的截面,从而使得几何体在面与体之间转换.为了探究正方体的截面形状,小颖从豆腐店买了一块正方体形状的豆腐(如图①),回家后她用刀去切这块豆腐,试问切面形状不可能为图②中的哪种形状?二、合作探究探究点一:截正方体问题如图,用一个平面去截一个正方体,截面形状和大小相同的是()A.①与③,④与②B.③与④C.①与③④D.①与②,③与④解析:根据图形可知图①②的截面都与正方体的面平行,图③④的截面形状都是长为正方体的一个面的对角线的长,宽为正方体的棱长的长方形.故选D.方法总结:用一个平面去截正方体,截面的形状可能是三角形、正方形、长方形、梯形、五边形、六边形等.探究点二:截圆柱问题如图所示的圆柱被一个平面所截,其截面的形状不可能是()解析:当截面与轴截面平行时,得到的截面的形状为长方形;当截面与轴截面斜交时,得到的截面的形状是椭圆;当截面与轴截面垂直时,得到的截面的形状是圆,所以截面的形状不可能是三角形.故选A.方法总结:用平面去截圆柱时,常见的截面有圆、椭圆、长方形、类似于梯形、类似于拱形等.探究点三:截圆锥问题一竖直平面经过圆锥的顶点截圆锥,所得到的截面形状与下图中相同的是()解析:经过圆锥顶点的平面与圆锥的侧面和底面截得的都是一条线.如图,由图可知得到的截面是一个等腰三角形.故选B.方法总结:用平面去截圆锥,截面的形状可能是三角形、圆、椭圆等.三、板书设计教学过程中,强调学生自主探索和合作交流,经历操作、抽象、归纳、积累等思维过程,从中获得数学知识与技能,发展空间观念和动手操作能力,同时升华学生的情感态度和价值观.1.4从三个方向看物体的形状1.经历从不同方向观察物体的活动过程,发展空间观念.2.在观察的过程中,初步体会从不同方向观察同一物体可能看到不同的形状.3.能识别从三个方向看到的简单物体的形状,会画立方体及简单组合体从三个方向看到的形状,并能根据看到的形状描述基本几何体或实物原型.一、情境导入观察图中不同方向拍摄的庐山美景.你能从苏东坡《题西林壁》诗句:“横看成岭侧成峰,远近高低各不同.不识庐山真面目,只缘身在此山中.”体验出其中的意境吗?你能挖掘出其中蕴含的数学道理吗?让我们一起探索新知吧!二、合作探究探究点一:从不同的方向看物体如图所示的几何体是由一些小正方体组合而成的,从上面看到的平面图形是()解析:这个几何体从上面看,共有2行,第一行能看到3个小正方形,第二行能看到2个小正方形.故选D.方法总结:从不同方向看小正方体组成的几何体的形状时,关键要看清每个方向有几列,每列有几层,然后画出符合实际的图形.沿圆柱体上底面直径截去一部分后的物体如图所示,它从上面看到的图形是()解析:从上面看可得到两个半圆的组合图形.故选D.方法总结:本题考查了从特定的方向观察物体.在解题时要注意,看不见的线画成虚线,看得见的线画成实线.探究点二:画出从不同方向看到的几何体的形状画出如图中的几何体从正面、左面、上面看到的形状图.解析:(1)从正面看有三列,每列正方形的个数分别是1、2、2.(2)从左面看有两列,每列正方形的个数分别为2、1.(3)从上面看有三列,每列正方形的个数分别是1、2、1.解:如图所示:方法总结:画从不同的方向看立体图形的技巧:(1)从正面看立体图形时,可以想象为将几何体从前向后压缩,使看到的面全部落在同一竖直的平面内;(2)从左面看立体图形时,可以想象为将几何体从左向右压缩,使看到的面全部落在同一竖直的平面内;(3)从上面看立体图形时,可以想象为将几何体从上向下压缩,使看到的面全部落在同一水平的平面内.探究点三:由从三个方向看到的形状图判断几何体如图是一个几何体的三视图,则这个几何体的形状是()A.圆锥B.圆柱C.圆台D.长方体解析:由几何体从正面和左面看到的形状图均为等腰三角形,可知该几何体是锥体,又由从上面看到的形状图是带圆心的圆可知该几何体是圆锥.故选A.方法总结:由从三个方向看到的形状描述几何体的一般步骤:(1)确定形状:根据从各个方向看到的形状想象从各个方向看到的几何体(或实物原型)的大致形状,初步确定该几何体(或实物原型)的形状;(2)确定大小:确定轮廓线的位置及各个方向的具体尺寸;(3)综合成型:综合上述两步得到的形状与大小,最后得出几何体(或实物原型)的名称.下图是一个立体图形从三个方向看到的图形,请写出这个立体图形的名称,并计算这个立体图形的体积.(结果保留π)解析:从正面看以及从左面看得到的图形为正方形,而从上面看到的图形为圆形,故可以得出该立体图形为圆柱.由三个视图可知圆柱的半径和高,易求体积.解:该立体图形为圆柱.∵圆柱的底面半径r =5,高h =10,∴圆柱的体积V =πr 2h =π×52×10=250π. 答:立体图形的体积为250π.方法总结:本题主要考查根据从三个方向看到的图形判断几何体的形状和求圆柱体的体积,同时考查了空间想象能力.探究点四:探究创新题用小立方体搭一个几何体,使得它从正面和上面看到的形状如图所示,搭建这样的几何体只有一种吗?最多需要几个小立方体?最少需要几个小立方体?解析:由于从正面看到的列数与从上面看到的列数相同,从正面看到的每列方块数是从上面看到的该列中的最大数字,所以对于从上面看到的第一列三个方格中至少有一个是3,第二列两个方格中至少有一个是3,而第三列两个方格中必须全是1,所以这样的几何体不唯一,最多需要小立方体的个数如图所示,3×5+2=17(个),最少需要小立方体的个数为3×2+1×5=11(个).解:这样的几何体不唯一.它最多需要17个小正方体,最少需要11个小正方体. 方法总结:解决此类问题要抓住从三个方向看物体的形状和特点,即从正面看到的列数与从上面看到的列数相同,从正面看到每列方块数是从上面看该列中的最大数字.三、板书设计从不同方向看物体的形状⎩⎪⎨⎪⎧从正面看到的形状从左面看到的形状从上面看到的形状本课时先通过创设情景,跨越学科界限,由苏东坡的一首诗《题西林壁》把同学们带入了一个如诗如画的境界,再从诗歌中提炼出隐含的数学知识,激发学生的学习兴趣.再由小组合作,让学生参与,探索新知,充分体现了以学生为主体的新理念.2.1 有理数1.借助生活中的实例理解负数、有理数的意义,体会负数引入的必要性和有理数应用的广泛性.2.会判断一个数是正数还是负数,能应用正、负数表示生活中具有相反意义的量,体会数学知识与现实世界的联系.3.在负数概念的形成过程中,培养观察、归纳与概括的能力.一、情境导入学校组织足球比赛,猛虎队和蛟龙队展开了一场激烈的对决,豆豆所在的猛虎队踢进4个球,失3个球,你能用数学的方式帮助豆豆表示他们队的进失球情况吗?学了有理数的有关知识后,问题不难解决.二、合作探究探究点一:用正、负数表示具有相反意义的量 【类型一】 会用正、负数表示具有相反意义的量 如果某河的水位升高0.8m 时水位变化记作+0.8m ,那么水位下降0.5m 时水位变化记作( ) A .0m B .0.5mC .-0.8mD .-0.5m解析:由水位升高0.8m 时水位变化记作+0.8m ,根据相反意义的量的含义,则水位下降0.5m 时水位变化就记作-0.5m ,故选D.方法总结:用正、负数表示相反意义的量时,要抓住基准,比基准量多多少记为“+”的多少,少多少记为“-”的多少.另外通常把“零上、上升、前进、收入、运进、增产”等规定为正,与它们意义相反的量表示为负.【类型二】 用正、负数表示误差的范围某饮料公司的一种瓶装饮料外包装上有“500±30(mL)”字样,请问“500±30(mL)”是什么含义?质检部门对该产品抽查5瓶,容量分别为503mL ,511mL ,489mL ,473mL ,527mL ,问抽查的产品是否合格?解析:+30mL 表示比标准容量多30mL ,-30mL 表示比标准容量少30mL.则合格范围是指容量在470~530(mL)之间.解:“500±30(mL)”表示470~530(mL)是合格范围,503mL ,511mL ,489mL ,473mL ,527mL 都在合格范围内,故抽查的产品都是合格的.方法总结:解决此类问题的关键是理解“500±30(mL)”的含义,即500是标准,“+”表示比标准多,“-”表示比标准少.探究点二:有理数的分类【类型一】 有理数的分类把下列各数填到相应的大括号里.-1,6,-3.14,0,-23,8%,2016. 正有理数集:{…};负有理数集:{…};非负数集:{…};整数集:{…};分数集:{…}.解析:根据正、负数的意义可知6,8%,2016都是正有理数;-1,-3.14,-23是负有理数;非负数即0和正数,所以6,0,8%,2016是非负数;整数包括正整数、0和负整数,故-1,6,0,2016是整数;分数有-3.14,-23,8%. 解:正有理数集:{6,8%,2016…};负有理数集:{-1,-3.14,-23…}; 非负数集:{6,0,8%,2016…};整数集:{-1,6,0,2016…};分数集:{-3.14,-23,8%…}. 方法总结:以前学过的0以外的数就是正数,正数前面加上“-”号就是负数,再看它们是整数还是分数.【类型二】 对“0”的理解下列对“0”的说法正确的个数是( )①0是正数和负数的分界点;②0只表示“什么也没有”;③0可以表示特定的意义,如0℃;④0是正数;⑤0是自然数.A .3个B .4个C .5个D .0个解析:0除了表示“无”的意义,还可以表示其他的意义,所以②不正确;0既不是正数也不是负数,所以④不正确;其他的都正确.故选A.方法总结:“0”的意义不要单纯地认为表示“没有”,其实“0”表示的意义非常广泛,比如:冰水混合物的温度就是0℃,0是正、负数的分界点等.【类型三】 和正、负有关的规律探究问题观察下面依次排列的一列数,请接着写出后面的3个数,你能说出第10个数、第105个数、第2015个数吗?(1)一列数:1,-2,3,-4,5,-6,______,______,______,…;(2)一列数:-1,12,-3,14,-5,16,____,____,____,…. 解析:(1)对第n 个数,当n 为奇数时,此数为n ,当n 为偶数时,此数为-n ;(2)对第n 个数,当n 为奇数时,此数为-n ;当n 为偶数时,此数为1n. 解:(1)7,-8,9;第10个数为-10,第105个数是105,第2015个数是2015;(2)-7,18,-9;第10个数为110,第105个数是-105,第2015个数是-2015. 方法总结:像这样探索规律的问题,应全面分析所给的数据,特别要注意观察符号的变化规律,发现数列的特征.三、板书设计。
七年级数学上册2.4有理数的加法课件北师大版

+1
+1
轻松解释(5)
(-2) +(-3)= 演示
-1
-1
-1
-1
-1
议一议
两个有理数相加,和的符号怎样确定?和的绝对值 如何确定?
( - 4 ) + ( - 8 ) = - ( 4 + 8 )= - 12
↓
↓↓
同号两数相加 取相同符号
两个加数的绝对 值相加
( - 9 ) + (+ 2) = - ( 9 - 2) = -7
绝对值
同号
相同符号
相加
异号(绝对值 取绝对值较大 不相等) 的加数的符号
相减
异号(互为相 反数)
结果是0
与0相加
仍是这个数
有理数加法的运算律
学习目标
1.能概括出有理数的加法交换律和结合律. 2.灵活熟练地运用加法交换律、结合律简化运算
(重点、难点)
导入新课
情境引入
学习了有理数的加法运算法则后,爱探索的小 明发现,(-3)+(-6)与(-6)+(-3)相等,8+(-3) 与(-3)+8也相等,于是他想:是不是任意的两个加 数,交换它们的位置后,和仍然相等呢?同学们你 们认为呢?
=(16+24)+[(-25)+(-32)] (加法结合律)
=40+(-57 )
(同号相加法则)
=-17.
(异号相加法则)
(2)31 +(-28)+ 28 + 69 =31 + 69 + [(-28)+ 28 ] (加法交换律和结合律 ) =100+0 =100.
小组讨论:你是抓住数的什么特点使计算简化的? 依据是什么?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有理数加法的运算律2
教学目标:
知识目标:有理数加法的运算律
能力目标:掌握简便运算的常用策略,渗透字母表示数的意识。
学会画图分析法。
情感目标:体验数学公式的简洁美,对称美。
感受数学与生活的密切联系。
增强自信。
教学重点:有理数加法的交换律,结合律。
教学难点:例2综合性较强,为难点。
教学过程:
35m,问玩具赛车最后停在何处?一共行驶了多少米?
师:这两问中,你有把握解决哪一问?
师:第一问包含几个意思?
生:两个,要求方向和距离。
师:介绍画图分析法:
要求学生列式计算,完整解答。
小结:第一问求方位,要求两个方面的内容。
第二问求路程,即求各路程绝对值的和。
练一练:P29 3(略)
补充练习:是非题:
若两个数的和是0,则这两个数都是0;
任何两数相加,和不小于任何一个加数。
a+b+c+d=(a+c)+(b+d)
小结:谈谈你的收获
作业:见课后分层作业,P30 A组必做,B.C组选做
自信教育,第二问学生容易解
决。
引导学生进行比较,务必区分
这两问的不同。
突出重点,帮助总结。
同学互相补充,创造和谐轻松
的气氛,培养归纳能力使不同
水平的学生都有收获。